WO2018061155A1 - Heat pipe - Google Patents

Heat pipe Download PDF

Info

Publication number
WO2018061155A1
WO2018061155A1 PCT/JP2016/078904 JP2016078904W WO2018061155A1 WO 2018061155 A1 WO2018061155 A1 WO 2018061155A1 JP 2016078904 W JP2016078904 W JP 2016078904W WO 2018061155 A1 WO2018061155 A1 WO 2018061155A1
Authority
WO
WIPO (PCT)
Prior art keywords
wick
cylinder
inner cylinder
liquid
working fluid
Prior art date
Application number
PCT/JP2016/078904
Other languages
French (fr)
Japanese (ja)
Inventor
博治 小林
廣田 寿一
Original Assignee
日本碍子株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本碍子株式会社 filed Critical 日本碍子株式会社
Priority to JP2018541816A priority Critical patent/JP6714090B2/en
Priority to PCT/JP2016/078904 priority patent/WO2018061155A1/en
Publication of WO2018061155A1 publication Critical patent/WO2018061155A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D15/00Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies
    • F28D15/02Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies in which the medium condenses and evaporates, e.g. heat pipes
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D15/00Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies
    • F28D15/02Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies in which the medium condenses and evaporates, e.g. heat pipes
    • F28D15/04Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies in which the medium condenses and evaporates, e.g. heat pipes with tubes having a capillary structure

Definitions

  • the technology disclosed in this specification relates to a heat pipe.
  • a heat pipe disclosed in Patent Document 1 covers an inner cylinder, a porous wick that covers the outer peripheral surface of the inner cylinder, and an outer peripheral surface of the wick. And a cylindrical case.
  • a plurality of liquid flow paths extending in the axial direction are formed in the wick, and a liquid working fluid flows through these liquid flow paths.
  • a plurality of gas flow paths are formed between the inner cylinder and the wick and between the wick and the case, and a gas working fluid flows through these gas flow paths.
  • the present specification provides a technique capable of efficiently transferring heat to a liquid working fluid.
  • a heat pipe disclosed in the present specification includes an inner cylinder, a cylindrical wick formed of porous ceramics covering the outer peripheral surface of the inner cylinder, and a cylindrical case covering the outer peripheral surface of the wick. And.
  • the wick is formed with a plurality of liquid channels and a plurality of gas channels extending in the axial direction.
  • the thermal fluid flows through the hollow portion inside the inner cylinder, the heat of the thermal fluid is transmitted to the wick.
  • the heat of the thermal fluid diffuses from the inner cylinder to the surroundings. Since the inner cylinder exists inside the wick, the heat of the thermal fluid diffusing around can be efficiently transferred to the wick.
  • the working fluid penetrates into the porous wick by capillary action.
  • the liquid working fluid that has permeated the wick receives the heat transferred from the thermal fluid to the wick, evaporates, and changes its state to a gaseous working fluid.
  • the evaporated working fluid flows into the gas channel and flows through the gas channel.
  • the working fluid that has penetrated from the liquid flow path into the wick and evaporated flows smoothly into the gas flow path. Since the working fluid flows smoothly from the wick liquid flow path to the gas flow path, heat can be efficiently transferred from the wick to the liquid working fluid.
  • the above heat pipe may include a heat transfer member disposed inside the inner cylinder.
  • the end of the heat transfer member may be fixed to the inner peripheral surface of the inner cylinder.
  • the heat of the thermal fluid flowing through the hollow portion inside the inner cylinder can be easily transmitted to the inner cylinder via the heat transfer member.
  • the inner cylinder may be formed of a brazing material.
  • the heat transfer member may be formed of Si-impregnated SiC.
  • the heat of the thermal fluid can be further easily transmitted to the inner cylinder.
  • the wick includes a porous cylindrical body, and a plurality of porous wall bodies that extend in the axial direction of the cylindrical body in the internal space of the cylindrical body and partition the internal space. May be.
  • a liquid channel and a gas channel that extend in the axial direction may be formed in the internal space by partitioning the internal space with a plurality of wall bodies.
  • the liquid channel may be open at one end in the axial direction and sealed at the other end.
  • the gas flow path may be sealed at one end in the axial direction and open at the other end.
  • the liquid working fluid flowing in the liquid flow path is subjected to capillary action. Infiltrate the wall from the liquid flow path.
  • the liquid working fluid that has permeated the wall body receives heat from the wall body, evaporates, and changes its state to a gaseous working fluid.
  • the evaporated working fluid flows from the wall into the gas flow path and flows through the gas flow path.
  • the wick includes the wall body, the portion where the liquid working fluid comes into contact with the wick increases, and the portion that can receive heat from the wick increases. Therefore, heat can be efficiently transferred to the liquid working fluid.
  • FIG. 2 is a cross-sectional view taken along the line II-II in FIG.
  • FIG. 3 is a sectional view taken along the line III-III in FIG. 2.
  • FIG. 4 is a sectional view taken along line IV-IV in FIG. 3.
  • It is a figure which shows schematic structure of a loop heat pipe.
  • It is sectional drawing corresponding to FIG. 4 of another Example.
  • it is sectional drawing corresponding to FIG. 4 of another Example.
  • FIG. 4 of another Example Furthermore, it is sectional drawing corresponding to FIG. 4 of another Example.
  • FIG. 4 of another Example is sectional drawing corresponding to FIG. 4 of another Example.
  • the heat pipe 1 includes an inner cylinder 6, a wick 2, and a case 3.
  • the heat pipe 1 is a device that transfers heat using a working fluid.
  • the inner cylinder 6 is formed from a brazing material.
  • the brazing material include gold brazing, silver brazing, copper brazing, and aluminum brazing.
  • a method for forming the inner cylinder 6 made of brazing material is, for example, by applying a paste brazing material mixed with a mixed powder of Ag—Cu—In alloy powder and Ti powder, an organic solvent and a resin to the inner peripheral surface of the wick 2. There is a method of drying later.
  • the specific composition of the brazing material is preferably Ag 30 to 60%, Cu 20 to 45%, In 20 to 40%, and Ti 0.5 to 5%.
  • As an element constituting the brazing material one or more of Sn, Al, Zn, Cd, Ni, P and Mn may be contained in addition to Ag and Cu.
  • the thermal fluid flows through the hollow portion 61 inside the inner cylinder 6.
  • the thermal fluid is exhaust gas discharged from the automobile.
  • the heat of the thermal fluid is transmitted to the wick 2 through the inner cylinder 6.
  • the heat transfer member 8 is disposed in the hollow portion 61 inside the inner cylinder 6.
  • the end of the heat transfer member 8 is fixed to the inner peripheral surface of the inner cylinder 6.
  • Examples of the material of the heat transfer member 8 include metals and ceramics.
  • the heat transfer member 8 is preferably formed from Si-impregnated SiC (silicon-impregnated silicon carbide).
  • the heat transfer member 8 includes a plurality of wall bodies 82.
  • the plurality of wall bodies 82 are disposed in the hollow portion 61 inside the inner cylinder 6.
  • a plurality of wall bodies 82 arranged at equal intervals in the horizontal direction (y direction) and the vertical direction (z direction).
  • both end portions of each wall body 82 are fixed to the inner peripheral surface of the inner cylinder 6.
  • the plurality of wall bodies 82 and the inner cylinder 6 are integrally formed to form a honeycomb structure.
  • the plurality of wall bodies 82 arranged in the horizontal direction and the vertical direction are combined in a lattice shape and are integrally formed.
  • the plurality of wall bodies 82 partitions the hollow portion 61 inside the inner cylinder 6 in directions (y direction and z direction) orthogonal to the axial direction (x direction) of the inner cylinder 6.
  • the plurality of wall bodies 82 extend in the axial direction (x direction) in a cross section parallel to the axial direction (x direction) of the inner cylinder 6.
  • the plurality of wall bodies 82 extend from one end portion in the axial direction (x direction) of the inner cylinder 6 to the other end portion.
  • the cylindrical wick 2 covers the outer peripheral surface of the inner cylinder 6 and is fixed to the outer peripheral surface of the inner cylinder 6.
  • the outer peripheral surface of the inner cylinder 6 is in close contact with the inner peripheral surface of the wick 2.
  • the wick 2 includes a wick cylinder 21 and a plurality of wall bodies 22.
  • the wick cylinder 21 is made of a porous material such as ceramics.
  • An internal space 70 is formed inside the wick cylinder 21.
  • the wick cylinder 21 is formed in a cylindrical shape.
  • the plurality of wall bodies 22 are formed of a porous material such as ceramics, for example, similarly to the wick cylinder 21.
  • the plurality of wall bodies 22 are arranged in the cylindrical internal space 70 of the wick cylinder 21.
  • a plurality of wall bodies 22 arranged at equal intervals in the horizontal direction (y direction) and the vertical direction (z direction)
  • both end portions of each wall body 22 are fixed to the inner peripheral surface of the wick cylinder 21.
  • the plurality of wall bodies 22 and the wick cylinder 21 are integrally formed to form a honeycomb structure.
  • the plurality of wall bodies 22 arranged in the horizontal direction and the vertical direction are combined in a lattice shape and are integrally formed.
  • the plurality of wall bodies 22 divide the internal space 70 of the wick cylinder 21 in directions (y direction and z direction) orthogonal to the axial direction (x direction) of the wick cylinder 21.
  • the plurality of wall bodies 22 divide the internal space 70, so that a plurality of liquid flow paths 51 and a plurality of gas flow paths 52 are formed in the internal space 70.
  • eight liquid channels 51 and 20 gas channels 52 are formed.
  • a plurality of liquid flow paths 51 are formed at the center of the internal space 70, and a plurality of gas flow paths 52 are formed at the peripheral edge of the internal space 70.
  • a plurality of liquid flow paths 51 are formed inside the plurality of gas flow paths 52.
  • each of the eight inner spaces constitutes a liquid flow path 51
  • each of the twenty outer spaces constitutes a gas flow path 52.
  • a liquid working fluid flows through the liquid channel 51, and a gas working fluid flows through the gas channel 52.
  • the liquid flow path 51 is surrounded by the plurality of wall bodies 22 and is in contact with the plurality of wall bodies 22.
  • the liquid flow path 51 is not in contact with the wick cylinder 21.
  • the gas flow path 52 is surrounded by the plurality of wall bodies 22 and the wick cylinder body 21, and is in contact with the plurality of wall bodies 22 and the wick cylinder body 21.
  • the wall body 22 arranged in the central portion of the internal space 70 is referred to as a central wall body 22 a.
  • the central wall 22a passes through the central portion of the internal space 70.
  • the plurality of wall bodies 22 extend in the axial direction (x direction) in a cross section parallel to the axial direction (x direction) of the wick cylinder 21.
  • the plurality of wall bodies 22 extend from one end portion in the axial direction (x direction) of the wick cylinder 21 to the other end portion.
  • the plurality of liquid channels 51 and the plurality of gas channels 52 extend in the axial direction (x direction).
  • the plurality of liquid channels 51 and the plurality of gas channels 52 extend from one end of the wick cylinder 21 in the axial direction (x direction) to the other end.
  • the liquid flow channel 51 is open at one end in the axial direction of the wick cylinder 21 and is sealed at the other end by the first sealing body 41.
  • one end portion in the axial direction of the wick cylinder 21 is sealed by the second sealing body 42, and the other end portion is opened.
  • a plurality of liquid flow paths 51 are closed at the other axial end of the wick cylinder 21 (the liquid working fluid outlet side).
  • the plurality of gas flow paths 52 are closed at one end of the wick cylinder 21 in the axial direction (the inlet side of the liquid working fluid).
  • the first sealing body 41 and the second sealing body 42 are integrated with the wick cylinder 21 and the plurality of wall bodies 22.
  • the case 3 includes a case cylinder 32 and a pair of lids 31.
  • the case cylinder 32 and the pair of lid bodies 31 are made of a metal material such as copper (Cu), for example.
  • the case cylinder 32 is formed in a cylindrical shape.
  • the case cylinder 32 may be formed in a square cylinder shape.
  • the shape of the case cylinder 32 in the cross section orthogonal to the axial direction (x direction) of the case cylinder 32 is not particularly limited.
  • the case cylinder 32 is disposed outside the wick cylinder 21.
  • the case cylinder 32 covers the wick cylinder 21.
  • the inner peripheral surface of the case cylinder 32 is in close contact with the outer peripheral surface of the wick cylinder 21.
  • the pair of lids 31 are fixed to both ends of the case cylinder 32.
  • the pair of lids 31 seals the case cylinder 32.
  • the loop heat pipe 101 including the heat pipe 1 will be described.
  • the loop heat pipe 101 includes an evaporator 111, a steam pipe 122, a condenser 112, and a liquid pipe 121.
  • the evaporator 111, the steam pipe 122, the condenser 112, and the liquid pipe 121 are connected so as to form a loop.
  • the loop heat pipe 101 includes a reservoir 125 and an exhaust gas pipe 126.
  • the evaporator 111 is constituted by the heat pipe 1 described above. In the evaporator 111, the liquid working fluid is heated and evaporated, and the state changes to a gaseous working fluid. The working fluid receives heat in the evaporator 111.
  • the evaporator 111 is a device that heats the working fluid.
  • An exhaust gas pipe 126 is connected to the evaporator 111 (heat pipe 1).
  • the exhaust gas pipe 126 guides the exhaust gas discharged from the automobile to the evaporator 111.
  • Exhaust gas discharged from automobiles is used as a thermal fluid.
  • Thermal fluid (exhaust gas) flows in the exhaust gas pipe 126.
  • the exhaust gas pipe 126 is connected to the inner cylinder 6 (not shown in FIG. 5) of the heat pipe 1.
  • the thermal fluid (exhaust gas) that has flowed through the exhaust gas pipe 126 flows into the hollow portion 61 inside the inner cylinder 6.
  • the gaseous working fluid is cooled and condensed, and the state changes to a liquid working fluid.
  • the working fluid dissipates heat in the condenser 112.
  • the condenser 112 is a device that receives heat from the working fluid.
  • the liquid pipe 121 guides the liquid working fluid from the condenser 112 to the evaporator 111.
  • the upstream end of the liquid pipe 121 is connected to the condenser 112, and the downstream end is connected to the evaporator 111.
  • a liquid working fluid flows in the liquid pipe 121.
  • the steam pipe 122 guides the gaseous working fluid from the evaporator 111 to the condenser 112.
  • the upstream end of the steam pipe 122 is connected to the evaporator 111, and the downstream end is connected to the condenser 112.
  • a gaseous working fluid flows in the vapor pipe 122.
  • the reservoir 125 is installed in the liquid pipe 121. A part of the liquid working fluid flowing through the liquid pipe 121 is stored. Thus, the flow rate of the liquid working fluid flowing from the liquid pipe 121 to the evaporator 111 is adjusted.
  • the exhaust gas flowing through the exhaust gas pipe 126 is introduced from the exhaust gas pipe 126 into the evaporator 111. That is, the thermal fluid is introduced from the exhaust gas pipe 126 into the heat pipe 1.
  • the thermal fluid is introduced into the hollow portion 61 inside the inner cylinder 6 of the heat pipe 1.
  • the heat of the thermal fluid introduced into the hollow portion 61 is transmitted to the wick 2 through the heat transfer member 8 and the inner cylinder 6 disposed in the hollow portion 61.
  • the wick 2 is heated by the heat of the thermal fluid.
  • the wick cylinder 21 and the wall 22 of the wick 2 are heated by the heat of the thermal fluid.
  • the liquid working fluid that has flowed through the liquid pipe 121 is introduced from the liquid pipe 121 into the evaporator 111. That is, a liquid working fluid is introduced from the liquid pipe 121 to the heat pipe 1.
  • the liquid working fluid introduced into the heat pipe 1 flows into the plurality of liquid flow paths 51 formed in the internal space 70 of the wick cylinder 21 and flows through the liquid flow path 51.
  • the liquid working fluid flowing through the liquid channel 51 penetrates into the porous wall body 22 by capillary action.
  • the liquid working fluid When the liquid working fluid penetrates into the porous wall body 22, it receives heat from the wall body 22 and evaporates, and changes its state to a gaseous working fluid.
  • the evaporated working fluid flows into the plurality of gas flow paths 52 from the porous wall body 22 and flows through the gas flow paths 52.
  • the gaseous working fluid that has flowed through the gas flow path 52 flows out of the heat pipe 1 and flows into the steam pipe 122. That is, a gaseous working fluid flows into the vapor pipe 122 from the evaporator 111.
  • the gaseous working fluid that has flowed into the steam pipe 122 flows through the steam pipe 122 and is introduced into the condenser 112 from the steam pipe 122.
  • the gaseous working fluid introduced into the condenser 112 is condensed by releasing heat in the condenser 112, and changes to a liquid working fluid.
  • the condensed liquid working fluid flows into the liquid pipe 121 from the condenser 112 and flows through the liquid pipe 121 again. Then, the liquid working fluid that has flowed through the liquid pipe 121 is again introduced into the heat pipe 1 from the liquid pipe 121. In this way, the working fluid flows through the loop heat pipe 101 while changing its state between the liquid and the gas. Heat is transported by the working fluid.
  • the heat pipe 1 includes an inner cylinder 6, a cylindrical wick 2 formed of porous ceramics covering the outer peripheral surface of the inner cylinder 6, and a wick. And a cylindrical case 3 covering the outer peripheral surface of 2.
  • a plurality of liquid flow paths 51 and a plurality of gas flow paths 52 extending in the axial direction are formed in the wick 2.
  • the working fluid that has permeated from the liquid flow path 51 into the wick 2 and evaporated flows smoothly into the gas flow path 52. Since the working fluid smoothly flows from the liquid channel 51 of the wick 2 to the gas channel 52, heat can be efficiently transferred from the wick 2 to the liquid working fluid.
  • the inner cylinder 6 is formed of a brazing material. Therefore, when the inner cylinder 6 is thermally expanded, the pressure of the inner cylinder 6 and the wick 2 becomes an appropriate pressure. Heat can be easily transferred to 2. The thermal resistance between the inner cylinder 6 and the wick 2 becomes an appropriate thermal resistance. If the inner cylinder 6 is formed of other materials, the pressure of the inner cylinder 6 and the wick 2 may be too high or too low when the inner cylinder 6 is thermally expanded.
  • the heat pipe 1 includes a heat transfer member 8 arranged inside the inner cylinder 6.
  • the end of the heat transfer member 8 is fixed to the inner peripheral surface of the inner cylinder 6.
  • the heat of the thermal fluid flowing through the hollow portion 61 inside the inner cylinder 6 is transmitted to the inner cylinder 6 via the heat transfer member 8.
  • the heat of the thermal fluid can be easily transferred to the inner cylinder 6 by the heat transfer member 8.
  • the heat transfer member 8 is made of Si-impregnated SiC, the heat conductivity is high, and the heat transfer member 8 can be easily transferred to the inner cylinder 6.
  • the tolerance with respect to exhaust gas can be made high.
  • the wick 2 includes the porous wall body 22 that forms the liquid channel 51 and the gas channel 52 in the internal space 70 of the wick cylinder 21.
  • the liquid working fluid flowing through the liquid channel 51 permeates from the liquid channel 51 into the porous wall body 22 by capillary action.
  • the liquid working fluid that has permeated the wall body 22 receives heat from the wall body 22 and evaporates, and changes its state to a gaseous working fluid.
  • the evaporated working fluid flows into the gas channel 52 from the porous wall body 22 and flows through the gas channel 52.
  • the liquid working fluid can easily receive heat from the wick 2.
  • heat can be efficiently transferred from the wick 2 to the liquid working fluid.
  • the liquid flow path 51 is surrounded by the plurality of wall bodies 22 and is not in contact with the wick cylinder 21, so that the wall body against the liquid working fluid flowing through the liquid flow path 51.
  • the heat can be efficiently transferred from 22.
  • the plurality of liquid flow paths 51 are formed in the central portion of the internal space 70 and the plurality of gas flow paths 52 are formed in the peripheral edge of the internal space 70.
  • the present invention is limited to this configuration. It is not something.
  • the liquid channel 51 and the gas channel 52 may be alternately formed in a cross section orthogonal to the axial direction (x direction) of the wick cylinder 21.
  • the plurality of liquid channels 51 and the plurality of gas channels 52 may be formed in a checkered pattern.
  • FIG. 7 in the cross section orthogonal to the axial direction (x direction) of the wick cylinder 21, a plurality of liquid flow paths 51 and a plurality of gas flow paths 52 are alternately formed for each row. Also good.
  • each liquid channel 51 may be larger than the cross-sectional area of each gas channel 52 in a cross section orthogonal to the axial direction (x direction) of the wick cylinder 21.
  • the total cross-sectional area of the plurality of liquid flow paths 51 may be larger than the total cross-sectional area of the plurality of gas flow paths 52.
  • the wick cylinder 21 is formed in a cylindrical shape, but is not limited to this configuration.
  • the shape of the wick cylinder 21 in the cross section orthogonal to the axial direction (x direction) of the wick cylinder 21 is not particularly limited.
  • the wick cylinder 21 may be formed in a square cylinder shape.
  • the shape of the cross section orthogonal to the axial direction (x direction) of the wick cylinder 21 is a rectangle.
  • the wick cylinder 21 is formed so that the upper side and the lower side of the wick cylinder 21 are longer than the side.
  • the upper side and the lower side of the wick cylinder 21 are long sides, and the side sides are short sides.
  • the inner cylinder 6 is formed in a cylindrical shape, but is not limited to this configuration.
  • the shape of the inner cylinder 6 in the cross section orthogonal to the axial direction (x direction) of the inner cylinder 6 is not particularly limited.
  • the inner cylinder 6 may be formed in a square cylinder shape.
  • the cross-sectional shape orthogonal to the axial direction (x direction) of the inner cylinder 6 is a rectangle.
  • the inner cylinder 6 is formed such that the upper side and the lower side of the inner cylinder 6 are longer than the side sides.
  • the upper side and the lower side of the inner cylinder 6 are long sides, and the side sides are short sides.
  • the plurality of wall bodies 22 may be arranged concentrically and radially in a cross section orthogonal to the axial direction of the wick cylinder 21.
  • the plurality of wall bodies 22 arranged concentrically are arranged concentrically with the wick cylinder 21.
  • the plurality of wall bodies 22 extend in the circumferential direction of the wick cylinder 21.
  • the plurality of wall bodies 22 arranged radially extend from the center of the internal space 70 in the radial direction of the wick cylinder 21. In the plurality of radial walls 22, heat is quickly transmitted to the center of the internal space 70.
  • a plurality of wall bodies 82 may be arranged concentrically and radially in a cross section orthogonal to the axial direction of the inner cylinder 6.
  • the plurality of wall bodies 82 arranged concentrically are arranged concentrically with the inner cylinder 6.
  • the plurality of wall bodies 82 extend in the circumferential direction of the inner cylinder 6.
  • the plurality of radially arranged wall bodies 82 extend from the center portion of the hollow portion 61 in the radial direction of the inner cylinder 6.
  • a manufacturing method of the wick 2 will be described.
  • the wick 2 is manufactured, first, water and a binder are added to the ceramic raw material powder and kneaded to prepare a kneaded clay having plasticity. Next, the prepared dough is extruded to form a honeycomb structure. As a result, a honeycomb structure including the wick cylinder 21 and the plurality of wall bodies 22 is formed.
  • a sheet is attached to one end face of the honeycomb structure, and a hole is made in a part of the sheet (a position corresponding to the end of the gas flow path 52).
  • one end surface of the honeycomb structure is immersed in a slurry containing a material of the sealing body (the first sealing body 41 and the second sealing body 42 described above).
  • the material of the sealing body is cured by drying and baking, whereby the second sealing body 42 that seals the end of the gas flow path 52 is formed.
  • a sheet is attached to the other end surface of the honeycomb structure, and a hole is formed in a part of the sheet (a position corresponding to the end of the liquid flow channel 51).
  • the other end surface of the honeycomb structure is immersed in a slurry containing the material of the sealing body.
  • the 1st sealing body 41 which seals the edge part of the liquid flow path 51 is formed by hardening the material of a sealing body by drying and baking.
  • each of the one end surface and the other end surface of the honeycomb structure is immersed in a slurry containing the material of the sealing body, and then dried and fired, whereby the second sealing body 42 and the first sealing body. 41 may be formed simultaneously.

Abstract

Provided is a heat pipe wherein heat can be efficiently transferred to a liquid working fluid. A heat pipe (1) is provided with: an inner cylinder (6); a cylindrical wick (2) formed of a porous ceramic, said wick covering the outer circumferential surface of the inner cylinder (6); and a cylindrical case (3) covering the outer circumferential surface of the wick (2). A plurality of liquid flow channels (51) and a plurality of gas flow channels (52) are formed in the wick (2), said liquid flow channels and gas flow channels extending in the axis direction.

Description

ヒートパイプheat pipe
 本明細書に開示する技術は、ヒートパイプに関する。 The technology disclosed in this specification relates to a heat pipe.
 特許文献1(日本国特開2014-70871号公報)に開示されているヒートパイプは、内筒と、内筒の外周面を覆っている多孔質のウィックと、ウィックの外周面を覆っている筒状のケースとを備えている。ウィックには、軸方向に延びる複数の液体流路が形成されており、液体の作動流体がこれらの液体流路を流れる。また、内筒とウィックの間、及び、ウィックとケースの間には、複数の気体流路が形成されており、気体の作動流体がこれらの気体流路を流れる。 A heat pipe disclosed in Patent Document 1 (Japanese Unexamined Patent Publication No. 2014-70871) covers an inner cylinder, a porous wick that covers the outer peripheral surface of the inner cylinder, and an outer peripheral surface of the wick. And a cylindrical case. A plurality of liquid flow paths extending in the axial direction are formed in the wick, and a liquid working fluid flows through these liquid flow paths. Further, a plurality of gas flow paths are formed between the inner cylinder and the wick and between the wick and the case, and a gas working fluid flows through these gas flow paths.
 特許文献1のヒートパイプでは、内筒の内側の中空部を熱流体が流れると、熱流体の熱がウィックに伝達される。また、このヒートパイプでは、液体の作動流体が液体流路を流れると、その作動流体が毛細管現象によって多孔質のウィックに浸透してゆく。ウィックに浸透した液体の作動流体は、熱流体からウィックに伝達された熱を受熱して蒸発し、気体の作動流体に状態変化する。蒸発した作動流体は、ウィックから気体流路に流入して気体流路を流れてゆく。 In the heat pipe of Patent Document 1, when the thermal fluid flows through the hollow portion inside the inner cylinder, the heat of the thermal fluid is transmitted to the wick. Further, in this heat pipe, when the liquid working fluid flows through the liquid flow path, the working fluid penetrates into the porous wick by capillary action. The liquid working fluid that has permeated the wick receives the heat transferred from the thermal fluid to the wick, evaporates, and changes its state to a gaseous working fluid. The evaporated working fluid flows into the gas channel from the wick and flows through the gas channel.
 ヒートパイプでは、液体の作動流体を効率よく加熱して気体の作動流体に状態変化させることが好ましい。そのためには、ウィックから液体の作動流体に熱を効率よく伝達することが好ましい。従来のヒートパイプでは、この点で不十分なところがあった。そこで本明細書は、液体の作動流体に効率よく熱を伝達することができる技術を提供する。 In the heat pipe, it is preferable to efficiently heat the liquid working fluid to change the state to a gaseous working fluid. For this purpose, it is preferable to efficiently transfer heat from the wick to the liquid working fluid. Conventional heat pipes are insufficient in this respect. Therefore, the present specification provides a technique capable of efficiently transferring heat to a liquid working fluid.
 本明細書に開示するヒートパイプは、内筒と、内筒の外周面を覆っている多孔質のセラミックスから形成されている筒状のウィックと、ウィックの外周面を覆っている筒状のケースと、を備えている。ウィックには、軸方向に延びる複数の液体流路と複数の気体流路が形成されている。 A heat pipe disclosed in the present specification includes an inner cylinder, a cylindrical wick formed of porous ceramics covering the outer peripheral surface of the inner cylinder, and a cylindrical case covering the outer peripheral surface of the wick. And. The wick is formed with a plurality of liquid channels and a plurality of gas channels extending in the axial direction.
 このような構成によれば、内筒の内側の中空部を熱流体が流れると、熱流体の熱がウィックに伝達される。熱流体の熱は、内筒から周囲に拡散してゆく。ウィックの内側に内筒が存在するので、周囲に拡散する熱流体の熱をウィックに効率よく伝達することができる。また、上記の構成によれば、液体の作動流体が液体流路を流れると、その作動流体が毛細管現象によって多孔質のウィックに浸透してゆく。ウィックに浸透した液体の作動流体は、熱流体からウィックに伝達された熱を受熱して蒸発し、気体の作動流体に状態変化する。蒸発した作動流体は、気体流路に流入して気体流路を流れてゆく。上記の構成によればウィックに液体流路と気体流路が形成されているので、液体流路からウィックに浸透して蒸発した作動流体が気体流路にスムーズに流れる。作動流体がウィックの液体流路から気体流路にスムーズに流れるので、ウィックから液体の作動流体に効率よく熱を伝達することができる。 According to such a configuration, when the thermal fluid flows through the hollow portion inside the inner cylinder, the heat of the thermal fluid is transmitted to the wick. The heat of the thermal fluid diffuses from the inner cylinder to the surroundings. Since the inner cylinder exists inside the wick, the heat of the thermal fluid diffusing around can be efficiently transferred to the wick. Further, according to the above configuration, when the liquid working fluid flows through the liquid flow path, the working fluid penetrates into the porous wick by capillary action. The liquid working fluid that has permeated the wick receives the heat transferred from the thermal fluid to the wick, evaporates, and changes its state to a gaseous working fluid. The evaporated working fluid flows into the gas channel and flows through the gas channel. According to the above configuration, since the liquid flow path and the gas flow path are formed in the wick, the working fluid that has penetrated from the liquid flow path into the wick and evaporated flows smoothly into the gas flow path. Since the working fluid flows smoothly from the wick liquid flow path to the gas flow path, heat can be efficiently transferred from the wick to the liquid working fluid.
 また、上記のヒートパイプは、内筒の内側に配置されている熱伝達部材を備えていてもよい。熱伝達部材の端部が内筒の内周面に固定されていてもよい。 Further, the above heat pipe may include a heat transfer member disposed inside the inner cylinder. The end of the heat transfer member may be fixed to the inner peripheral surface of the inner cylinder.
 このような構成によれば、内筒の内側の中空部を流れる熱流体の熱を熱伝達部材を介して内筒に伝達し易くすることができる。 According to such a configuration, the heat of the thermal fluid flowing through the hollow portion inside the inner cylinder can be easily transmitted to the inner cylinder via the heat transfer member.
 上記のヒートパイプでは、内筒がろう材から形成されていてもよい。 In the above heat pipe, the inner cylinder may be formed of a brazing material.
 このような構成によれば、内筒からウィックに熱を伝達し易くすることができる。 According to such a configuration, heat can be easily transferred from the inner cylinder to the wick.
 また、上記のヒートパイプでは、熱伝達部材がSi含侵SiCから形成されていてもよい。 In the above heat pipe, the heat transfer member may be formed of Si-impregnated SiC.
 このような構成によれば、熱流体の熱を内筒に更に伝達し易くすることができる。 According to such a configuration, the heat of the thermal fluid can be further easily transmitted to the inner cylinder.
 また、上記のヒートパイプでは、ウィックが、多孔質の筒体と、筒体の内部空間において筒体の軸方向に延びており、内部空間を仕切る多孔質の複数の壁体と、を備えていてもよい。複数の壁体が内部空間を仕切ることによって軸方向に延びる液体流路と気体流路が内部空間に形成されていてもよい。液体流路は、軸方向の一端部が開口しており、他端部が封止されていてもよい。気体流路は、軸方向の一端部が封止されており、他端部が開口していてもよい。 In the above heat pipe, the wick includes a porous cylindrical body, and a plurality of porous wall bodies that extend in the axial direction of the cylindrical body in the internal space of the cylindrical body and partition the internal space. May be. A liquid channel and a gas channel that extend in the axial direction may be formed in the internal space by partitioning the internal space with a plurality of wall bodies. The liquid channel may be open at one end in the axial direction and sealed at the other end. The gas flow path may be sealed at one end in the axial direction and open at the other end.
 このような構成によれば、ウィックの筒体の内部空間に液体流路と気体流路を形成する多孔質の壁体を備えているので、液体流路を流れる液体の作動流体が、毛細管現象によって液体流路から壁体に浸透してゆく。壁体に浸透した液体の作動流体は、壁体から熱を受熱して蒸発し、気体の作動流体に状態変化する。蒸発した作動流体は、壁体から気体流路に流入して気体流路を流れてゆく。このような構成によれば、ウィックが壁体を備えているので、液体の作動流体がウィックに接する部分が増加し、ウィックから受熱できる部分が増加する。そのため、液体の作動流体に効率よく熱を伝達することができる。ウィックの内側に内筒が存在する構成とウィックが壁体を備える構成とを組み合わせることによって、液体の作動流体に更に効率よく熱を伝達することができる。 According to such a configuration, since the porous wall body that forms the liquid flow path and the gas flow path is provided in the internal space of the wick cylinder, the liquid working fluid flowing in the liquid flow path is subjected to capillary action. Infiltrate the wall from the liquid flow path. The liquid working fluid that has permeated the wall body receives heat from the wall body, evaporates, and changes its state to a gaseous working fluid. The evaporated working fluid flows from the wall into the gas flow path and flows through the gas flow path. According to such a configuration, since the wick includes the wall body, the portion where the liquid working fluid comes into contact with the wick increases, and the portion that can receive heat from the wick increases. Therefore, heat can be efficiently transferred to the liquid working fluid. By combining the configuration in which the inner cylinder is present inside the wick and the configuration in which the wick includes a wall body, heat can be more efficiently transferred to the liquid working fluid.
実施例ヒートパイプの概略構成を示す図である。It is a figure which shows schematic structure of an Example heat pipe. 図1のII-II断面図である。FIG. 2 is a cross-sectional view taken along the line II-II in FIG. 図2のIII-III断面図である。FIG. 3 is a sectional view taken along the line III-III in FIG. 2. 図3のIV-IV断面図である。FIG. 4 is a sectional view taken along line IV-IV in FIG. 3. ループヒートパイプの概略構成を示す図である。It is a figure which shows schematic structure of a loop heat pipe. 他の実施例の図4に対応する断面図である。It is sectional drawing corresponding to FIG. 4 of another Example. 更に他の実施例の図4に対応する断面図である。Furthermore, it is sectional drawing corresponding to FIG. 4 of another Example. 更に他の実施例の液体流路と気体流路の断面図である。It is sectional drawing of the liquid flow path and gas flow path of another Example. 更に他の実施例の図4に対応する断面図である。Furthermore, it is sectional drawing corresponding to FIG. 4 of another Example. 更に他の実施例の図4に対応する断面図である。Furthermore, it is sectional drawing corresponding to FIG. 4 of another Example.
 以下、実施例について添付図面を参照して説明する。図1から図3に示すように、実施例に係るヒートパイプ1は、内筒6とウィック2とケース3を備えている。ヒートパイプ1は、作動流体を用いて熱を伝達する装置である。 Hereinafter, examples will be described with reference to the accompanying drawings. As shown in FIGS. 1 to 3, the heat pipe 1 according to the embodiment includes an inner cylinder 6, a wick 2, and a case 3. The heat pipe 1 is a device that transfers heat using a working fluid.
 内筒6は、ろう材から形成されている。ろう材としては、例えば金ろう、銀ろう、銅ろう、アルミろう等が挙げられる。ろう材からなる内筒6を形成する方法は、例えば、Ag-Cu-In合金粉末とTi粉末との混合粉末と有機溶剤及び樹脂を混成したペーストろう材をウィック2の内周面に塗布した後に乾燥させる方法がある。ろう材の具体的な組成は、Ag30~60%、Cu20~45%、In20~40%、Ti0.5~5%が好ましい。ろう材を構成する元素としては、AgおよびCu以外に、Sn、Al、Zn、Cd、Ni、PおよびMnのうちのいずれか1種以上を含有していてもよい。内筒6の内側の中空部61を熱流体が流れる。熱流体は、自動車から排出される排ガスである。熱流体の熱が内筒6を介してウィック2に伝達される。 The inner cylinder 6 is formed from a brazing material. Examples of the brazing material include gold brazing, silver brazing, copper brazing, and aluminum brazing. A method for forming the inner cylinder 6 made of brazing material is, for example, by applying a paste brazing material mixed with a mixed powder of Ag—Cu—In alloy powder and Ti powder, an organic solvent and a resin to the inner peripheral surface of the wick 2. There is a method of drying later. The specific composition of the brazing material is preferably Ag 30 to 60%, Cu 20 to 45%, In 20 to 40%, and Ti 0.5 to 5%. As an element constituting the brazing material, one or more of Sn, Al, Zn, Cd, Ni, P and Mn may be contained in addition to Ag and Cu. The thermal fluid flows through the hollow portion 61 inside the inner cylinder 6. The thermal fluid is exhaust gas discharged from the automobile. The heat of the thermal fluid is transmitted to the wick 2 through the inner cylinder 6.
 内筒6の内側の中空部61には、熱伝達部材8が配置されている。熱伝達部材8の端部は、内筒6の内周面に固定されている。熱伝達部材8の材質としては、例えば金属、セラミックスが挙げられる。熱伝達部材8は、Si含侵SiC(シリコン含浸炭化ケイ素)から形成されていることが好ましい。 The heat transfer member 8 is disposed in the hollow portion 61 inside the inner cylinder 6. The end of the heat transfer member 8 is fixed to the inner peripheral surface of the inner cylinder 6. Examples of the material of the heat transfer member 8 include metals and ceramics. The heat transfer member 8 is preferably formed from Si-impregnated SiC (silicon-impregnated silicon carbide).
 熱伝達部材8は、複数の壁体82によって構成されている。複数の壁体82は、内筒6の内側の中空部61に配置されている。図2に示すように、内筒6の軸方向(x方向)に直交する断面において、横方向(y方向)に等間隔で並んでいる複数の壁体82と、縦方向(z方向)に等間隔で並んでいる複数の壁体82がある。内筒6の軸方向(x方向)に直交する断面において、各壁体82の両端部は内筒6の内周面に固定されている。複数の壁体82と内筒6は一体的に形成されており、ハニカム構造体になっている。横方向と縦方向に並んでいる複数の壁体82は、格子状に組み合わされており、一体的に形成されている。複数の壁体82は、内筒6の内側の中空部61を内筒6の軸方向(x方向)と直交する方向(y方向とz方向)に仕切っている。 The heat transfer member 8 includes a plurality of wall bodies 82. The plurality of wall bodies 82 are disposed in the hollow portion 61 inside the inner cylinder 6. As shown in FIG. 2, in a cross section orthogonal to the axial direction (x direction) of the inner cylinder 6, a plurality of wall bodies 82 arranged at equal intervals in the horizontal direction (y direction) and the vertical direction (z direction). There are a plurality of wall bodies 82 arranged at equal intervals. In the cross section orthogonal to the axial direction (x direction) of the inner cylinder 6, both end portions of each wall body 82 are fixed to the inner peripheral surface of the inner cylinder 6. The plurality of wall bodies 82 and the inner cylinder 6 are integrally formed to form a honeycomb structure. The plurality of wall bodies 82 arranged in the horizontal direction and the vertical direction are combined in a lattice shape and are integrally formed. The plurality of wall bodies 82 partitions the hollow portion 61 inside the inner cylinder 6 in directions (y direction and z direction) orthogonal to the axial direction (x direction) of the inner cylinder 6.
 図3に示すように、内筒6の軸方向(x方向)と平行な断面において、複数の壁体82は、前記軸方向(x方向)に延びている。複数の壁体82は、内筒6の軸方向(x方向)の一端部から他端部まで延びている。 As shown in FIG. 3, the plurality of wall bodies 82 extend in the axial direction (x direction) in a cross section parallel to the axial direction (x direction) of the inner cylinder 6. The plurality of wall bodies 82 extend from one end portion in the axial direction (x direction) of the inner cylinder 6 to the other end portion.
 筒状のウィック2は、内筒6の外周面を覆っており、内筒6の外周面に固定されている。内筒6の外周面がウィック2の内周面に密着している。ウィック2は、ウィック筒体21と複数の壁体22を備えている。ウィック筒体21は、例えばセラミックスなどの多孔質材料から形成されている。ウィック筒体21の内側には内部空間70が形成されている。ウィック筒体21は、円筒状に形成されている。 The cylindrical wick 2 covers the outer peripheral surface of the inner cylinder 6 and is fixed to the outer peripheral surface of the inner cylinder 6. The outer peripheral surface of the inner cylinder 6 is in close contact with the inner peripheral surface of the wick 2. The wick 2 includes a wick cylinder 21 and a plurality of wall bodies 22. The wick cylinder 21 is made of a porous material such as ceramics. An internal space 70 is formed inside the wick cylinder 21. The wick cylinder 21 is formed in a cylindrical shape.
 複数の壁体22は、ウィック筒体21と同様に例えばセラミックスなどの多孔質材料から形成されている。複数の壁体22は、ウィック筒体21の円筒状の内部空間70の中に配置されている。図2に示すように、ウィック筒体21の軸方向(x方向)に直交する断面において、横方向(y方向)に等間隔で並んでいる複数の壁体22と、縦方向(z方向)に等間隔で並んでいる複数の壁体22がある。ウィック筒体21の軸方向(x方向)に直交する断面において、各壁体22の両端部はウィック筒体21の内周面に固定されている。複数の壁体22とウィック筒体21は一体的に形成されており、ハニカム構造体になっている。横方向と縦方向に並んでいる複数の壁体22は、格子状に組み合わされており、一体的に形成されている。 The plurality of wall bodies 22 are formed of a porous material such as ceramics, for example, similarly to the wick cylinder 21. The plurality of wall bodies 22 are arranged in the cylindrical internal space 70 of the wick cylinder 21. As shown in FIG. 2, in the cross section orthogonal to the axial direction (x direction) of the wick cylinder 21, a plurality of wall bodies 22 arranged at equal intervals in the horizontal direction (y direction) and the vertical direction (z direction) There are a plurality of wall bodies 22 arranged at equal intervals. In the cross section orthogonal to the axial direction (x direction) of the wick cylinder 21, both end portions of each wall body 22 are fixed to the inner peripheral surface of the wick cylinder 21. The plurality of wall bodies 22 and the wick cylinder 21 are integrally formed to form a honeycomb structure. The plurality of wall bodies 22 arranged in the horizontal direction and the vertical direction are combined in a lattice shape and are integrally formed.
 複数の壁体22は、ウィック筒体21の内部空間70をウィック筒体21の軸方向(x方向)と直交する方向(y方向とz方向)に仕切っている。複数の壁体22が内部空間70を仕切ることによって、内部空間70に複数の液体流路51と複数の気体流路52が形成されている。図2に示す例では、8個の液体流路51と20個の気体流路52が形成されている。内部空間70の中央部に複数の液体流路51が形成されており、内部空間70の周縁部に複数の気体流路52が形成されている。複数の液体流路51が複数の気体流路52より内側に形成されている。図2に示す例では、内側の8個の空間のそれぞれが液体流路51を構成しており、外側の20個の空間のそれぞれが気体流路52を構成している。液体の作動流体が液体流路51を流れ、気体の作動流体が気体流路52を流れる。 The plurality of wall bodies 22 divide the internal space 70 of the wick cylinder 21 in directions (y direction and z direction) orthogonal to the axial direction (x direction) of the wick cylinder 21. The plurality of wall bodies 22 divide the internal space 70, so that a plurality of liquid flow paths 51 and a plurality of gas flow paths 52 are formed in the internal space 70. In the example shown in FIG. 2, eight liquid channels 51 and 20 gas channels 52 are formed. A plurality of liquid flow paths 51 are formed at the center of the internal space 70, and a plurality of gas flow paths 52 are formed at the peripheral edge of the internal space 70. A plurality of liquid flow paths 51 are formed inside the plurality of gas flow paths 52. In the example shown in FIG. 2, each of the eight inner spaces constitutes a liquid flow path 51, and each of the twenty outer spaces constitutes a gas flow path 52. A liquid working fluid flows through the liquid channel 51, and a gas working fluid flows through the gas channel 52.
 ウィック筒体21の軸方向に直交する断面において、液体流路51は、複数の壁体22に囲まれており、複数の壁体22に接している。液体流路51はウィック筒体21に接していない。気体流路52は、複数の壁体22とウィック筒体21に囲まれており、複数の壁体22とウィック筒体21に接している。複数の壁体22のうち、内部空間70の中央部に配置されている壁体22を中央壁体22aという。中央壁体22aは、内部空間70の中央部を通過している。 In the cross section orthogonal to the axial direction of the wick cylinder 21, the liquid flow path 51 is surrounded by the plurality of wall bodies 22 and is in contact with the plurality of wall bodies 22. The liquid flow path 51 is not in contact with the wick cylinder 21. The gas flow path 52 is surrounded by the plurality of wall bodies 22 and the wick cylinder body 21, and is in contact with the plurality of wall bodies 22 and the wick cylinder body 21. Of the plurality of wall bodies 22, the wall body 22 arranged in the central portion of the internal space 70 is referred to as a central wall body 22 a. The central wall 22a passes through the central portion of the internal space 70.
 図3に示すように、ウィック筒体21の軸方向(x方向)と平行な断面において、複数の壁体22は、前記軸方向(x方向)に延びている。複数の壁体22は、ウィック筒体21の軸方向(x方向)の一端部から他端部まで延びている。また、複数の液体流路51と複数の気体流路52は、前記軸方向(x方向)に延びている。複数の液体流路51と複数の気体流路52は、ウィック筒体21の軸方向(x方向)の一端部から他端部まで延びている。液体流路51は、ウィック筒体21の軸方向の一端部が開口しており、他端部が第1の封止体41によって封止されている。気体流路52は、ウィック筒体21の軸方向の一端部が第2の封止体42によって封止されており、他端部が開口している。図4に示すように、ウィック筒体21の軸方向の他端部(液体の作動流体の出口側)では、複数の液体流路51が閉塞している。反対に、図示しないが、ウィック筒体21の軸方向の一端部(液体の作動流体の入口側)では、複数の気体流路52が閉塞している。第1の封止体41と第2の封止体42は、ウィック筒体21と複数の壁体22と一体になっている。 As shown in FIG. 3, the plurality of wall bodies 22 extend in the axial direction (x direction) in a cross section parallel to the axial direction (x direction) of the wick cylinder 21. The plurality of wall bodies 22 extend from one end portion in the axial direction (x direction) of the wick cylinder 21 to the other end portion. The plurality of liquid channels 51 and the plurality of gas channels 52 extend in the axial direction (x direction). The plurality of liquid channels 51 and the plurality of gas channels 52 extend from one end of the wick cylinder 21 in the axial direction (x direction) to the other end. The liquid flow channel 51 is open at one end in the axial direction of the wick cylinder 21 and is sealed at the other end by the first sealing body 41. In the gas flow path 52, one end portion in the axial direction of the wick cylinder 21 is sealed by the second sealing body 42, and the other end portion is opened. As shown in FIG. 4, a plurality of liquid flow paths 51 are closed at the other axial end of the wick cylinder 21 (the liquid working fluid outlet side). On the other hand, although not shown, the plurality of gas flow paths 52 are closed at one end of the wick cylinder 21 in the axial direction (the inlet side of the liquid working fluid). The first sealing body 41 and the second sealing body 42 are integrated with the wick cylinder 21 and the plurality of wall bodies 22.
 図3に示すように、ケース3は、ケース筒体32と一対の蓋体31を備えている。ケース筒体32と一対の蓋体31は、例えば銅(Cu)などの金属材料から形成されている。ケース筒体32は、円筒状に形成されている。ケース筒体32は、角筒状に形成されていてもよい。ケース筒体32の軸方向(x方向)に直交する断面におけるケース筒体32の形状は特に限定されるものではない。ケース筒体32は、ウィック筒体21の外側に配置されている。ケース筒体32は、ウィック筒体21を覆っている。ケース筒体32の内周面がウィック筒体21の外周面と密着している。一対の蓋体31は、ケース筒体32の両端部に固定されている。一対の蓋体31は、ケース筒体32を封止している。 As shown in FIG. 3, the case 3 includes a case cylinder 32 and a pair of lids 31. The case cylinder 32 and the pair of lid bodies 31 are made of a metal material such as copper (Cu), for example. The case cylinder 32 is formed in a cylindrical shape. The case cylinder 32 may be formed in a square cylinder shape. The shape of the case cylinder 32 in the cross section orthogonal to the axial direction (x direction) of the case cylinder 32 is not particularly limited. The case cylinder 32 is disposed outside the wick cylinder 21. The case cylinder 32 covers the wick cylinder 21. The inner peripheral surface of the case cylinder 32 is in close contact with the outer peripheral surface of the wick cylinder 21. The pair of lids 31 are fixed to both ends of the case cylinder 32. The pair of lids 31 seals the case cylinder 32.
 次に、上記のヒートパイプ1を備えているループヒートパイプ101について説明する。図5に示すように、ループヒートパイプ101は、蒸発器111と蒸気管122と凝縮器112と液管121を備えている。蒸発器111と蒸気管122と凝縮器112と液管121は、ループを形成するように接続されている。また、ループヒートパイプ101は、リザーバ125と排ガス管126を備えている。 Next, the loop heat pipe 101 including the heat pipe 1 will be described. As shown in FIG. 5, the loop heat pipe 101 includes an evaporator 111, a steam pipe 122, a condenser 112, and a liquid pipe 121. The evaporator 111, the steam pipe 122, the condenser 112, and the liquid pipe 121 are connected so as to form a loop. The loop heat pipe 101 includes a reservoir 125 and an exhaust gas pipe 126.
 蒸発器111は、上記のヒートパイプ1によって構成されている。蒸発器111では、液体の作動流体が加熱されて蒸発し、気体の作動流体に状態変化する。作動流体は蒸発器111で受熱する。蒸発器111は、作動流体を加熱する機器である。 The evaporator 111 is constituted by the heat pipe 1 described above. In the evaporator 111, the liquid working fluid is heated and evaporated, and the state changes to a gaseous working fluid. The working fluid receives heat in the evaporator 111. The evaporator 111 is a device that heats the working fluid.
 蒸発器111(ヒートパイプ1)には、排ガス管126が接続されている。排ガス管126は、自動車から排出される排ガスを蒸発器111に案内する。自動車から排出される排ガスが熱流体として利用される。熱流体(排ガス)が排ガス管126内を流れる。排ガス管126は、ヒートパイプ1の内筒6(図5では図示省略)に接続されている。排ガス管126内を流れた熱流体(排ガス)が内筒6の内側の中空部61に流入する。 An exhaust gas pipe 126 is connected to the evaporator 111 (heat pipe 1). The exhaust gas pipe 126 guides the exhaust gas discharged from the automobile to the evaporator 111. Exhaust gas discharged from automobiles is used as a thermal fluid. Thermal fluid (exhaust gas) flows in the exhaust gas pipe 126. The exhaust gas pipe 126 is connected to the inner cylinder 6 (not shown in FIG. 5) of the heat pipe 1. The thermal fluid (exhaust gas) that has flowed through the exhaust gas pipe 126 flows into the hollow portion 61 inside the inner cylinder 6.
 凝縮器112では、気体の作動流体が冷却されて凝縮し、液体の作動流体に状態変化する。作動流体は凝縮器112で放熱する。凝縮器112は、作動流体から受熱する機器である。 In the condenser 112, the gaseous working fluid is cooled and condensed, and the state changes to a liquid working fluid. The working fluid dissipates heat in the condenser 112. The condenser 112 is a device that receives heat from the working fluid.
 液管121は、液体の作動流体を凝縮器112から蒸発器111に案内する。液管121の上流端部が凝縮器112に接続されており、下流端部が蒸発器111に接続されている。液体の作動流体が液管121内を流れる。 The liquid pipe 121 guides the liquid working fluid from the condenser 112 to the evaporator 111. The upstream end of the liquid pipe 121 is connected to the condenser 112, and the downstream end is connected to the evaporator 111. A liquid working fluid flows in the liquid pipe 121.
 蒸気管122は、気体の作動流体を蒸発器111から凝縮器112に案内する。蒸気管122の上流端部が蒸発器111に接続されており、下流端部が凝縮器112に接続されている。気体の作動流体が蒸気管122内を流れる。 The steam pipe 122 guides the gaseous working fluid from the evaporator 111 to the condenser 112. The upstream end of the steam pipe 122 is connected to the evaporator 111, and the downstream end is connected to the condenser 112. A gaseous working fluid flows in the vapor pipe 122.
 リザーバ125は、液管121に設置されている。液管121を流れる液体の作動流体の一部を貯留する。これによって、液管121から蒸発器111に流れる液体の作動流体の流量を調整している。 The reservoir 125 is installed in the liquid pipe 121. A part of the liquid working fluid flowing through the liquid pipe 121 is stored. Thus, the flow rate of the liquid working fluid flowing from the liquid pipe 121 to the evaporator 111 is adjusted.
 次に上記のループヒートパイプ101の動作について説明する。上記のループヒートパイプ101では、排ガス管126内を流れた排ガスが、排ガス管126から蒸発器111に導入される。すなわち、熱流体が排ガス管126からヒートパイプ1に導入される。熱流体は、ヒートパイプ1の内筒6の内側の中空部61に導入される。中空部61に導入された熱流体の熱は、中空部61に配置されている熱伝達部材8と内筒6を介してウィック2に伝達される。熱流体の熱によってウィック2が加熱される。ウィック2のウィック筒体21と壁体22が熱流体の熱によって加熱される。この状態で、液管121内を流れた液体の作動流体が、液管121から蒸発器111に導入される。すなわち、液体の作動流体が液管121からヒートパイプ1に導入される。ヒートパイプ1に導入された液体の作動流体は、ウィック筒体21の内部空間70に形成されている複数の液体流路51に流入して液体流路51を流れる。液体流路51を流れる液体の作動流体は、毛細管現象によって多孔質の壁体22に浸透してゆく。 Next, the operation of the loop heat pipe 101 will be described. In the loop heat pipe 101, the exhaust gas flowing through the exhaust gas pipe 126 is introduced from the exhaust gas pipe 126 into the evaporator 111. That is, the thermal fluid is introduced from the exhaust gas pipe 126 into the heat pipe 1. The thermal fluid is introduced into the hollow portion 61 inside the inner cylinder 6 of the heat pipe 1. The heat of the thermal fluid introduced into the hollow portion 61 is transmitted to the wick 2 through the heat transfer member 8 and the inner cylinder 6 disposed in the hollow portion 61. The wick 2 is heated by the heat of the thermal fluid. The wick cylinder 21 and the wall 22 of the wick 2 are heated by the heat of the thermal fluid. In this state, the liquid working fluid that has flowed through the liquid pipe 121 is introduced from the liquid pipe 121 into the evaporator 111. That is, a liquid working fluid is introduced from the liquid pipe 121 to the heat pipe 1. The liquid working fluid introduced into the heat pipe 1 flows into the plurality of liquid flow paths 51 formed in the internal space 70 of the wick cylinder 21 and flows through the liquid flow path 51. The liquid working fluid flowing through the liquid channel 51 penetrates into the porous wall body 22 by capillary action.
 液体の作動流体は、多孔質の壁体22に浸透すると壁体22から受熱して蒸発し、気体の作動流体に状態変化する。蒸発した作動流体は、多孔質の壁体22から複数の気体流路52に流入して気体流路52を流れる。そして、気体流路52を流れた気体の作動流体は、ヒートパイプ1から流出して蒸気管122内に流入する。すなわち、気体の作動流体が蒸発器111から蒸気管122内に流入する。 When the liquid working fluid penetrates into the porous wall body 22, it receives heat from the wall body 22 and evaporates, and changes its state to a gaseous working fluid. The evaporated working fluid flows into the plurality of gas flow paths 52 from the porous wall body 22 and flows through the gas flow paths 52. The gaseous working fluid that has flowed through the gas flow path 52 flows out of the heat pipe 1 and flows into the steam pipe 122. That is, a gaseous working fluid flows into the vapor pipe 122 from the evaporator 111.
 蒸気管122内に流入した気体の作動流体は、蒸気管122内を流れて、蒸気管122から凝縮器112に導入される。凝縮器112に導入された気体の作動流体は、凝縮器112で放熱して凝縮し、液体の作動流体に状態変化する。凝縮した液体の作動流体は、凝縮器112から液管121内に流入して再び液管121内を流れる。そして、液管121内を流れた液体の作動流体は、再び液管121からヒートパイプ1に導入される。このようにして、作動流体が液体と気体の間で状態変化しながらループヒートパイプ101を循環して流れる。作動流体によって熱が輸送される。 The gaseous working fluid that has flowed into the steam pipe 122 flows through the steam pipe 122 and is introduced into the condenser 112 from the steam pipe 122. The gaseous working fluid introduced into the condenser 112 is condensed by releasing heat in the condenser 112, and changes to a liquid working fluid. The condensed liquid working fluid flows into the liquid pipe 121 from the condenser 112 and flows through the liquid pipe 121 again. Then, the liquid working fluid that has flowed through the liquid pipe 121 is again introduced into the heat pipe 1 from the liquid pipe 121. In this way, the working fluid flows through the loop heat pipe 101 while changing its state between the liquid and the gas. Heat is transported by the working fluid.
 上述の説明から明らかなように、実施例に係るヒートパイプ1は、内筒6と、内筒6の外周面を覆っている多孔質のセラミックスから形成されている筒状のウィック2と、ウィック2の外周面を覆っている筒状のケース3と、を備えている。ウィック2には、軸方向に延びる複数の液体流路51と複数の気体流路52が形成されている。このような構成によれば、ウィック2の内側に内筒6が存在するので、内筒6から周囲に拡散する熱流体の熱をウィック2に効率よく伝達することができる。また、ウィック2に液体流路51と気体流路52が形成されているので、液体流路51からウィック2に浸透して蒸発した作動流体が気体流路52にスムーズに流れる。作動流体がウィック2の液体流路51から気体流路52にスムーズに流れるので、ウィック2から液体の作動流体に効率よく熱を伝達することができる。 As is clear from the above description, the heat pipe 1 according to the embodiment includes an inner cylinder 6, a cylindrical wick 2 formed of porous ceramics covering the outer peripheral surface of the inner cylinder 6, and a wick. And a cylindrical case 3 covering the outer peripheral surface of 2. A plurality of liquid flow paths 51 and a plurality of gas flow paths 52 extending in the axial direction are formed in the wick 2. According to such a configuration, since the inner cylinder 6 exists inside the wick 2, the heat of the thermal fluid diffusing from the inner cylinder 6 to the surroundings can be efficiently transmitted to the wick 2. Further, since the liquid flow path 51 and the gas flow path 52 are formed in the wick 2, the working fluid that has permeated from the liquid flow path 51 into the wick 2 and evaporated flows smoothly into the gas flow path 52. Since the working fluid smoothly flows from the liquid channel 51 of the wick 2 to the gas channel 52, heat can be efficiently transferred from the wick 2 to the liquid working fluid.
 また、上記のヒートパイプ1では内筒6がろう材から形成されているので、内筒6が熱膨張したときに内筒6とウィック2の圧力が適度な圧力になり、内筒6からウィック2に熱を伝達し易くすることができる。内筒6とウィック2の間の熱抵抗が適度な熱抵抗になる。内筒6がその他の材料から形成されていると、内筒6が熱膨張したときに、内筒6とウィック2の圧力が高過ぎたり低過ぎたりすることがある。 In the heat pipe 1 described above, the inner cylinder 6 is formed of a brazing material. Therefore, when the inner cylinder 6 is thermally expanded, the pressure of the inner cylinder 6 and the wick 2 becomes an appropriate pressure. Heat can be easily transferred to 2. The thermal resistance between the inner cylinder 6 and the wick 2 becomes an appropriate thermal resistance. If the inner cylinder 6 is formed of other materials, the pressure of the inner cylinder 6 and the wick 2 may be too high or too low when the inner cylinder 6 is thermally expanded.
 また、上記のヒートパイプ1は、内筒6の内側に配置されている熱伝達部材8を備えている。熱伝達部材8の端部が内筒6の内周面に固定されている。内筒6の内側の中空部61を流れる熱流体の熱が熱伝達部材8を介して内筒6に伝達される。熱流体の熱を熱伝達部材8によって内筒6に伝達し易くすることができる。また、熱伝達部材8がSi含侵SiCから形成されていると、熱伝導率が高く、内筒6に伝達し易くすることができる。また、排ガスに対する耐性を高くすることができる。 Further, the heat pipe 1 includes a heat transfer member 8 arranged inside the inner cylinder 6. The end of the heat transfer member 8 is fixed to the inner peripheral surface of the inner cylinder 6. The heat of the thermal fluid flowing through the hollow portion 61 inside the inner cylinder 6 is transmitted to the inner cylinder 6 via the heat transfer member 8. The heat of the thermal fluid can be easily transferred to the inner cylinder 6 by the heat transfer member 8. Further, when the heat transfer member 8 is made of Si-impregnated SiC, the heat conductivity is high, and the heat transfer member 8 can be easily transferred to the inner cylinder 6. Moreover, the tolerance with respect to exhaust gas can be made high.
 上述の説明から明らかなように、実施例に係るウィック2は、ウィック筒体21の内部空間70に液体流路51と気体流路52を形成する多孔質の壁体22を備えている。これによって、液体流路51を流れる液体の作動流体が、毛細管現象によって液体流路51から多孔質の壁体22に浸透してゆく。壁体22に浸透した液体の作動流体は、壁体22から受熱して蒸発し、気体の作動流体に状態変化する。蒸発した作動流体は、多孔質の壁体22から気体流路52に流入して気体流路52を流れる。このような構成によれば、壁体22を備えることによって液体の作動流体がウィック2に接する部分が増加するので、液体の作動流体がウィック2から熱を受熱しやすくなる。これによって、ウィック2から液体の作動流体に効率よく熱を伝達することができる。ウィック2の内側に内筒6が存在する構成とウィック2が壁体22を備える構成とを組み合わせることによって、液体の作動流体に更に効率よく熱を伝達することができる。 As is clear from the above description, the wick 2 according to the embodiment includes the porous wall body 22 that forms the liquid channel 51 and the gas channel 52 in the internal space 70 of the wick cylinder 21. As a result, the liquid working fluid flowing through the liquid channel 51 permeates from the liquid channel 51 into the porous wall body 22 by capillary action. The liquid working fluid that has permeated the wall body 22 receives heat from the wall body 22 and evaporates, and changes its state to a gaseous working fluid. The evaporated working fluid flows into the gas channel 52 from the porous wall body 22 and flows through the gas channel 52. According to such a configuration, since the portion where the liquid working fluid is in contact with the wick 2 is increased by providing the wall body 22, the liquid working fluid can easily receive heat from the wick 2. Thereby, heat can be efficiently transferred from the wick 2 to the liquid working fluid. By combining the configuration in which the inner cylinder 6 exists inside the wick 2 and the configuration in which the wick 2 includes the wall body 22, heat can be more efficiently transferred to the liquid working fluid.
 また、上記の構成によれば、液体流路51が複数の壁体22に囲まれており、ウィック筒体21に接していないので、液体流路51を流れる液体の作動流体に対して壁体22から効率的に熱を伝達することができる。 Further, according to the above configuration, the liquid flow path 51 is surrounded by the plurality of wall bodies 22 and is not in contact with the wick cylinder 21, so that the wall body against the liquid working fluid flowing through the liquid flow path 51. The heat can be efficiently transferred from 22.
 以上、一実施例について説明したが、具体的な態様は上記実施例に限定されるものではない。以下の説明において、上述の説明における構成と同様の構成については、同一の符号を付して説明を省略する。 As mentioned above, although one Example was described, a specific aspect is not limited to the said Example. In the following description, the same components as those described above are denoted by the same reference numerals and description thereof is omitted.
 上記の実施例では、内部空間70の中央部に複数の液体流路51が形成されており、内部空間70の周縁部に複数の気体流路52が形成されていたが、この構成に限定されるものではない。他の実施例では、図6に示すように、ウィック筒体21の軸方向(x方向)に直交する断面において、液体流路51と気体流路52が交互に形成されていてもよい。複数の液体流路51と複数の気体流路52が市松模様のように形成されていてもよい。また、図7に示すように、ウィック筒体21の軸方向(x方向)に直交する断面において、複数の液体流路51と複数の気体流路52が、一列ごとに交互に形成されていてもよい。 In the above embodiment, the plurality of liquid flow paths 51 are formed in the central portion of the internal space 70 and the plurality of gas flow paths 52 are formed in the peripheral edge of the internal space 70. However, the present invention is limited to this configuration. It is not something. In another embodiment, as shown in FIG. 6, the liquid channel 51 and the gas channel 52 may be alternately formed in a cross section orthogonal to the axial direction (x direction) of the wick cylinder 21. The plurality of liquid channels 51 and the plurality of gas channels 52 may be formed in a checkered pattern. Moreover, as shown in FIG. 7, in the cross section orthogonal to the axial direction (x direction) of the wick cylinder 21, a plurality of liquid flow paths 51 and a plurality of gas flow paths 52 are alternately formed for each row. Also good.
 また、図8に示すように、ウィック筒体21の軸方向(x方向)に直交する断面において、各液体流路51の断面積が、各気体流路52の断面積より大きくてもよい。また、複数の液体流路51の断面積の合計が、複数の気体流路52の断面積より合計より大きくてもよい。このような構成によれば、液体の作動流体が液体流路51を流れるときの抵抗を小さくすることができる。液体の作動流体がスムーズに流れるので、ウィック2に作動流体を効率的に導入することができる。 Further, as shown in FIG. 8, the cross-sectional area of each liquid channel 51 may be larger than the cross-sectional area of each gas channel 52 in a cross section orthogonal to the axial direction (x direction) of the wick cylinder 21. Further, the total cross-sectional area of the plurality of liquid flow paths 51 may be larger than the total cross-sectional area of the plurality of gas flow paths 52. According to such a configuration, the resistance when the liquid working fluid flows through the liquid channel 51 can be reduced. Since the liquid working fluid flows smoothly, the working fluid can be efficiently introduced into the wick 2.
 上記の実施例では、ウィック筒体21が円筒状に形成されていたがこの構成に限定されるものではない。ウィック筒体21の軸方向(x方向)に直交する断面におけるウィック筒体21の形状は特に限定されるものではない。他の実施例では、図9に示すように、ウィック筒体21が角筒状に形成されていてもよい。図9では、ウィック筒体21の軸方向(x方向)に直交する断面の形状が長方形である。図9に示す断面において、ウィック筒体21の上辺と下辺が側辺よりも長くなるように、ウィック筒体21が形成されている。ウィック筒体21の上辺と下辺が長辺であり、側辺が短辺である。 In the above embodiment, the wick cylinder 21 is formed in a cylindrical shape, but is not limited to this configuration. The shape of the wick cylinder 21 in the cross section orthogonal to the axial direction (x direction) of the wick cylinder 21 is not particularly limited. In another embodiment, as shown in FIG. 9, the wick cylinder 21 may be formed in a square cylinder shape. In FIG. 9, the shape of the cross section orthogonal to the axial direction (x direction) of the wick cylinder 21 is a rectangle. In the cross section shown in FIG. 9, the wick cylinder 21 is formed so that the upper side and the lower side of the wick cylinder 21 are longer than the side. The upper side and the lower side of the wick cylinder 21 are long sides, and the side sides are short sides.
 上記の実施例では、内筒6が円筒状に形成されていたがこの構成に限定されるものではない。内筒6の軸方向(x方向)に直交する断面における内筒6の形状は特に限定されるものではない。他の実施例では、図9に示すように、内筒6が角筒状に形成されていてもよい。図9では、内筒6の軸方向(x方向)に直交する断面の形状が長方形である。図9に示す断面において、内筒6の上辺と下辺が側辺よりも長くなるように、内筒6が形成されている。内筒6の上辺と下辺が長辺であり、側辺が短辺である。 In the above embodiment, the inner cylinder 6 is formed in a cylindrical shape, but is not limited to this configuration. The shape of the inner cylinder 6 in the cross section orthogonal to the axial direction (x direction) of the inner cylinder 6 is not particularly limited. In another embodiment, as shown in FIG. 9, the inner cylinder 6 may be formed in a square cylinder shape. In FIG. 9, the cross-sectional shape orthogonal to the axial direction (x direction) of the inner cylinder 6 is a rectangle. In the cross section shown in FIG. 9, the inner cylinder 6 is formed such that the upper side and the lower side of the inner cylinder 6 are longer than the side sides. The upper side and the lower side of the inner cylinder 6 are long sides, and the side sides are short sides.
 また、更に他の実施例では、図10に示すように、ウィック筒体21の軸方向に直交する断面において、複数の壁体22が同心円状および放射状に配置されていてもよい。図10に示す断面において、同心円状に配置されている複数の壁体22は、ウィック筒体21と同心円状に配置されている。複数の壁体22は、ウィック筒体21の周方向に延びている。また、図10に示す断面において、放射状に配置されている複数の壁体22は、内部空間70の中心部からウィック筒体21の径方向に延びている。放射状の複数の壁体22では内部空間70の中心部まで熱が速く伝わる。 In still another embodiment, as shown in FIG. 10, the plurality of wall bodies 22 may be arranged concentrically and radially in a cross section orthogonal to the axial direction of the wick cylinder 21. In the cross section shown in FIG. 10, the plurality of wall bodies 22 arranged concentrically are arranged concentrically with the wick cylinder 21. The plurality of wall bodies 22 extend in the circumferential direction of the wick cylinder 21. In the cross section shown in FIG. 10, the plurality of wall bodies 22 arranged radially extend from the center of the internal space 70 in the radial direction of the wick cylinder 21. In the plurality of radial walls 22, heat is quickly transmitted to the center of the internal space 70.
 また、更に他の実施例では、図10に示すように、内筒6の軸方向に直交する断面において、複数の壁体82が同心円状および放射状に配置されていてもよい。図10に示す断面において、同心円状に配置されている複数の壁体82は、内筒6と同心円状に配置されている。複数の壁体82は、内筒6の周方向に延びている。また、図10に示す断面において、放射状に配置されている複数の壁体82は、中空部61の中心部から内筒6の径方向に延びている。 In yet another embodiment, as shown in FIG. 10, a plurality of wall bodies 82 may be arranged concentrically and radially in a cross section orthogonal to the axial direction of the inner cylinder 6. In the cross section shown in FIG. 10, the plurality of wall bodies 82 arranged concentrically are arranged concentrically with the inner cylinder 6. The plurality of wall bodies 82 extend in the circumferential direction of the inner cylinder 6. Further, in the cross section shown in FIG. 10, the plurality of radially arranged wall bodies 82 extend from the center portion of the hollow portion 61 in the radial direction of the inner cylinder 6.
 次に、ウィック2の製造方法の一例について説明する。ウィック2の製造するときは、まず、セラミックス原料の粉末に水とバインダーを添加して混練し、可塑性を有する練土を作製する。次に、作製した練土をハニカム構造体になるように押し出し成形する。これによって、ウィック筒体21と複数の壁体22を備えるハニカム構造体が形成される。 Next, an example of a manufacturing method of the wick 2 will be described. When the wick 2 is manufactured, first, water and a binder are added to the ceramic raw material powder and kneaded to prepare a kneaded clay having plasticity. Next, the prepared dough is extruded to form a honeycomb structure. As a result, a honeycomb structure including the wick cylinder 21 and the plurality of wall bodies 22 is formed.
 次に、ハニカム構造体の一端面にシートを貼り付け、そのシートの一部(上記の気体流路52の端部に対応する位置)に孔を開ける。この状態で、ハニカム構造体の一端面を、封止体(上記の第1の封止体41と第2の封止体42)の材料を含むスラリーに浸漬する。その後、乾燥と焼成によって封止体の材料を硬化させることによって、気体流路52の端部を封止する第2の封止体42が形成される。また、上記と同様に、ハニカム構造体の他端面にシートを貼り付け、そのシートの一部(上記の液体流路51の端部に対応する位置)に孔を開ける。この状態で、ハニカム構造体の他端面を、封止体の材料を含むスラリーに浸漬する。その後、乾燥と焼成によって封止体の材料を硬化させることによって、液体流路51の端部を封止する第1の封止体41が形成される。なお、ハニカム構造体の一端面と他端面のそれぞれを封止体の材料を含むスラリーに浸漬し、その後に乾燥と焼成を行うことによって、第2の封止体42と第1の封止体41を同時に形成してもよい。 Next, a sheet is attached to one end face of the honeycomb structure, and a hole is made in a part of the sheet (a position corresponding to the end of the gas flow path 52). In this state, one end surface of the honeycomb structure is immersed in a slurry containing a material of the sealing body (the first sealing body 41 and the second sealing body 42 described above). Thereafter, the material of the sealing body is cured by drying and baking, whereby the second sealing body 42 that seals the end of the gas flow path 52 is formed. Similarly to the above, a sheet is attached to the other end surface of the honeycomb structure, and a hole is formed in a part of the sheet (a position corresponding to the end of the liquid flow channel 51). In this state, the other end surface of the honeycomb structure is immersed in a slurry containing the material of the sealing body. Then, the 1st sealing body 41 which seals the edge part of the liquid flow path 51 is formed by hardening the material of a sealing body by drying and baking. In addition, each of the one end surface and the other end surface of the honeycomb structure is immersed in a slurry containing the material of the sealing body, and then dried and fired, whereby the second sealing body 42 and the first sealing body. 41 may be formed simultaneously.
 以上、本発明の具体例を詳細に説明したが、これらは例示に過ぎず、特許請求の範囲を限定するものではない。特許請求の範囲に記載の技術には、以上に例示した具体例を様々に変形、変更したものが含まれる。本明細書または図面に説明した技術要素は、単独であるいは各種の組合せによって技術的有用性を発揮するものであり、出願時請求項記載の組合せに限定されるものではない。また、本明細書または図面に例示した技術は複数目的を同時に達成し得るものであり、そのうちの一つの目的を達成すること自体で技術的有用性を持つものである。 Specific examples of the present invention have been described in detail above, but these are merely examples and do not limit the scope of the claims. The technology described in the claims includes various modifications and changes of the specific examples illustrated above. The technical elements described in this specification or the drawings exhibit technical usefulness alone or in various combinations, and are not limited to the combinations described in the claims at the time of filing. In addition, the technology exemplified in this specification or the drawings can achieve a plurality of objects at the same time, and has technical usefulness by achieving one of the objects.
1   :ヒートパイプ
2   :ウィック
3   :ケース
6   :内筒
8   :熱伝達部材
21  :ウィック筒体
22  :壁体
22a :中央壁体
31  :蓋体
32  :ケース筒体
41  :第1の封止体
42  :第2の封止体
51  :液体流路
52  :気体流路
61  :中空部
70  :内部空間
82  :壁体
101 :ループヒートパイプ
111 :蒸発器
112 :凝縮器
121 :液管
122 :蒸気管
125 :リザーバ
126 :排ガス管
1: Heat pipe 2: Wick 3: Case 6: Inner cylinder 8: Heat transfer member 21: Wick cylinder 22: Wall body 22a: Central wall body 31: Lid body 32: Case cylinder body 41: First sealing body 42: 2nd sealing body 51: Liquid flow path 52: Gas flow path 61: Hollow part 70: Internal space 82: Wall body 101: Loop heat pipe 111: Evaporator 112: Condenser 121: Liquid pipe 122: Steam Pipe 125: Reservoir 126: Exhaust gas pipe

Claims (5)

  1.  内筒と、
     前記内筒の外周面を覆っている多孔質のセラミックスから形成されている筒状のウィックと、
     前記ウィックの外周面を覆っている筒状のケースと、を備えており、
     前記ウィックには、軸方向に延びる複数の液体流路と複数の気体流路が形成されているヒートパイプ。
    An inner cylinder,
    A cylindrical wick formed of porous ceramic covering the outer peripheral surface of the inner cylinder;
    A cylindrical case covering the outer peripheral surface of the wick, and
    A heat pipe in which a plurality of liquid flow paths and a plurality of gas flow paths extending in the axial direction are formed in the wick.
  2.  前記内筒の内側に配置されている熱伝達部材を備えており、
     前記熱伝達部材の端部が前記内筒の内周面に固定されている、請求項1に記載のヒートパイプ。
    A heat transfer member disposed inside the inner cylinder;
    The heat pipe according to claim 1, wherein an end portion of the heat transfer member is fixed to an inner peripheral surface of the inner cylinder.
  3.  前記内筒がろう材から形成されている、請求項2に記載のヒートパイプ。 The heat pipe according to claim 2, wherein the inner cylinder is formed of a brazing material.
  4.  前記熱伝達部材がSi含侵SiCから形成されている、請求項1から3のいずれか一項に記載のヒートパイプ。 The heat pipe according to any one of claims 1 to 3, wherein the heat transfer member is made of Si-impregnated SiC.
  5.  前記ウィックは、多孔質の筒体と、前記筒体の内部空間において前記筒体の軸方向に延びており、前記内部空間を仕切る多孔質の複数の壁体と、を備えており、
     前記複数の壁体が前記内部空間を仕切ることによって前記軸方向に延びる液体流路と気体流路が前記内部空間に形成されており、
     前記液体流路は、前記軸方向の一端部が開口しており、他端部が封止されており、
     前記気体流路は、前記軸方向の一端部が封止されており、他端部が開口している、請求項1から4のいずれか一項に記載のヒートパイプ。
    The wick includes a porous cylinder and a plurality of porous walls extending in the axial direction of the cylinder in the internal space of the cylinder and partitioning the internal space.
    A liquid channel and a gas channel extending in the axial direction by the plurality of wall bodies partitioning the internal space are formed in the internal space,
    The liquid channel has one end in the axial direction opened and the other end sealed.
    The heat pipe according to any one of claims 1 to 4, wherein the gas flow path is sealed at one end in the axial direction and opened at the other end.
PCT/JP2016/078904 2016-09-29 2016-09-29 Heat pipe WO2018061155A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2018541816A JP6714090B2 (en) 2016-09-29 2016-09-29 heat pipe
PCT/JP2016/078904 WO2018061155A1 (en) 2016-09-29 2016-09-29 Heat pipe

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2016/078904 WO2018061155A1 (en) 2016-09-29 2016-09-29 Heat pipe

Publications (1)

Publication Number Publication Date
WO2018061155A1 true WO2018061155A1 (en) 2018-04-05

Family

ID=61759353

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/078904 WO2018061155A1 (en) 2016-09-29 2016-09-29 Heat pipe

Country Status (2)

Country Link
JP (1) JP6714090B2 (en)
WO (1) WO2018061155A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001221584A (en) * 2000-02-10 2001-08-17 Mitsubishi Electric Corp Loop type heat pipe
US20130167517A1 (en) * 2011-05-25 2013-07-04 Benteler Automobiltechnik Gmbh Exhaust gas system with circulation heat pipe
JP2014070871A (en) * 2012-10-02 2014-04-21 Fujikura Ltd Loop-type heat pipe
JP2015140959A (en) * 2014-01-28 2015-08-03 イビデン株式会社 heat exchanger

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001221584A (en) * 2000-02-10 2001-08-17 Mitsubishi Electric Corp Loop type heat pipe
US20130167517A1 (en) * 2011-05-25 2013-07-04 Benteler Automobiltechnik Gmbh Exhaust gas system with circulation heat pipe
JP2014070871A (en) * 2012-10-02 2014-04-21 Fujikura Ltd Loop-type heat pipe
JP2015140959A (en) * 2014-01-28 2015-08-03 イビデン株式会社 heat exchanger

Also Published As

Publication number Publication date
JP6714090B2 (en) 2020-06-24
JPWO2018061155A1 (en) 2019-07-18

Similar Documents

Publication Publication Date Title
CN105074372B (en) Heat exchanger
JP6691538B2 (en) Heat exchange parts
JP5784913B2 (en) Tube body and exhaust gas system
WO2017069265A1 (en) Exhaust heat recovery device
EP2413079B1 (en) Ceramic heat exchanger and method for manufacturing same
JP5882909B2 (en) Heat exchanger, garbage processing machine including heat exchanger, and method of manufacturing heat exchanger
US20040211549A1 (en) Sintered grooved wick with particle web
CN111512111A (en) Heat exchange member, heat exchanger, and heat exchanger with purification mechanism
US20050126758A1 (en) Heat sink in the form of a heat pipe and process for manufacturing such a heat sink
JP6006204B2 (en) HEAT EXCHANGE MEMBER, ITS MANUFACTURING METHOD, AND HEAT EXCHANGER
CN105651106A (en) Heat exchange component
JP7448698B2 (en) Heat exchange parts and heat exchangers
WO2016017084A1 (en) Heat storage system
JP6144937B2 (en) Heat exchange member
WO2018061155A1 (en) Heat pipe
CN110394130B (en) Thermal storage reactor
JP2021042923A (en) Heat exchanger
JP6715925B2 (en) Wick
JP7046039B2 (en) Heat exchanger
JP7217654B2 (en) Heat exchanger
CN114909932A (en) Heat exchange member, heat exchanger, and heat conduction member
WO2019016873A1 (en) Wick
JP2018165580A (en) Thermal storage device
WO2017212646A1 (en) Wick
JP7418221B2 (en) Heat exchanger flow path structure and heat exchanger

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16917707

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2018541816

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16917707

Country of ref document: EP

Kind code of ref document: A1