WO2015114952A1 - 基地局、送信方法、移動局及び再送制御方法 - Google Patents

基地局、送信方法、移動局及び再送制御方法 Download PDF

Info

Publication number
WO2015114952A1
WO2015114952A1 PCT/JP2014/082483 JP2014082483W WO2015114952A1 WO 2015114952 A1 WO2015114952 A1 WO 2015114952A1 JP 2014082483 W JP2014082483 W JP 2014082483W WO 2015114952 A1 WO2015114952 A1 WO 2015114952A1
Authority
WO
WIPO (PCT)
Prior art keywords
physical downlink
control channel
pucch
allocation information
downlink shared
Prior art date
Application number
PCT/JP2014/082483
Other languages
English (en)
French (fr)
Inventor
真平 安川
チン ムー
リュー リュー
ホイリン ジャン
Original Assignee
株式会社Nttドコモ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社Nttドコモ filed Critical 株式会社Nttドコモ
Priority to EP14880523.7A priority Critical patent/EP3101982A4/en
Priority to US15/113,966 priority patent/US20170055249A1/en
Priority to CN201480074014.6A priority patent/CN105934997B/zh
Publication of WO2015114952A1 publication Critical patent/WO2015114952A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/50Allocation or scheduling criteria for wireless resources
    • H04W72/51Allocation or scheduling criteria for wireless resources based on terminal or device properties
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0053Allocation of signaling, i.e. of overhead other than pilot signals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0053Allocation of signaling, i.e. of overhead other than pilot signals
    • H04L5/0055Physical resource allocation for ACK/NACK
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0091Signaling for the administration of the divided path
    • H04L5/0094Indication of how sub-channels of the path are allocated
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W4/00Services specially adapted for wireless communication networks; Facilities therefor
    • H04W4/70Services for machine-to-machine communication [M2M] or machine type communication [MTC]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/21Control channels or signalling for resource management in the uplink direction of a wireless link, i.e. towards the network
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/23Control channels or signalling for resource management in the downlink direction of a wireless link, i.e. towards a terminal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0078Timing of allocation
    • H04L5/0082Timing of allocation at predetermined intervals

Definitions

  • the present invention relates to a base station, a transmission method, a mobile station, and a retransmission control method.
  • An MTC terminal is a communication terminal mounted on, for example, an electric meter, a gas meter, a vending machine, a vehicle, or other industrial equipment.
  • An MTC terminal has been studied for specifications different from that of a normal terminal (UE: User) Equipment) due to the property of not moving, the property of periodically transmitting a small amount of data, and the like (3GPP TR36.888). V12.0.0 (See 2013-06)).
  • the MTC terminal In the MTC terminal, a technique for realizing a low-cost MTC terminal is required in view of the above-described usage. Further, the MTC terminal can be used in a place where the propagation loss is very large, such as in an indoor control box. Therefore, a technique for extending the coverage of the MTC terminal is required.
  • the low cost mode is a mode for reducing the cost of the MTC terminal.
  • the buffer size of the MTC terminal can be reduced by suppressing the transmission data rate or reducing the baseband reception bandwidth of the data signal.
  • an ordinary terminal is provided with two antennas, while an MTC terminal is provided with one antenna, thereby reducing the cost.
  • the coverage extension mode is a mode for extending the coverage of the MTC terminal.
  • the MTC terminal in the coverage extension mode is provided with various functions for improving communication quality.
  • a normal terminal of an LTE system notifies a physical downlink shared channel (PDSCH) for transmitting downlink data and assignment information (DL assignment) necessary to receive the PDSCH.
  • the physical downlink control channel (PDCCH: PhysicalPhysDownlink Control Channel) is transmitted in the same subframe.
  • PDSCH and PDCCH are transmitted in different subframes.
  • PDCCH and PDSCH are repeatedly transmitted in different subframes in order to improve reception quality of MTC terminals.
  • acknowledgment information is transmitted on the physical uplink control channel (PUCCH: Physical Uplink Control Channel).
  • PUCCH Physical Uplink Control Channel
  • PUCCH resources are allocated by the following equation (1) (see 3GPP TS36.213 V12.0.0 (2013-12)).
  • n PUCCH n CCE + N PUCCH (1)
  • n PUCCH is a number indicating a PUCCH resource
  • n CCE is the first CCE (Control Channel Element) index of PDCCH corresponding to PUCCH
  • N PUCCH is an index set by higher layer signaling. . That is, the PUCCH resource is obtained from the PDCCH resource allocation position.
  • the terminal transmits the PUCCH using the resource obtained by the equation (1) after a certain time (for example, after 4 ms) after receiving the PDSCH. Since Equation (1) requires PUCCH resources on the assumption that PDCCH and PDSCH are transmitted in the same subframe, when PDCCH and PDSCH are transmitted in different subframes, PUCCH resources may collide.
  • Such a collision of PUCCH resources occurs when users having different relationships between subframes to which PDCCH is transmitted and subframes to which PDSCH is transmitted are mixed.
  • the PDCCH and the PDSCH are repeatedly transmitted as in the MTC terminal in the coverage extension mode, it is expected that the probability that the PUCCH resources collide further increases.
  • the present invention aims to avoid or reduce the collision of PUCCH between terminals when the PDSCH and the PDCCH that notifies the allocation information necessary for receiving the PDSCH are transmitted in different subframes.
  • a base station is: A base station that transmits a physical downlink shared channel and a physical downlink control channel that notifies allocation information necessary for receiving the physical downlink shared channel in different subframes, A resource allocation information storage unit for storing physical uplink control channel resource allocation information or physical downlink control channel resource allocation information; Referring to the resource allocation information storage unit, a resource allocation unit for allocating physical downlink control channel resources so that no collision occurs between physical uplink control channels from a plurality of mobile stations; A transmitter for transmitting the physical downlink control channel and the physical downlink shared channel; Have
  • a transmission method includes: A transmission method in a base station that transmits a physical downlink shared channel and a physical downlink control channel that notifies allocation information necessary for receiving the physical downlink shared channel in different subframes, Refer to the physical uplink control channel resource allocation information or the physical downlink control channel resource allocation information to prevent collision between physical uplink control channels from a plurality of mobile stations. Assigning resources, and Transmitting a physical downlink control channel and a physical downlink shared channel; Have
  • a mobile station is A mobile station that receives a physical downlink shared channel and a physical downlink control channel that notifies allocation information necessary for receiving the physical downlink shared channel in different subframes, A determination unit that performs retransmission determination on the physical downlink shared channel; When retransmission of the physical downlink shared channel is not required, the physical uplink control channel is not transmitted, and when retransmission of the physical downlink shared channel is required, the acknowledgment information for requesting retransmission is transmitted as the physical uplink control channel.
  • the retransmission control method includes: A retransmission control method in a mobile station that receives a physical downlink shared channel and a physical downlink control channel that notifies allocation information necessary for receiving the physical downlink shared channel in different subframes, Performing retransmission determination for the physical downlink shared channel; When retransmission of the physical downlink shared channel is not required, the physical uplink control channel is not transmitted, and when retransmission of the physical downlink shared channel is required, the acknowledgment information for requesting retransmission is transmitted as the physical uplink control channel. Sending in Have
  • a base station is A base station that transmits a physical downlink shared channel and a physical downlink control channel that notifies allocation information necessary for receiving the physical downlink shared channel in different subframes, A resource allocation information storage unit for storing physical uplink control channel resource allocation information or physical downlink control channel resource allocation information; A resource allocation unit that determines a resource of a physical uplink control channel with reference to the resource allocation information storage unit; A transmitter for transmitting an indicator for determining a physical uplink control channel resource to be used by a mobile station; Have
  • a transmission method includes: A transmission method in a base station that transmits a physical downlink shared channel and a physical downlink control channel that notifies allocation information necessary for receiving the physical downlink shared channel in different subframes, Determining physical uplink control channel resources with reference to physical uplink control channel resource allocation information or physical downlink control channel resource allocation information; Transmitting an indicator for determining physical uplink control channel resources to be used by the mobile station; Have
  • a mobile station is A mobile station that receives a physical downlink shared channel and a physical downlink control channel that notifies allocation information necessary for receiving the physical downlink shared channel in different subframes, A receiving unit for receiving an indicator for determining physical uplink control channel resources; A determination unit that performs retransmission determination on the physical downlink shared channel; Using a physical uplink control channel resource determined according to the received indicator, a transmission unit for transmitting acknowledgment information indicating a result of retransmission determination on the physical uplink control channel; Have
  • the retransmission control method includes: A retransmission control method in a mobile station that receives a physical downlink shared channel and a physical downlink control channel that notifies allocation information necessary for receiving the physical downlink shared channel in different subframes, Receiving an indicator for determining physical uplink control channel resources; Performing retransmission determination for the physical downlink shared channel; Using the physical uplink control channel resource determined according to the received indicator, transmitting acknowledgment information indicating the result of retransmission determination on the physical uplink control channel; Have
  • the present invention when the PDSCH and the PDCCH that notifies the allocation information necessary for receiving the PDSCH are transmitted in different subframes, it is possible to avoid or reduce the PUCCH collision between terminals. Become.
  • the figure which shows the relationship between PDCCH and PDSCH in coverage extended mode The figure which shows the collision of PUCCH by the repetition transmission of PUCCH of an MTC terminal (the 1) The figure which shows the collision of PUCCH by the repetition transmission of PUCCH of an MTC terminal (the 2) The figure which shows the collision probability of PUCCH The figure which shows a mode that the collision of PUCCH is avoided according to the 1st method of the Example of this invention (the 1) The figure which shows a mode that the collision of PUCCH is avoided according to the 1st method of the Example of this invention (the 2) Configuration diagram of a base station according to an embodiment of the present invention
  • the block diagram of the baseband signal processing part in the base station which concerns on the Example of this invention Configuration diagram of a mobile station according to an embodiment of the present invention
  • Configuration diagram of a baseband signal processing unit in a mobile station according to an embodiment of the present invention The flowchart of the transmission method in the base station by the 1st method of the Example of this invention
  • a method for avoiding a PUCCH collision between terminals when there is a terminal that receives PDCCH and PDSCH in different subframes such as an MTC terminal
  • the terminal is also called a mobile station or a user equipment (UE: User Equipment).
  • UE User Equipment
  • a terminal that receives PDCCH and PDSCH in different subframes is called an MTC terminal
  • a terminal that receives PDCCH and PDSCH in the same subframe is called an LTE terminal.
  • E PDCCH (enhanced
  • PDCCH and (E) PDCCH are collectively called PDCCH.
  • an MTC terminal in coverage extension mode is mainly exemplified, but the present invention is not limited to this and can be applied to a low cost mode. That is, it will be easily understood that the case where the coverage extension mode is repeated once corresponds to the low cost mode.
  • FIG. 2 is a diagram illustrating a PUCCH collision caused by repeated transmission of the PUCCH of the MTC terminal.
  • the PDCCH and the PDSCH are repeatedly transmitted to the MTC terminal in the coverage extension mode.
  • HARQ Hybrid ARQ
  • HARQ feedback including acknowledgment information is transmitted on PUCCH.
  • the PUCCH is also repeatedly transmitted. Note that only one of PDCCH, PDSCH, and PUCCH may be repeatedly transmitted.
  • the PUCCH is transmitted after a certain time (for example, after 4 ms) after the repeated transmission of the PDSCH is completed.
  • n CCEi is the first CCE index of the PDCCH corresponding to the PUCCH, and for the MTC terminal 0, the CCE index n CCEi used in the repeated transmission of PDCCH several frames before is used.
  • a normal LTE terminal also exists in the same coverage, and communicates with the same base station (eNB: enhanced Node B) as the MTC terminal.
  • the LTE terminal receives the PDCCH and PDSCH transmitted in the same frame and transmits the PUCCH after a certain time (for example, 4 ms).
  • n CCEi is the first CCE index of the PDCCH corresponding to the PUCCH.
  • the CCE index n CCEi used in the PDCCH of the subframe 4 ms before is used.
  • n CCEi and n CCEi the LTE terminal 1 of the MTC terminal 0 may be the same, this case, PUCCH collisions occur. Similarly, a PUCCH collision may occur with the LTE terminal 2 during the repeated transmission of the PUCCH by the MTC terminal 0.
  • FIG. 3 is a diagram illustrating a PUCCH collision caused by repeated transmission of PUCCH of an MTC terminal.
  • FIG. 3 shows a state of collision of PUCCHs when MTC terminals repeatedly transmit PUCCHs.
  • the MTC terminal in the coverage extension mode increases the number of times of transmitting the PUCCH, so that the possibility of a PUCCH collision is higher than in the case of FIG.
  • FIGS. 2 and 3 show a state in which PUCCH collides due to repeated transmission of PUCCH by an MTC terminal.
  • PUCCH collision occurs not only when PUCCH is repeatedly transmitted, but also PDCCH and PDSCH. This also occurs when users with different transmission timings coexist.
  • a base station allocates PDCCH resources so that a PUCCH collision does not occur.
  • the PUCCH resource is determined by the PDCCH resource allocation position (n CCEi ) and the PUCCH resource start index (N PUCCH ) set by higher layer signaling.
  • the base station uses the same n CCE between PDCCHs having the same subframe in which HARQ feedback is transmitted in consideration of the past PDCCH resource allocation information. PDCCH resources are allocated so as not to be present.
  • PDCCH resources are allocated so that the same resource is not allocated to different PUCCHs for different terminals in the same subframe. Also, in the adjustment based on the start index (N PUCCH ) of the PUCCH resource set by higher layer signaling, the base station sets N PUCCH specific to the MTC terminal, and sets the PUCCH for different terminals in the same subframe. On the other hand, PDCCH resources are allocated so that the same resource is not allocated twice.
  • the MTC terminal performs retransmission determination on the PDSCH, and when retransmission is not necessary, the PUCCH does not transmit ACK and requires retransmission. If so, send a NACK. That is, only NACK is transmitted among the acknowledgment information (ACK / NACK). Since the MTC terminal having a good reception environment does not transmit the PUCCH, the PUCCH collision is reduced.
  • the base station in order to avoid a PUCCH collision, explicitly or implicitly notifies the PUCCH resource used by the MTC terminal.
  • the base station previously signals a plurality of PUCCH resource candidates to the terminal.
  • the base station determines the PUCCH resource to be used by the MTC terminal among the PUCCH resource candidates signaled in advance, and explicitly notifies this, so that an indicator (ARI: ACK Indicator) for determining the PUCCH resource is determined. field) to the MTC terminal.
  • the MTC terminal receives the indicator for determining the PUCCH resource, and transmits the PUCCH according to the received indicator.
  • the base station may notify the MTC terminal of PUCCH resources to be used by the MTC terminal by an implicit notification of adding an offset to the above-described equation (1) and notifying the offset.
  • FIG. 5 shows how a PUCCH collision is avoided according to the first method of the embodiment of the present invention. Since the base station allocates PDCCH and PDSCH resources to terminals communicating with the base station, the base station recognizes to which resource the PDCCH is allocated (PDCCH resource allocation information). It also recognizes whether PUCCH is received by the resource (resource allocation information of PUCCH).
  • PDCH resource allocation information Since the base station allocates PDCCH and PDSCH resources to terminals communicating with the base station, the base station recognizes to which resource the PDCCH is allocated (PDCCH resource allocation information). It also recognizes whether PUCCH is received by the resource (resource allocation information of PUCCH).
  • the same n CCEi is the same in the subframe in which the MTC terminal transmits PUCCH.
  • the LTE terminal 1 allocates resources for the PDCCH indicated by different n CCEj
  • the LTE terminal 2 allocates the resources of PDCCH indicated by different n CCEk.
  • FIG. 6 shows a situation in which a PUCCH collision is avoided when a plurality of MTC terminals communicate. Also in this case, as described with reference to FIG. 5, the base station uses the PDCCH resource allocation information or the PUCCH resource allocation information to allocate PDCCH resources so that no PUCCH collision occurs.
  • N PUCCH may be set to a value specific to the MTC terminal.
  • values (N PUCCH lowcostMCE , N PUCCH enhancedcoverageMCE ) specific to the mode type may be set to N PUCCH .
  • FIG. 7A is a configuration diagram of the base station (eNB) 10 according to the embodiment of the present invention.
  • the base station 10 includes a transmission path interface 101, a baseband signal processing unit 103, a call processing unit 105, a transmission / reception unit 107, and an amplifier unit 109.
  • Data transmitted from the base station 10 to the mobile station via the downlink is input to the baseband signal processing unit 103 via the transmission path interface 101 from the upper station apparatus.
  • the baseband signal processing unit 103 is an RLC layer transmission process such as a PDCP (Packet Data Convergence Protocol) layer process, data division / combination, an RLC (Radio Link Control) retransmission control transmission process, and a MAC (Medium Access Control).
  • RLC layer transmission process such as a PDCP (Packet Data Convergence Protocol) layer process, data division / combination, an RLC (Radio Link Control) retransmission control transmission process, and a MAC (Medium Access Control).
  • Retransmission control for example, HARQ (Hybrid Automatic Repeat reQuest) transmission processing, scheduling, transmission format selection, channel coding, inverse fast Fourier transform (IFFT: Inverse Fourier ⁇ ⁇ Transform) processing, and precoding processing are performed.
  • transmission processing such as channel coding and inverse fast Fourier transform is performed on the signal of the physical downlink control channel that is the downlink control channel.
  • the call processing unit 105 performs call processing such as communication channel setting and release, state management of the base station 10, and wireless resource management.
  • the transmission / reception unit 107 frequency-converts the baseband signal output from the baseband signal processing unit 103 into a radio frequency band.
  • the amplifier 109 amplifies the frequency-converted transmission signal and outputs it to the transmission / reception antenna.
  • a plurality of transmission / reception antennas are used, a plurality of transmission / reception units 107 and amplifier units 109 may exist.
  • the radio frequency signal received by the transmission / reception antenna is amplified by the amplifier unit 109, converted in frequency by the transmission / reception unit 107, and converted into a baseband signal.
  • the baseband signal processing unit 103 input to the baseband signal processing unit 103.
  • the baseband signal processing unit 103 performs FFT processing, IDFT processing, error correction decoding, MAC retransmission control reception processing, RLC layer, and PDCP layer reception processing on data included in the baseband signal received on the uplink. Do.
  • the decoded signal is transferred to the upper station apparatus via the transmission path interface 101.
  • FIG. 7B is a configuration diagram of the baseband signal processing unit 103 in the base station 10 according to the embodiment of the present invention.
  • the baseband signal processing unit 103 includes a control unit 1031, a downlink (DL) signal generation unit 1032, a mapping unit 1033, a scheduling unit 1034, a downlink control resource determination unit 1035, and an uplink control resource determination unit 1036.
  • the control unit 1031 performs overall management of the baseband signal processing unit 103.
  • data input from the transmission path interface 101 is input to the DL signal generation unit 1032.
  • the data decoded by the UL signal decoding unit 1038 is input to the transmission path interface 101.
  • the control unit 1031 performs retransmission processing such as HARQ.
  • the DL signal generation unit 1032 generates a signal to be transmitted to the mobile station.
  • the signal to be transmitted to the mobile station includes data and control information.
  • the data is mainly transmitted on the PDSCH, and the allocation information necessary for receiving the PDSCH is transmitted on the PDCCH.
  • the mapping unit 1033 arranges data to be transmitted on the PDSCH and control information to be transmitted on the PDCCH in the resources determined by the scheduling unit 1034 and the downlink control resource determination unit 1035.
  • the scheduling unit 1034 performs scheduling of data to be transmitted to the mobile station using the PDSCH. For example, the scheduling unit 1034 schedules data to be transmitted on the PDSCH while taking delivery confirmation information, channel estimation values, channel quality, and the like into consideration.
  • the downlink control resource determination unit 1035 allocates resources for the PDCCH.
  • the resources that can be allocated to the PDCCH are determined in advance, and the downlink control resource determination unit 1035 allocates PDCCH resources from the predetermined resources.
  • the uplink control resource determination unit 1036 allocates resources for the PUCCH. As described above, the PUCCH resource is obtained by the following equation (1).
  • the resource allocation information storage unit 1037 stores resource allocation information for various channels. Specifically, the resource allocation information storage unit 1037 stores the PDSCH resource allocation information scheduled by the scheduling unit 1034, and also stores the PDCCH resource allocation information determined by the downlink control resource determination unit 1035. Further, the resource allocation information storage unit 1037 also stores the PUCCH resource allocation information determined by the uplink control resource determination unit 1036.
  • the UL signal decoding unit 1038 decodes the signal received from the mobile station through the uplink.
  • Data received via PUSCH Physical Uplink Shared Channel
  • PUSCH Physical Uplink Shared Channel
  • ACK / NACK acknowledgment information received via PUCCH
  • HARQ retransmission processing
  • the determination unit 1039 performs retransmission determination of the signal received on the PUSCH. If the PUSCH reception is successful, it generates delivery confirmation information (ACK) indicating that there is no need for retransmission. If the PUSCH reception fails, it generates delivery confirmation information (NACK) that indicates that retransmission is necessary. To do.
  • ACK delivery confirmation information
  • NACK delivery confirmation information
  • FIG. 8A is a configuration diagram of the mobile station (MTC terminal and LTE terminal) 20 according to the embodiment of the present invention.
  • the mobile station 20 includes an application unit 201, a baseband signal processing unit 203, a transmission / reception unit 205, and an amplifier unit 207.
  • a radio frequency signal received by a transmission / reception antenna is amplified by an amplifier unit 207, converted in frequency by a transmission / reception unit 205, and converted into a baseband signal.
  • the baseband signal is subjected to FFT processing, error correction decoding, retransmission control reception processing, and the like by the baseband signal processing unit 203.
  • downlink data is transferred to the application unit 201.
  • the application unit 201 performs processing related to a layer higher than the physical layer and the MAC layer.
  • uplink data is input from the application unit 201 to the baseband signal processing unit 203.
  • the baseband signal processing unit 203 performs retransmission control transmission processing, channel coding, DFT processing, and IFFT processing.
  • the transmission / reception unit 205 converts the baseband signal output from the baseband signal processing unit 203 into a radio frequency band. Thereafter, the signal is amplified by the amplifier unit 207 and transmitted from the transmission / reception antenna.
  • FIG. 8B is a configuration diagram of the baseband signal processing unit 203 in the mobile station 20 according to the embodiment of the present invention.
  • the baseband signal processing unit 203 includes a control unit 2031, an uplink (UL) signal generation unit 2032, a mapping unit 2033, a downlink (DL) signal decoding unit 2034, and a determination unit 2035.
  • the control unit 2031 performs overall management of the baseband signal processing unit 203. As for a signal to be transmitted to the base station via the uplink, data input from the application unit 201 is input to the UL signal generation unit 2032. For the signal received from the base station via the downlink, the data received by the DL signal decoding unit 2034 is input to the application unit 201. In addition, the control unit 2031 performs retransmission processing such as HARQ.
  • the UL signal generation unit 2032 generates a signal to be transmitted to the base station.
  • the signal to be transmitted to the base station includes data and control information, and the data is mainly transmitted by PUSCH. Also, data acknowledgment information (ACK / NACK) received from the base station via PDSCH is transmitted via PUCCH.
  • ACK / NACK data acknowledgment information
  • the mapping unit 2033 arranges data to be transmitted on the PUSCH in the resource determined by the scheduling unit 1034 of the base station. Further, as described above, the PUCCH resource in which the acknowledgment information (ACK / NACK) is arranged is obtained from the corresponding PDCCH resource according to the following equation (1).
  • n PUCCH n CCE + N PUCCH (1)
  • the DL signal decoding unit 2034 decodes the signal received from the base station via the downlink, and the data received on the PDSCH is input to the control unit 2031 to be provided to the application unit 201.
  • the determination unit 2035 determines retransmission of the signal received on the PDSCH. If reception of PDSCH is successful, it generates delivery confirmation information (ACK) indicating that retransmission is not necessary, and if reception of PUSCH fails, it generates delivery confirmation information (NACK) indicating that retransmission is necessary. To do.
  • ACK delivery confirmation information
  • NACK delivery confirmation information
  • PDCCH resources are allocated so that no PUCCH collision occurs in the base station, that is, n CCE and N in Equation (1) so that no PUCCH collision occurs.
  • each functional unit of the mobile station 20 requires no special operation other than the above-described operation.
  • FIG. 9 is a flowchart of a transmission method in the base station 10 according to the first technique of the embodiment of the present invention.
  • the resource allocation information storage unit 1037 stores PDCCH resource allocation information or PUCCH resource allocation information.
  • the PDCCH resource allocation information may be the n CCE of the above equation (1), or may be a value indicating the resource allocation position of another PDCCH.
  • the PUCCH resource allocation information may be n PUCCH and / or N PUCCH in the above equation (1), or may be a value indicating the resource allocation position of another PUCCH.
  • the downlink control resource determination unit 1035 acquires PDCCH or PUCCH resource allocation information from the resource allocation information storage unit 1037 (step S101). For example, when data is transmitted to a mobile station in a certain subframe, the MTC terminal checks whether or not the PTCCH is transmitted on the PUCCH corresponding to the subframe, and when the MTC terminal transmits the PUCCH, the PUCCH of the MTC terminal Get resource allocation information for.
  • the downlink control resource determination unit 1035 refers to the acquired resource allocation information and allocates PDCCH resources so that a PUCCH collision does not occur (step S103). For example, when an MTC terminal transmits PUCCH on a PUCCH corresponding to a certain subframe, PDCCH resources are allocated so that PUCCH resource allocation positions do not overlap.
  • the PDCCH and PUSCH are mapped to resource blocks in the mapping unit 1033 and transmitted to the mobile station (step S105).
  • FIG. 10 shows how the PUCCH collision is reduced according to the second method of the embodiment of the present invention.
  • LTE terminals and MTC terminals use retransmission techniques to improve reception quality.
  • HARQ is used as a retransmission technique.
  • ACK and NACK are defined as delivery confirmation information indicating the result of retransmission determination.
  • the LTE terminal transmits delivery confirmation information (ACK / NACK) indicating the result of PDSCH retransmission determination. ).
  • the MTC terminal transmits only NACK in the delivery confirmation information (ACK / NACK).
  • the MTC terminal 0 in the coverage extension mode is in a location where the reception environment is good. In this case, since the MTC terminal 0 succeeds in receiving the PDSCH repetitive transmission, the MTC terminal 0 does not transmit the PUCCH (ACK).
  • the base station 10 and the mobile station 20 in the second method according to the embodiment of the present invention are configured in the same manner as in FIGS. 7A, 7B, 8A, and 8B.
  • the operation of each functional unit of the base station 10 and the mobile station 20 in the second method of the embodiment of the present invention will be described below with reference to FIG.
  • the DL signal decoding unit 2034 decodes the control information notified on the PDCCH, and acquires allocation information. Also, the DL signal decoding unit 2034 decodes the data transmitted on the PDSCH based on the allocation information notified on the PDCCH. (Step S201).
  • NACK acknowledgment information
  • PUCCH Physical Uplink Control Channel
  • n PUCCH n CCE + N PUCCH (1)
  • the delivery confirmation information (ACK) indicating that there is no need for retransmission is not transmitted on the PUCCH (step S207)
  • the determination unit 2035 does not generate the delivery confirmation information (ACK).
  • the processing may be terminated.
  • the base station 10 since the mobile station 20 does not transmit ACK, the base station 10 is in a state in which the mobile station is not responding in the retransmission process (DTX) or has been successfully received ( ACK). Therefore, in the base station 10, the control unit 1031 that controls the retransmission of the mobile station considers that the mobile station 20 has successfully received the PDSCH (assumed to be ACK) when there is no PUCCH response.
  • FIG. 13 shows how a PUCCH collision is avoided according to the third method of the embodiment of the present invention.
  • the base station notifies the terminal of PUCCH resources to be used by the terminal or a plurality of PUCCH resource candidates in advance by higher layer signaling (for example, RRC (Radio Resource Control) signaling). Since the base station allocates PDCCH and PDSCH resources to terminals communicating with the base station, the base station recognizes to which resource the PDCCH is allocated (PDCCH resource allocation information). It also recognizes whether PUCCH is received by the resource (resource allocation information of PUCCH).
  • RRC Radio Resource Control
  • the base station When there is a possibility that a PUCCH collision may occur due to communication by the MTC terminal, the base station notifies the MTC terminal of the PUCCH resource to be used by the MTC terminal based on the PDCCH and PUCCH resource allocation information.
  • the said notification may be transmitted by RRC signaling and may notify each MTC terminal of the concrete PUCCH resource.
  • a specific PUCCH resource may be notified by a certain field in DCI (Downlink Control Information). The field may be newly defined or an existing field may be used.
  • the MTC terminal transmits the PUCCH using the notified resource.
  • the base station determines a PUCCH resource to be used by the MTC terminal among PUCCH resource candidates signaled in advance, and transmits an indicator (ARI) for determining the PUCCH resource to the MTC terminal.
  • the ARI transmitted to the MTC terminal indicates which of the PUCCH resource candidates notified in advance by signaling is to be used.
  • the MTC terminal receives the indicator for determining the PUCCH resource, and transmits the PUCCH according to the received indicator.
  • the base station when MTC terminal 0 in coverage extension mode transmits PUCCH in a plurality of subframes, the base station reports specific resources for PUCCH so that PUCCH collision does not occur.
  • the MTC terminal 0 is notified of the ARI indicating which of the PUCCH resource candidates notified in advance by signaling is to be used.
  • the MTC terminal 0 transmits the PUCCH using the notified specific resource instead of the PUCCH resource obtained by the equation (1), or uses the information notified by the ARI, and uses the PUCCH information. A resource is determined and PUCCH is transmitted.
  • FIG. 14 illustrates a situation where a PUCCH collision is avoided when a plurality of MTC terminals communicate.
  • the base station notifies the MTC terminal of the PUCCH resource determined based on the PDCCH and PUCCH resource allocation information so that the PUCCH collision does not occur, as described in FIG.
  • the MTC terminal is notified of the ARI indicating which of the PUCCH resource candidates notified in advance by signaling is to be used. For this reason, even when a plurality of MTC terminals communicate simultaneously, a PUCCH collision can be avoided.
  • the base station 10 and the mobile station 20 in the third method according to the embodiment of the present invention are configured in the same manner as in FIGS. 7A, 7B, 8A, and 8B.
  • the operation of each functional unit of the base station 10 and the mobile station 20 in the third method according to the embodiment of the present invention will be described below with reference to FIGS. 15 and 16.
  • FIG. 15 is a flowchart of a transmission method in the base station 10 according to the third technique of the embodiment of the present invention.
  • the base station 10 notifies the terminal of a plurality of PUCCH resource candidates in advance through higher layer signaling (step S301).
  • the resource allocation information storage unit 1037 stores PDCCH resource allocation information or PUCCH resource allocation information.
  • the PDCCH resource allocation information may be the n CCE of the above equation (1), or may be a value indicating the resource allocation position of another PDCCH.
  • the PUCCH resource allocation information may be the n PUCCH in the above equation (1), or may be a value indicating the resource allocation position of another PUCCH.
  • the downlink control resource determination unit 1035 acquires PDCCH or PUCCH resource allocation information from the resource allocation information storage unit 1037 (step S303). For example, when data is transmitted to MTC terminals in a plurality of subframes, whether or not other terminals transmit PUCCH on PUCCHs corresponding to the plurality of subframes, and other terminals transmit PUCCH , PUCCH resource allocation information is acquired.
  • the downlink control resource determination unit 1035 refers to the acquired resource allocation information and confirms whether or not a PUCCH collision can occur with the allocation of the PDCCH to the MTC terminal.
  • the downlink control resource determination unit 1035 determines the PUCCH resource of the MTC terminal so that the PUCCH collision does not occur (step S307).
  • the determined PUCCH resource is notified to the MTC terminal, or an indicator for determining the PUCCH resource is generated as control information in the DL signal generation unit 1032 and transmitted to the MTC terminal on the PDCCH (step S309).
  • the indicator for determining the PUCCH resource is a value indicating which of the PUCCH resource candidates notified in advance by higher layer signaling is to be used.
  • FIG. 16 is a flowchart of a retransmission control method in the mobile station 20 according to the third method of the embodiment of the present invention.
  • the DL signal decoding unit 2034 receives and decodes an indicator for determining the PUCCH resource among the PUCCH resource candidates or notifies the base station of the PUCCH resource to be used (step S401). .
  • the DL signal decoding unit 2034 receives data transmitted by the PDSCH from the base station (step S403).
  • step S403 may be executed after step S401, step S403 may be executed before step S403, and step S401 and step S403 are performed simultaneously. May be performed (in the same subframe).
  • the determination unit 2035 determines whether or not retransmission is necessary for the PDSCH (step S405). When reception of PDSCH fails, delivery confirmation information (NACK) indicating that retransmission is necessary is generated. When the PDSCH is successfully received, delivery confirmation information (ACK) indicating that there is no need for retransmission is generated.
  • NACK delivery confirmation information
  • ACK delivery confirmation information
  • the acknowledgment information (ACK / NACK) is assigned the PUCCH resource notified by the mapping unit 2033 or is assigned the PUCCH resource by the mapping unit 2033 according to the received indicator and is transmitted on the PUCCH (step S407). ).
  • the ARI explicitly notifies the mobile station which of the PUCCH resource candidates previously notified by higher layer signaling is to be used by the ARI.
  • An offset value for shifting the PUCCH resource may be notified by such a notification method (implicit notification).
  • Expression (1) indicating the PUCCH resource may be expressed as Expression (2) below.
  • the value of ⁇ offset may be set to a fixed value, for example, may be set to the maximum number of CCEs. Further, the value of ⁇ offset may be notified from the base station by RRC.
  • the value of delta offset can be notified by the field in the DCI from the base station (such as ARI). In this case, the relationship between the bit value and the delta offset of the field to be notified separately or signaling, or is or incorporated in advance in the user terminal.
  • the field may be newly defined or an existing field may be used.
  • the value of the delta offset can be set based on the value of PCFICH in subframe PDSCH.
  • PCFICH indicates the number of PDCCH symbols occupied in the subframe.
  • the value of ⁇ offset may be set based on the number of CFI (Control Format Indicator) in the PDSCH subframe derived based on the PCFICH value.
  • CFI Control Format Indicator
  • the mobile station transmits the PUCCH using the resource obtained by Equation (2).
  • the offset value is used, it is not necessary to notify the terminal of a plurality of PUCCH resource candidates in advance.
  • a 2-bit TPC (Transmit Power Control) field may be used as an indicator for determining PUCCH resources.
  • TPC Transmit Power Control
  • the MTC terminal in the coverage extension mode cannot perform transmission power control based on the TPC command, it may be assumed that the user terminal transmits at the maximum transmission power, and the correction value by the TPC command is set to 0 dB.
  • the transmission power may be determined in combination with the transmission power control of the open loop control.
  • a 2-bit RV (Redundancy Version) field may be used as an indicator for determining PUCCH resources.
  • the RV bit is used to determine a redundant bit pattern at the time of retransmission.
  • the MTC terminal in the coverage extension mode may always assume that the same RV pattern is used, and when the RV pattern is switched in a predetermined order (for example, RV0 ⁇ RV1 ⁇ RV2 ⁇ RV3). It may be assumed.
  • a part of the HPN (HARQ Process Number) field indicating the retransmission process number may be used as an indicator for determining the PUCCH resource.
  • the maximum process number for retransmission is limited depending on how many bits of the HPN field are used as an indicator.
  • TPC field RV field
  • HPN field may be combined and used as an indicator for determining PUCCH resources.
  • PDSCH resources are allocated so that collisions do not occur in the base station, so that PUCCH collisions can be completely avoided. Further, it can be realized by resource allocation in the base station and does not affect the terminal.
  • the allocation of PDCCH resources at the base station is not affected. Further, an increase in the probability that PDCCH cannot be transmitted can be prevented.
  • the PDCCH transmission restriction probability increases as the number of MTC terminals increases.
  • the PDCCH transmission restriction probability is higher by about 10% than the conventional method.
  • the second method and the third method of the present invention it is possible to prevent an increase in the PDCCH transmission restriction probability, which is substantially the same as the conventional method.
  • the base station and the mobile station according to the embodiment of the present invention are described using functional block diagrams, but the base station and the mobile station according to the embodiment of the present invention may be hardware, software, or A combination thereof may be realized.
  • the functional units may be used in combination as necessary.
  • the method according to the embodiment of the present invention may be performed in an order different from the order shown in the embodiment.

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

 本発明は、PDSCHと当該PDSCHを受信するために必要な割り当て情報を通知するPDCCHとが異なるサブフレームで送信される場合、端末間でのPUCCHの衝突を回避又は低減することを目的とする。本発明の一態様は、物理下りリンク共有チャネルと、当該物理下りリンク共有チャネルを受信するために必要な割り当て情報を通知する物理下りリンク制御チャネルとを異なるサブフレームで送信する基地局は、物理上りリンク制御チャネルのリソース割り当て情報又は物理下りリンク制御チャネルのリソース割り当て情報を格納するリソース割り当て情報記憶部と、前記リソース割り当て情報記憶部を参照して、複数の移動局からの物理上りリンク制御チャネルの間で衝突が生じないように物理下りリンク制御チャネルのリソースを割り当てるリソース割り当て部と、物理下りリンク制御チャネル及び物理下りリンク共有チャネルを送信する送信部とを有する。

Description

基地局、送信方法、移動局及び再送制御方法
 本発明は、基地局、送信方法、移動局及び再送制御方法に関する。
 近年、MTC(Machine Type Communication)端末の需要が高まっている。MTC端末とは、例えば、電気メータ、ガスメータ、自動販売機、車両、その他産業機器等に搭載される通信端末である。このようなMTC端末は、移動しないという特性、定期的に少量のデータを送信するという特性等のため、通常の端末(UE:User Equipment)とは異なる仕様が検討されている(3GPP TR36.888 V12.0.0 (2013-06)を参照)。
 MTC端末では、上述したような利用形態を鑑み、低コストなMTC端末を実現するための技術が求められている。また、MTC端末は、屋内の制御ボックス内のように、伝搬ロスが非常に大きい場所での利用も考えられる。従って、MTC端末のカバレッジを拡張する技術が求められている。
 MTC端末に関して、ローコストモード(low cost mode)とカバレッジ拡張モード(enhanced coverage mode)を含むいくつかのモードが検討されている。
 ローコストモードは、MTC端末の低コスト化を図るためのモードである。例えば、ローコストモードのMTC端末では、送信データレートを抑えたり、あるいはデータ信号のベースバンドの受信帯域幅を小さくすることによってMTC端末のバッファの小サイズ化が図られる。また、通常の端末では2つのアンテナが備えられる一方、MTC端末では1つのアンテナが備えられ、低コスト化が図られている。
 他方、カバレッジ拡張モードは、MTC端末のカバレッジを拡張するためのモードである。カバレッジ拡張モードのMTC端末では、通信品質を向上させるための各種機能が備えられている。
 LTE(Long Term Evolution)システムの通常の端末とMTC端末とでは、異なる通信仕様が利用される。一例として、LTEシステムの通常の端末では、下りリンクデータを送信するための物理下りリンク共有チャネル(PDSCH:Physical Downlink Shared Channel)と、PDSCHを受信するために必要な割り当て情報(DL assignment)を通知する物理下りリンク制御チャネル(PDCCH:Physical Downlink Control Channel)とは、同一のサブフレームで送信される。一方、MTC端末では、PDSCHとPDCCHとは、異なるサブフレームで送信される。特に、MTC端末用のカバレッジ拡張モードでは、MTC端末の受信品質を向上させるため、異なるサブフレームにおいてPDCCH及びPDSCHが繰り返し送信される。
 図1に、カバレッジ拡張モードにおけるPDCCHとPDSCHとの関係を示す。カバレッジ拡張モードにおける割り当て情報を通知するPDCCHとPDSCHとのタイミング関係は予め決められており、図1に示すように、PDCCHとPDSCHとは同一のサブフレームで送信されず、複数のサブフレームでPDCCHが送信された後に、複数のサブフレームでPDSCHが送信される。すなわち、PDCCHが送信される最後のサブフレームを第nサブフレームとすると、第(n+k)サブフレーム(k>0)からPDSCHの送信が始まる。他方、ローコストモードでは、典型的には、このような繰り返しの送信は行われず、あるサブフレームでPDCCHが送信された後に、他のサブフレームでPDSCHが送信される。
 ローコストモード及びカバレッジ拡張モードにおいても、送達確認情報(ACK/NACK)が物理上りリンク制御チャネル(PUCCH:Physical Uplink Control Channel)で送信される。LTEシステムでは、PUCCHのリソースは、以下の式(1)によって割り当てられる(3GPP TS36.213 V12.0.0 (2013-12)を参照)。
 nPUCCH=nCCE+NPUCCH   (1)
 ただし、nPUCCHはPUCCHのリソースを表す番号であり、nCCEはPUCCHに対応するPDCCHの最初のCCE(Control Channel Element)インデックスであり、NPUCCHは、上位レイヤのシグナリングにより設定されるインデックスである。すなわち、PUCCHのリソースは、PDCCHのリソース割り当て位置により求められる。
 端末は、PDSCHを受信して一定の時間後(例えば4ms後)に、式(1)により求められたリソースを用いてPUCCHを送信する。式(1)は、PDCCHとPDSCHとが同一のサブフレームで送信されることを前提として、PUCCHのリソースを求めているため、PDCCHとPDSCHとが異なるサブフレームで送信される場合、端末間でPUCCHのリソースが衝突する可能性がある。
 このようなPUCCHのリソースの衝突は、PDCCHが送信されるサブフレームとPDSCHが送信されるサブフレームとの関係が異なるユーザが混在する場合に生じる。特に、カバレッジ拡張モードのMTC端末のようにPDCCHとPDSCHとが繰り返し送信される場合には、PUCCHのリソースが衝突する確率は更に増加することが予想される。
 本発明は、PDSCHと当該PDSCHを受信するために必要な割り当て情報を通知するPDCCHとが異なるサブフレームで送信される場合、端末間でのPUCCHの衝突を回避又は低減することを目的とする。
 本発明の一形態に係る基地局は、
 物理下りリンク共有チャネルと、当該物理下りリンク共有チャネルを受信するために必要な割り当て情報を通知する物理下りリンク制御チャネルとを異なるサブフレームで送信する基地局であって、
 物理上りリンク制御チャネルのリソース割り当て情報又は物理下りリンク制御チャネルのリソース割り当て情報を格納するリソース割り当て情報記憶部と、
 前記リソース割り当て情報記憶部を参照して、複数の移動局からの物理上りリンク制御チャネルの間で衝突が生じないように物理下りリンク制御チャネルのリソースを割り当てるリソース割り当て部と、
 物理下りリンク制御チャネル及び物理下りリンク共有チャネルを送信する送信部と、
 を有する。
 また、本発明の一形態に係る送信方法は、
 物理下りリンク共有チャネルと、当該物理下りリンク共有チャネルを受信するために必要な割り当て情報を通知する物理下りリンク制御チャネルとを異なるサブフレームで送信する基地局における送信方法であって、
 物理上りリンク制御チャネルのリソース割り当て情報又は物理下りリンク制御チャネルのリソース割り当て情報を参照して、複数の移動局からの物理上りリンク制御チャネルの間で衝突が生じないように物理下りリンク制御チャネルのリソースを割り当てるステップと、
 物理下りリンク制御チャネル及び物理下りリンク共有チャネルを送信するステップと、
 を有する。
 また、本発明の一形態に係る移動局は、
 物理下りリンク共有チャネルと、当該物理下りリンク共有チャネルを受信するために必要な割り当て情報を通知する物理下りリンク制御チャネルとを異なるサブフレームで受信する移動局であって、
 物理下りリンク共有チャネルに対する再送判定を行う判定部と、
 物理下りリンク共有チャネルの再送が必要ない場合、物理上りリンク制御チャネルを送信せず、物理下りリンク共有チャネルの再送が必要である場合、再送を要求するための送達確認情報を物理上りリンク制御チャネルで送信する送信部と、
 を有する。
 また、本発明の一形態に係る再送制御方法は、
 物理下りリンク共有チャネルと、当該物理下りリンク共有チャネルを受信するために必要な割り当て情報を通知する物理下りリンク制御チャネルとを異なるサブフレームで受信する移動局における再送制御方法であって、
 物理下りリンク共有チャネルに対する再送判定を行うステップと、
 物理下りリンク共有チャネルの再送が必要ない場合、物理上りリンク制御チャネルを送信せず、物理下りリンク共有チャネルの再送が必要である場合、再送を要求するための送達確認情報を物理上りリンク制御チャネルで送信するステップと、
 を有する。
 また、本発明の一形態に係る基地局は、
 物理下りリンク共有チャネルと、当該物理下りリンク共有チャネルを受信するために必要な割り当て情報を通知する物理下りリンク制御チャネルとを異なるサブフレームで送信する基地局であって、
 物理上りリンク制御チャネルのリソース割り当て情報又は物理下りリンク制御チャネルのリソース割り当て情報を格納するリソース割り当て情報記憶部と、
 前記リソース割り当て情報記憶部を参照して、物理上りリンク制御チャネルのリソースを決定するリソース割り当て部と、
 移動局に使用させる物理上りリンク制御チャネルのリソースを決定するためのインジケータを送信する送信部と、
 を有する。
 また、本発明の一形態に係る送信方法は、
 物理下りリンク共有チャネルと、当該物理下りリンク共有チャネルを受信するために必要な割り当て情報を通知する物理下りリンク制御チャネルとを異なるサブフレームで送信する基地局における送信方法であって、
 物理上りリンク制御チャネルのリソース割り当て情報又は物理下りリンク制御チャネルのリソース割り当て情報を参照して、物理上りリンク制御チャネルのリソースを決定するステップと、
 移動局に使用させる物理上りリンク制御チャネルのリソースを決定するためのインジケータを送信するステップと、
 を有する。
 また、本発明の一形態に係る移動局は、
物理下りリンク共有チャネルと、当該物理下りリンク共有チャネルを受信するために必要な割り当て情報を通知する物理下りリンク制御チャネルとを異なるサブフレームで受信する移動局であって、
 物理上りリンク制御チャネルのリソースを決定するためのインジケータを受信する受信部と、
 物理下りリンク共有チャネルに対する再送判定を行う判定部と、
 受信したインジケータに従って決定された物理上りリンク制御チャネルのリソースを用いて、再送判定の結果を示す送達確認情報を物理上りリンク制御チャネルで送信する送信部と、
 を有する。
 また、本発明の一形態に係る再送制御方法は、
 物理下りリンク共有チャネルと、当該物理下りリンク共有チャネルを受信するために必要な割り当て情報を通知する物理下りリンク制御チャネルとを異なるサブフレームで受信する移動局における再送制御方法であって、
 物理上りリンク制御チャネルのリソースを決定するためのインジケータを受信するステップと、
 物理下りリンク共有チャネルに対する再送判定を行うステップと、
 受信したインジケータに従って決定された物理上りリンク制御チャネルのリソースを用いて、再送判定の結果を示す送達確認情報を物理上りリンク制御チャネルで送信するステップと、
 を有する。
 本発明によれば、PDSCHと当該PDSCHを受信するために必要な割り当て情報を通知するPDCCHとが異なるサブフレームで送信される場合、端末間でのPUCCHの衝突を回避又は低減することが可能になる。
カバレッジ拡張モードにおけるPDCCHとPDSCHとの関係を示す図 MTC端末のPUCCHの繰り返し送信によるPUCCHの衝突を示す図(その1) MTC端末のPUCCHの繰り返し送信によるPUCCHの衝突を示す図(その2) PUCCHの衝突確率を示す図 本発明の実施例の第1の手法に従ってPUCCHの衝突を回避する様子を示す図(その1) 本発明の実施例の第1の手法に従ってPUCCHの衝突を回避する様子を示す図(その2) 本発明の実施例に係る基地局の構成図 本発明の実施例に係る基地局におけるベースバンド信号処理部の構成図 本発明の実施例に係る移動局の構成図 本発明の実施例に係る移動局におけるベースバンド信号処理部の構成図 本発明の実施例の第1の手法による基地局における送信方法のフローチャート 本発明の実施例の第2の手法に従ってPUCCHの衝突を低減する様子を示す図(その1) 本発明の実施例の第2の手法に従ってPUCCHの衝突を低減する様子を示す図(その2) 本発明の実施例の第2の手法による移動局における再送制御方法のフローチャート 本発明の実施例の第3の手法に従ってPUCCHの衝突を回避する様子を示す図(その1) 本発明の実施例の第3の手法に従ってPUCCHの衝突を回避する様子を示す図(その2) 本発明の実施例の第3の手法による基地局における送信方法のフローチャート 本発明の実施例の第3の手法による移動局における再送制御方法のフローチャート 本発明の実施例によるPUCCHの衝突確率及びPDCCHの送信制限確率を示す図
 以下、本発明の実施例について図面を参照して説明する。
 本発明の実施例では、MTC端末のように、PDCCH及びPDSCHを異なるサブフレームで受信する端末が存在する場合、端末間でのPUCCHの衝突を回避するための手法について説明する。端末は、移動局又はユーザ装置(UE:User Equipment)とも呼ばれる。以下の説明では、PDCCH及びPDSCHを異なるサブフレームで受信する端末をMTC端末と呼び、PDCCH及びPDSCHを同一のサブフレームで受信する端末をLTE端末と呼ぶ。
 なお、LTE-Advancedシステムでは、PDCCHを拡張した(E)PDCCH(enhanced Physical Downlink Control Channel)が用いられることがあるが、以下の説明では、PDCCHと(E)PDCCHとを併せてPDCCHと呼ぶこととする。また、以下の説明では、主としてカバレッジ拡張モードのMTC端末を例示するが、本発明はこれに限定されず、ローコストモードにも適用可能である。すなわち、カバレッジ拡張モードの繰り返し回数が1回であるケースがローコストモードに相当することは容易に理解されるであろう。
 まず、端末間でのPUCCHの衝突が生じる場合について詳細に説明する。
 図2は、MTC端末のPUCCHの繰り返し送信によるPUCCHの衝突を示す図である。上記のように、MTC端末のカバレッジを拡張するために、カバレッジ拡張モードのMTC端末に対して、PDCCH及びPDSCHが繰り返し送信される。
 LTEシステム及びLTE-Advancedシステムでは、再送技術としてHARQ(Hybrid ARQ)が使用される。送達確認情報(ACK/NACK)を含むHARQフィードバックは、PUCCHで送信される。PDSCHの繰り返し送信に対応して、PUCCHも繰り返し送信される。なお、PDCCH、PDSCH、PUCCHのいずれかのみが繰り返し送信される場合もある。PUCCHは、PDSCHの繰り返し送信が終了した後の一定の時間後(例えば4ms後)に送信される。
 図2において、MTC端末0のPUCCHのリソースは、nPUCCH 0=nCCEi+NPUCCHにより求まる。nCCEiはPUCCHに対応するPDCCHの最初のCCEインデックスであり、MTC端末0に対しては、数フレーム前のPDCCHの繰り返し送信において使用されたCCEインデックスnCCEiが使用される。
 一方、通常のLTE端末も同じカバレッジ内に存在し、MTC端末と同じ基地局(eNB:enhanced Node B)と通信する。LTE端末は、同一フレームで送信されたPDCCH及びPDSCHを受信して一定の時間(例えば4ms)後にPUCCHを送信する。LTE端末1のPUCCHのリソースは、nPUCCH 1=nCCEi+NPUCCHにより求まる。nCCEiはPUCCHに対応するPDCCHの最初のCCEインデックスであり、LTE端末1に対しては、例えばFDD(Frequency Division Duplex)では4ms前のサブフレームのPDCCHにおいて使用されたCCEインデックスnCCEiが使用される。図2に示すように、MTC端末0のnCCEiとLTE端末1のnCCEiは同じになる可能性があり、この場合、PUCCHの衝突が生じる。同様に、MTC端末0によるPUCCHの繰り返し送信の間に、LTE端末2との間でPUCCHの衝突が生じる可能性がある。
 図3は、MTC端末のPUCCHの繰り返し送信によるPUCCHの衝突を示す図である。図3では、MTC端末同士がPUCCHを繰り返し送信した場合のPUCCHの衝突の様子を示している。特に、カバレッジ拡張モードのMTC端末は、PUCCHを送信する回数が増えるため、PUCCHの衝突の可能性は図2の場合に比べて高くなる。
 図2及び図3では、MTC端末によるPUCCHの繰り返し送信によるPUCCHが衝突する様子を示しているが、このようなPUCCHの衝突は、PUCCHが繰り返し送信される場合に生じるだけでなく、PDCCHとPDSCHの送信タイミングが異なるユーザが混在することによっても生じる。
 図4に、PUCCHの衝突確率を示す。図4は、同じカバレッジ内に16個の端末が存在し、PDCCH、PDSCH及びPUCCHが同じ繰り返し回数(10回)を用いて送信される場合のシミュレーション結果を示している。MTC端末の数が増えるほど、PUCCHの衝突確率は高くなる。
 このようなPUCCHの衝突を回避又は低減するため、本発明の実施例では、以下の3つの手法を用いる。3つの手法のうちいずれかを組み合わせて適用してもよい。
 (1)第1の手法
 第1の手法では、PUCCHの衝突を回避するため、基地局において、PUCCHの衝突が生じないように、PDCCHのリソースを割り当てる。上記のように、PUCCHのリソースは、PDCCHのリソース割り当て位置(nCCEi)及び上位レイヤのシグナリングにより設定されるPUCCHリソースのスタートインデックス(NPUCCH)により求められる。PDCCHのリソース割り当て位置(nCCEi)に基づく調整では、基地局は、過去のPDCCHのリソース割り当て情報を考慮して、HARQフィードバックを送信するサブフレームが同一となるPDCCH間で同じnCCEが用いられないように、PDCCHのリソースを割り当てる。あるいは、予約されたPUCCHのリソース割り当て情報を考慮して、同一サブフレーム内で異なる端末用のPUCCHに対して同一のリソースを重複して割り当てないようPDCCHのリソースを割り当てる。また、上位レイヤのシグナリングにより設定されるPUCCHリソースのスタートインデックス(NPUCCH)に基づく調整では、基地局は、MTC端末に固有のNPUCCHを設定し、同一サブフレーム内で異なる端末用のPUCCHに対して同一のリソースを重複して割り当てないようPDCCHのリソースを割り当てる。
 (2)第2の手法
 第2の手法では、PUCCHの衝突を低減するため、MTC端末は、PDSCHに対する再送判定を行い、再送が必要ない場合、PUCCHではACKを送信せず、再送が必要な場合、NACKを送信する。すなわち、送達確認情報(ACK/NACK)のうちNACKのみを送信する。受信環境のよいMTC端末は、PUCCHを送信しないため、PUCCHの衝突が低減される。
 (3)第3の手法
 第3の手法では、PUCCHの衝突を回避するため、基地局は、MTC端末に使用させるPUCCHのリソースを明示的又は非明示的に通知する。一実施例では、基地局は、PUCCHのリソースの複数の候補を端末に予めシグナリングする。基地局は、予めシグナリングしたPUCCHのリソースの候補の中でMTC端末に使用させるPUCCHのリソースを決定し、これを明示的に通知するため、PUCCHのリソースを決定するためのインジケータ(ARI:ACK Indicator field)をMTC端末に送信する。MTC端末は、PUCCHのリソースを決定するためのインジケータを受信し、受信したインジケータに従ってPUCCHを送信する。また、基地局は、上述した式(1)にオフセットを追加し、当該オフセットを通知するという非明示的な通知によって、MTC端末に使用させるPUCCHのリソースをMTC端末に通知してもよい。
 それぞれの手法について、以下に詳細に説明する。
 <第1の手法>
 図5に、本発明の実施例の第1の手法に従ってPUCCHの衝突を回避する様子を示す。基地局は、基地局と通信する端末に対してPDCCH及びPDSCHのリソースを割り当てるため、基地局は、どのリソースにPDCCHを割り当てたか(PDCCHのリソース割り当て情報)を認識しており、その結果、どのリソースでPUCCHを受信するか(PUCCHのリソース割り当て情報)も認識している。
 従って、MTC端末が異なるサブフレームによりPDSCHとPDCCHとを受信する場合、基地局は、PDCCHのリソース割り当て情報又はPUCCHのリソース割り当て情報を用いて、PUCCHの衝突が生じないようにPDCCHのリソースを割り当てる。例えば、MTC端末に対して複数サブフレームにPDCCH及びPDSCHを割り当てており、複数のサブフレームでPUCCHを受信することになっているものとする。このときにLTE端末が通信する場合、LTE端末には、MTC端末が送信するPUCCHとは異なるリソースでPUCCHを送信するように、PDCCHのリソースを割り当てる。
 例えば、図5において、MTC端末が複数のサブフレームでnPUCCH 0=nCCEi+NPUCCHにより示されるリソースを用いてPUCCHを送信する場合、MTC端末がPUCCHを送信するサブフレームで同じnCCEiが用いられないように、LTE端末1には、異なるnCCEjで示されるPDCCHのリソースを割り当て、LTE端末2には、異なるnCCEkで示されるPDCCHのリソースを割り当てる。
 図6は、複数のMTC端末が通信する場合のPUCCHの衝突を回避する様子を示す。この場合も、図5で説明したのと同様に、基地局は、PDCCHのリソース割り当て情報又はPUCCHのリソース割り当て情報を用いて、PUCCHの衝突が生じないようにPDCCHのリソースを割り当てる。
 例えば、図6において、MTC端末0が複数のサブフレームでnPUCCH 0=nCCEi+NPUCCHにより示されるリソースを用いてPUCCHを送信する場合、MTC端末0がPUCCHを送信するサブフレームで同じnCCEiが用いられないように、MTC端末1には、異なるnCCEjを用いてnPUCCH 1=nCCEj+NPUCCHで示されるPDCCHのリソースを割り当て、MTC端末2には、異なるnCCEkを用いてnPUCCH 2=nCCEk+NPUCCHで示されるPDCCHのリソースを割り当てる。
 また、MTC端末が複数のサブフレームでnPUCCH 0=nCCEi+NPUCCHにより示されるリソースを用いてPUCCHを送信する場合、MTC端末がPUCCHを送信するサブフレームで同じNPUCCHが用いられないように、LTE端末には、異なるNPUCCHで示されるPDCCHのリソースを割り当てる。当該NPUCCHは、MTC端末に固有の値に設定されてもよい。また、MTC端末間のPUCCHの衝突については、例えば、モード種別に固有の値(NPUCCH lowcostMCE, NPUCCH enhancedcoverageMCE)がNPUCCHに設定されてもよい。
 図7Aは、本発明の実施例に係る基地局(eNB)10の構成図である。基地局10は、伝送路インターフェース101と、ベースバンド信号処理部103と、呼処理部105と、送受信部107と、アンプ部109とを有する。
 下りリンクにより基地局10から移動局に送信されるデータは、上位局装置から伝送路インターフェース101を介してベースバンド信号処理部103に入力される。
 ベースバンド信号処理部103は、PDCP(Packet Data Convergence Protocol)レイヤの処理、データの分割・結合、RLC(Radio Link Control)再送制御の送信処理などのRLCレイヤの送信処理、MAC(Medium Access Control)再送制御、例えば、HARQ(Hybrid Automatic Repeat reQuest)の送信処理、スケジューリング、伝送フォーマット選択、チャネル符号化、逆高速フーリエ変換(IFFT:Inverse Fast Fourier Transform)処理、プリコーディング処理が行われる。また、下りリンク制御チャネルである物理下りリンク制御チャネルの信号に関しても、チャネル符号化や逆高速フーリエ変換等の送信処理が行われる。
 呼処理部105は、通信チャネルの設定や解放等の呼処理や、基地局10の状態管理や、無線リソースの管理を行う。
 送受信部107は、ベースバンド信号処理部103から出力されたベースバンド信号を無線周波数帯に周波数変換する。アンプ部109は周波数変換された送信信号を増幅して送受信アンテナへ出力する。なお、複数の送受信アンテナが用いられる場合、複数の送受信部107及びアンプ部109が存在してもよい。
 一方、上りリンクにより移動局から基地局10に送信される信号については、送受信アンテナで受信された無線周波数信号がアンプ部109で増幅され、送受信部107で周波数変換されてベースバンド信号に変換され、ベースバンド信号処理部103に入力される。
 ベースバンド信号処理部103は、上りリンクで受信したベースバンド信号に含まれるデータに対して、FFT処理、IDFT処理、誤り訂正復号、MAC再送制御の受信処理、RLCレイヤ、PDCPレイヤの受信処理を行う。復号された信号は伝送路インターフェース101を介して上位局装置に転送される。
 図7Bは、本発明の実施例に係る基地局10におけるベースバンド信号処理部103の構成図である。ベースバンド信号処理部103は、制御部1031と、下りリンク(DL)信号生成部1032と、マッピング部1033と、スケジューリング部1034と、下りリンク制御リソース決定部1035と、上りリンク制御リソース決定部1036と、リソース割り当て情報記憶部1037と、上りリンク(UL)信号復号部1038と、判定部1039とを有する。
 制御部1031は、ベースバンド信号処理部103の全体の管理を行う。下りリンクにより移動局に送信する信号については、伝送路インターフェース101から入力されたデータをDL信号生成部1032に入力する。上りリンクにより移動局から受信した信号については、UL信号復号部1038で復号されたデータを伝送路インターフェース101に入力する。また、制御部1031は、HARQ等の再送処理を行う。
 DL信号生成部1032は、移動局に送信する信号を生成する。移動局に送信する信号には、データ及び制御情報が含まれ、データは主にPDSCHで送信され、PDSCHを受信するために必要な割り当て情報は、PDCCHで送信される。
 マッピング部1033は、PDSCHで送信するデータ及びPDCCHで送信する制御情報をスケジューリング部1034及び下りリンク制御リソース決定部1035で決定されたリソースに配置する。
 スケジューリング部1034は、PDSCHで移動局に送信するデータのスケジューリングを行う。例えば、スケジューリング部1034は、送達確認情報、チャネル推定値及びチャネル品質等を考慮しながら、PDSCHにて送信するデータをスケジューリングする。
 下りリンク制御リソース決定部1035は、PDCCHに対するリソースを割り当てる。PDCCHに割り当て可能なリソースは予め決められており、下りリンク制御リソース決定部1035は、予め決められたリソースの中からPDCCHのリソースを割り当てる。
 上りリンク制御リソース決定部1036は、PUCCHに対するリソースを割り当てる。前述のように、PUCCHのリソースは、以下の式(1)により求められる。
 nPUCCH=nCCE+NPUCCH   (1)
 リソース割り当て情報記憶部1037は、各種のチャネルのリソース割り当て情報を格納する。具体的には、リソース割り当て情報記憶部1037は、スケジューリング部1034でスケジューリングされたPDSCHのリソース割り当て情報を記憶すると共に、下りリンク制御リソース決定部1035で決定されたPDCCHのリソース割り当て情報を記憶する。また、リソース割り当て情報記憶部1037は、上りリンク制御リソース決定部1036で決定されたPUCCHのリソース割り当て情報も記憶する。
 UL信号復号部1038は、上りリンクにより移動局から受信した信号を復号する。PUSCH(Physical Uplink Shared Channel)で受信したデータは、伝送路インターフェース101に提供するために制御部1031に入力し、PUCCHで受信した送達確認情報(ACK/NACK)も、HARQ等の再送処理のために制御部1031に入力する。
 判定部1039は、PUSCHで受信した信号の再送判定を行う。PUSCHの受信に成功した場合、再送の必要がないことを示す送達確認情報(ACK)を生成し、PUSCHの受信に失敗した場合、再送の必要があることを示す送達確認情報(NACK)を生成する。
 本発明の実施例の第1の手法における基地局10の各機能部の動作については、以下に図9を参照して説明する。
 図8Aは、本発明の実施例に係る移動局(MTC端末及びLTE端末)20の構成図である。移動局20は、アプリケーション部201と、ベースバンド信号処理部203と、送受信部205と、アンプ部207とを有する。
 下りリンクのデータについては、送受信アンテナで受信された無線周波数信号がアンプ部207で増幅され、送受信部205で周波数変換されてベースバンド信号に変換される。このベースバンド信号は、ベースバンド信号処理部203でFFT処理や、誤り訂正復号、再送制御の受信処理等がなされる。この下りリンクのデータのうち、下りリンクのデータは、アプリケーション部201に転送される。アプリケーション部201は、物理レイヤやMACレイヤより上位のレイヤに関する処理等を行う。
 一方、上りリンクのデータは、アプリケーション部201からベースバンド信号処理部203に入力される。ベースバンド信号処理部203においては、再送制御の送信処理や、チャネル符号化、DFT処理、IFFT処理を行う。送受信部205は、ベースバンド信号処理部203から出力されたベースバンド信号を無線周波数帯に変換する。その後、アンプ部207で増幅されて送受信アンテナより送信される。
 図8Bは、本発明の実施例に係る移動局20におけるベースバンド信号処理部203の構成図である。ベースバンド信号処理部203は、制御部2031と、上りリンク(UL)信号生成部2032と、マッピング部2033と、下りリンク(DL)信号復号部2034と、判定部2035とを有する。
 制御部2031は、ベースバンド信号処理部203の全体の管理を行う。上りリンクにより基地局に送信する信号については、アプリケーション部201から入力されたデータをUL信号生成部2032に入力する。下りリンクにより基地局から受信した信号については、DL信号復号部2034で受信処理されたデータをアプリケーション部201に入力する。また、制御部2031は、HARQ等の再送処理を行う。
 UL信号生成部2032は、基地局に送信する信号を生成する。基地局に送信する信号には、データ及び制御情報が含まれ、データは主にPUSCHで送信される。また、基地局からPDSCHで受信したデータの送達確認情報(ACK/NACK)はPUCCHで送信される。
 マッピング部2033は、PUSCHで送信するデータを基地局のスケジューリング部1034で決定されたリソースに配置する。また、送達確認情報(ACK/NACK)が配置されるPUCCHのリソースは、前述のように、対応するPDCCHのリソースから以下の式(1)により求められる。
 nPUCCH=nCCE+NPUCCH   (1)
 DL信号復号部2034は、下りリンクにより基地局から受信した信号を復号し、PDSCHで受信したデータは、アプリケーション部201に提供するために制御部2031に入力する。
 判定部2035は、PDSCHで受信した信号の再送判定を行う。PDSCHの受信に成功した場合、再送の必要がないことを示す送達確認情報(ACK)を生成し、PUSCHの受信に失敗した場合、再送の必要があることを示す送達確認情報(NACK)を生成する。
 なお、本発明の実施例の第1の手法では、基地局においてPUCCHの衝突が生じないようにPDCCHのリソースを割り当てる、すなわち、PUCCHの衝突が生じないように式(1)のnCCE及びNPUCCHを設定するため、移動局20の各機能部には、上記の動作以外に特別な動作は必要ない。
 図9は、本発明の実施例の第1の手法による基地局10における送信方法のフローチャートである。
 リソース割り当て情報記憶部1037は、PDCCHのリソース割り当て情報又はPUCCHのリソース割り当て情報を格納している。PDCCHのリソース割り当て情報は、上記の式(1)のnCCEでもよく、他のPDCCHのリソース割り当て位置を示す値でもよい。また、PUCCHのリソース割り当て情報は、上記の式(1)のnPUCCH及び/又はNPUCCHでもよく、他のPUCCHのリソース割り当て位置を示す値でもよい。
 下りリンク制御リソース決定部1035は、リソース割り当て情報記憶部1037からPDCCH又はPUCCHのリソース割り当て情報を取得する(ステップS101)。例えば、あるサブフレームにおいて移動局にデータを送信する場合、そのサブフレームに対応するPUCCHでMTC端末がPUCCHを送信するか否かを確認し、MTC端末がPUCCHを送信する場合、MTC端末のPUCCHのリソース割り当て情報を取得する。
 下りリンク制御リソース決定部1035は、取得されたリソース割り当て情報を参照して、PUCCHの衝突が生じないようにPDCCHのリソースを割り当てる(ステップS103)。例えば、あるサブフレームに対応するPUCCHでMTC端末がPUCCHを送信する場合、PUCCHのリソース割り当て位置が重複しないように、PDCCHのリソースを割り当てる。
 PDCCH及びPUSCHは、マッピング部1033においてリソースブロックにマッピングされて移動局に送信される(ステップS105)。
 このようにすることで、端末間でのPUCCHの衝突が回避できる。
 <第2の手法>
 図10に、本発明の実施例の第2の手法に従ってPUCCHの衝突を低減する様子を示す。LTE端末及びMTC端末は、受信品質を向上させるために再送技術を使用する。LTEシステム及びLTE-Advancedシステムでは、再送技術としてHARQが使用される。HARQでは、再送判定の結果を示す送達確認情報として、ACKとNACKとが規定されているが、第2の手法では、LTE端末は、PDSCHの再送判定の結果を示す送達確認情報(ACK/NACK)を送信する。一方、MTC端末は、送達確認情報(ACK/NACK)のうちNACKのみを送信する。
 図10において、カバレッジ拡張モードのMTC端末0は、受信環境のよい位置に在圏するものとする。この場合、MTC端末0はPDSCHの繰り返し送信の受信に成功するため、PUCCH(ACK)を送信しない。
 MTC端末0はPUCCHを送信しないため、LTE端末1がnPUCCH 1=nCCEi+NPUCCHにより示されるリソースを用いてPUCCHを送信するときにPUCCHの衝突は生じない。同様に、LTE端末2がnPUCCH 2=nCCEi+NPUCCHにより示されるリソースを用いてPUCCHを送信するときにPUCCHの衝突は生じない。ただし、MTC端末0の受信環境が悪く、MTC端末0がNACKを送信する可能性がある場合、PUCCHの衝突を完全に回避することはできない。
 図11は、複数のMTC端末が通信する場合のPUCCHの衝突を低減する様子を示す。この場合も、図10で説明したのと同様に、MTC端末は、送達確認情報(ACK/NACK)のうちNACKのみを送信する。例えば、図11において、MTC端末0及びMTC端末2が受信環境のよい位置に在圏し、MTC端末1が受信環境の悪い位置に在圏するものとする。この場合、カバレッジ拡張モードのMTC端末0及びMTC端末2は、PUCCHを送信しないため、MTC端末1がnPUCCH1=nCCEi+NPUCCHにより示されるリソースを用いてPUCCHを送信するときにPUCCHの衝突は生じない。
 本発明の実施例の第2の手法における基地局10及び移動局20は、図7A、図7B、図8A及び図8Bと同様に構成される。本発明の実施例の第2の手法における基地局10及び移動局20の各機能部の動作については、以下に図12を参照して説明する。
 図12は、本発明の実施例の第2の手法による移動局20における再送制御方法のフローチャートである。
 DL信号復号部2034は、PDCCHで通知された制御情報を復号し、割り当て情報を取得する。また、DL信号復号部2034は、PDCCHで通知された割り当て情報に基づいて、PDSCHで送信されたデータを復号する。(ステップS201)。
 判定部2035は、PDSCHに対して再送が必要であるか否かを判定する(ステップS203)。PDSCHの受信に失敗した場合、再送の必要があることを示す送達確認情報(NACK)を生成する。
 再送の必要がある場合、再送の必要があることを示す送達確認情報(NACK)は、チャネル符号化、変調等の処理を施され、以下の式(1)により求められるリソースを用いてPUCCHで送信される(ステップS205)。
 nPUCCH=nCCE+NPUCCH   (1)
 なお、PDSCHの受信に成功した場合、PUCCHでは再送の必要がないことを示す送達確認情報(ACK)は送信されない(ステップS207)ため、判定部2035は、送達確認情報(ACK)を生成せずに処理を終了してもよい。本発明の実施例の第2の手法では、移動局20においてACKを送信しないため、基地局10は、移動局が再送プロセスにおいて応答なしの状態(DTX)であるか、受信が成功した状態(ACK)であるかを把握することができない。従って、基地局10において、移動局の再送を制御する制御部1031は、PUCCHの応答がない場合、移動局20がPDSCHの受信に成功したものとみなす(ACKとみなす)。
 なお、MTC端末は、PUCCHを送信するサブフレームにおいてPUSCHがスケジューリングされており、UCI(Uplink Control Information)がPUSCHにより送信される場合は再送の必要がないことを示す送達確認情報(ACK)を送信すると仮定してもよいし、PUCCHと共通の動作として再送の必要があることを示す送達確認情報(NACK)のみ送信するとしてもよい。
 このようにすることで、端末間でのPUCCHの衝突が低減できる。
 <第3の手法>
 図13に、本発明の実施例の第3の手法に従ってPUCCHの衝突を回避する様子を示す。
 基地局は、端末に使用させるPUCCHのリソース又はPUCCHのリソースの複数の候補を端末に予め上位レイヤのシグナリング(例えばRRC(Radio Resource Control)シグナリング)により通知する。基地局は、基地局と通信する端末に対してPDCCH及びPDSCHのリソースを割り当てるため、基地局は、どのリソースにPDCCHを割り当てたか(PDCCHのリソース割り当て情報)を認識しており、その結果、どのリソースでPUCCHを受信するか(PUCCHのリソース割り当て情報)も認識している。
 MTC端末が通信することによりPUCCHの衝突が生じる可能性がある場合、基地局は、PDCCH及びPUCCHのリソース割り当て情報に基づき、MTC端末に使用させるPUCCHのリソースをMTC端末に通知する。当該通知は、RRCシグナリングにより送信され、各MTC端末に対して具体的なPUCCHのリソースを通知してもよい。あるいは、DCI(Downlink Control Information)内のあるフィールドによって、具体的なPUCCHのリソースを通知してもよい。当該フィールドは新たに定義されてもよいし、既存のフィールドを利用してもよい。当該通知を受信すると、MTC端末は、通知されたリソースを使用してPUCCHを送信する。
 あるいは、基地局は、予めシグナリングしたPUCCHのリソースの候補の中でMTC端末に使用させるPUCCHのリソースを決定し、PUCCHのリソースを決定するためのインジケータ(ARI)をMTC端末に送信する。MTC端末に送信されるARIは、予めシグナリングにより通知されたPUCCHのリソースの候補の中でどれを用いるかを示す。
 例えば、4パターンのPUCCHのリソースの候補が存在する場合、4パターンのうちどれを用いるかは2ビットの情報量で定義することができる。2ビットの情報量は、既存の仕様で定義されているDCI(Downlink Control Information)の中のARI(ACK Indicator field)を使用してMTC端末に通知されてもよい。MTC端末はあらかじめどのDCIによりARIが通知されるかを知っているものとする。例えば、ARIは割り当て情報(DL assignment)を送信するDCIの一部を使用してMTC端末に通知されてもよい。
 MTC端末は、PUCCHのリソースを決定するためのインジケータを受信し、受信したインジケータに従ってPUCCHを送信する。
 例えば、図13において、カバレッジ拡張モードのMTC端末0が複数のサブフレームでPUCCHを送信する場合、基地局は、PUCCHの衝突が生じないように、PUCCHのための具体的なリソースを通知するか、あるいは、予めシグナリングにより通知されたPUCCHのリソースの候補の中でどれを用いるかを示すARIをMTC端末0に通知する。MTC端末0は、式(1)により求められたPUCCHのリソースではなく、通知された具体的なリソースを使用してPUCCHを送信するか、あるいは、ARIにより通知された情報を用いて、PUCCHのリソースを判定し、PUCCHを送信する。
 図14は、複数のMTC端末が通信する場合のPUCCHの衝突を回避する様子を示す。この場合も、図13で説明したのと同様に、基地局は、PUCCHの衝突が生じないように、PDCCH及びPUCCHのリソース割り当て情報に基づき決定されたPUCCHのリソースをMTC端末に通知するか、あるいは、予めシグナリングにより通知されたPUCCHのリソースの候補の中でどれを用いるかを示すARIをMTC端末に通知する。このため、複数のMTC端末が同時に通信する場合であっても、PUCCHの衝突が回避できる。
 本発明の実施例の第3の手法における基地局10及び移動局20は、図7A、図7B、図8A及び図8Bと同様に構成される。本発明の実施例の第3の手法における基地局10及び移動局20の各機能部の動作については、以下に図15及び図16を参照して説明する。
 図15は、本発明の実施例の第3の手法による基地局10における送信方法のフローチャートである。
 基地局10は、PUCCHのリソースの複数の候補を端末に予め上位レイヤのシグナリングにより通知する(ステップS301)。
 リソース割り当て情報記憶部1037は、PDCCHのリソース割り当て情報又はPUCCHのリソース割り当て情報を格納している。PDCCHのリソース割り当て情報は、上記の式(1)のnCCEでもよく、他のPDCCHのリソース割り当て位置を示す値でもよい。また、PUCCHのリソース割り当て情報は、上記の式(1)のnPUCCHでもよく、他のPUCCHのリソース割り当て位置を示す値でもよい。
 下りリンク制御リソース決定部1035は、リソース割り当て情報記憶部1037からPDCCH又はPUCCHのリソース割り当て情報を取得する(ステップS303)。例えば、複数のサブフレームにおいてMTC端末にデータを送信する場合、複数のサブフレームにそれぞれ対応するPUCCHで他の端末がPUCCHを送信するか否かを確認し、他の端末がPUCCHを送信する場合、PUCCHのリソース割り当て情報を取得する。
 下りリンク制御リソース決定部1035は、取得されたリソース割り当て情報を参照して、MTC端末へのPDCCHの割り当てに伴い、PUCCHの衝突が生じ得るか否かを確認する。下りリンク制御リソース決定部1035は、PUCCHの衝突が生じないように、MTC端末のPUCCHのリソースを決定する(ステップS307)。決定されたPUCCHのリソースをMTC端末に通知するか、あるいは、PUCCHのリソースを決定するためのインジケータは、DL信号生成部1032において制御情報として生成され、PDCCHでMTC端末に送信される(ステップS309)。上記のように、PUCCHのリソースを決定するためのインジケータは、予め上位レイヤのシグナリングにより通知されたPUCCHのリソースの候補のうちどれを用いるかを示す値である。
 図16は、本発明の実施例の第3の手法による移動局20における再送制御方法のフローチャートである。
 移動局20は、PUCCHのリソースの複数の候補を予め上位レイヤのシグナリングにより受信しているものとする。DL信号復号部2034は、このPUCCHのリソースの候補の中でPUCCHのリソースを決定するためのインジケータを受信して復号するか、使用すべきPUCCHのリソースを基地局から通知される(ステップS401)。
 また、DL信号復号部2034は、基地局からPDSCHで送信されたデータを受信する(ステップS403)。
 なお、ステップS401及びステップS403の順序に関して特に制限はなく、ステップS401の後にステップS403が実行されてもよく、ステップS403の前にステップS403が実行されてもよく、ステップS401とステップS403とが同時に(同一のサブフレームで)実行されてもよい。
 判定部2035は、PDSCHに対して再送が必要であるか否かを判定する(ステップS405)。PDSCHの受信に失敗した場合、再送の必要があることを示す送達確認情報(NACK)を生成する。PDSCHの受信に成功した場合、再送の必要がないことを示す送達確認情報(ACK)を生成する。
 送達確認情報(ACK/NACK)は、マッピング部2033で通知されたPUCCHのリソースを割り当てられるか、あるいは、受信したインジケータに従ってマッピング部2033でPUCCHのリソースを割り当てられ、PUCCHで送信される(ステップS407)。
 このようにすることで、端末間でのPUCCHの衝突が回避できる。
 なお、上記の説明では、ARIにより、予め上位レイヤのシグナリングにより通知されたPUCCHのリソースの候補のうちどれを用いるかを移動局に明示的に通知しているが、基地局は、後述する何れかの通知方法によりPUCCHのリソースをずらすためのオフセット値を通知してもよい(非明示的な通知)。この場合、PUCCHのリソースを示す式(1)は以下の式(2)のように表されてもよい。
 nPUCCH=nCCE+NPUCCH+Δoffset   (2)
PUCCHのリソースをずらすためのΔoffsetは、MCT端末に使用させるPUCCHのリソースに対応する値となるよう基地局により決定される。当該オフセット値Δoffsetは、i) 固定値、ii) RRCにより通知された値、iii) DCI、又はiv) PDSCHサブフレームのPCFICH(Physical Control Format Indicator Channel)の値により設定されてもよい。
 すなわち、Δoffsetの値は、固定値に設定されてもよく、例えば、CCEの最大数などに設定されてもよい。また、Δoffsetの値は、基地局からRRCにより通知されてもよい。また、Δoffsetの値は、基地局からDCI内のフィールド(ARIなど)により通知されてもよい。この場合、通知される当該フィールドのビット値とΔoffsetとの関係性は別途シグナリングするか、あるいはあらかじめユーザ端末に組み込んまれている。当該フィールドは新たに定義されてもよいし、既存のフィールドを利用してもよい。さらに、Δoffsetの値は、PDSCHのサブフレームにおけるPCFICHの値に基づき設定されてもよい。PCFICHは、当該サブフレームにおいて占有されるPDCCHのシンボル数を示すものである。Δoffsetの値は、当該PCFICHの値に基づき導出されるPDSCHのサブフレームにおけるCFI(Control Format Indicator)の個数に基づき設定されてもよい。
 移動局は、式(2)により求められたリソースを用いてPUCCHを送信する。なお、オフセット値が用いられる場合、PUCCHのリソースの複数の候補を予め端末に通知する必要はない。
 また、PUCCHのリソースを決定するためのインジケータは、DCIの中のARIではなく、他の情報項目を使用してもよい。例えば、既存または新たなDCIの中に新たなビットを定義してもよい。新たなビットを定義することで、PUCCHの候補の数が自由に定義可能となる。
 その他に、2ビットのTPC(Transmit Power Control)フィールドを、PUCCHのリソースを決定するためのインジケータとして利用してもよい。この場合、カバレッジ拡張モードのMTC端末は、TPCコマンドに基づいた送信電力制御ができなくなるため、このユーザ端末は最大の送信電力で送信すると仮定してもよいし、TPCコマンドによる補正値を0 dBと解釈し、開ループ型制御の送信電力制御と組み合わせて送信電力を決定してもよい。
 また、2ビットのRV(Redundancy Version)フィールドを、PUCCHのリソースを決定するためのインジケータとして利用してもよい。RVビットは、再送時の冗長ビットのパターンを決めるために使用される。この場合、カバレッジ拡張モードのMTC端末は、常に同じRVのパターンが用いられると仮定してもよく、予め決められた順序で(例えば、RV0→RV1→RV2→RV3)RVのパターンが切り替えられると仮定してもよい。
 また、再送のプロセス番号を示すHPN(HARQ Process Number)フィールドの一部を、PUCCHのリソースを決定するためのインジケータとして利用してもよい。この場合、HPNフィールドのうち何ビットをインジケータとして用いるかにより、再送の最大プロセス番号が制限される。
 更に、上記のTPCフィールド、RVフィールド、HPNフィールドを組み合わせて、PUCCHのリソースを決定するためのインジケータに利用してもよい。
 <本発明の実施例の効果>
 上記のように、本発明の実施例によれば、PDSCHと当該PDSCHを受信するために必要な割り当て情報を通知するPDCCHとが異なるサブフレームで送信される場合、端末間でのPUCCHの衝突を回避又は低減することが可能になる。
 第1の手法によれば、基地局において衝突が生じないようにPDSCHのリソースを割り当てるため、完全にPUCCHの衝突を回避することができる。また、基地局におけるリソースの割り当てで実現でき、端末には影響を及ぼさない。
 一方、PDCCHのリソースの割り当てが複雑になり、PDCCHが送信できない確率が増加する。
 第2の手法によれば、移動局においてPUCCHによりACKを送信しないようにするため、基地局でのPDCCHのリソースの割り当てに影響を及ぼさない。また、PDCCHが送信できない確率の増加を防ぐことができる。
 一方、完全にはPUCCHの衝突を回避することはできず、また、基地局においてDTXとACKとの判定を行うこともできない。
 第3の手法によれば、既存のLTE端末に対する基地局でのPDCCHのリソースの割り当てに影響を及ぼさない。また、PDCCHが送信できない確率の増加を防ぐこともできる。更に、PUCCHの衝突も回避できる。
 図17に、本発明の実施例によるPUCCHの衝突確率及びPDCCHの送信制限確率(PDCCHが送信できない確率)を示す。
 図17のシミュレーション結果は、図4と同じ条件で求められている。図4で説明したように、従来の手法によれば、MTC端末の数が増えるほど、PUCCHの衝突確率は高くなる。一方、本発明の実施例の第1の手法及び第3の手法によれば、PUCCHの衝突確率はMTC端末が増えても0となる。本発明の第2の手法によれば、完全にPUCCHの衝突確率を0にすることはできないが、従来の手法に比べてPUCCHの衝突確率を低減できる。
 また、従来の手法では、MTC端末の数が増えるほど、PDCCHの送信制限確率は高くなる。一方、本発明の実施例の第1の手法によれば、従来の手法に比べてPDCCHの送信制限確率は約10%高くなる。本発明の第2の手法及び第3の手法によれば、PDCCHの送信制限確率の増加を防ぐことができ、実質的に従来の手法と同程度となる。
 説明の便宜上、本発明の実施例に係る基地局及び移動局は機能的なブロック図を用いて説明しているが、本発明の実施例に係る基地局及び移動局は、ハードウェア、ソフトウェアまたはそれらの組み合わせで実現されてもよい。また、各機能部が必要に応じて組み合わせて使用されてもよい。また、本発明の実施例に係る方法は、実施例に示す順序と異なる順序で実施されてもよい。
 以上、PDSCHと当該PDSCHを受信するために必要な割り当て情報を通知するPDCCHとが異なるサブフレームで送信される場合、端末間でのPUCCHの衝突を回避又は低減するための手法について説明したが、本発明は、上記の実施例に限定されることなく、特許請求の範囲内において、種々の変更・応用が可能である。
 本国際出願は、2014年1月30日に出願した日本国特許出願2014-016189号及び2014年3月20日に出願した日本国特許出願2014-059259号に基づく優先権を主張するものであり、2014-016189号及び2014-059259号の全内容を本国際出願に援用する。
 10   基地局
 101  伝送路インタフェース
 103  ベースバンド信号処理部
 105  呼処理部
 107  送受信部
 109  アンプ部
 1031 制御部
 1032 DL信号生成部
 1033 マッピング部
 1034 スケジューリング部
 1035 下りリンク制御リソース決定部
 1036 上りリンク制御リソース決定部
 1037 リソース割り当て情報記憶部
 1038 UL信号復号部
 1039 判定部
 20   移動局
 201  アプリケーション部
 203  ベースバンド信号処理部
 205  送受信部
 207  アンプ部
 2031 制御部
 2032 UL信号生成部
 2033 マッピング部
 2034 DL信号復号部
 2035 判定部

Claims (9)

  1.  物理下りリンク共有チャネルと、当該物理下りリンク共有チャネルを受信するために必要な割り当て情報を通知する物理下りリンク制御チャネルとを異なるサブフレームで送信する基地局であって、
     物理上りリンク制御チャネルのリソース割り当て情報又は物理下りリンク制御チャネルのリソース割り当て情報を格納するリソース割り当て情報記憶部と、
     前記リソース割り当て情報記憶部を参照して、複数の移動局からの物理上りリンク制御チャネルの間で衝突が生じないように物理下りリンク制御チャネルのリソースを割り当てるリソース割り当て部と、
     物理下りリンク制御チャネル及び物理下りリンク共有チャネルを送信する送信部と、
     を有する基地局。
  2.  物理下りリンク共有チャネルと、当該物理下りリンク共有チャネルを受信するために必要な割り当て情報を通知する物理下りリンク制御チャネルとを異なるサブフレームで送信する基地局における送信方法であって、
     物理上りリンク制御チャネルのリソース割り当て情報又は物理下りリンク制御チャネルのリソース割り当て情報を参照して、複数の移動局からの物理上りリンク制御チャネルの間で衝突が生じないように物理下りリンク制御チャネルのリソースを割り当てるステップと、
     物理下りリンク制御チャネル及び物理下りリンク共有チャネルを送信するステップと、
     を有する送信方法。
  3.  物理下りリンク共有チャネルと、当該物理下りリンク共有チャネルを受信するために必要な割り当て情報を通知する物理下りリンク制御チャネルとを異なるサブフレームで受信する移動局であって、
     物理下りリンク共有チャネルに対する再送判定を行う判定部と、
     物理下りリンク共有チャネルの再送が必要ない場合、物理上りリンク制御チャネルを送信せず、物理下りリンク共有チャネルの再送が必要である場合、再送を要求するための送達確認情報を物理上りリンク制御チャネルで送信する送信部と、
     を有する移動局。
  4.  物理下りリンク共有チャネルと、当該物理下りリンク共有チャネルを受信するために必要な割り当て情報を通知する物理下りリンク制御チャネルとを異なるサブフレームで受信する移動局における再送制御方法であって、
     物理下りリンク共有チャネルに対する再送判定を行うステップと、
     物理下りリンク共有チャネルの再送が必要ない場合、物理上りリンク制御チャネルを送信せず、物理下りリンク共有チャネルの再送が必要である場合、再送を要求するための送達確認情報を物理上りリンク制御チャネルで送信するステップと、
     を有する再送制御方法。
  5.  物理下りリンク共有チャネルと、当該物理下りリンク共有チャネルを受信するために必要な割り当て情報を通知する物理下りリンク制御チャネルとを異なるサブフレームで送信する基地局であって、
     物理上りリンク制御チャネルのリソース割り当て情報又は物理下りリンク制御チャネルのリソース割り当て情報を格納するリソース割り当て情報記憶部と、
     前記リソース割り当て情報記憶部を参照して、物理上りリンク制御チャネルのリソースを決定するリソース割り当て部と、
     移動局に使用させる物理上りリンク制御チャネルのリソースを決定するためのインジケータを送信する送信部と、
     を有する基地局。
  6.  前記送信部は、予め通知した物理上りリンク制御チャネルのリソースの候補の中から、移動局に使用させる物理上りリンク制御チャネルのリソースを決定するためのインジケータを送信する、請求項5に記載の基地局。
  7. 物理下りリンク共有チャネルと、当該物理下りリンク共有チャネルを受信するために必要な割り当て情報を通知する物理下りリンク制御チャネルとを異なるサブフレームで送信する基地局における送信方法であって、
     物理上りリンク制御チャネルのリソース割り当て情報又は物理下りリンク制御チャネルのリソース割り当て情報を参照して、物理上りリンク制御チャネルのリソースを決定するステップと、
     移動局に使用させる物理上りリンク制御チャネルのリソースを決定するためのインジケータを送信するステップと、
     を有する送信方法。
  8.  物理下りリンク共有チャネルと、当該物理下りリンク共有チャネルを受信するために必要な割り当て情報を通知する物理下りリンク制御チャネルとを異なるサブフレームで受信する移動局であって、
     物理上りリンク制御チャネルのリソースを決定するためのインジケータを受信する受信部と、
     物理下りリンク共有チャネルに対する再送判定を行う判定部と、
     受信したインジケータに従って決定された物理上りリンク制御チャネルのリソースを用いて、再送判定の結果を示す送達確認情報を物理上りリンク制御チャネルで送信する送信部と、
     を有する移動局。
  9.  物理下りリンク共有チャネルと、当該物理下りリンク共有チャネルを受信するために必要な割り当て情報を通知する物理下りリンク制御チャネルとを異なるサブフレームで受信する移動局における再送制御方法であって、
     物理上りリンク制御チャネルのリソースを決定するためのインジケータを受信するステップと、
     物理下りリンク共有チャネルに対する再送判定を行うステップと、
     受信したインジケータに従って決定された物理上りリンク制御チャネルのリソースを用いて、再送判定の結果を示す送達確認情報を物理上りリンク制御チャネルで送信するステップと、
     を有する再送制御方法。
PCT/JP2014/082483 2014-01-30 2014-12-09 基地局、送信方法、移動局及び再送制御方法 WO2015114952A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP14880523.7A EP3101982A4 (en) 2014-01-30 2014-12-09 Base station, transmission method, mobile station, and retransmission control method
US15/113,966 US20170055249A1 (en) 2014-01-30 2014-12-09 Base station, transmission method, mobile station and retransmission control method
CN201480074014.6A CN105934997B (zh) 2014-01-30 2014-12-09 基站、发送方法、移动台以及重发控制方法

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2014016189 2014-01-30
JP2014-016189 2014-01-30
JP2014-059259 2014-03-20
JP2014059259A JP6159672B2 (ja) 2014-01-30 2014-03-20 基地局、送信方法、移動局及び再送制御方法

Publications (1)

Publication Number Publication Date
WO2015114952A1 true WO2015114952A1 (ja) 2015-08-06

Family

ID=53756546

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/082483 WO2015114952A1 (ja) 2014-01-30 2014-12-09 基地局、送信方法、移動局及び再送制御方法

Country Status (5)

Country Link
US (1) US20170055249A1 (ja)
EP (1) EP3101982A4 (ja)
JP (1) JP6159672B2 (ja)
CN (1) CN105934997B (ja)
WO (1) WO2015114952A1 (ja)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017026091A1 (ja) * 2015-08-11 2017-02-16 パナソニック インテレクチュアル プロパティ コーポレーション オブ アメリカ 端末、基地局、送信方法及び受信方法
WO2018030764A1 (en) * 2016-08-09 2018-02-15 Samsung Electronics Co., Ltd. Apparatus and method for retransmission in wireless communication system
CN108432322A (zh) * 2016-01-08 2018-08-21 株式会社Ntt都科摩 用户终端、无线基站以及无线通信方法
CN109417815A (zh) * 2016-07-01 2019-03-01 Lg 电子株式会社 在无线通信系统中在基站与终端之间发送/接收上行链路信号的方法以及支持该方法的设备
US10985883B2 (en) 2016-08-09 2021-04-20 Samsung Electronics Co., Ltd. Apparatus and method for retransmission in wireless communication system

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA2950636C (en) * 2014-06-24 2021-03-02 Panasonic Intellectual Property Corporation Of America Terminal, base station, transmission method, and reception method
US10516517B2 (en) 2015-01-29 2019-12-24 Intel IP Corporation System and methods for support of frequency hopping for UEs with reduced bandwidth support
JP6633889B2 (ja) * 2015-10-29 2020-01-22 Kddi株式会社 基地局装置、端末装置、通信方法及びプログラム
WO2017081799A1 (ja) * 2015-11-12 2017-05-18 富士通株式会社 端末装置、基地局装置、無線通信システム及び無線通信方法
WO2018094618A1 (zh) * 2016-11-23 2018-05-31 华为技术有限公司 一种资源分配和传输数据包的方法及设备
RU2755360C2 (ru) * 2017-01-06 2021-09-15 Нтт Докомо, Инк. Пользовательский терминал и способ радиосвязи
CN108282253B (zh) * 2017-01-06 2021-04-20 华为技术有限公司 数据传输方法及装置
US10680782B2 (en) 2017-06-16 2020-06-09 Qualcomm Incorporated Strategic mapping of uplink resources
MX2020001189A (es) * 2017-08-01 2020-03-12 Nec Corp Estacion base, aparato terminal, primer aparato terminal, metodo, programa, medio de grabacion y sistema.
CN109842867B (zh) * 2017-11-24 2020-11-20 大唐移动通信设备有限公司 一种eMTC PUCCH资源预留方法及装置
CN112534915A (zh) * 2018-08-09 2021-03-19 夏普株式会社 用于urllc pdsch传输的harq-ack反馈的pucch上的ack和nack区分
JP6799787B2 (ja) * 2019-09-04 2020-12-16 サン パテント トラスト 端末、通信方法及び集積回路
CN114731695A (zh) * 2020-01-16 2022-07-08 Oppo广东移动通信有限公司 业务冲突的解决方法、装置、设备及存储介质
JP7016047B2 (ja) * 2020-11-02 2022-02-04 サン パテント トラスト 基地局、通信方法及び集積回路
US11743864B2 (en) * 2021-03-25 2023-08-29 Qualcomm Incorporated Techniques for unlinking physical downlink control channel (PDCCH) candidates due to PDCCH candidate dropping in deployments featuring PDCCH repetition

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014016189A (ja) 2012-07-06 2014-01-30 Panasonic Corp 半導体センサ

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4511611B2 (ja) * 2008-05-29 2010-07-28 株式会社エヌ・ティ・ティ・ドコモ 無線リソース選択方法、無線基地局及び移動局
KR101611326B1 (ko) * 2011-07-26 2016-04-11 엘지전자 주식회사 상향링크 신호 전송방법 및 사용자기기, 상향링크 신호 수신방법 및 기지국
CN103621168B (zh) * 2012-06-28 2017-05-10 华为技术有限公司 下行数据的反馈信息的传输方法及终端、基站
US9363803B2 (en) * 2012-07-03 2016-06-07 Lg Electronics Inc. Method and device for allocating resource for uplink control channel in wireless communication system
CN105210321B (zh) * 2013-05-12 2019-06-07 Lg电子株式会社 用于接收下行控制信息dci的方法和装置
WO2014189304A1 (ko) * 2013-05-22 2014-11-27 엘지전자 주식회사 무선통신 시스템에서 단말의 통신 방법 및 이러한 방법을 이용하는 단말
KR101904572B1 (ko) * 2013-09-27 2018-10-08 주식회사 케이티 단말을 위한 상향 링크 제어 채널 자원 설정 방법 및 장치
CN104767595A (zh) * 2014-01-07 2015-07-08 中兴通讯股份有限公司 Harq-ack反馈信息的传输方法、系统及终端和基站

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014016189A (ja) 2012-07-06 2014-01-30 Panasonic Corp 半導体センサ

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
3GPP TR36.888 V12.0.0, June 2013 (2013-06-01)
ALCATEL -LUCENT ET AL.: "Considerations on Low Cost MTC UE", 3GPP RL-135153, 3GPP, XP050734853 *
See also references of EP3101982A4

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017026091A1 (ja) * 2015-08-11 2017-02-16 パナソニック インテレクチュアル プロパティ コーポレーション オブ アメリカ 端末、基地局、送信方法及び受信方法
CN108432322A (zh) * 2016-01-08 2018-08-21 株式会社Ntt都科摩 用户终端、无线基站以及无线通信方法
EP3383112A4 (en) * 2016-01-08 2018-12-26 NTT DoCoMo, Inc. User terminal, wireless base station, and wireless communication method
CN108432322B (zh) * 2016-01-08 2023-05-02 株式会社Ntt都科摩 终端、无线基站以及无线通信方法
CN109417815A (zh) * 2016-07-01 2019-03-01 Lg 电子株式会社 在无线通信系统中在基站与终端之间发送/接收上行链路信号的方法以及支持该方法的设备
EP3468280A4 (en) * 2016-07-01 2020-02-26 LG Electronics Inc. -1- METHOD FOR SENDING / RECEIVING A UPLINK SIGNAL BETWEEN A BASE STATION AND A TERMINAL IN A WIRELESS COMMUNICATION SYSTEM AND DEVICE FOR SUPPORTING THIS
US10694507B2 (en) 2016-07-01 2020-06-23 Lg Electronics Inc. Method for transmitting/receiving uplink signal between base station and terminal in wireless communication system, and device for supporting same
US11317385B2 (en) 2016-07-01 2022-04-26 Lg Electronics Inc. Method for transmitting/receiving uplink signal between base station and terminal in wireless communication system, and device for supporting same
WO2018030764A1 (en) * 2016-08-09 2018-02-15 Samsung Electronics Co., Ltd. Apparatus and method for retransmission in wireless communication system
US10985883B2 (en) 2016-08-09 2021-04-20 Samsung Electronics Co., Ltd. Apparatus and method for retransmission in wireless communication system

Also Published As

Publication number Publication date
US20170055249A1 (en) 2017-02-23
CN105934997B (zh) 2019-08-02
EP3101982A1 (en) 2016-12-07
JP6159672B2 (ja) 2017-07-05
CN105934997A (zh) 2016-09-07
EP3101982A4 (en) 2017-01-25
JP2015164279A (ja) 2015-09-10

Similar Documents

Publication Publication Date Title
JP6159672B2 (ja) 基地局、送信方法、移動局及び再送制御方法
US11595991B2 (en) Method for indicating the allocated resources for a HARQ message in a random access procedure for a low-complexity, narrowband terminal
US10271316B2 (en) User equipments, base stations and methods
US10595166B2 (en) Systems and methods for processing time reduction signaling
US10069613B2 (en) Method and apparatus for scheduling uplink transmissions with reduced latency
US10117188B2 (en) Method and apparatus for scheduling uplink transmissions with reduced latency
CN105790898B (zh) 通讯系统的无线通讯处理方法
JP6271535B2 (ja) キャリアアグリゲーションのためのシステムおよび方法
JP6388768B2 (ja) ユーザ端末、無線基地局及び無線通信方法
US20180077718A1 (en) Method and apparatus for scheduling uplink transmissions with reduced latency
US10873437B2 (en) Systems and methods for frequency-division duplex transmission time interval operation
US20230080507A1 (en) Method and device for determining uplink data and control signal transmission timing in wireless communication system
JP6357164B2 (ja) フィードバックレポートのためのシステムおよび方法
US20220225400A1 (en) Communications device, infrastructure equipment and methods
CN110932820B (zh) 发送和接收上行控制信息的方法以及通信装置
KR20180049742A (ko) 면허 대역과 비면허 대역을 이용한 통신 방법 및 그 장치
KR20180091000A (ko) Tdd 서브프레임 구조에서 공통 업링크 버스트를 이용하여 업링크 레이턴시를 디커플링하기 위한 방법 및 장치
CN114556832A (zh) 基于服务的上行链路重传
JP2023065547A (ja) 端末装置、ネットワークデバイス、及び方法
WO2018171725A1 (zh) 上行通信的方法、终端设备和网络设备
US20230336314A1 (en) Communications devices, network infrastructure equipment, wireless communications networks and methods
CN111788846A (zh) 基站装置、终端装置、无线通信系统以及无线通信方法
JP2015231097A (ja) ユーザ端末、無線基地局及び無線通信方法
KR102425579B1 (ko) 무선 통신 시스템에서 전력 제어 및 전력 정보 제공 방법 및 장치
CN114390698A (zh) 一种数据传输的方法、装置、介质以及程序产品

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14880523

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 15113966

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

REEP Request for entry into the european phase

Ref document number: 2014880523

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2014880523

Country of ref document: EP