WO2015114790A1 - Gate drive circuit and inverter system having gate drive circuit mounted therein - Google Patents
Gate drive circuit and inverter system having gate drive circuit mounted therein Download PDFInfo
- Publication number
- WO2015114790A1 WO2015114790A1 PCT/JP2014/052199 JP2014052199W WO2015114790A1 WO 2015114790 A1 WO2015114790 A1 WO 2015114790A1 JP 2014052199 W JP2014052199 W JP 2014052199W WO 2015114790 A1 WO2015114790 A1 WO 2015114790A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- gate
- circuit
- terminal
- switching element
- drive signal
- Prior art date
Links
Images
Classifications
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02M—APPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
- H02M1/00—Details of apparatus for conversion
- H02M1/08—Circuits specially adapted for the generation of control voltages for semiconductor devices incorporated in static converters
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02M—APPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
- H02M1/00—Details of apparatus for conversion
- H02M1/38—Means for preventing simultaneous conduction of switches
-
- H—ELECTRICITY
- H03—ELECTRONIC CIRCUITRY
- H03K—PULSE TECHNIQUE
- H03K17/00—Electronic switching or gating, i.e. not by contact-making and –breaking
- H03K17/16—Modifications for eliminating interference voltages or currents
- H03K17/161—Modifications for eliminating interference voltages or currents in field-effect transistor switches
- H03K17/162—Modifications for eliminating interference voltages or currents in field-effect transistor switches without feedback from the output circuit to the control circuit
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02B—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
- Y02B70/00—Technologies for an efficient end-user side electric power management and consumption
- Y02B70/10—Technologies improving the efficiency by using switched-mode power supplies [SMPS], i.e. efficient power electronics conversion e.g. power factor correction or reduction of losses in power supplies or efficient standby modes
Definitions
- the present invention relates to a gate drive circuit for driving a semiconductor gate of a switching element using a wide band gap semiconductor, and an inverter system equipped with the gate drive circuit.
- a gate-on signal based on the gate signal (gate voltage / gate current) transmitted from the opposite arm by a level-up circuit as a technique to mitigate conduction loss and deterioration of energization of semiconductor elements using wide band gap semiconductors by reducing dead time
- the dead time is shortened by applying to the gate of the element (for example, see Patent Document 1).
- a gate drive circuit of a semiconductor element when driving a power conversion device such as an inverter, an ON / OFF complementary signal is applied between the gate and source of a switching element (IGBT, etc.) of an upper and lower arm of a certain phase. Is driving.
- a period (dead time) in which the gate signals of the upper and lower arms are turned off is provided at the timing when the complementary signals are switched.
- Inverters that convert large power generally have a fixed dead time of about 3 to 5 [ ⁇ s] so that the upper and lower arms are not short-circuited in consideration of variations in gate drive transmission delay.
- a diode is connected in reverse parallel to the IGBT in order to energize during the dead time period and rectification period.
- the switching frequency fsw of the inverter In order to reduce the size of reactors and capacitors used in inverters, it is effective to increase the switching frequency fsw of the inverter, but in the case of a fixed dead time, the dead time period occupies one cycle as fsw increases As the ratio increases, controllability decreases. For this reason, reduction of dead time becomes a problem.
- the operating voltage range is low, when an Si-MOSFET is used, an antiparallel PN diode is built in the MOSFET, so there is no need to connect an additional antiparallel diode. Furthermore, since it is a unipolar element, current can be passed in both directions between the drain and the source when the gate is ON. In other words, while the gate ON period enables low-loss rectification using the low on-resistance of the Si-MOSFET channel, the dead time period energizes the built-in PN diode, which has a larger voltage drop than the channel on-resistance. Become. In other words, in the case of Si-MOSFETs, in addition to improving controllability, reducing dead time is an issue for reducing loss.
- the device breakdown voltage is equivalent to that of Si-IGBT.
- the basic operating mechanism is the same as that of Si-MOSFET, it has a high forward voltage due to the SiC band gap, so there is a large conduction loss during the dead time period, and there is a concern about the deterioration of energization due to SiC crystal defects. There is. Since this problem is caused by energization of the SiC-PN diode, it can be alleviated by shortening the dead time.
- One way to solve this problem is to reduce the dead time by applying a gate-on signal to the gate of the device based on the gate signal (gate voltage / gate current) transmitted from the opposing arm by the level-up circuit.
- a gate-on signal to the gate of the device based on the gate signal (gate voltage / gate current) transmitted from the opposing arm by the level-up circuit.
- the level-up circuit signal transmission delay occurs, so there are problems that there is a limit to shortening the dead time and that the circuit scale and cost increase.
- an object of the present invention is to provide a semiconductor gate driving circuit capable of reducing dead time by using information of its own arm without using a level-up circuit and an inverter system equipped with the semiconductor gate driving circuit.
- the gate drive circuit of the present invention is, for example, a gate drive circuit having a drive signal output unit for driving the first switching element, and the gate drive circuit includes the drive A drive signal detection unit for detecting a signal, a gate current detection unit for detecting an energization current to the gate terminal of the first switching element, and the detection information of the drive signal detection unit and the gate current detection unit A gate drive control unit that applies an on / off drive signal to the first switching element, and the gate drive control unit is turned on by the gate current detection unit during a period when the drive signal detection unit detects an off state.
- the MOSFET is driven to turn on.
- the inverter system of the present invention is an inverter system equipped with the gate drive circuit of the present invention including the gate drive circuit described above.
- the dead time of a switching element using a wide band gap semiconductor can be shortened, and controllability can be improved.
- the present invention does not require a level-up circuit for transmitting information between the upper and lower arms, and can reduce the dead time. Therefore, it is possible to reduce the size and cost and minimize the transmission delay. In addition, the loss during the dead time period when using the MOSFET can be reduced. Moreover, the energization time of the SiC-MOSFET to the PN diode can be reduced, and deterioration of the energization of the PN diode can be reduced. In addition, when using the SiC-MOSFET, it is possible to delete the SiC-SBD connected in antiparallel. Moreover, it is possible to prevent erroneous detection due to gate current conduction due to noise.
- the first switching element may be composed of a MOSFET, a junction FET, or an IGBT using a wide band gap semiconductor such as silicon carbide, gallium nitride, or diamond.
- FIG. 1 is a circuit configuration diagram of the semiconductor drive circuit of the first embodiment, and shows a portion related to a switching element for one phase (upper and lower arms connected in series).
- the semiconductor drive circuit includes a MOSFET (SiC-MOSFET) S1U using SiC in the upper arm, a MOSFET (SiC-MOSFET) S1L using SiC in the lower arm, a gate drive circuit 100U in the upper arm, and a lower arm.
- a gate drive circuit 100L is provided.
- the upper arm gate drive circuit 100U includes a PWM drive signal generation circuit 110U, a gate resistor 120U, a differential amplifier circuit 130U for differentially amplifying the voltage applied to the gate resistor 120U, and an RS flip-flop circuit 140U. , A differential amplifier 150U for differentially amplifying the output voltage of 140U, and a MOSFET U160U that is turned on / off by a signal of 150U.
- the PWM drive signal generation circuit 110U includes a voltage source 111U, a PWM signal source 112U, a resistor 113U, and transistors 114U and 115U that operate in a complementary manner.
- the lower arm gate drive circuit 100L has the same configuration as the upper arm gate drive circuit 100U.
- a timing chart of the S terminal a timing chart of the R terminal, a timing chart of the Q terminal, a 160U drive signal Vsw_U, and an on / off timing chart of Vsw_L of the RS flip-flop circuit.
- the upper arm PWM signal Vpwm_U is off
- the lower arm PWM signal Vpwm_L is on
- the upper arm gate voltage Vgs_U is off
- the lower arm gate voltage Vgs_L is on
- S1L the energization current is increased.
- the lower arm PWM signal Vpwm_L is turned off, 115L is turned on, the off-side current flows to the gate current Ig_L, the lower arm gate voltage Vgs_L is turned off, S1L is voltage shared, and Vds_L becomes Vcc On the other hand, the Vds_U of S1U starts decreasing from Vcc toward 0 [V].
- Id_L becomes 0 [A]. Since the discharge current flows through the gate-drain capacitance Cgd when Vds_U decreases from Vcc toward 0 [V], the on-side current is supplied to Ig_U while the pwm signal Vpwm_U is in the off state. Since the gate drain capacitance becomes maximum when Vds_U is near 0 [V], Ig_U becomes the maximum value at this timing. Ig_U is detected by the voltage drop across the gate resistor, differentially amplified by 130U, and an ON signal is applied to S_U at the set terminal of 140U. Since the signal R_U at the reset terminal is in the off state, the 140U Q output is in the on state.
- the Q output 140U is differentially amplified and applied to the 160U gate as a Vsw_U on signal.
- 160U is turned on, gate voltage 111U is applied to S1U, Ig_U is energized in the on direction, and Vgs_U is turned on.
- S1U since S1U is turned on, the current that has been applied to the body diode is applied to the channel side of S1U. This timing is the dead time completion.
- the upper arm pwm signal Vpwm_U is turned on. Accordingly, R_U is turned on and a reset signal is applied, so that the Q_U signal is turned off. Accordingly, at time t6, the 160U gate voltage Vsw_U is also turned off. On the other hand, when the Vpwm_U signal is turned on, 114U is turned on and 115U is turned off, and application of 111U is continued to S1U.
- t1 to t5 are required as the dead time period, but according to the present embodiment, the dead time can be shortened to t1 to t4.
- SiC-MOSFET body diode loss can be reduced.
- the energization time of the SiC-MOSFET to the PN diode can be reduced, it is possible to reduce the deterioration of energization to the PN diode.
- SiC-MOSFET Schottky Barrier Diode
- SiC-MOSFETs are exemplified as the switching elements S1U and S1L, but MOSFETs, IGBTs, JFETs, bipolar transistors using wide band gap semiconductors such as Si, gallium nitride, or diamond may be used. The same effect can be obtained.
- FIG. 3 is a diagram corresponding to FIG. 1 in the first embodiment.
- the same parts as those in the first embodiment are denoted by the same reference numerals, description thereof is omitted, and different parts will be described below.
- the gate drive circuits 100U and 100L shown in FIG. 3 are different from the gate drive circuits 100U and 100L shown in FIG. 1 in that integrators 170U and 170L are provided.
- the integrated values of the gate currents Ig_U and Ig_L are output.
- the integrator 170U is used. In this case, even if the crest value is high, the integral value is small if the current is a short time, so that erroneous detection can be prevented.
- FIG. 4 is a view corresponding to FIG. 2 in the first embodiment.
- the same parts as those in the first embodiment are denoted by the same reference numerals, and the description thereof is omitted. Hereinafter, different parts will be described.
- the ON signal cannot be applied to the set terminal S_U because the gate current Ig_U at time t2 shown in FIG. 4 is small, the Q output terminal remains in the OFF state, and 160U is in the OFF state, reducing dead time. do not do. In this case, the dead time ends at time t5 when 114U is turned on and 115U is turned off by the Vpwm_U signal.
- the dead time ends after a predetermined time has elapsed, thereby preventing excessive loss deterioration and deterioration of the body diode. Is possible.
- Fig. 5 shows the mounting structure of this circuit.
- Reference numeral 200 denotes a semiconductor module on which S1U and S1L are mounted.
- Terminal 201P connected to S1U drain side
- terminal 201N connected to S1L source side
- terminal 201AC connected to S1U source and S1L drain
- S1U_S connected to source of S1U
- S1U_G connected to gate terminal of S1U
- the circuit part 200U is connected to the S1U_G and S1U_S terminals
- the circuit part 200L is connected to the S1L_G and S1L_S terminals.
- 200U has an S1U_GO terminal and an S1U_SO terminal
- 200L has an S1L_GO terminal and an S1L_SO terminal
- 200U is a circuit board incorporating the 120U, 130U, 140U, 150U and 160U of FIG. 1
- 200L is a circuit board incorporating the 120L, 130L, 140L, 150L and 160L of FIG.
- the gate circuit since the gate circuit is mounted with the shortest wiring from the semiconductor module, resonance due to the gate wiring inductance that occurs when the gate wiring from the semiconductor module is long, or intrusion into the wiring. Since external noise can be removed and the wiring impedance can be minimized, the gate can be driven at high speed.
Landscapes
- Engineering & Computer Science (AREA)
- Power Engineering (AREA)
- Inverter Devices (AREA)
- Power Conversion In General (AREA)
Abstract
For the purpose of shortening a dead time in a semiconductor element gate drive circuit and an inverter system having the gate drive circuit mounted therein, a gate drive circuit (100U) of the present invention is provided with: a PWM drive signal generating circuit (110U); a gate resistor (120U); a differential amplifier circuit (130U) for performing differential amplification of a voltage applied to the gate resistor (120U); an RS-type flip-flop circuit (140U); a differential amplifier (150U) for performing differential amplification of an output voltage of the RS-type flip-flop circuit (140U); and an MOSFET (160U) that turns on/off by means of signals of the differential amplifier (150U). In the cases where a voltage applied to the gate resistor (120U) is detected during a period when the PWM signal is in the off-state, the MOSFET (160U) is turned on, and an upper arm MOSFET (SiC-MOSFET) (S1U) using SiC is driven to turn on.
Description
本発明は、ワイドバンドギャップ半導体を用いたスイッチング素子の半導体のゲートを駆動するゲート駆動回路、およびそれを搭載したインバータシステムに関する。
The present invention relates to a gate drive circuit for driving a semiconductor gate of a switching element using a wide band gap semiconductor, and an inverter system equipped with the gate drive circuit.
従来、ワイドバンドギャップ半導体を用いた半導体素子の導通損失や通電劣化をデッドタイム短縮により緩和する技術として、対向アームからレベルアップ回路で伝達されたゲート信号(ゲート電圧・ゲート電流)に基づきゲートオン信号を素子のゲートに与えることによりデッドタイムを短縮する構成があった(例えば、特許文献1参照)。
Conventionally, a gate-on signal based on the gate signal (gate voltage / gate current) transmitted from the opposite arm by a level-up circuit as a technique to mitigate conduction loss and deterioration of energization of semiconductor elements using wide band gap semiconductors by reducing dead time There is a configuration in which the dead time is shortened by applying to the gate of the element (for example, see Patent Document 1).
半導体素子のゲート駆動回路では、インバータ等の電力変換装置を駆動する際、ある相の上下アームのスイッチング素子(IGBT等)のゲート・ソース間にONとOFFの相補信号を印加して、スイッチング素子を駆動している。上下アーム間の短絡を防止するため、相補信号が切り替わるタイミングに上下アームのゲート信号がOFFとなる期間(デッドタイム)を設けている。大電力を変換するインバータでは、一般的にゲート駆動の伝達遅延のばらつきなどを考慮したうえで上下アーム間が短絡しないよう3~5[μs]程度の固定デッドタイムを設けている。
In a gate drive circuit of a semiconductor element, when driving a power conversion device such as an inverter, an ON / OFF complementary signal is applied between the gate and source of a switching element (IGBT, etc.) of an upper and lower arm of a certain phase. Is driving. In order to prevent a short circuit between the upper and lower arms, a period (dead time) in which the gate signals of the upper and lower arms are turned off is provided at the timing when the complementary signals are switched. Inverters that convert large power generally have a fixed dead time of about 3 to 5 [μs] so that the upper and lower arms are not short-circuited in consideration of variations in gate drive transmission delay.
スイッチング素子としてSi-IGBTを使用した場合、デッドタイム期間及び整流期間に通電するため、IGBTに対してダイオードを逆並列に接続する。インバータに使用されるリアクトルやコンデンサを小型化するためにはインバータのスイッチング周波数fswを高くする方法が有効であるが、固定デッドタイムの場合にはfswの高周波化に伴い1周期に占めるデッドタイム期間の割合が増加するため、制御性が低下する。このため、デッドタイム短縮が課題となる。
When Si-IGBT is used as the switching element, a diode is connected in reverse parallel to the IGBT in order to energize during the dead time period and rectification period. In order to reduce the size of reactors and capacitors used in inverters, it is effective to increase the switching frequency fsw of the inverter, but in the case of a fixed dead time, the dead time period occupies one cycle as fsw increases As the ratio increases, controllability decreases. For this reason, reduction of dead time becomes a problem.
一方、使用電圧領域は低いが、Si-MOSFETを使用した場合、MOSFET内部に逆並列PNダイオードが内蔵されているので、追加の逆並列ダイオードを接続する必要はない。更にユニポーラ素子であるためゲートON状態でドレイン-ソース間の双方向に電流を通電することができる。つまりゲートON期間はSi-MOSFETチャネルの低オン抵抗を利用した低損失の整流が可能である一方、デッドタイム期間にはチャネルのオン抵抗に比べて電圧降下の大きい内蔵PNダイオードに通電することとなる。つまり、Si-MOSFETの場合には、制御性の向上に加え、損失低減のためにもデッドタイム短縮が課題となる。
On the other hand, although the operating voltage range is low, when an Si-MOSFET is used, an antiparallel PN diode is built in the MOSFET, so there is no need to connect an additional antiparallel diode. Furthermore, since it is a unipolar element, current can be passed in both directions between the drain and the source when the gate is ON. In other words, while the gate ON period enables low-loss rectification using the low on-resistance of the Si-MOSFET channel, the dead time period energizes the built-in PN diode, which has a larger voltage drop than the channel on-resistance. Become. In other words, in the case of Si-MOSFETs, in addition to improving controllability, reducing dead time is an issue for reducing loss.
ワイドバンドギャップ半導体を用いた半導体素子、例えばSiC-MOSFETの場合、Si-IGBTと同等の素子耐圧となる。基本的な動作機構はSi-MOSFETと同様であるが、SiCのバンドギャップに起因する高い順方向電圧を有するためデッドタイム期間の導通損失が大きいとともに、SiCの結晶欠陥に起因する通電劣化の懸念がある。この問題はSiC-PNダイオードへの通電が原因であるため、デッドタイム短縮により緩和することができる。
In the case of a semiconductor element using a wide band gap semiconductor, for example, SiC-MOSFET, the device breakdown voltage is equivalent to that of Si-IGBT. Although the basic operating mechanism is the same as that of Si-MOSFET, it has a high forward voltage due to the SiC band gap, so there is a large conduction loss during the dead time period, and there is a concern about the deterioration of energization due to SiC crystal defects. There is. Since this problem is caused by energization of the SiC-PN diode, it can be alleviated by shortening the dead time.
この課題を解決できる可能性がある方法の一つとして、対向アームからレベルアップ回路で伝達されたゲート信号(ゲート電圧・ゲート電流)に基づきゲートオン信号を素子のゲートに与えることによりデッドタイムを短縮する構成として、例えば特許文献1に記載されたものがある。しかしながら、レベルアップ回路の使用に伴い、信号の伝達遅延が発生するためデッドタイム短縮には限界があることや回路規模・コストが増加するという課題があった。
One way to solve this problem is to reduce the dead time by applying a gate-on signal to the gate of the device based on the gate signal (gate voltage / gate current) transmitted from the opposing arm by the level-up circuit. For example, there is a configuration described in Patent Document 1. However, with the use of the level-up circuit, signal transmission delay occurs, so there are problems that there is a limit to shortening the dead time and that the circuit scale and cost increase.
本発明はこうした課題を解決するため、レベルアップ回路を使用せずに自アームの情報でデッドタイム短縮可能な半導体ゲート駆動回路及びそれを搭載したインバータシステムを提供することを目的とする。
In order to solve these problems, an object of the present invention is to provide a semiconductor gate driving circuit capable of reducing dead time by using information of its own arm without using a level-up circuit and an inverter system equipped with the semiconductor gate driving circuit.
上記の課題を解決するため、本発明のゲート駆動回路は、例えば、第一のスイッチング素子を駆動するための駆動信号の出力部を有するゲート駆動回路であって、前記ゲート駆動回路は、前記駆動信号を検出する駆動信号検出部と、前記第一のスイッチング素子のゲート端子への通電電流を検出するゲート電流検出部と、前記駆動信号検出部と前記ゲート電流検出部の検出情報に基づいて前記第一のスイッチング素子にオン/オフ駆動信号を印加するゲート駆動制御部とを備え、前記ゲート駆動制御部は前記駆動信号検出部がオフ状態を検出している期間に前記ゲート電流検出部でオン側ゲート電流を検出した場合に、前記MOSFETをターンオンするように駆動することを特徴とする。
In order to solve the above problems, the gate drive circuit of the present invention is, for example, a gate drive circuit having a drive signal output unit for driving the first switching element, and the gate drive circuit includes the drive A drive signal detection unit for detecting a signal, a gate current detection unit for detecting an energization current to the gate terminal of the first switching element, and the detection information of the drive signal detection unit and the gate current detection unit A gate drive control unit that applies an on / off drive signal to the first switching element, and the gate drive control unit is turned on by the gate current detection unit during a period when the drive signal detection unit detects an off state. When the side gate current is detected, the MOSFET is driven to turn on.
また、本発明のインバータシステムは、上記のゲート駆動回路を含む本発明のゲート駆動回路を搭載したインバータシステムである。
The inverter system of the present invention is an inverter system equipped with the gate drive circuit of the present invention including the gate drive circuit described above.
本発明によれば、ワイドバンドギャップ半導体を用いたスイッチング素子のデッドタイムを短縮でき、制御性を向上することが可能となる。
According to the present invention, the dead time of a switching element using a wide band gap semiconductor can be shortened, and controllability can be improved.
本発明は、上下アーム間の情報を伝達するためのレベルアップ回路を不要で、デッドタイム短縮可能であることから、小型・低コスト化、伝達遅延の最小化が可能である。また、MOSFET使用時のデッドタイム期間の損失を低減可能である。また、SiC-MOSFETのPNダイオードへの通電時間を低減でき、PNダイオードへの通電劣化を軽減可能である。また、SiC-MOSFETを使用する際には、逆並列に接続されたSiC-SBDを削除することが可能となる。また、ノイズによるゲート電流通電による誤検知を防止することが可能である。また、ゲート電流を検知できなかった場合であっても、過度な損失増加やボディダイオードの通電劣化を防止することが可能である。また、ゲート配線をループとする共振や、配線に侵入する外来ノイズを除去できるとともに、配線インピーダンスを最小にできるため高速にゲート駆動することが可能である。
The present invention does not require a level-up circuit for transmitting information between the upper and lower arms, and can reduce the dead time. Therefore, it is possible to reduce the size and cost and minimize the transmission delay. In addition, the loss during the dead time period when using the MOSFET can be reduced. Moreover, the energization time of the SiC-MOSFET to the PN diode can be reduced, and deterioration of the energization of the PN diode can be reduced. In addition, when using the SiC-MOSFET, it is possible to delete the SiC-SBD connected in antiparallel. Moreover, it is possible to prevent erroneous detection due to gate current conduction due to noise. Further, even when the gate current cannot be detected, it is possible to prevent an excessive increase in loss and deterioration of energization of the body diode. In addition, resonance with the gate wiring as a loop and external noise entering the wiring can be removed, and the wiring impedance can be minimized, so that the gate can be driven at high speed.
また、本発明のゲート駆動回路は、前記第一のスイッチング素子が炭化珪素や窒化ガリウムあるいはダイヤモンドのようなワイドバンドギャップ半導体を用いたMOSFETや接合型FETやあるいはIGBTで構成してもよい。
In the gate drive circuit of the present invention, the first switching element may be composed of a MOSFET, a junction FET, or an IGBT using a wide band gap semiconductor such as silicon carbide, gallium nitride, or diamond.
以下、本発明のゲート駆動回路及びそれを搭載したインバータシステムの実施形態のいくつかの例について、各実施例として図面を参照しながら詳細に説明する。
Hereinafter, some examples of embodiments of the gate drive circuit of the present invention and an inverter system equipped with the gate drive circuit will be described in detail as examples with reference to the drawings.
以下に、図面により本発明の半導体駆動回路の第1の実施形態について図1、図2を用いて詳細に説明する。
Hereinafter, a first embodiment of a semiconductor drive circuit according to the present invention will be described in detail with reference to FIGS. 1 and 2 with reference to the drawings.
図1は第一の実施形態の半導体駆動回路の回路構成図であり、1相分(直列に接続された上下アーム)のスイッチング素子にかかる部分を示している。
FIG. 1 is a circuit configuration diagram of the semiconductor drive circuit of the first embodiment, and shows a portion related to a switching element for one phase (upper and lower arms connected in series).
半導体駆動回路は、上アームのSiCを用いたMOSFET(SiC-MOSFET)S1Uと、下アームの、SiCを用いたMOSFET(SiC-MOSFET)S1Lと、上アームのゲート駆動回路100Uと、下アームのゲート駆動回路100Lを備えている。
The semiconductor drive circuit includes a MOSFET (SiC-MOSFET) S1U using SiC in the upper arm, a MOSFET (SiC-MOSFET) S1L using SiC in the lower arm, a gate drive circuit 100U in the upper arm, and a lower arm. A gate drive circuit 100L is provided.
上アームのゲート駆動回路100Uは、PWM駆動信号生成回路110Uと、ゲート抵抗120Uと、ゲート抵抗120U間にかかる電圧を差動増幅するための差動増幅回路130Uと、RS型フリップフロップ回路140Uと、140Uの出力電圧を差動増幅するための差動増幅器150Uと、150Uの信号でオン/オフ動作するMOSFET 160Uを備えている。
The upper arm gate drive circuit 100U includes a PWM drive signal generation circuit 110U, a gate resistor 120U, a differential amplifier circuit 130U for differentially amplifying the voltage applied to the gate resistor 120U, and an RS flip-flop circuit 140U. , A differential amplifier 150U for differentially amplifying the output voltage of 140U, and a MOSFET U160U that is turned on / off by a signal of 150U.
PWM駆動信号生成回路110Uは、電圧源111Uと、PWM信号源112Uと、抵抗113Uと、相補動作するトランジスタ114Uと115Uを備えている。
下アームのゲート駆動回路100Lは、上アームのゲート駆動回路100Uと同構成である。 The PWM drive signal generation circuit 110U includes avoltage source 111U, a PWM signal source 112U, a resistor 113U, and transistors 114U and 115U that operate in a complementary manner.
The lower armgate drive circuit 100L has the same configuration as the upper arm gate drive circuit 100U.
下アームのゲート駆動回路100Lは、上アームのゲート駆動回路100Uと同構成である。 The PWM drive signal generation circuit 110U includes a
The lower arm
以下、第一の実施形態における動作を、上アームS1Uがオフ→オン、下アームS1Lがオン→オフに変化するタイミングを例として図2に示す。上・下アーム各々の、ドレイン電流Id_U、Id_L、ドレイン‐ソース間電圧Vds_U、Vds_L、ゲート電圧Vgs_U、Vgs_L、ゲート電流Ig_U、Ig_Lとそれに比例するゲート抵抗間電圧Vrg_U、Vrg_L、PWM信号Vpwm_U、Vpwm_Lおよび、RS型フリップフロップ回路のS端子のタイミングチャート、R端子のタイミングチャート、Q端子のタイミングチャート、160Uの駆動信号Vsw_U、Vsw_Lのオン/オフタイミングチャートを用いて説明する。
Hereinafter, the operation in the first embodiment is shown in FIG. 2 by taking as an example the timing at which the upper arm S1U changes from off to on and the lower arm S1L changes from on to off. Drain current Id_U, Id_L, drain-source voltage Vds_U, Vds_L, gate voltage Vgs_U, Vgs_L, gate current Ig_U, Ig_L and proportional gate resistance voltage Vrg_U, Vrg_L, PWM signal Vpwm_U, Vpwm_L The description will be made with reference to a timing chart of the S terminal, a timing chart of the R terminal, a timing chart of the Q terminal, a 160U drive signal Vsw_U, and an on / off timing chart of Vsw_L of the RS flip-flop circuit.
図2の時刻t0では、上アームPWM信号Vpwm_Uがオフ状態、下アームPWM信号Vpwm_Lがオン状態となっており、上アームゲート電圧Vgs_Uがオフ状態、下アームゲート電圧Vgs_Lがオン状態となり、S1Lの通電電流を増加させている状態である。
At time t0 in FIG. 2, the upper arm PWM signal Vpwm_U is off, the lower arm PWM signal Vpwm_L is on, the upper arm gate voltage Vgs_U is off, the lower arm gate voltage Vgs_L is on, and S1L In this state, the energization current is increased.
時刻t1で、下アームPWM信号Vpwm_Lがオフ状態となり、115Lがオンしてゲート電流Ig_Lにオフ側の電流が流れ、下アームゲート電圧Vgs_Lがオフ状態となり、S1Lが電圧分担してVds_LがVccに向かって増加、反対にS1UのVds_UはVccから0[V]に向かって減少を開始する。
At time t1, the lower arm PWM signal Vpwm_L is turned off, 115L is turned on, the off-side current flows to the gate current Ig_L, the lower arm gate voltage Vgs_L is turned off, S1L is voltage shared, and Vds_L becomes Vcc On the other hand, the Vds_U of S1U starts decreasing from Vcc toward 0 [V].
時刻t2で、Vds_Uが0[V]に、Vds_LがVccに到達すると、上アームS1Uのボディダイオードに通電し電流Id_Uは増加し、下アームの電流Id_Lは減少を開始する。このタイミングをデッドタイム開始とする。
At time t2, when Vds_U reaches 0 [V] and Vds_L reaches Vcc, the body diode of the upper arm S1U is energized, the current Id_U increases, and the lower arm current Id_L starts decreasing. This timing is the dead time start.
時刻t3にId_Lが0[A]になる。Vds_UがVccから0[V]に向かって減少する際にゲート‐ドレイン間容量Cgdに放電電流が流れるため、pwm信号Vpwm_Uはオフ状態でありながらもIg_Uにオン側の電流が通電される。Vds_Uが0[V]付近でゲートドレイン容量は最大となるため、このタイミングでIg_Uは最大値となる。Ig_Uをゲート抵抗両端間の電圧降下で検出し、130Uで差動増幅され140Uのセット端子にS_Uにオン信号が印加される。リセット端子の信号R_Uはオフ状態であるため、140UのQ出力はオン状態となる。
At time t3, Id_L becomes 0 [A]. Since the discharge current flows through the gate-drain capacitance Cgd when Vds_U decreases from Vcc toward 0 [V], the on-side current is supplied to Ig_U while the pwm signal Vpwm_U is in the off state. Since the gate drain capacitance becomes maximum when Vds_U is near 0 [V], Ig_U becomes the maximum value at this timing. Ig_U is detected by the voltage drop across the gate resistor, differentially amplified by 130U, and an ON signal is applied to S_U at the set terminal of 140U. Since the signal R_U at the reset terminal is in the off state, the 140U Q output is in the on state.
時刻t4に、Q出力140Uを差動増幅して160UのゲートにVsw_Uのオン信号として印加する。160Uがオンとなり、ゲート電圧111UがS1Uに印加され、Ig_Uがオン方向に通電され、Vgs_Uはオン状態となる。ここで、S1Uがオン状態となるため、ボディダイオードに通電されていた電流はS1Uのチャネル側に通電される。このタイミングが、デッドタイム完了である。
At time t4, the Q output 140U is differentially amplified and applied to the 160U gate as a Vsw_U on signal. 160U is turned on, gate voltage 111U is applied to S1U, Ig_U is energized in the on direction, and Vgs_U is turned on. Here, since S1U is turned on, the current that has been applied to the body diode is applied to the channel side of S1U. This timing is the dead time completion.
時刻t5に、上アームのpwm信号Vpwm_Uがオン状態となる。これに伴いR_Uがオン状態となりリセット信号が印加されるためQ_U信号はオフ状態となる。これに伴い時刻t6には160Uのゲート電圧Vsw_Uもオフ状態となる。一方、Vpwm_U信号がオンとなったことで、114Uがオン、115Uがオフ状態となり、S1Uには111Uの印加が継続される。
At time t5, the upper arm pwm signal Vpwm_U is turned on. Accordingly, R_U is turned on and a reset signal is applied, so that the Q_U signal is turned off. Accordingly, at time t6, the 160U gate voltage Vsw_U is also turned off. On the other hand, when the Vpwm_U signal is turned on, 114U is turned on and 115U is turned off, and application of 111U is continued to S1U.
従来は、デッドタイム期間としてt1~t5を必要としていたが、本実施形態によれば、デッドタイムをt1~t4に短縮可能となる。SiC-MOSFETボディダイオード損失を低減可能である。更に、SiC-MOSFETのPNダイオードへの通電時間を低減できることから、PNダイオードへの通電劣化を軽減すること可能である。
Conventionally, t1 to t5 are required as the dead time period, but according to the present embodiment, the dead time can be shortened to t1 to t4. SiC-MOSFET body diode loss can be reduced. Furthermore, since the energization time of the SiC-MOSFET to the PN diode can be reduced, it is possible to reduce the deterioration of energization to the PN diode.
また、SiC-MOSFETを使用する際には、SiC-SBD(ショットきバリアダイオード)を逆並列に接続する形態がとられるが、上記効果に付随して、このSiC-SBDを削除することが可能となる。
なお、本実施例ではスイッチング素子S1U、S1Lとして、SiC-MOSFETを例示したが、Siや、窒化ガリウムあるいはダイヤモンドのようなワイドバンドギャップ半導体を用いたMOSFET、IGBT、JFET、バイポーラトランジスタであっても、同様の効果を得ることができる。 In addition, when using SiC-MOSFET, SiC-SBD (Schottky Barrier Diode) is connected in anti-parallel, but this SiC-SBD can be deleted along with the above effect. It becomes.
In this embodiment, SiC-MOSFETs are exemplified as the switching elements S1U and S1L, but MOSFETs, IGBTs, JFETs, bipolar transistors using wide band gap semiconductors such as Si, gallium nitride, or diamond may be used. The same effect can be obtained.
なお、本実施例ではスイッチング素子S1U、S1Lとして、SiC-MOSFETを例示したが、Siや、窒化ガリウムあるいはダイヤモンドのようなワイドバンドギャップ半導体を用いたMOSFET、IGBT、JFET、バイポーラトランジスタであっても、同様の効果を得ることができる。 In addition, when using SiC-MOSFET, SiC-SBD (Schottky Barrier Diode) is connected in anti-parallel, but this SiC-SBD can be deleted along with the above effect. It becomes.
In this embodiment, SiC-MOSFETs are exemplified as the switching elements S1U and S1L, but MOSFETs, IGBTs, JFETs, bipolar transistors using wide band gap semiconductors such as Si, gallium nitride, or diamond may be used. The same effect can be obtained.
以下に、図面により本発明の半導体駆動回路の第二の実施形態について図3を用いて詳細に説明する。図3は実施例1における図1相当図であり、第一の実施形態と同一部分には同一符号を付して説明を省略し、以下異なる部分について説明する。
Hereinafter, a second embodiment of the semiconductor drive circuit of the present invention will be described in detail with reference to FIG. FIG. 3 is a diagram corresponding to FIG. 1 in the first embodiment. The same parts as those in the first embodiment are denoted by the same reference numerals, description thereof is omitted, and different parts will be described below.
図3に示すゲート駆動回路100U、100Lは、図1に示すゲート駆動回路100U、100Lに対し、積分器170U、170Lが付与されている点が異なっている。本実施例の積分器170U、170Lを付加することにより、ゲート電流Ig_U、Ig_Lの積分値を出力する。電流波形で判断する場合には瞬間的に大きな電流(図2時刻t2におけるIg_Uと同等以上の波高値を持つ短時間の電流)が通電した場合に誤検知してしまうが、積分器170Uを用いた場合では、波高値が高くとも短時間の電流であれば積分値は小さいため、誤検知を防止できる。
The gate drive circuits 100U and 100L shown in FIG. 3 are different from the gate drive circuits 100U and 100L shown in FIG. 1 in that integrators 170U and 170L are provided. By adding the integrators 170U and 170L of this embodiment, the integrated values of the gate currents Ig_U and Ig_L are output. When judging by the current waveform, false detection will occur when a large current (a short-time current having a peak value equal to or higher than Ig_U at time t2 in FIG. 2) is energized, but the integrator 170U is used. In this case, even if the crest value is high, the integral value is small if the current is a short time, so that erroneous detection can be prevented.
本実施例(第二の実施形態)によれば、ノイズによるゲート電流通電による誤検知を防止することが可能となる。
According to the present example (second embodiment), it is possible to prevent erroneous detection due to the gate current conduction due to noise.
以下に、図面により本発明の半導体駆動回路の第3の実施形態について図4を用いて詳細に説明する。
Hereinafter, a third embodiment of the semiconductor drive circuit of the present invention will be described in detail with reference to the drawings with reference to FIG.
図4は実施例1における図2相当図であり、第一の実施形態と同一部分には同一符号を付して説明を省略し、以下異なる部分について説明する。
FIG. 4 is a view corresponding to FIG. 2 in the first embodiment. The same parts as those in the first embodiment are denoted by the same reference numerals, and the description thereof is omitted. Hereinafter, different parts will be described.
図4に示す時刻t2におけるゲート電流Ig_Uが小さいため、セット端子S_Uにオン信号を印加することができない場合、Q出力端子はオフ状態のままであるため、160Uはオフ状態であり、デッドタイム短縮しない。この場合、Vpwm_U信号により114Uがオン、115Uがオフ状態となる時刻t5にデッドタイム終了する。
When the ON signal cannot be applied to the set terminal S_U because the gate current Ig_U at time t2 shown in FIG. 4 is small, the Q output terminal remains in the OFF state, and 160U is in the OFF state, reducing dead time. do not do. In this case, the dead time ends at time t5 when 114U is turned on and 115U is turned off by the Vpwm_U signal.
本実施例(第三の実施形態)によれば、ゲート電流を検知できなかった場合であっても所定の時間経過後にデッドタイム終了するため、過度な損失の悪化やボディダイオードの通電劣化を防止することが可能である。
According to the present embodiment (third embodiment), even if the gate current cannot be detected, the dead time ends after a predetermined time has elapsed, thereby preventing excessive loss deterioration and deterioration of the body diode. Is possible.
以下に、図面により本発明の第四の実施形態について図5を用いて詳細に説明する。
Hereinafter, a fourth embodiment of the present invention will be described in detail with reference to the drawings with reference to FIG.
図5は本回路の実装構造を示す。200は、S1U、S1Lが搭載された半導体モジュールである。S1Uドレイン側と接続された端子201P、S1Lソース側と接続された端子201N、S1UソースとS1Lドレインと接続された端子201AC、S1Uのソースに接続されたS1U_S、S1Uのゲート端子に接続されたS1U_G、S1Lのゲート端子に接続されたS1L_S、S1Lのゲート端子に接続されたS1L_Gを備えた半導体モジュールにおいて、S1U_GとS1U_S端子に回路部200Uを接続し、S1L_GとS1L_S端子に回路部200Lを接続し、200UはS1U_GO端子とS1U_SO端子を備え、200LはS1L_GO端子とS1L_SO端子を備えている。200Uは図1の120U、130U、140U、150U、160Uを内蔵した回路基板であり、200Lは図1の120L、130L、140L、150L、160Lを内蔵した回路基板である。
Fig. 5 shows the mounting structure of this circuit. Reference numeral 200 denotes a semiconductor module on which S1U and S1L are mounted. Terminal 201P connected to S1U drain side, terminal 201N connected to S1L source side, terminal 201AC connected to S1U source and S1L drain, S1U_S connected to source of S1U, S1U_G connected to gate terminal of S1U In the semiconductor module with S1L_S connected to the S1L gate terminal and S1L_G connected to the S1L gate terminal, the circuit part 200U is connected to the S1U_G and S1U_S terminals, and the circuit part 200L is connected to the S1L_G and S1L_S terminals. , 200U has an S1U_GO terminal and an S1U_SO terminal, and 200L has an S1L_GO terminal and an S1L_SO terminal. 200U is a circuit board incorporating the 120U, 130U, 140U, 150U and 160U of FIG. 1, and 200L is a circuit board incorporating the 120L, 130L, 140L, 150L and 160L of FIG.
本実施例(第四の実施形態)によれば、半導体モジュールから最短の配線でゲート回路を実装するため、半導体モジュールからのゲート配線が長い場合に生ずるゲート配線インダクタンスによる共振や、配線に侵入する外来ノイズを除去できるとともに、配線インピーダンスを最小にできるため高速にゲート駆動可能である。
According to the present example (fourth embodiment), since the gate circuit is mounted with the shortest wiring from the semiconductor module, resonance due to the gate wiring inductance that occurs when the gate wiring from the semiconductor module is long, or intrusion into the wiring. Since external noise can be removed and the wiring impedance can be minimized, the gate can be driven at high speed.
S1U 上アームのSiC-MOSFET(スイッチング素子)
S1L 下アームのSiC-MOSFET(スイッチング素子)
100U 上アームのゲート駆動回路
100L 下アームのゲート駆動回路 S1U Upper arm SiC-MOSFET (switching element)
S1L Lower arm SiC-MOSFET (switching element)
100U gate drive circuit forupper arm 100L gate drive circuit for lower arm
S1L 下アームのSiC-MOSFET(スイッチング素子)
100U 上アームのゲート駆動回路
100L 下アームのゲート駆動回路 S1U Upper arm SiC-MOSFET (switching element)
S1L Lower arm SiC-MOSFET (switching element)
100U gate drive circuit for
Claims (14)
- 第一のスイッチング素子を駆動するための駆動信号の出力部を有するゲート駆動回路であって、
前記ゲート駆動回路は、
前記駆動信号を検出する駆動信号検出部と、
前記第一のスイッチング素子のゲート端子への通電電流を検出するゲート電流検出部と、
前記駆動信号検出部と前記ゲート電流検出部の検出情報に基づいて前記第一のスイッチング素子にオン/オフ駆動信号を印加するゲート駆動制御部と
を備え、
前記ゲート駆動制御部は前記駆動信号検出部がオフ状態を検出している期間に前記ゲート電流検出部でオン側ゲート電流を検出した場合に、前記MOSFETをターンオンするように駆動する
ことを特徴とするゲート駆動回路。 A gate drive circuit having a drive signal output unit for driving the first switching element,
The gate driving circuit includes:
A drive signal detector for detecting the drive signal;
A gate current detector for detecting an energization current to the gate terminal of the first switching element;
A gate drive control unit that applies an on / off drive signal to the first switching element based on detection information of the drive signal detection unit and the gate current detection unit;
The gate drive control unit drives the MOSFET to be turned on when the gate current detection unit detects an on-side gate current during a period in which the drive signal detection unit detects an off state. A gate drive circuit. - 請求項1に記載のゲート駆動回路において、
前記第一のスイッチング素子が炭化珪素や窒化ガリウムあるいはダイヤモンドのようなワイドバンドギャップ半導体を用いたMOSFETや接合型FETやあるいはIGBTである
ことを特徴とするゲート駆動回路。 The gate drive circuit according to claim 1,
A gate driving circuit, wherein the first switching element is a MOSFET, a junction FET, or an IGBT using a wide band gap semiconductor such as silicon carbide, gallium nitride, or diamond. - 請求項1または2に記載のゲート駆動回路において、
前記ゲート駆動回路は、ゲート抵抗素子を介して前記第一のスイッチング素子のゲート端子に電気的に接続され、
前記駆動信号検出部は、前記駆動信号を差動増幅する第一の差動増幅器を有し、
前記ゲート電流検出部は、ゲート抵抗素子の一方の端子と他方の端子それぞれからから引き出された端子間の電圧を差動増幅する第二の差動増幅器を有し、
前記ゲート駆動制御部は、RS型フリップフロップ回路とゲート駆動用の電圧を前記第一のスイッチング素子のゲート端子に印加するための第二のスイッチング素子を有し、
前記RS型フリップフロップ回路のセット端子に第一の差動増幅回路の出力を接続し、前記RS型フリップフロップ回路のリセット端子に第二の差動増幅回路の出力を接続し、前記RS型フリップフロップ回路の出力電圧を差動増幅する第三の差動増幅器を有し、
前記第三の差動増幅器の出力を前記第一のスイッチング素子を駆動する信号を出力するための第二のスイッチング素子のオン/オフ制御用端子に接続する
ことを特徴とするゲート駆動回路。 The gate drive circuit according to claim 1 or 2,
The gate driving circuit is electrically connected to a gate terminal of the first switching element through a gate resistance element,
The drive signal detector includes a first differential amplifier that differentially amplifies the drive signal,
The gate current detection unit includes a second differential amplifier that differentially amplifies a voltage between terminals drawn from one terminal and the other terminal of the gate resistance element,
The gate drive control unit has an RS flip-flop circuit and a second switching element for applying a gate driving voltage to the gate terminal of the first switching element,
The output of the first differential amplifier circuit is connected to the set terminal of the RS flip-flop circuit, the output of the second differential amplifier circuit is connected to the reset terminal of the RS flip-flop circuit, and the RS flip-flop A third differential amplifier for differentially amplifying the output voltage of the circuit;
A gate driving circuit, wherein an output of the third differential amplifier is connected to an on / off control terminal of a second switching element for outputting a signal for driving the first switching element. - 請求項3に記載のゲート駆動回路において、
前記第二の差動増幅回路に直列に積分回路を有する
ことを特徴とするゲート駆動回路。 The gate drive circuit according to claim 3.
A gate driving circuit comprising an integrating circuit in series with the second differential amplifier circuit. - 請求項1乃至4のいずれかに記載のゲート駆動回路において、
前記ゲート電流検出部が前記オン側ゲート電流を検出しなかった場合に、前記駆動信号は所定の時間経過後にオン信号を出力する
ことを特徴とするゲート駆動回路。 The gate drive circuit according to any one of claims 1 to 4,
When the gate current detection unit does not detect the on-side gate current, the drive signal outputs an on signal after a predetermined time has elapsed. - 請求項1乃至5のいずれかに記載のゲート駆動回路において、
前記第一のスイッチング素子のゲート端子とソース端子との間に、アノード端子を前記ソース端子に接続したツェナダイオード有する
ことを特徴とするゲート駆動回路。 The gate drive circuit according to any one of claims 1 to 5,
A gate driving circuit comprising a Zener diode having an anode terminal connected to the source terminal between a gate terminal and a source terminal of the first switching element. - 請求項1乃至6のいずれかに記載のゲート駆動回路において、
前記スイッチング素子は半導体モジュールに搭載されており、
前記半導体モジュールの外部接続用ゲート端子および外部接続用ソース端子を備え、
前記外部接続用ゲート端子および前記外部接続用ソース端子に直接接続されたプリント基板上に、前記駆動信号検出部、前記ゲート電流検出部、および前記ゲート駆動制御部のうち少なくとも一つが搭載されている
ことを特徴とするゲート駆動回路。 The gate drive circuit according to any one of claims 1 to 6,
The switching element is mounted on a semiconductor module,
A gate terminal for external connection of the semiconductor module and a source terminal for external connection;
At least one of the drive signal detection unit, the gate current detection unit, and the gate drive control unit is mounted on a printed circuit board directly connected to the external connection gate terminal and the external connection source terminal. A gate drive circuit characterized by that. - 第一のスイッチング素子を駆動するための駆動信号の出力部を有するゲート駆動回路を搭載したインバータシステムであって、
前記ゲート駆動回路は、
前記駆動信号を検出する駆動信号検出部と、
前記第一のスイッチング素子のゲート端子への通電電流を検出するゲート電流検出部と、
前記駆動信号検出部と前記ゲート電流検出部の検出情報に基づいて前記第一のスイッチング素子にオン/オフ駆動信号を印加するゲート駆動制御部と
を備え、
前記ゲート駆動制御部は前記駆動信号検出部がオフ状態を検出している期間に前記ゲート電流検出部でオン側ゲート電流を検出した場合に、前記MOSFETをターンオンするように駆動する
ことを特徴とするインバータシステム。 An inverter system equipped with a gate drive circuit having a drive signal output unit for driving the first switching element,
The gate driving circuit includes:
A drive signal detector for detecting the drive signal;
A gate current detector for detecting an energization current to the gate terminal of the first switching element;
A gate drive control unit that applies an on / off drive signal to the first switching element based on detection information of the drive signal detection unit and the gate current detection unit;
The gate drive control unit drives the MOSFET to be turned on when the gate current detection unit detects an on-side gate current during a period in which the drive signal detection unit detects an off state. Inverter system. - 請求項8に記載のインバータシステムにおいて、
前記第一のスイッチング素子が炭化珪素や窒化ガリウムあるいはダイヤモンドのようなワイドバンドギャップ半導体を用いたMOSFETや接合型FETやあるいはIGBTである
ことを特徴とするインバータシステム。 In the inverter system according to claim 8,
An inverter system, wherein the first switching element is a MOSFET, a junction FET, or an IGBT using a wide band gap semiconductor such as silicon carbide, gallium nitride, or diamond. - 請求項8または9に記載のインバータシステムにおいて、
前記ゲート駆動回路は、ゲート抵抗素子を介して前記第一のスイッチング素子のゲート端子に電気的に接続され、
前記駆動信号検出部は、前記駆動信号を差動増幅する第一の差動増幅器を有し、
前記ゲート電流検出部は、ゲート抵抗素子の一方の端子と他方の端子それぞれからから引き出された端子間の電圧を差動増幅する第二の差動増幅器を有し、
前記ゲート駆動制御部は、RS型フリップフロップ回路とゲート駆動用の電圧を前記第一のスイッチング素子のゲート端子に印加するための第二のスイッチング素子を有し、
前記RS型フリップフロップ回路のセット端子に第一の差動増幅回路の出力を接続し、前記RS型フリップフロップ回路のリセット端子に第二の差動増幅回路の出力を接続し、前記RS型フリップフロップ回路の出力電圧を差動増幅する第三の差動増幅器を有し、
前記第三の差動増幅器の出力を前記第一のスイッチング素子を駆動する信号を出力するための第二のスイッチング素子のオン/オフ制御用端子に接続する
ことを特徴とするインバータシステム。 In the inverter system according to claim 8 or 9,
The gate driving circuit is electrically connected to a gate terminal of the first switching element through a gate resistance element,
The drive signal detector includes a first differential amplifier that differentially amplifies the drive signal,
The gate current detection unit includes a second differential amplifier that differentially amplifies a voltage between terminals drawn from one terminal and the other terminal of the gate resistance element,
The gate drive control unit has an RS flip-flop circuit and a second switching element for applying a gate driving voltage to the gate terminal of the first switching element,
The output of the first differential amplifier circuit is connected to the set terminal of the RS flip-flop circuit, the output of the second differential amplifier circuit is connected to the reset terminal of the RS flip-flop circuit, and the RS flip-flop A third differential amplifier for differentially amplifying the output voltage of the circuit;
An inverter system, wherein an output of the third differential amplifier is connected to an on / off control terminal of a second switching element for outputting a signal for driving the first switching element. - 請求項10に記載のインバータシステムにおいて、
前記第二の差動増幅回路に直列に積分回路を有する
ことを特徴とするインバータシステム。 The inverter system according to claim 10,
An inverter system comprising an integrating circuit in series with the second differential amplifier circuit. - 請求項8乃至11のいずれかに記載のインバータシステムにおいて、
前記ゲート電流検出部が前記オン側ゲート電流を検出しなかった場合に、前記駆動信号は所定の時間経過後にオン信号を出力する
ことを特徴とするインバータシステム。 The inverter system according to any one of claims 8 to 11,
When the gate current detection unit does not detect the on-side gate current, the drive signal outputs an on signal after a predetermined time has elapsed. - 請求項8乃至12のいずれかに記載のインバータシステムにおいて、
前記第一のスイッチング素子のゲート端子とソース端子間に、アノード端子を前記ソース端子に接続したツェナダイオード有する
ことを特徴とするインバータシステム。 The inverter system according to any one of claims 8 to 12,
An inverter system comprising a Zener diode having an anode terminal connected to the source terminal between a gate terminal and a source terminal of the first switching element. - 請求項8乃至13のいずれかに記載のインバータシステムにおいて、
前記スイッチング素子は半導体モジュールに搭載されており、
前記半導体モジュールの外部接続用ゲート端子および外部接続用ソース端子を備え、
前記外部接続用ゲート端子および前記外部接続用ソース端子に直接接続されたプリント基板上に、前記駆動信号検出部、前記ゲート電流検出部、および前記ゲート駆動制御部のうち少なくとも一つが搭載されている
ことを特徴とするインバータシステム。 In the inverter system according to any one of claims 8 to 13,
The switching element is mounted on a semiconductor module,
A gate terminal for external connection of the semiconductor module and a source terminal for external connection;
At least one of the drive signal detection unit, the gate current detection unit, and the gate drive control unit is mounted on a printed circuit board directly connected to the external connection gate terminal and the external connection source terminal. An inverter system characterized by that.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/JP2014/052199 WO2015114790A1 (en) | 2014-01-31 | 2014-01-31 | Gate drive circuit and inverter system having gate drive circuit mounted therein |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/JP2014/052199 WO2015114790A1 (en) | 2014-01-31 | 2014-01-31 | Gate drive circuit and inverter system having gate drive circuit mounted therein |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2015114790A1 true WO2015114790A1 (en) | 2015-08-06 |
Family
ID=53756402
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2014/052199 WO2015114790A1 (en) | 2014-01-31 | 2014-01-31 | Gate drive circuit and inverter system having gate drive circuit mounted therein |
Country Status (1)
Country | Link |
---|---|
WO (1) | WO2015114790A1 (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN109756212A (en) * | 2017-11-08 | 2019-05-14 | 英飞凌科技奥地利有限公司 | Drive control circuit and circuit with drive control circuit and transistor device |
CN115189565A (en) * | 2022-07-19 | 2022-10-14 | 电子科技大学 | Dead time control circuit for high-voltage half-bridge gate driving chip |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH10337046A (en) * | 1997-06-02 | 1998-12-18 | Toshiba Corp | Power conversion device |
JP2003143833A (en) * | 2001-11-01 | 2003-05-16 | Hitachi Ltd | Gate driver of semiconductor switching element |
JP2007228769A (en) * | 2006-02-27 | 2007-09-06 | Hitachi Ltd | Drive circuit of power semiconductor switching element |
JP2010051165A (en) * | 2008-07-24 | 2010-03-04 | Panasonic Corp | Gate drive circuit of semiconductor apparatus and power conversion apparatus using the same |
JP2012090435A (en) * | 2010-10-20 | 2012-05-10 | Mitsubishi Electric Corp | Drive circuit and semiconductor device equipped with the same |
JP2012100489A (en) * | 2010-11-04 | 2012-05-24 | Denso Corp | Electronic device |
JP2013062965A (en) * | 2011-09-14 | 2013-04-04 | Sanken Electric Co Ltd | Semiconductor module |
-
2014
- 2014-01-31 WO PCT/JP2014/052199 patent/WO2015114790A1/en active Application Filing
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH10337046A (en) * | 1997-06-02 | 1998-12-18 | Toshiba Corp | Power conversion device |
JP2003143833A (en) * | 2001-11-01 | 2003-05-16 | Hitachi Ltd | Gate driver of semiconductor switching element |
JP2007228769A (en) * | 2006-02-27 | 2007-09-06 | Hitachi Ltd | Drive circuit of power semiconductor switching element |
JP2010051165A (en) * | 2008-07-24 | 2010-03-04 | Panasonic Corp | Gate drive circuit of semiconductor apparatus and power conversion apparatus using the same |
JP2012090435A (en) * | 2010-10-20 | 2012-05-10 | Mitsubishi Electric Corp | Drive circuit and semiconductor device equipped with the same |
JP2012100489A (en) * | 2010-11-04 | 2012-05-24 | Denso Corp | Electronic device |
JP2013062965A (en) * | 2011-09-14 | 2013-04-04 | Sanken Electric Co Ltd | Semiconductor module |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN109756212A (en) * | 2017-11-08 | 2019-05-14 | 英飞凌科技奥地利有限公司 | Drive control circuit and circuit with drive control circuit and transistor device |
CN109756212B (en) * | 2017-11-08 | 2023-09-05 | 英飞凌科技奥地利有限公司 | Drive control circuit and circuit having drive control circuit and transistor device |
CN115189565A (en) * | 2022-07-19 | 2022-10-14 | 电子科技大学 | Dead time control circuit for high-voltage half-bridge gate driving chip |
CN115189565B (en) * | 2022-07-19 | 2024-04-02 | 电子科技大学 | Dead time control circuit for high-voltage half-bridge gate driving chip |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6961944B2 (en) | Power semiconductor module | |
JP4816182B2 (en) | Switching element drive circuit | |
JP6402591B2 (en) | Semiconductor device | |
CN107615664B (en) | Power transistor driving device | |
KR101449083B1 (en) | Switching Gate Drive | |
US8410826B2 (en) | Load drive circuit with current bidirectional detecting function | |
US20110234138A1 (en) | Motor drive device | |
US20130314834A1 (en) | Semiconductor driving circuit and semiconductor device | |
JP2019165347A (en) | Drive device and power module | |
Acuna et al. | Very fast short circuit protection for gallium-nitride power transistors based on printed circuit board integrated current sensor | |
US8570780B2 (en) | Semiconductor device | |
JP2000083371A (en) | Gate drive circuit in power converter | |
JP6458552B2 (en) | Switching type step-down DC-DC converter and power conversion circuit | |
WO2020105414A1 (en) | Electric power converting device | |
WO2015114790A1 (en) | Gate drive circuit and inverter system having gate drive circuit mounted therein | |
JP2012191408A (en) | Gate driving circuit and power semiconductor module | |
JP2017005974A (en) | Synchronous rectification circuit | |
JP5563050B2 (en) | Gate drive circuit and power semiconductor module | |
US9979299B2 (en) | Power converter damage protection | |
KR101179128B1 (en) | Short current detecting circuit | |
US9503072B2 (en) | Semiconductor switching device | |
JP2004260981A (en) | Power converting device and electric machine system utilizing it | |
JP2001016865A (en) | Three-phase inverter with current detecting function | |
Hasegawa et al. | A testing method for evaluating shoot-through immunity of IGBTs in an inverter | |
JP2000083370A (en) | Gate drive circuit in power converter |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 14880680 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 14880680 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: JP |