JP2003143833A - Gate driver of semiconductor switching element - Google Patents

Gate driver of semiconductor switching element

Info

Publication number
JP2003143833A
JP2003143833A JP2001335956A JP2001335956A JP2003143833A JP 2003143833 A JP2003143833 A JP 2003143833A JP 2001335956 A JP2001335956 A JP 2001335956A JP 2001335956 A JP2001335956 A JP 2001335956A JP 2003143833 A JP2003143833 A JP 2003143833A
Authority
JP
Japan
Prior art keywords
gate
switching element
semiconductor switching
normal
current
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2001335956A
Other languages
Japanese (ja)
Other versions
JP3931627B2 (en
Inventor
Katsumi Ishikawa
勝美 石川
Masahiro Nagasu
正浩 長洲
Satoshi Inarida
聡 稲荷田
Masaomi Konishide
政臣 小西出
Shigeki Sekine
茂樹 関根
Ryuichi Saito
隆一 齋藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP2001335956A priority Critical patent/JP3931627B2/en
Publication of JP2003143833A publication Critical patent/JP2003143833A/en
Application granted granted Critical
Publication of JP3931627B2 publication Critical patent/JP3931627B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Power Conversion In General (AREA)
  • Inverter Devices (AREA)

Abstract

PROBLEM TO BE SOLVED: To detect abnormality of element characteristics accurately when the gate-emitter leak current increases due to deterioration of insulation at the gate of an IGBT and the ON or OFF gate voltage is not applied between the gate and the emitter. SOLUTION: The gate driver comprises a means for measuring the gate current flowing through a gate resistor or a means for integrating the gate current, and a means for comparing it with a normal value range, and a means for transmitting a signal to a gate drive circuit.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、半導体スイッチン
グ素子を用いた電力変換装置に関し、特に電力変換装置
の半導体スイッチング素子のゲート駆動装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a power conversion device using a semiconductor switching element, and more particularly to a gate drive device for a semiconductor switching element of the power conversion device.

【0002】[0002]

【従来の技術】大容量の電力変換装置の半導体スイッチ
ング素子として、電圧駆動型の素子であるIGBT(絶
縁ゲート・バイポーラ・トランジスタ)の大容量化が進
み、適応範囲が拡大している。電圧駆動型半導体スイッ
チング素子のゲート電流は、ターンオン・ターンオフ時
に流れるのみであり、その駆動が小電力で簡単にできる
ため、駆動回路の電力容量の小さくて済み、装置が小型
になる。
2. Description of the Related Art As a semiconductor switching element of a large-capacity power conversion device, an IGBT (insulated gate bipolar transistor), which is a voltage-driven element, has been increased in capacity and its applicable range has been expanded. The gate current of the voltage-driven semiconductor switching element only flows at turn-on and turn-off, and it can be driven easily with a small amount of power, so that the power capacity of the drive circuit can be small and the device can be made compact.

【0003】IGBTを用いた電力変換装置のIGBT
の異常や、故障の検知方法が、特開平8−298786
号公報に開示されている。特開平8−298786号公
報では、IGBTのゲート−エミッタ間の電圧を監視
し、IGBTのゲートしきい値電圧より低い値に、分圧
抵抗で設定した基準電圧に対して、ゲート−エミッタ間
電圧が高いときにはIGBTをオンと判定し、低いとき
にはオフと判定するフィードバック信号を発生させる。
IGBT of power converter using IGBT
Japanese Patent Application Laid-Open No. 8-298786 discloses a method for detecting abnormalities and failures.
It is disclosed in the publication. In JP-A-8-298786, the gate-emitter voltage of the IGBT is monitored, and the gate-emitter voltage is set to a value lower than the gate threshold voltage of the IGBT with respect to a reference voltage set by a voltage dividing resistor. When is high, it determines that the IGBT is on, and when it is low, it generates a feedback signal that determines off.

【0004】また、特開平11−356035号公報に
は、図2に示すようにIGBTのゲートしきい値電圧よ
り低い電圧を設定していた分圧抵抗と並列に、基準電圧
切り替え抵抗と基準電圧切り替えトランジスタを設けて
いる。この場合、オンとオフの状態を判別するための基
準電圧を夫々設けるため、そのオン状態を判別する基準
電圧に対して、ゲート−エミッタ間電圧が高いときには
IGBTをオンと判定し、そのオフ状態を判別する基準
電圧に対して、ゲート−エミッタ間電圧が低いときには
IGBTをオフと判定する。
Further, in Japanese Unexamined Patent Publication No. 11-356035, a reference voltage switching resistor and a reference voltage are provided in parallel with a voltage dividing resistor that has set a voltage lower than a gate threshold voltage of an IGBT as shown in FIG. A switching transistor is provided. In this case, since the reference voltage for discriminating the ON state and the OFF state is respectively provided, when the gate-emitter voltage is higher than the reference voltage for discriminating the ON state, the IGBT is determined to be the ON state and the OFF state is determined. When the gate-emitter voltage is low with respect to the reference voltage used for determining, the IGBT is determined to be off.

【0005】図2に示すようにIGBT11のゲート端
子には、ゲート抵抗21が接続されている。IGBT1
1のゲート−エミッタ間電圧は、コンパレータ36に入
力する。IGBT11がオンのときは、分圧抵抗26と
27で設定される電圧と比較し、ゲート−エミッタ間電
圧が高いときにはIGBTをオンと判定し、発光器46
に“L”を出力し、発光器46は発光しない。なお、分
圧抵抗26と27で設定される電圧は、オン時のゲート
−エミッタ間電圧よりも3V程度低く設定している。一
方、IGBT11がオフのときは、分圧抵抗26と27
及び基準電圧切り替え抵抗29で設定される電圧と比較
し、ゲート−エミッタ間電圧が低いときにはIGBTを
オフと判定し、発光器46に“H”を出力し、発光器4
6は発光する。なお、分圧抵抗26と27及び基準電圧
切り替え抵抗29で設定される電圧は、オン時のゲート
−エミッタ間電圧よりも3V程度高く設定している。
As shown in FIG. 2, a gate resistor 21 is connected to the gate terminal of the IGBT 11. IGBT1
The gate-emitter voltage of 1 is input to the comparator 36. When the IGBT 11 is on, it is compared with the voltage set by the voltage dividing resistors 26 and 27, and when the gate-emitter voltage is high, it is determined that the IGBT is on, and the light emitter 46
"L" is output, and the light emitter 46 does not emit light. The voltage set by the voltage dividing resistors 26 and 27 is set to be about 3 V lower than the gate-emitter voltage at the time of turning on. On the other hand, when the IGBT 11 is off, the voltage dividing resistors 26 and 27 are
And the voltage set by the reference voltage switching resistor 29, and when the gate-emitter voltage is low, it is determined that the IGBT is off, "H" is output to the light emitter 46, and the light emitter 4
6 emits light. The voltage set by the voltage dividing resistors 26 and 27 and the reference voltage switching resistor 29 is set to be about 3 V higher than the gate-emitter voltage at the time of turning on.

【0006】図3に、従来技術の回路を用いた場合のゲ
ート電圧波形の一例を示す。IGBTのゲートの絶縁特性が
劣化し、ゲート−エミッタ間の抵抗が数百Ωに低下した
場合でも、オン状態でのゲート電圧は、正常範囲の12
〜15V、オフ状態でのゲート電圧は、正常範囲の−1
2〜−9Vで、スイッチングを繰り返す。
FIG. 3 shows an example of a gate voltage waveform when a conventional circuit is used. Even if the insulation characteristics of the gate of the IGBT deteriorate and the resistance between the gate and the emitter drops to several hundred Ω, the gate voltage in the ON state is 12
~ 15V, the gate voltage in the off state is -1 in the normal range
Switching is repeated at 2 to -9V.

【0007】[0007]

【発明が解決しようとする課題】しかし、前記特開平8
−298786号公報に開示の従来技術では、IGBT
のゲートの絶縁が劣化し、ゲート−エミッタ間の漏れ電
流が増加するなどで、正規のオンゲート電圧、あるいは
オフゲート電圧がゲート−エミッタ間に印加されていな
い場合に、これを検出できなかった。
However, the above-mentioned Japanese Unexamined Patent Application Publication No. Hei 8
In the prior art disclosed in Japanese Patent Publication No. 298786-, the IGBT is
Since the insulation of the gate is deteriorated and the leakage current between the gate and the emitter is increased, this cannot be detected when the regular on-gate voltage or the off-gate voltage is not applied between the gate and the emitter.

【0008】また、特開平11−356035号公報に
示す従来技術では、IGBTのゲートの絶縁特性が劣化
し、ゲート−エミッタ間の抵抗が数百Ω程度の高インピ
ーダンス状態になっている場合、オン状態を判別する基
準電圧よりも低下する前に、IGBTのゲートの絶縁特
性は異常になっており、これを検出できなかった。
Further, in the prior art disclosed in Japanese Patent Laid-Open No. 11-356035, when the insulation characteristic of the gate of the IGBT is deteriorated and the resistance between the gate and the emitter is in a high impedance state of about several hundreds Ω, it is turned on. Before the voltage was lower than the reference voltage for determining the state, the insulation characteristics of the IGBT gate were abnormal, and this could not be detected.

【0009】本発明の目的は、このようなオン時に正規
のゲート電圧、またはオフ時に正規のゲート電圧が印加
されないときにおいても素子の故障を検知し、電力変換
装置の安全性,信頼性を更に向上させる半導体スイッチ
ング素子のゲート駆動装置を提供することである。
An object of the present invention is to detect a failure of an element even when such a normal gate voltage is not applied when turned on or a normal gate voltage is applied when turned off, thereby further improving the safety and reliability of the power converter. It is an object of the present invention to provide a gate driving device for a semiconductor switching device that is improved.

【0010】[0010]

【課題を解決するための手段】本発明の半導体スイッチ
ング素子のゲート駆動装置は、半導体スイッチング素子
のゲート端子に接続したゲート抵抗を介して前記半導体
スイッチング素子に駆動信号を加えるものであって、前
記ゲート抵抗に流れるゲート電流測定手段と、該ゲート
電流測定手段が検出したゲート電流測定値と正常範囲電
流値とを比較し、正常又は異常を判別する正常異常判別
手段と、該正常異常判別手段の出力信号を受信し前記半
導体スイッチング素子のゲート駆動回路を制御する制御
手段と、前記正常異常判別手段の出力信号を該制御手段
に伝達する異常信号伝達手段とを有し、さらに前記正常
異常判別手段が、前記ゲート抵抗に流れるターンオン時
のゲート電流、あるいはゲート抵抗に流れるターンオフ
時のゲート電流の少なくともいずれか一方のゲート電流
測定値と正常範囲電流値とを比較する。
According to another aspect of the present invention, there is provided a gate driving device for a semiconductor switching element, wherein a drive signal is applied to the semiconductor switching element via a gate resistor connected to a gate terminal of the semiconductor switching element. A gate current measuring means flowing through the gate resistance, a normal / abnormality determining means for comparing the gate current measurement value detected by the gate current measuring means and a normal range current value to determine normality or abnormality, and the normal / abnormality determining means. The control means receives an output signal and controls the gate drive circuit of the semiconductor switching element, and an abnormal signal transmission means for transmitting the output signal of the normal / abnormal determination means to the control means. Is the turn-on gate current flowing through the gate resistance or the turn-off gate current flowing through the gate resistance. Even without comparing the one of the gate current measured value and the normal range current value.

【0011】また、本発明の半導体スイッチング素子の
ゲート駆動装置は、前記ゲート電流測定手段が、ゲート
抵抗に流れるターンオン時のゲート電流を積分する手
段、あるいはゲート抵抗に流れるターンオフ時のゲート
電流を積分する手段を備え、前記正常異常判別手段が、
少なくともいずれか一方の前記ゲート電流積分値と正常
範囲電流積分値とを比較する。
Further, in the gate driving device for a semiconductor switching element of the present invention, the gate current measuring means integrates a turn-on gate current flowing through the gate resistance or a turn-off gate current flowing through the gate resistance. And a means for determining whether the normality or abnormality is present,
At least one of the gate current integrated value and the normal range current integrated value is compared.

【0012】さらに、本発明の半導体スイッチング素子
のゲート駆動装置は、直列に接続している半導体スイッ
チング素子のゲート駆動回路へ、光ファイバやレーザダ
イオードやフォトダイオードなどの光通信手段で、正常
又は異常の信号を伝達したり、また、集積回路化してい
るゲート駆動回路においては、直列に接続しているスイ
ッチング素子のゲート駆動回路へ、レベルシフト回路を
用いて、正常又は異常の信号を伝達し、正常又は異常の
信号の伝達を、ゲート駆動信号を制御する制御部までフ
ィードバックさせる。
Further, the semiconductor switching element gate drive device according to the present invention is normally or abnormally connected to the semiconductor switching element gate drive circuit connected in series by an optical communication means such as an optical fiber, a laser diode or a photodiode. , Or, in a gate drive circuit that is integrated into a circuit, transmits a normal or abnormal signal to the gate drive circuit of the switching elements connected in series by using the level shift circuit, The transmission of the normal or abnormal signal is fed back to the control unit that controls the gate drive signal.

【0013】[0013]

【発明の実施の形態】本発明の実施例を以下図面を使用
して詳細に説明する。
Embodiments of the present invention will be described in detail below with reference to the drawings.

【0014】(実施例1)図1に、本実施例の構成図を
示す。半導体スイッチング素子として、IGBTやMO
SFETなどの電圧駆動型の素子全般が適用できるが、
以下、IGBTの場合を説明する。図1のIGBT11
は、コレクタ端子13とエミッタ端子14と、ゲート端
子とを備え、ゲート端子にはゲート抵抗21を接続す
る。本実施例では、ゲート抵抗21に流れる電流を測定
するゲート電流測定回路42を備える。このゲート電流
の測定結果を用いて、正常異常判別回路43で、IGB
T11の正常異常を判別する。この判別結果の信号を制
御回路44に伝送し、駆動回路41にフィードバックす
る。なお、制御回路44には、異常のラッチ回路も備え
ている。
(Embodiment 1) FIG. 1 shows a block diagram of this embodiment. As a semiconductor switching element, IGBT or MO
All voltage drive type devices such as SFET can be applied,
The case of the IGBT will be described below. IGBT 11 of FIG.
Has a collector terminal 13, an emitter terminal 14, and a gate terminal, and a gate resistor 21 is connected to the gate terminal. In this embodiment, a gate current measuring circuit 42 for measuring the current flowing through the gate resistor 21 is provided. Using the measurement result of the gate current, the normal / abnormal determination circuit 43 detects the IGBT
The normal abnormality of T11 is determined. The signal of this determination result is transmitted to the control circuit 44 and fed back to the drive circuit 41. The control circuit 44 also includes an abnormal latch circuit.

【0015】本実施例では、先に図2に示した従来技術
とは異なり、図4に示すようにゲート電流波形をモニタ
ーする。ゲート電流を測定する手段として、ゲート抵抗
の両端の電圧を測定し、電流値に換算する方法や、カレ
ントトランスを使用する方法などを用いる。ゲート電流
波形をモニターする期間は、図4に示すターンオン又
は、ターンオフの信号が入力後、5μs以降後が望まし
い。この理由は、IGBTのゲートの絶縁特性が正常なもの
では、5μs程度でゲート電流が流れなくなるからであ
る。なお、正常なIGBTのゲート電流値とは、IGB
Tの製品仕様に記載されている定格値のことである。本
実施例では、正常なゲート電流値の50〜200%の範
囲の測定値を正常範囲に設定し、ゲートの絶縁特性が劣
化したIGBTの異常や劣化を検知する。ゲート電流値は、
正常なIGBTであっても、ゲート容量のばらつき、動
作電圧のばらつき、ゲート抵抗のばらつきなどの影響を
受けるが、これらのばらつきの寄与は合計してもゲート
電流値の30%程度である。従って正常範囲は、前記5
0〜200%とすれば充分であり、好ましくは60〜1
70%、さらに好ましくは70〜130%とすれば良
い。
In this embodiment, unlike the prior art shown in FIG. 2, the gate current waveform is monitored as shown in FIG. As a means for measuring the gate current, a method of measuring the voltage across the gate resistance and converting it into a current value, a method of using a current transformer, or the like is used. The period for monitoring the gate current waveform is preferably 5 μs or more after the turn-on or turn-off signal shown in FIG. 4 is input. The reason for this is that if the gate insulating characteristics of the IGBT are normal, the gate current will stop flowing in about 5 μs. The normal gate current value of the IGBT is the IGBT
It is the rated value described in the product specifications of T. In the present embodiment, the measured value in the range of 50 to 200% of the normal gate current value is set to the normal range, and the abnormality or deterioration of the IGBT having the deteriorated gate insulation characteristic is detected. The gate current value is
Even a normal IGBT is affected by variations in gate capacitance, variations in operating voltage, variations in gate resistance, etc., but the contribution of these variations is about 30% of the gate current value in total. Therefore, the normal range is 5
It is sufficient to set it to 0 to 200%, preferably 60 to 1
It may be 70%, more preferably 70 to 130%.

【0016】本実施例では、ターンオン又は、ターンオ
フの信号を入力してから10μs経過後の電流値を測定
して、IGBTのゲートの絶縁特性が劣化した場合のIG
BTの異常、及び劣化を検知し、これによって安全性,信
頼性の高いゲート駆動回路を実現する。
In the present embodiment, the current value 10 seconds after the turn-on or turn-off signal is input is measured, and the IG when the insulation characteristics of the gate of the IGBT is deteriorated is measured.
BT abnormality and deterioration are detected, and thereby a safe and reliable gate drive circuit is realized.

【0017】(実施例2)図6に、本実施例の構成図を
示す。実施例1と異なる点は、図1のゲート電流測定回
路42がゲート電流積分回路47となっている点であ
る。図5に、本実施例のゲート電流の積分波形の一例を
示す。本実施例では、正常なゲート電流積分値の50〜
200%の範囲の測定値を正常範囲に設定し、ゲートの
絶縁特性が劣化したIGBTの異常や劣化を検知する。
ゲート電流積分値は、正常なIGBTであっても、ゲー
ト容量のばらつき、動作電圧のばらつき、ゲート抵抗の
ばらつきなどの影響を受けるが、これらのばらつきの寄
与は合計してもゲート電流積分値の30%程度である。
従って正常範囲は、前記50〜200%とすれば充分で
あり、好ましくは60〜170%、さらに好ましくは7
0〜130%とすれば良い。また、ゲート電流積分の正
常値の範囲は、ターンオン時,ターンオフ時いずれの場
合も同じである。ここで、正常なIGBTのゲート電流
値とは、IGBTの製品仕様に記載されている定格値の
ことである。
(Second Embodiment) FIG. 6 shows a block diagram of the present embodiment. The difference from the first embodiment is that the gate current measuring circuit 42 of FIG. 1 is a gate current integrating circuit 47. FIG. 5 shows an example of the integrated waveform of the gate current of this embodiment. In this embodiment, the normal gate current integrated value of 50 to
The measured value in the range of 200% is set to the normal range, and the abnormality or deterioration of the IGBT whose insulating characteristic of the gate is deteriorated is detected.
The gate current integrated value is affected by variations in gate capacitance, operating voltage, and gate resistance even in a normal IGBT. The contributions of these variations are the sum of the gate current integral values. It is about 30%.
Therefore, the normal range is sufficient if it is 50 to 200%, preferably 60 to 170%, more preferably 7%.
It may be 0 to 130%. Further, the range of the normal value of the gate current integration is the same in both cases of turning on and turning off. Here, the normal IGBT gate current value is the rated value described in the product specifications of the IGBT.

【0018】なお、ゲート電流積分回路47は、リセッ
トパルス回路48から、リセットパルスを入力する。リ
セットパルスを入力する第1の方法は、図6に示すよう
に、制御回路44から駆動回路41へのオン,オフパル
ス信号から、幅の狭いパルス信号を発生し、ゲート電流
積分回路47のコンデンサの電荷を放電し、積分器出力
をゼロにリセットする。第2の方法は、ゲート電流が正
または負に変化するどちらか一方のタイミングを利用し
て、ゲート電流積分回路47のコンデンサの電荷を放電
し、積分器出力をゼロにする方法である。このように本
実施例によって、精度の良い異常検知回路を実現でき、
安全性,信頼性の高いゲート駆動回路が提供できる。
The gate current integration circuit 47 receives the reset pulse from the reset pulse circuit 48. As shown in FIG. 6, the first method of inputting the reset pulse is to generate a narrow pulse signal from the ON / OFF pulse signal from the control circuit 44 to the drive circuit 41, and to generate the narrow pulse signal of the capacitor of the gate current integration circuit 47. Discharges the charge and resets the integrator output to zero. The second method is a method in which the charge of the capacitor of the gate current integration circuit 47 is discharged and the output of the integrator is set to zero by utilizing either the timing when the gate current changes to positive or negative. As described above, according to this embodiment, a highly accurate abnormality detection circuit can be realized,
A gate drive circuit with high safety and reliability can be provided.

【0019】(実施例3)図7に、本実施例の構成図を
示す。本実施例では、最終段npnトランジスタ31,
最終段pnpトランジスタ32,ターンオン用ゲート抵
抗22,ターンオフ用ゲート抵抗23により、IGBT
11を駆動する。本実施例が実施例2と異なる点は、タ
ーンオフ用のゲート抵抗23に流れる電流を積分するこ
とである。本実施例は、駆動電源40のグランドを基準
に、ゲート電流積分回路47や、リセットパルス回路4
8を構成できるため、全体回路が簡素化できる。
(Embodiment 3) FIG. 7 shows a block diagram of this embodiment. In the present embodiment, the final stage npn transistor 31,
The final stage pnp transistor 32, the turn-on gate resistance 22, and the turn-off gate resistance 23 make the IGBT
11 is driven. The present embodiment is different from the second embodiment in that the current flowing through the turn-off gate resistor 23 is integrated. In the present embodiment, the gate current integrating circuit 47 and the reset pulse circuit 4 are set with the ground of the driving power supply 40 as a reference.
Since 8 can be configured, the entire circuit can be simplified.

【0020】(実施例4)図8に、本実施例の構成図を
示す。実施例3との相違点は、ターンオン用のゲート抵
抗22に流れる電流を積分している点である。本実施例
はターンオン時のゲート電流を監視し、実施例3と同様
に精度の良い検知回路であり、安全性,信頼性の高いゲ
ート駆動装置を提供できる。なお、本実施例に実施例3
の構成を組み合わせて、ターンオン時とターンオフ時の
ゲート電流を監視しても良いことは言うまでもない。
(Embodiment 4) FIG. 8 shows a block diagram of this embodiment. The difference from the third embodiment is that the current flowing through the turn-on gate resistor 22 is integrated. This embodiment monitors the gate current at turn-on and is a highly accurate detection circuit as in the case of the third embodiment, and can provide a highly safe and reliable gate drive device. In addition, in the present embodiment, the third embodiment will be described.
It goes without saying that the gate currents at turn-on and turn-off may be monitored by combining the above configurations.

【0021】(実施例5)図9に、本実施例の回路図を
示す。本実施例と実施例2との相違点は、ゲート電流の
積分回路及びリセットパルス回路に、差電圧検出器49
と、積分器50を付加している点である。図10に、差
電圧検出器49と、積分器50の回路詳細図を示す。
(Embodiment 5) FIG. 9 shows a circuit diagram of this embodiment. The difference between the present embodiment and the second embodiment is that the difference voltage detector 49 is provided in the gate current integration circuit and the reset pulse circuit.
And that an integrator 50 is added. FIG. 10 shows a detailed circuit diagram of the differential voltage detector 49 and the integrator 50.

【0022】図10を用いて、本実施例の回路動作を説
明する。差電圧検出器49は、減算増幅器の回路構成と
なっている。ゲート抵抗21の両端の電圧をv1,v2
(ゲート抵抗側をv1)とすると、差電圧検出器のオペ
アンプ37の出力電圧v3は、抵抗R1からR4の値を
R2/R1=R4/R3に設定してあるので、v3=−
R2/R1×(v1−v2)となる。ターンオン時には、
v1>v2であり、オペアンプ37の出力電圧v3は負
の値で増幅する。そのため、積分器のオペアンプ37の
出力v4は、正の値となり、ダイオードD1によりコン
デンサC1は放電し、ゼロにリセットする。よって、コ
ンパレータ36は、制御回路へ、low信号を出力す
る。
The circuit operation of this embodiment will be described with reference to FIG. The differential voltage detector 49 has a circuit configuration of a subtraction amplifier. Set the voltage across the gate resistor 21 to v1, v2
Assuming that (the gate resistance side is v1), the output voltage v3 of the operational amplifier 37 of the differential voltage detector has the values of the resistors R1 to R4 set to R2 / R1 = R4 / R3, so v3 =-
It becomes R2 / R1 * (v1-v2). At turn-on,
Since v1> v2, the output voltage v3 of the operational amplifier 37 is amplified by a negative value. Therefore, the output v4 of the operational amplifier 37 of the integrator becomes a positive value, and the capacitor C1 is discharged by the diode D1 and reset to zero. Therefore, the comparator 36 outputs a low signal to the control circuit.

【0023】一方、ターンオフ時には、v1<v2であ
り、オペアンプ37の出力電圧v3は正の値で増幅す
る。積分器のオペアンプ37の出力v4は、v4=−1
/C1・R5∫v3dtとなる。IGBTのゲート電流
(ゲート抵抗両端の差電圧)の積分値が、正常範囲の場
合は、この積分値が、コンパレータ36の基準電圧より
も、高い状態であり、コンパレータ36は、制御回路へ
low信号を出力する。しかし、IGBTのゲートの絶
縁特性が異常になった場合、IGBTのゲート電流の積
分値すなわちv4が大きくなり、コンパレータ36の基
準電圧よりも低くなり、コンパレータ36は、制御回路
へhighの異常信号を出力する。同時に、図9の発光
器46が消燈状態に移行する。発光器46は、フェール
セーフを考慮すると、正常時に点灯し、異常時に消燈す
ることが望ましい。発光器が消燈することで、異常信号
を制御回路にフィードバックし、直列に接続しているス
イッチング素子のゲート駆動回路をオフ状態に移行す
る。
On the other hand, when turned off, v1 <v2, and the output voltage v3 of the operational amplifier 37 is amplified by a positive value. The output v4 of the operational amplifier 37 of the integrator is v4 = -1
/ C1 · R5∫v3dt. When the integrated value of the gate current of the IGBT (the difference voltage across the gate resistance) is in the normal range, this integrated value is higher than the reference voltage of the comparator 36, and the comparator 36 sends a low signal to the control circuit. Is output. However, when the insulation characteristic of the gate of the IGBT becomes abnormal, the integrated value of the gate current of the IGBT, that is, v4, becomes large and becomes lower than the reference voltage of the comparator 36, and the comparator 36 sends a high abnormal signal to the control circuit. Output. At the same time, the light emitter 46 of FIG. 9 shifts to the extinguished state. Considering fail-safe, it is desirable that the light-emitting device 46 be turned on in a normal state and turned off in an abnormal state. When the light emitting device is turned off, the abnormal signal is fed back to the control circuit, and the gate drive circuits of the switching elements connected in series are turned off.

【0024】また、図10の回路では、ターンオフ時の
ゲート電流の積分により、正常・異常を判別したが、ゲ
ート抵抗21の両端の電圧v1,v2を、差電圧検出器
のオペアンプ37に反対に入力、すなわち逆極性で入力
し、ダイオードD1の極性を図10とは反転して、ター
ンオン時のゲート電流の積分により、正常・異常を判別
しても良い。
Further, in the circuit of FIG. 10, normality / abnormality is discriminated by integration of the gate current at the time of turn-off, but the voltages v1 and v2 across the gate resistor 21 are reversed to the operational amplifier 37 of the differential voltage detector. It is also possible to determine whether normal or abnormal by inputting, that is, inputting with reverse polarity, inverting the polarity of the diode D1 from that in FIG. 10, and integrating the gate current at turn-on.

【0025】なお、IGBTのゲート特性が劣化する原
因の多くは、ターンオフ時にIGBTのRBSOA(逆バイ
アス安全動作領域)を超えた場合や、短絡耐量を超えた
場合に、素子が故障し、ゲート特性が劣化するので、タ
ーンオフ時のゲート電流の積分値を正常範囲と比較する
ことが望ましい。
Incidentally, most of the causes of the deterioration of the gate characteristics of the IGBT are caused by the failure of the element when the RBSOA (reverse bias safe operation area) of the IGBT is exceeded at the time of turn-off or when the short-circuit withstand capacity is exceeded, and the gate characteristics are deteriorated. Is deteriorated, it is desirable to compare the integrated value of the gate current at turn-off with a normal range.

【0026】このように、本回路構成により、ターンオ
フ時、あるいはターンオン時のゲート電流の積分値によ
り、IGBTのゲートの絶縁特性の劣化を容易に判別で
き、同一アームに直列に接続している素子のゲート回路
にも異常を伝送して、アーム短絡を未然に防止できる。
これにより安全性,信頼性の高いスイッチング素子のゲ
ート駆動装置を実現できる。
As described above, according to this circuit configuration, the deterioration of the insulation characteristics of the gate of the IGBT can be easily discriminated by the integrated value of the gate current at the time of turn-off or turn-on, and the elements connected in series to the same arm. Abnormalities can be transmitted to the gate circuit of to prevent arm short circuit.
As a result, it is possible to realize a gate drive device for switching elements with high safety and reliability.

【0027】(実施例6)図11に、本実施例の構成図
を示す。本実施例では、電力変換回路の主回路の同一相
に直列に接続されるIGBT11と、上アームのゲート
駆動回路53,下アームのゲート駆動回路54、及び制
御回路44を備えている。上アームのゲート駆動回路5
3と下アームのゲート駆動回路54は、それぞれ、図9
と図10に示す回路構成である。
(Sixth Embodiment) FIG. 11 shows a block diagram of the present embodiment. In this embodiment, the IGBT 11 connected in series to the same phase of the main circuit of the power conversion circuit, an upper arm gate drive circuit 53, a lower arm gate drive circuit 54, and a control circuit 44 are provided. Upper arm gate drive circuit 5
3 and the gate drive circuit 54 of the lower arm are respectively shown in FIG.
And the circuit configuration shown in FIG.

【0028】本実施例の回路動作を説明する。例えば、
下アームのIGBT11のゲートの絶縁特性が劣化した
場合、下アームのゲート駆動回路54でIGBT11の
劣化を検知し、レーザーダイオードや発光ダイオードな
どの発光器46に信号を伝達する。制御回路44の、フ
ォトダイオードやフォトトランジスタなどの受光器45
が異常信号を検知し、故障検知回路56に異常を伝え、
ゲートパルス出力回路55により、信号入力を停止す
る。前記制御回路44と上アームのゲート駆動回路5
3,下アームのゲート駆動回路54との間は光ファイバ
ーで接続し、前記異常検知信号などを伝送する。なお、
故障検知回路56からの異常信号は、オペレータや運転
手に異常信号を伝える構成であっても良い。
The circuit operation of this embodiment will be described. For example,
When the insulation characteristic of the gate of the lower arm IGBT 11 deteriorates, the lower arm gate drive circuit 54 detects the deterioration of the IGBT 11 and transmits a signal to the light emitter 46 such as a laser diode or a light emitting diode. A light receiver 45 such as a photodiode or phototransistor of the control circuit 44.
Detects an abnormality signal and informs the failure detection circuit 56 of the abnormality,
The gate pulse output circuit 55 stops the signal input. The control circuit 44 and the upper arm gate drive circuit 5
3. An optical fiber is connected to the lower arm gate drive circuit 54 to transmit the abnormality detection signal and the like. In addition,
The abnormal signal from the failure detection circuit 56 may be transmitted to the operator or the driver.

【0029】このように本実施例によれば、IGBTの
ゲートの絶縁特性が劣化した下アームのゲート駆動回路
54と、同一相に直列に接続されるIGBTの上アーム
のゲート駆動回路53への駆動信号を停止でき、アーム
短絡を未然に防止できるので、安全性,信頼性の高いス
イッチング素子のゲート駆動装置を実現できる。
As described above, according to this embodiment, the gate drive circuit 54 of the lower arm in which the insulation characteristics of the gate of the IGBT are deteriorated and the gate drive circuit 53 of the upper arm of the IGBT connected in series to the same phase are connected. Since the drive signal can be stopped and the arm short circuit can be prevented in advance, it is possible to realize a highly safe and reliable gate drive device for the switching element.

【0030】(実施例7)図12に、本実施例の構成図
を示す。実施例6では、異常信号の伝送を光ファイバや
レーザダイオード等の光通信で行っているが、本実施例
では異常信号を電気信号の直流電位レベルを変換するレ
ベルシフト回路を用いており、産業用インバータや自動
車用インバータ装置にも容易に適用できる。
(Embodiment 7) FIG. 12 shows a block diagram of the present embodiment. In the sixth embodiment, the abnormal signal is transmitted by optical communication such as an optical fiber or a laser diode, but in this embodiment, a level shift circuit for converting the abnormal signal into the DC potential level of the electric signal is used. It can be easily applied to inverters for automobiles and inverters for automobiles.

【0031】本実施例では、正常異常判別回路43の出
力は駆動回路41とレベルシフト回路とに入力されてい
て、上アームのゲート駆動回路53と下アームのゲート
駆動回路54とを、1チップの集積回路59にした。例
えば、下アームのIGBT11のゲートの絶縁特性が劣化
した場合、正常異常判別回路43からの異常信号は、レ
ベルシフトアップ回路57により、同一相に直列に接続
されるIGBT11の上アームのゲート駆動回路53の
電位レベルに信号を変換し、駆動を停止する。
In the present embodiment, the output of the normal / abnormal determination circuit 43 is input to the drive circuit 41 and the level shift circuit, and the upper arm gate drive circuit 53 and the lower arm gate drive circuit 54 are combined into one chip. Integrated circuit 59. For example, when the insulation characteristic of the gate of the lower arm IGBT 11 is deteriorated, the abnormal signal from the normal / abnormality determination circuit 43 is output by the level shift-up circuit 57 to the gate drive circuit of the upper arm of the IGBT 11 connected in series in the same phase. The signal is converted to the potential level of 53 and the driving is stopped.

【0032】このように本実施例によれば、アーム短絡
を未然に回避できるので、安全性,信頼性の高いスイッ
チング素子のゲート駆動装置を実現できる。
As described above, according to this embodiment, the arm short circuit can be avoided in advance, so that the gate driving device for the switching element having high safety and reliability can be realized.

【0033】[0033]

【発明の効果】本発明によれば、ゲート抵抗に流れるゲ
ート電流を測定する手段、あるいはゲート抵抗に流れる
ゲート電流を積分する手段を設けIGBTのゲートの絶
縁特性等の異常を精度良く検知できる。さらに、同一ア
ームに直列に接続している他のIGBTのゲート回路に
も異常を伝送して、アーム短絡を未然に回避し、安全
性,信頼性の高いゲート駆動装置を実現できる。
According to the present invention, means for measuring the gate current flowing through the gate resistance or means for integrating the gate current flowing through the gate resistance can be provided to accurately detect abnormalities such as the insulation characteristics of the gate of the IGBT. Further, an abnormality is transmitted to the gate circuits of other IGBTs connected in series to the same arm, arm short circuit is avoided in advance, and a highly safe and reliable gate drive device can be realized.

【図面の簡単な説明】[Brief description of drawings]

【図1】実施例1の構成図。FIG. 1 is a configuration diagram of a first embodiment.

【図2】従来技術の回路図。FIG. 2 is a prior art circuit diagram.

【図3】IGBTのゲート−エミッタ間耐圧劣化品のゲ
ート電圧波形。
FIG. 3 is a gate voltage waveform of an IGBT gate-emitter breakdown voltage deteriorated product.

【図4】IGBTのゲート−エミッタ間耐圧劣化品のゲ
ート電流波形。
FIG. 4 is a gate current waveform of an IGBT gate-emitter breakdown voltage deteriorated product.

【図5】IGBTのゲート−エミッタ間耐圧劣化品のゲ
ート電流積分波形。
FIG. 5 is a gate current integral waveform of an IGBT gate-emitter breakdown voltage deteriorated product.

【図6】実施例2の構成図。FIG. 6 is a configuration diagram of a second embodiment.

【図7】実施例3の構成図。FIG. 7 is a configuration diagram of a third embodiment.

【図8】実施例4の構成図。FIG. 8 is a configuration diagram of a fourth embodiment.

【図9】実施例5の回路図。FIG. 9 is a circuit diagram of a fifth embodiment.

【図10】実施例5の差電圧検出器と積分器,比較器の
回路図。
FIG. 10 is a circuit diagram of a differential voltage detector, an integrator, and a comparator according to the fifth embodiment.

【図11】実施例6の構成図。FIG. 11 is a configuration diagram of a sixth embodiment.

【図12】実施例7の構成図。FIG. 12 is a configuration diagram of a seventh embodiment.

【符号の説明】[Explanation of symbols]

11…IGBT、12…フリーホイルダイオード、13
…コレクタ端子、14…エミッタ端子、21…ゲート抵
抗、22…ターンオン用ゲート抵抗、23…ターンオフ
用ゲート抵抗、24,28…プルアップ抵抗、25…エ
ミッタ用抵抗、26,27…分圧抵抗、29…基準電圧
切り替え抵抗、31…最終段npnトランジスタ、32
…最終段pnpトランジスタ、33…次段npnトラン
ジスタ、34…初段npnトランジスタ、35…基準電
圧切り替えトランジスタ、36…コンパレータ、37…
オペアンプ、40…駆動電源、41…駆動回路、42…
ゲート電流測定回路、43…正常異常判別回路、44…
制御回路、45…受光器、46…発光器、47…ゲート
電流積分回路、48…リセットパルス回路、49…差電
圧検出器、50…積分器、51…比較器、52…主回路
電源、53…上アームのゲート駆動回路、54…下アー
ムのゲート駆動回路、55…ゲートパルス出力回路、5
6…故障検知回路、57…レベルシフトアップ回路、5
8…レベルシフトダウン回路、59…集積回路。
11 ... IGBT, 12 ... Free wheel diode, 13
... collector terminal, 14 ... emitter terminal, 21 ... gate resistance, 22 ... turn-on gate resistance, 23 ... turn-off gate resistance, 24, 28 ... pull-up resistance, 25 ... emitter resistance, 26, 27 ... voltage dividing resistance, 29 ... Reference voltage switching resistance, 31 ... Final stage npn transistor, 32
... final stage pnp transistor, 33 ... next stage npn transistor, 34 ... first stage npn transistor, 35 ... reference voltage switching transistor, 36 ... comparator, 37 ...
Operational amplifier, 40 ... drive power supply, 41 ... drive circuit, 42 ...
Gate current measuring circuit, 43 ... Normal / abnormal determination circuit, 44 ...
Control circuit, 45 ... Light receiver, 46 ... Light emitter, 47 ... Gate current integration circuit, 48 ... Reset pulse circuit, 49 ... Differential voltage detector, 50 ... Integrator, 51 ... Comparator, 52 ... Main circuit power supply, 53 ... upper arm gate drive circuit, 54 ... lower arm gate drive circuit, 55 ... gate pulse output circuit, 5
6 ... Failure detection circuit, 57 ... Level shift up circuit, 5
8 ... Level shift down circuit, 59 ... Integrated circuit.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 稲荷田 聡 茨城県ひたちなか市市毛1070番地 株式会 社日立製作所交通システム事業部水戸交通 システム本部内 (72)発明者 小西出 政臣 茨城県ひたちなか市市毛1070番地 株式会 社日立製作所交通システム事業部水戸交通 システム本部内 (72)発明者 関根 茂樹 茨城県日立市大みか町七丁目1番1号 株 式会社日立製作所日立研究所内 (72)発明者 齋藤 隆一 茨城県日立市大みか町七丁目1番1号 株 式会社日立製作所日立研究所内 Fターム(参考) 5H007 AA05 CA01 CB02 CB05 CC07 DB03 DC02 FA06 FA13 FA19 5H740 AA08 BA11 BB05 BC01 BC02 JA01 JB01 KK01 KK04 MM12   ─────────────────────────────────────────────────── ─── Continued front page    (72) Inventor Satoshi Inarida             1070 Ichimo, Hitachinaka City, Ibaraki Prefecture Stock Association             Hitachi, Ltd. Transportation Systems Division Mito Transportation             System headquarters (72) Inventor Masaomi Konishi             1070 Ichimo, Hitachinaka City, Ibaraki Prefecture Stock Association             Hitachi, Ltd. Transportation Systems Division Mito Transportation             System headquarters (72) Inventor Shigeki Sekine             7-1-1, Omika-cho, Hitachi-shi, Ibaraki Prefecture             Inside the Hitachi Research Laboratory, Hitachi Ltd. (72) Inventor Ryuichi Saito             7-1-1, Omika-cho, Hitachi-shi, Ibaraki Prefecture             Inside the Hitachi Research Laboratory, Hitachi Ltd. F-term (reference) 5H007 AA05 CA01 CB02 CB05 CC07                       DB03 DC02 FA06 FA13 FA19                 5H740 AA08 BA11 BB05 BC01 BC02                       JA01 JB01 KK01 KK04 MM12

Claims (15)

【特許請求の範囲】[Claims] 【請求項1】半導体スイッチング素子のゲート端子に接
続したゲート抵抗を介して前記半導体スイッチング素子
に駆動信号を加える半導体スイッチング素子のゲート駆
動装置において、 該ゲート駆動装置が、前記ゲート抵抗に流れるゲート電
流測定手段と、 該ゲート電流測定手段が検出したゲート電流測定値と正
常範囲電流値とを比較し、正常又は異常を判別する正常
異常判別手段と、 該正常異常判別手段の出力信号を受信し前記半導体スイ
ッチング素子のゲート駆動回路を制御する制御手段ある
いは、 前記正常異常判別手段の出力信号を該制御手段に伝達す
る異常信号伝達手段とを有することを特徴とした半導体
スイッチング素子のゲート駆動装置。
1. A gate drive device for a semiconductor switching element, which applies a drive signal to the semiconductor switching element via a gate resistor connected to a gate terminal of the semiconductor switching element, wherein the gate drive device supplies a gate current to the gate resistor. A measuring means, a normal / abnormality determining means for comparing the gate current measurement value detected by the gate current measuring means with a normal range current value to determine normality or abnormality, and an output signal of the normal / abnormality determining means for receiving the output signal. A gate drive device for a semiconductor switching element, comprising: a control means for controlling a gate drive circuit of the semiconductor switching element, or an abnormal signal transmission means for transmitting an output signal of the normal / abnormal determination means to the control means.
【請求項2】請求項1において、 前記正常異常判別手段が、前記ゲート抵抗に流れるター
ンオン時のゲート電流、あるいはゲート抵抗に流れるタ
ーンオフ時のゲート電流の少なくともいずれか一方のゲ
ート電流測定値と正常範囲電流値とを比較することを特
徴とした半導体スイッチング素子のゲート駆動装置。
2. The normal / abnormality determining means according to claim 1, wherein the gate current measured value of at least one of the gate current flowing through the gate resistor when turned on and the gate current flowing through the gate resistor when turned off is normal. A gate drive device for a semiconductor switching element, which is characterized by comparing with a range current value.
【請求項3】請求項1あるいは請求項2のいずれかにお
いて、 前記ゲート電流測定手段が、オンパルス入力から所定の
時間経過後のゲート電流を測定すること、あるいは、オ
フパルス入力から所定の時間経過後の電流を測定するこ
とを特徴とする半導体スイッチング素子のゲート駆動装
置。
3. The method according to claim 1, wherein the gate current measuring means measures the gate current after a lapse of a predetermined time from the ON pulse input, or after a lapse of a predetermined time from the OFF pulse input. A gate drive device for a semiconductor switching element, which is characterized by measuring the current of the device.
【請求項4】請求項3において前記ゲート電流測定手段
が、オンパルスあるいはオフパルス入力後、5μs以降
の電流を測定することを特徴とする半導体スイッチング
素子のゲート駆動装置。
4. A gate drive device for a semiconductor switching element according to claim 3, wherein said gate current measuring means measures a current after 5 μs after inputting an on pulse or an off pulse.
【請求項5】請求項1において、 前記ゲート電流測定手段がゲート抵抗に流れる電流を積
分する手段を備え、該ゲート電流積分値と正常範囲電流
値とを比較することを特徴とする半導体スイッチング素
子のゲート駆動装置。
5. The semiconductor switching device according to claim 1, wherein the gate current measuring means includes means for integrating a current flowing through the gate resistance, and the integrated gate current value is compared with a normal range current value. Gate drive.
【請求項6】請求項5において、 前記ゲート電流測定手段が、ゲート抵抗に流れるターン
オン時のゲート電流を積分する手段、あるいはゲート抵
抗に流れるターンオフ時のゲート電流を積分する手段を
備え、 前記正常異常判別手段が、少なくともいずれか一方の前
記ゲート電流積分値と正常範囲電流積分値とを比較する
ことを特徴とする半導体スイッチング素子のゲート駆動
装置。
6. The gate current measuring means according to claim 5, further comprising means for integrating a turn-on gate current flowing through the gate resistance or means for integrating a turn-off gate current flowing through the gate resistance, A gate drive device for a semiconductor switching element, wherein the abnormality determining means compares at least one of the gate current integrated value and a normal range current integrated value.
【請求項7】請求項5あるいは請求項6のいずれかにお
いて、 前記ゲート電流測定手段のゲート抵抗に流れる電流を積
分する手段が、ゲート抵抗の両端に発生する電圧を積分
する積分器であることを特徴とする半導体スイッチング
素子のゲート駆動装置。
7. The method according to claim 5, wherein the means for integrating the current flowing through the gate resistance of the gate current measuring means is an integrator for integrating the voltage generated across the gate resistance. A gate drive device for a semiconductor switching element, comprising:
【請求項8】請求項7において、 前記積分器が演算増幅器とコンデンサと抵抗とで構成さ
れていることを特徴とする半導体スイッチング素子のゲ
ート駆動装置。
8. The gate drive device for a semiconductor switching element according to claim 7, wherein the integrator is composed of an operational amplifier, a capacitor and a resistor.
【請求項9】請求項5から請求項8のいずれかにおい
て、 前記ゲート電流測定手段によるゲート電流の積分値の正
常値範囲が、正常なスイッチング素子のゲート電流積分
値の0.5 倍から2倍であることを特徴とする半導体ス
イッチング素子のゲート駆動装置。
9. The normal value range of the integrated value of the gate current measured by the gate current measuring means is 0.5 times to 2 times the integrated value of the gate current of a normal switching element according to any one of claims 5 to 8. A gate drive device for a semiconductor switching element, which is doubled in number.
【請求項10】半導体電力変換回路の主回路の同一相に
直列接続した上アームと下アームとを構成する半導体ス
イッチング素子をオン,オフ制御する半導体スイッチン
グ素子のゲート駆動装置において、 前記同一相に直列に接続される半導体スイッチング素子
をオン,オフ制御する上アームのゲート駆動回路と、下
アームのゲート駆動回路とがそれぞれ、 前記半導体スイッチング素子のゲート端子に接続したゲ
ート抵抗に流れるゲート電流測定手段と、 該ゲート電流測定手段が検出したゲート電流測定値と正
常範囲電流値とを比較し、正常又は異常を判別する正常
異常判別手段と、 前記正常異常判別手段の出力信号を該制御手段に伝達す
る異常信号伝達手段とを有し、 さらに、前記半導体スイッチング素子のゲート駆動装置
が、前記正常異常判別手段の出力信号を受信し前記半導
体スイッチング素子のゲート駆動回路を制御する制御手
段を有することを特徴とした半導体スイッチング素子の
ゲート駆動装置。
10. A gate driving device for a semiconductor switching element, which controls on / off of a semiconductor switching element that constitutes an upper arm and a lower arm connected in series to the same phase of a main circuit of a semiconductor power conversion circuit, wherein Gate current measuring means in which a gate drive circuit of an upper arm and a gate drive circuit of a lower arm, which control on / off of semiconductor switching elements connected in series, respectively, flow through a gate resistance connected to a gate terminal of the semiconductor switching element. And a normal / abnormality determining means for comparing the measured gate current value detected by the gate current measuring means with a normal range current value to determine normality or abnormality, and transmitting an output signal of the normal / abnormality determining means to the control means. And a gate driving device for the semiconductor switching element, The gate drive of the semiconductor switching element is characterized by having a control means for controlling the gate driving circuit of received said semiconductor switching element the output signal of the normal discriminating means.
【請求項11】請求項10において、 前記正常異常判別手段の出力信号を前記制御手段に伝達
する異常信号伝達手段が、光ファイバと発光器と受光器
とを有する光通信手段であることを特徴とする半導体ス
イッチング素子のゲート駆動装置。
11. The abnormality signal transmitting means for transmitting the output signal of the normal / abnormal determination means to the control means is an optical communication means having an optical fiber, a light emitter and a light receiver. Gate drive device for semiconductor switching element.
【請求項12】請求項10において、 前記上アームのゲート駆動回路と、下アームのゲート駆
動回路とが同じ半導体チップに形成された集積回路であ
ることを特徴とする半導体スイッチング素子のゲート駆
動装置。
12. The gate drive device for a semiconductor switching element according to claim 10, wherein the gate drive circuit for the upper arm and the gate drive circuit for the lower arm are integrated circuits formed on the same semiconductor chip. .
【請求項13】請求項12において、 前記正常異常判別手段の出力信号を前記制御手段に伝達
する異常信号伝達手段が、レベルシフト回路であること
を特徴とする半導体スイッチング素子のゲート駆動装
置。
13. The gate drive device for a semiconductor switching element according to claim 12, wherein the abnormal signal transmission means for transmitting the output signal of the normal / abnormal determination means to the control means is a level shift circuit.
【請求項14】請求項1または請求項2または請求項5
または請求項6のいずれかにおいて、 正常又は異常の信号の伝達を、ゲート駆動信号を制御す
る制御手段までフィードバックすることを特徴とする半
導体スイッチング素子のゲート駆動装置。
14. The method according to claim 1, claim 2, or claim 5.
7. The gate drive device for a semiconductor switching element according to claim 6, wherein transmission of a normal or abnormal signal is fed back to a control means for controlling the gate drive signal.
【請求項15】請求項14において、 正常又は異常の信号の伝達を、ゲート駆動信号を制御す
る制御手段までフィードバックして、ゲート駆動を停止
することを特徴とする半導体スイッチング素子のゲート
駆動装置。
15. The gate drive device for a semiconductor switching element according to claim 14, wherein the transmission of the normal or abnormal signal is fed back to the control means for controlling the gate drive signal to stop the gate drive.
JP2001335956A 2001-11-01 2001-11-01 Gate driving device for semiconductor switching element Expired - Fee Related JP3931627B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001335956A JP3931627B2 (en) 2001-11-01 2001-11-01 Gate driving device for semiconductor switching element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001335956A JP3931627B2 (en) 2001-11-01 2001-11-01 Gate driving device for semiconductor switching element

Publications (2)

Publication Number Publication Date
JP2003143833A true JP2003143833A (en) 2003-05-16
JP3931627B2 JP3931627B2 (en) 2007-06-20

Family

ID=19150871

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001335956A Expired - Fee Related JP3931627B2 (en) 2001-11-01 2001-11-01 Gate driving device for semiconductor switching element

Country Status (1)

Country Link
JP (1) JP3931627B2 (en)

Cited By (41)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005190751A (en) * 2003-12-25 2005-07-14 Fuji Electric Device Technology Co Ltd Drive circuit of lamp and led
JP2006136145A (en) * 2004-11-08 2006-05-25 Fuji Electric Systems Co Ltd Semiconductor power converter
JP2007174756A (en) * 2005-12-20 2007-07-05 Yazaki Corp On-failure detector of power supply circuit
JP2007189828A (en) * 2006-01-13 2007-07-26 Hitachi Ltd Drive circuit of semiconductor device
JP2007202238A (en) * 2006-01-24 2007-08-09 Tokyo Electric Power Co Inc:The Failure detector of insulated gate power semiconductor element
JP2008022451A (en) * 2006-07-14 2008-01-31 Toyota Motor Corp Drive of switching device for electric power
EP2106022A1 (en) 2008-03-25 2009-09-30 Fujitsu Limited Amplification apparatus and amplifier failure detecting method
CN101421910B (en) * 2006-04-06 2011-06-08 三菱电机株式会社 Driving circuit for semiconductor element
KR101050696B1 (en) 2010-07-30 2011-07-20 도요타 지도샤(주) Driving device for driving voltage driven element
JP2011182066A (en) * 2010-02-26 2011-09-15 Furukawa Electric Co Ltd:The Power supply device
JP2012095046A (en) * 2010-10-26 2012-05-17 Denso Corp Electronic apparatus
JP2012105088A (en) * 2010-11-10 2012-05-31 Denso Corp Electronic device
JP2012135145A (en) * 2010-12-22 2012-07-12 Denso Corp Driving circuit for switching element
JP2012165618A (en) * 2011-02-09 2012-08-30 Denso Corp Electronic device
JP2013192444A (en) * 2012-03-14 2013-09-26 Samsung Electronics Co Ltd Power module including leakage current protection circuit
JP2014161178A (en) * 2013-02-20 2014-09-04 Shimada Phys & Chem Ind Co Ltd Failure detection circuit
JP2015023299A (en) * 2013-07-16 2015-02-02 スパンション エルエルシー Semiconductor device and semiconductor integrated circuit
WO2015114790A1 (en) * 2014-01-31 2015-08-06 株式会社日立製作所 Gate drive circuit and inverter system having gate drive circuit mounted therein
EP3010128A4 (en) * 2013-06-11 2017-06-21 Rohm Co., Ltd. Electronic circuit
WO2017163666A1 (en) * 2016-03-25 2017-09-28 パナソニックIpマネジメント株式会社 Resonance-type power conversion device and abnormality determining method
JP6301028B1 (en) * 2017-06-13 2018-03-28 三菱電機株式会社 Semiconductor device drive circuit
EP3229355A4 (en) * 2014-12-05 2018-08-08 Hitachi Automotive Systems, Ltd. Load driving device and in-vehicle control device using same
WO2018168328A1 (en) * 2017-03-14 2018-09-20 日本電産株式会社 Damage prediction apparatus and damage prediction method for power semiconductor switching element, ac-dc converter, and dc-dc converter
CN108781039A (en) * 2016-03-25 2018-11-09 松下知识产权经营株式会社 Mode of resonance power inverter and abnormality determination method
WO2019008817A1 (en) * 2017-07-03 2019-01-10 三菱電機株式会社 Short-circuit protection circuit for semiconductor switching element
CN109672322A (en) * 2018-12-10 2019-04-23 矽力杰半导体技术(杭州)有限公司 The detection circuit and control circuit of switch converters
WO2019176858A1 (en) * 2018-03-14 2019-09-19 株式会社デンソー Gate driving device and complex gate driving device
CN111133664A (en) * 2017-10-03 2020-05-08 三菱电机株式会社 Drive circuit for switching element, power conversion device, elevator device, and drive method for switching element
JP2020156128A (en) * 2019-03-18 2020-09-24 マレリ株式会社 Abnormality detection device for power conversion circuit
WO2020200780A1 (en) * 2019-03-29 2020-10-08 Robert Bosch Gmbh Protection apparatus for a driver circuit, and method for protecting a driver circuit
KR20200119283A (en) * 2018-02-12 2020-10-19 노우 무어 엘티디 Transistor device
CN112067966A (en) * 2020-09-19 2020-12-11 哈尔滨理工大学 Simulation type IGBT failure mechanism analysis system
JP2021013297A (en) * 2019-07-05 2021-02-04 株式会社クオルテック Electrical element testing device and method for testing electrical element
JP2021048668A (en) * 2019-09-17 2021-03-25 株式会社デンソー Power conversion apparatus
CN113474667A (en) * 2019-03-01 2021-10-01 三菱电机株式会社 Method and device for monitoring grid signals of power semiconductor
JP6949280B1 (en) * 2020-12-28 2021-10-13 三菱電機株式会社 Semiconductor drive device and power conversion device using it
WO2021241137A1 (en) * 2020-05-27 2021-12-02 株式会社日立製作所 Fault detection device and method therefor
FR3116161A1 (en) * 2020-11-12 2022-05-13 Institut National Polytechnique De Toulouse Short-circuit detector for power transistor by monitoring the current of its gate
DE112019002204B4 (en) 2018-04-27 2022-08-11 Mitsubishi Electric Corporation DRIVING DEVICE FOR A POWER SEMICONDUCTOR ELEMENT
WO2023135901A1 (en) * 2022-01-17 2023-07-20 株式会社日立産機システム Power conversion device
US11994551B2 (en) 2019-06-04 2024-05-28 Qualtec Co., Ltd. Semiconductor component test device and method of testing semiconductor components

Cited By (62)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005190751A (en) * 2003-12-25 2005-07-14 Fuji Electric Device Technology Co Ltd Drive circuit of lamp and led
JP2006136145A (en) * 2004-11-08 2006-05-25 Fuji Electric Systems Co Ltd Semiconductor power converter
JP2007174756A (en) * 2005-12-20 2007-07-05 Yazaki Corp On-failure detector of power supply circuit
JP4713347B2 (en) * 2006-01-13 2011-06-29 株式会社日立製作所 Semiconductor device drive circuit
JP2007189828A (en) * 2006-01-13 2007-07-26 Hitachi Ltd Drive circuit of semiconductor device
JP2007202238A (en) * 2006-01-24 2007-08-09 Tokyo Electric Power Co Inc:The Failure detector of insulated gate power semiconductor element
CN101421910B (en) * 2006-04-06 2011-06-08 三菱电机株式会社 Driving circuit for semiconductor element
JP2008022451A (en) * 2006-07-14 2008-01-31 Toyota Motor Corp Drive of switching device for electric power
EP2106022A1 (en) 2008-03-25 2009-09-30 Fujitsu Limited Amplification apparatus and amplifier failure detecting method
JP2011182066A (en) * 2010-02-26 2011-09-15 Furukawa Electric Co Ltd:The Power supply device
KR101050696B1 (en) 2010-07-30 2011-07-20 도요타 지도샤(주) Driving device for driving voltage driven element
JP2012095046A (en) * 2010-10-26 2012-05-17 Denso Corp Electronic apparatus
JP2012105088A (en) * 2010-11-10 2012-05-31 Denso Corp Electronic device
JP2012135145A (en) * 2010-12-22 2012-07-12 Denso Corp Driving circuit for switching element
JP2012165618A (en) * 2011-02-09 2012-08-30 Denso Corp Electronic device
JP2013192444A (en) * 2012-03-14 2013-09-26 Samsung Electronics Co Ltd Power module including leakage current protection circuit
JP2014161178A (en) * 2013-02-20 2014-09-04 Shimada Phys & Chem Ind Co Ltd Failure detection circuit
EP3010128A4 (en) * 2013-06-11 2017-06-21 Rohm Co., Ltd. Electronic circuit
US9800239B2 (en) 2013-06-11 2017-10-24 Rohm Co., Ltd. Electronic circuit
JP2015023299A (en) * 2013-07-16 2015-02-02 スパンション エルエルシー Semiconductor device and semiconductor integrated circuit
WO2015114790A1 (en) * 2014-01-31 2015-08-06 株式会社日立製作所 Gate drive circuit and inverter system having gate drive circuit mounted therein
EP3229355A4 (en) * 2014-12-05 2018-08-08 Hitachi Automotive Systems, Ltd. Load driving device and in-vehicle control device using same
CN108781039A (en) * 2016-03-25 2018-11-09 松下知识产权经营株式会社 Mode of resonance power inverter and abnormality determination method
WO2017163666A1 (en) * 2016-03-25 2017-09-28 パナソニックIpマネジメント株式会社 Resonance-type power conversion device and abnormality determining method
WO2018168328A1 (en) * 2017-03-14 2018-09-20 日本電産株式会社 Damage prediction apparatus and damage prediction method for power semiconductor switching element, ac-dc converter, and dc-dc converter
US11543447B2 (en) 2017-03-14 2023-01-03 Nidec Corporation Damage predicting device and damage predicting method for power semiconductor switching element, AC-DC converter, and DC-DC converter
CN110431429B (en) * 2017-03-14 2022-02-22 日本电产株式会社 Power semiconductor switching element damage prediction device, power semiconductor switching element damage prediction method, AC-DC converter, DC-DC converter
CN110431429A (en) * 2017-03-14 2019-11-08 日本电产株式会社 The damage forecast device and damage forecast method, AC-DC converter, DC-DC converter of power semiconductor switch element
EP3598155A4 (en) * 2017-03-14 2021-01-27 Nidec Corporation Damage prediction apparatus and damage prediction method for power semiconductor switching element, ac-dc converter, and dc-dc converter
JP6301028B1 (en) * 2017-06-13 2018-03-28 三菱電機株式会社 Semiconductor device drive circuit
WO2018229856A1 (en) * 2017-06-13 2018-12-20 三菱電機株式会社 Drive circuit for semiconductor element
US10917083B2 (en) 2017-06-13 2021-02-09 Mitsubishi Electric Corporation Drive circuit for semiconductor element
WO2019008817A1 (en) * 2017-07-03 2019-01-10 三菱電機株式会社 Short-circuit protection circuit for semiconductor switching element
JPWO2019008817A1 (en) * 2017-07-03 2020-05-21 三菱電機株式会社 Short circuit protection circuit for semiconductor switching devices
CN111133664A (en) * 2017-10-03 2020-05-08 三菱电机株式会社 Drive circuit for switching element, power conversion device, elevator device, and drive method for switching element
KR102689519B1 (en) * 2018-02-12 2024-07-29 노우 무어 엘티디 transistor device
KR20200119283A (en) * 2018-02-12 2020-10-19 노우 무어 엘티디 Transistor device
WO2019176858A1 (en) * 2018-03-14 2019-09-19 株式会社デンソー Gate driving device and complex gate driving device
DE112019002204B4 (en) 2018-04-27 2022-08-11 Mitsubishi Electric Corporation DRIVING DEVICE FOR A POWER SEMICONDUCTOR ELEMENT
CN109672322A (en) * 2018-12-10 2019-04-23 矽力杰半导体技术(杭州)有限公司 The detection circuit and control circuit of switch converters
JP7210763B2 (en) 2019-03-01 2023-01-23 ミツビシ・エレクトリック・アールアンドディー・センター・ヨーロッパ・ビーヴィ METHOD AND DEVICE FOR MONITORING GATE SIGNAL OF POWER SEMICONDUCTOR
US12013428B2 (en) 2019-03-01 2024-06-18 Mitsubishi Electric Corporation Method and device for monitoring gate signal of power semiconductor
JP2022509565A (en) * 2019-03-01 2022-01-20 ミツビシ・エレクトリック・アールアンドディー・センター・ヨーロッパ・ビーヴィ Methods and Devices for Monitoring Power Semiconductor Gate Signals
CN113474667A (en) * 2019-03-01 2021-10-01 三菱电机株式会社 Method and device for monitoring grid signals of power semiconductor
JP7174657B2 (en) 2019-03-18 2022-11-17 マレリ株式会社 Abnormality detection device for power conversion circuit
JP2020156128A (en) * 2019-03-18 2020-09-24 マレリ株式会社 Abnormality detection device for power conversion circuit
CN113597740A (en) * 2019-03-29 2021-11-02 罗伯特·博世有限公司 Protection device for driver circuit and method for protecting driver circuit
WO2020200780A1 (en) * 2019-03-29 2020-10-08 Robert Bosch Gmbh Protection apparatus for a driver circuit, and method for protecting a driver circuit
US11994551B2 (en) 2019-06-04 2024-05-28 Qualtec Co., Ltd. Semiconductor component test device and method of testing semiconductor components
JP7306710B2 (en) 2019-07-05 2023-07-11 株式会社クオルテック Electrical device testing equipment
JP2021013297A (en) * 2019-07-05 2021-02-04 株式会社クオルテック Electrical element testing device and method for testing electrical element
JP2021048668A (en) * 2019-09-17 2021-03-25 株式会社デンソー Power conversion apparatus
JP7342552B2 (en) 2019-09-17 2023-09-12 株式会社デンソー power converter
WO2021241137A1 (en) * 2020-05-27 2021-12-02 株式会社日立製作所 Fault detection device and method therefor
JP7500720B2 (en) 2020-05-27 2024-06-17 株式会社日立製作所 Fault detection device and method
CN112067966B (en) * 2020-09-19 2022-07-05 哈尔滨理工大学 Simulation type IGBT failure mechanism analysis system
CN112067966A (en) * 2020-09-19 2020-12-11 哈尔滨理工大学 Simulation type IGBT failure mechanism analysis system
FR3116161A1 (en) * 2020-11-12 2022-05-13 Institut National Polytechnique De Toulouse Short-circuit detector for power transistor by monitoring the current of its gate
WO2022144986A1 (en) * 2020-12-28 2022-07-07 三菱電機株式会社 Semiconductor driving device and power conversion device using same
DE112020007887T5 (en) 2020-12-28 2023-10-12 Mitsubishi Electric Corporation SEMICONDUCTOR DRIVER DEVICE AND POWER CONVERTER DEVICE USING THE SAME
JP6949280B1 (en) * 2020-12-28 2021-10-13 三菱電機株式会社 Semiconductor drive device and power conversion device using it
WO2023135901A1 (en) * 2022-01-17 2023-07-20 株式会社日立産機システム Power conversion device

Also Published As

Publication number Publication date
JP3931627B2 (en) 2007-06-20

Similar Documents

Publication Publication Date Title
JP2003143833A (en) Gate driver of semiconductor switching element
US10473710B2 (en) Desaturation detection circuit and desaturation circuit monitoring function
US6967519B2 (en) Drive circuit for a power semiconductor device
JP4538047B2 (en) Failure detection device for power element
US10078104B2 (en) Load drive circuit
KR100225768B1 (en) Power element driving circuit
US20150180463A1 (en) Monitoring method and device for power semiconductor switch
US5138515A (en) Pulse-controlled gate circuit with protection against short-circuit
JP2007259533A (en) Protective circuit for semiconductor element
CA1122663A (en) Protection circuit for transistorized switch
US20230396202A1 (en) Flexible fault detection
JP4930866B2 (en) Failure detection device for power element
JPH11356035A (en) Gate driving device for voltage-driven self-arc-extinguishing element
KR100469311B1 (en) Power converter apparatus
JP4118496B2 (en) Power semiconductor device and overcurrent protection circuit
JP6415252B2 (en) Frequency detector
US20230111154A1 (en) Gate driver
WO2018008333A1 (en) Inverter driving device
JP3749109B2 (en) Power converter
US6252436B1 (en) Method and arrangement for determining state information of power semiconductor
JP4302454B2 (en) Self-excited oscillation type load drive device and load control circuit
KR102377401B1 (en) Apparatus for detecting short circuit of power semiconductor device and power semiconductor system
KR101026043B1 (en) Apparatus for controlling an inverter
JP2009011043A (en) Failure detector for chopper circuits
US11821936B2 (en) In situ threshold voltage determination of a semiconductor device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040816

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20060419

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060707

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060801

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20061002

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20061121

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070112

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070220

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070305

R151 Written notification of patent or utility model registration

Ref document number: 3931627

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110323

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110323

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120323

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130323

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130323

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140323

Year of fee payment: 7

LAPS Cancellation because of no payment of annual fees