WO2015113493A1 - 绝对光栅尺辅助安装和误差补偿方法 - Google Patents

绝对光栅尺辅助安装和误差补偿方法 Download PDF

Info

Publication number
WO2015113493A1
WO2015113493A1 PCT/CN2015/071694 CN2015071694W WO2015113493A1 WO 2015113493 A1 WO2015113493 A1 WO 2015113493A1 CN 2015071694 W CN2015071694 W CN 2015071694W WO 2015113493 A1 WO2015113493 A1 WO 2015113493A1
Authority
WO
WIPO (PCT)
Prior art keywords
cmos
scale
error
absolute
grating
Prior art date
Application number
PCT/CN2015/071694
Other languages
English (en)
French (fr)
Inventor
王晗
吴志雄
陈新
陈新度
陈彬
韦小海
范朝龙
Original Assignee
广东工业大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 广东工业大学 filed Critical 广东工业大学
Priority to US14/439,096 priority Critical patent/US9417100B2/en
Publication of WO2015113493A1 publication Critical patent/WO2015113493A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01DMEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
    • G01D5/00Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable
    • G01D5/26Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light
    • G01D5/32Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light with attenuation or whole or partial obturation of beams of light
    • G01D5/34Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light with attenuation or whole or partial obturation of beams of light the beams of light being detected by photocells
    • G01D5/347Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light with attenuation or whole or partial obturation of beams of light the beams of light being detected by photocells using displacement encoding scales
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01DMEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
    • G01D5/00Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable
    • G01D5/26Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light
    • G01D5/32Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light with attenuation or whole or partial obturation of beams of light
    • G01D5/34Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light with attenuation or whole or partial obturation of beams of light the beams of light being detected by photocells
    • G01D5/36Forming the light into pulses
    • G01D5/38Forming the light into pulses by diffraction gratings

Definitions

  • the invention is an absolute grating auxiliary installation and error compensation method.
  • the method is suitable for the absolute position encoder using a CMOS/CCD sensor, and corrects and compensates for the straightness error caused by the installation process.
  • the method designed by the invention can automatically calculate the off-angle of the CMOS sensor and the grating ruler body during installation, assist in installation and correct the parallelism error, and the method also provides the error of parallelism between the ruler body and the reference direction. Error compensation in case. It belongs to high precision absolute grating position coding auxiliary installation and error compensation method.
  • the grating scale (also known as the grating scale displacement sensor or the grating scale sensor) is a measurement feedback device that works by the optical principle of the grating.
  • the grating scale can be used for the detection of linear displacement or angular displacement, and is commonly used in the closed-loop servo system of numerical control machine tools. in.
  • the grating scales are mainly divided into three categories: incremental grating scales, absolute grating scales and incremental scales with distance code reference marks.
  • the position detection signal of the scale is divided into two types: the incremental count output and the absolute value output.
  • the former needs to calculate the number of output pulses to determine the actual position, which is called the incremental scale; the latter output signal can directly reflect the actual position, called the absolute grating. ruler.
  • absolute scale has a significant advantage over the incremental scale, however, due to the fact The reliable mechanical structure required by the current method requires a more demanding installation procedure than an incremental grating scale.
  • absolute grating scales based on CMOS/CCD sensors have high requirements for optical depth of field, straightness of the scale, CMOS sensor and ruler parallelism. If there is an angle between the mounting ruler and the CMOS, it will cause a decoding error. If the straightness of the ruler is not enough, there will be a cumulative error. The present invention will solve this problem.
  • the invention provides an absolute grating assisting installation and error compensation method.
  • the invention can automatically calculate the angling angle of the CMOS sensor and the grating ruler body during installation, assist installation, correct parallelism error, and the method of the invention also provides uncorrectable Error compensation in the case of the grating ruler body and the reference direction parallelism error.
  • the invention relates to an absolute grating assisting installation and an error compensation method, and the auxiliary installation and error compensation method comprises the following methods:
  • the CMOS sensor When installing the CMOS sensor and the grating ruler body, the CMOS sensor reads the upper and lower sampling windows. Since the grating ruler body and the CMOS sensor have an angle, there will be a difference between the upper and lower windows, and the grating is continuously adjusted. The ruler body or the CMOS sensor minimizes the reading error, and the angle between the zero-scale grating ruler and the CMOS sensor is included;
  • the CMOS image sensor obtains the upsampling window, ignores the sampling window, and downsamples the window to form a CMOS.
  • the image captured by the sensor reads the absolute position Xup in the upsampling window, the absolute position Xdown in the downsampling window, the position Xmap of the upper absolute position in the downsampling window, and the absolute position and the lower absolute position as the reading reference line.
  • the position of the absolute position and the upper absolute position in the downsampling window is connected as the inclination indication line, and the CMOS linear error ⁇ L is calculated:
  • the above code channel height is a set value, and in the triangle surrounded by the reference line, the inclination indicator line, and the CMOS line error ⁇ L:
  • the parallelism of the CMOS image sensor and the scale body can be known, and the CMOS tilt angle ⁇ 1 is continuously reduced by external adjustment.
  • the angle ⁇ 2 between the tilting scale and the motion reference direction is the inclination angle of the scale.
  • the actual scale reading should be Xmov, and the reading on the inclined scale is Xerr, which is mapped to the reference. Reading in the direction is Xread, and there is
  • the reading error is ⁇ X
  • the present invention provides an absolute scale-assisted mounting and error compensation method, which can automatically calculate the off-angle of the CMOS sensor and the scale body during installation, assist in installation, correct parallelism error, and the method also provides Correct the error compensation in the case of the grating ruler body and the reference direction parallelism error. Compared with the prior art, the invention has the following advantages:
  • the present invention does not require an external measuring device, and can independently detect the tilt angle of the CMOS sensor and the scale body.
  • the invention first assists in installation, and then compensates for errors, and eliminates multi-structure non-parallel introduction of error factors.
  • the present invention utilizes the property that the output signal amount of the absolute grating is an absolute position, and uses the inclination as an error compensation parameter, and the compensation amount is also absolute.
  • FIG. 1 is a schematic view showing a tilt angle of a CMOS and a ruler according to the present invention
  • FIG. 2 is a schematic view showing the CMOS and the ruler without tilting according to the present invention.
  • Fig. 3 is a schematic view showing the straightness error of the scale body of the grating of the present invention.
  • the scale body and the outer casing After installing the CMOS image sensor, the scale body and the outer casing, set the code track height to ⁇ h, as shown in the figure at the position of 10.
  • the CMOS image sensor is obtained by sampling window 1, ignoring sampling window 2, and sampling window 3 to form a CMOS sensor capture.
  • Figure 1 shows the grating pattern when the CMOS sensor and the grating ruler are tilted.
  • the upsampling window 1, the neglecting sampling window 2, and the downsampling window 3 together constitute an image captured by the CMOS sensor.
  • the upsampling window 1 reads the upper absolute position Xup, see the position marked 4 in the figure
  • the downsampling window 3 reads the absolute position Xdown, as shown in the figure 5, and the position of Xup in the downsampling window 3 is Xmap. See the position marked 6 in the figure.
  • Connections 4 and 5 are the reading reference line 7, and connections 4 and 6 are the inclination indicator line 8.
  • the reading reference line 7 is perpendicular to the width direction of the CMOS imaging surface, and the angle between the reading reference line 7 and the inclination indicating line 8 is the CMOS tilt angle ⁇ 1, as shown by the reference numeral 9 in the figure, and the longitudinal distance of 4 and 5.
  • the distance between Xdown and Xmap is the CMOS line error ⁇ L, as shown in the figure at the position of 11.
  • the CMOS sensor Since the CMOS sensor and the grating scale body have a tilt angle, the CMOS sensor obtains the pattern of FIG. 2, and the absolute position Xup obtained in the upsampling window 1 is shown as the position marked 4 in the figure, and the corresponding position in the downsampling window 3 should be Xmap. See the position marked 6 in the figure. However, the CMOS decoding starts decoding at the position where the code reading reference line 7 is located, and the down sampling window 3 will obtain Xdown, as shown in the figure at the position marked 5, so the distance between Xdown and Xmap
  • the code track height ⁇ h is a set value, and in the triangle surrounded by the reference line 7, the inclination indicator line 8 and the CMOS line error ⁇ L, there are:
  • the raster pattern is continuously acquired by the processor, and the tilt angle ⁇ 1 of the CMOS is calculated.
  • the position marked with 9 in the figure shows the parallelism of the CMOS image sensor and the scale body.
  • the CMOS tilt angle ⁇ 1 can be continuously reduced by external adjustment.
  • FIG. 2 is a raster sample diagram for correcting the parallelism error of the CMOS sensor 21 and the scale body 20.
  • the angle between the inclined scale 12 and the motion reference direction 13 is the grating scale inclination angle ⁇ 2, as shown by the reference numeral 18.
  • the position marked 19 is shown in the figure.
  • the actual scale reading should be Xmov.
  • the figure is marked as 16 in the figure.
  • the reading on the inclined scale 12 is Xerr.
  • the position of 14 is mapped to the reference direction 13 and the reading code is Xread, as shown by the reference numeral 15.
  • the reading error is ⁇ X, as shown in the figure at 17, there is

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optical Transform (AREA)
  • Transmission And Conversion Of Sensor Element Output (AREA)

Abstract

一种绝对光栅尺辅助安装和误差补偿方法。包括如下方式:(1)安装CMOS传感器和光栅尺尺身时,CMOS传感器读取上下两个采样窗口(1,3),由于光栅尺尺身和CMOS传感器存在夹角(Φ1),上下两个窗口(1,3)数将存在一个差值(ΔL),不断调整光栅尺尺身或者CMOS传感器,使读码差值最小,达到调零光栅尺尺身和CMOS传感器存在夹角目的;(2)安装光栅尺尺身和机械外壳时,在运动方向上运动固定位移(Lmov),并记录光栅编码读数(Xerr),得到误差补偿量,在实际运动中做为误差补偿值,纠正光栅尺身和运动方向的夹角(Φ2)引入的累计误差值。上述方法能自动计算CMOS传感器和光栅尺尺身的偏角,矫正平行度误差,也提供无法纠光栅尺尺身和基准方向平行度误差情况下的误差补偿。

Description

一种绝对光栅尺辅助安装和误差补偿方法 技术领域
本发明是一种绝对光栅尺辅助安装和误差补偿方法,本方法适用于使用CMOS/CCD传感器的绝对位置编码器,由于安装工艺造成的直线度误差的矫正和补偿。针对该现象,本发明设计的方法可以自动计算安装时CMOS传感器和光栅尺尺身的偏角,辅助安装,矫正平行度误差,同时本方法也提供无法纠光栅尺尺身和基准方向平行度误差情况下的误差补偿。属于高精密绝对光栅尺位置编码辅助安装和误差补偿方法。
背景技术
光栅尺(也称光栅尺位移传感器或光栅尺传感器),是一种利用光栅的光学原理工作的测量反馈装置,光栅尺可用作直线位移或角位移的检测,常用于数控机床的闭环伺服系统中。
目前光栅尺主要分为三大类:增量光栅尺、绝对光栅尺及带距离码参考标记增量光栅尺。光栅尺的位置检测信号分增量计数输出与绝对值输出两类,前者需要计算输出脉冲的数量来确定实际位置,称增量光栅尺;后者的输出信号可直接反映实际位置,称绝对光栅尺。
随着工业加工的精密化,光栅尺在加工反馈中的作用越发的明显,同时,为了提高加工精度、减少累积误差、避免开机定位的繁琐步骤等,绝对光栅尺的优势也越来越明显。
虽然绝对光栅尺有比增量式光栅尺显著的优势,可是,由于其实 现方法需要的可靠的机械结构,安装工艺要求比增量式光栅尺苛刻。特别是基于CMOS/CCD传感器的绝对光栅尺,对于光学景深,光栅尺尺身直线度、CMOS传感器和尺身平行度有较高要求。若安装尺身和CMOS存在夹角,会造成解码错误,若尺身直线度不够,将会有累计误差。本发明将解决该问题。
发明内容
本发明提出一种绝对光栅尺辅助安装和误差补偿方法,本发明可以自动计算安装时CMOS传感器和光栅尺尺身的偏角,辅助安装,矫正平行度误差,同时本发明的方法也提供无法纠正光栅尺尺身和基准方向平行度误差情况下的误差补偿。
本发明绝对光栅尺辅助安装和误差补偿方法,所述辅助安装和误差补偿方法包括如下方式:
(1)安装CMOS传感器和光栅尺尺身时,CMOS传感器读取上下两个采样窗口,由于光栅尺尺身和CMOS传感器存在夹角,上下两个窗口数将存在一个差值,通过不断调整光栅尺尺身或者CMOS传感器,使得读码差值最小,达到调零光栅尺尺身和CMOS传感器存在夹角目的;
(2)安装光栅尺尺身和机械外壳时,在运动方向上运动固定位移,并记录光栅编码读数,得到误差补偿量,在实际运动中做为误差补偿值,纠正光栅尺身和运动方向的夹角引入的累计误差值。
设定采样窗口和下采样窗口之间码道高距离为△h,CMOS图像传感器得到上采样窗口、忽略采样窗口、下采样窗口共同组成CMOS 传感器捕获的图像,在上采样窗口读取上绝对位置Xup,在下采样窗口读取下绝对位置Xdown,上绝对位置在下采样窗口中的位置Xmap,连接上绝对位置和下绝对位置作为读码基准线,连接上绝对位置和上绝对位置在下采样窗口中的位置作为倾角指示线,计算CMOS直线误差△L:
△L=Xmap-Xdown=Xup-Xdowm。
上述码道高是一个设定值,则在基准线、倾角指示线和CMOS直线误差△L围成的三角形中有:
φ1=Arctan(△L/△h)
假定CMOS最小象元大小为δ,则夹角分辨率为θmin
θmin=Arctan(δ/△h)
通过处理器不断采集光栅图样,并计算CMOS倾斜角φ1,就能知道CMOS图像传感器和光栅尺尺身的平行度,通过外部调整,不断缩小CMOS倾斜角φ1。
倾斜光栅尺和运动基准方向之间的夹角φ2为光栅尺尺身倾角,当光栅尺向前实际移动Lmov时,实际光栅尺读数应为Xmov,倾斜光栅尺上读码为Xerr,映射到基准方向上读码为Xread,且有
Xread=Xerr
读码误差为△X,
△X=Xread-Xmov=Xerr-Xmov
Cos(φ2)=Lmov/Xread
若在某位置处读码为X,则补偿后实际绝对位置L:
L=X·Cos(φ2)=(X·Lmov)/Xread。
使用CMOS/CCD传感器的绝对位置编码器,需要严格保证CMOS传感器、光栅尺尺身、运动方向三者之间的平行度,在现有的安装工艺上难以同时保证三者的平行度,会造成解码错误和累积误差大。为了解决以上问题,本发明提出一种绝对光栅尺辅助安装和误差补偿方法,可以自动计算安装时CMOS传感器和光栅尺尺身的偏角,辅助安装,矫正平行度误差,同时本方法也提供无法纠正光栅尺尺身和基准方向平行度误差情况下的误差补偿。本发明与现有技术相比,具有如下优点:
1)本发明不需要外部测量设备,可自行检测CMOS传感器和光栅尺尺体的倾角。
2)本发明先辅助安装,再误差补偿,排除多结构不平行引入误差因素。
3)本发明利用绝对光栅尺的输出信号量为绝对位置的性质,利用倾角作为误差补偿参数,补偿量也具有绝对性。
附图说明
图1为本发明CMOS和尺身倾角的示意图;
图2为本发明CMOS和尺身无倾角的示意图;
图3为本发明光栅尺尺身直线度误差的示意图。
具体实施方式
安装上CMOS图像传感器、光栅尺尺身和外壳后,设定码道高距离为△h,见图中标号为10的位置。CMOS图像传感器得到采样窗口1、忽略采样窗口2、下采样窗口3共同组成CMOS传感器捕获 的图像。如图1,为CMOS传感器和光栅尺尺身存在倾角时的光栅图样。
其中上采样窗口1、忽略采样窗口2、下采样窗口3共同组成CMOS传感器捕获的图像。上采样窗口1读取上绝对位置Xup,见图中标号为4的位置,下采样窗口3读取下绝对位置Xdown,见图中标号为5的位置,Xup在下采样窗口3中的位置为Xmap,见图中标号为6的位置。连接4和5的是读码基准线7,连接4和6的是倾角指示线8。读码基准线7与CMOS成像面的宽方向垂直,读码基准线7与倾角指示线8之间的夹角为CMOS倾斜角φ1,见图中标号为9的位置,4和5的纵向距离为码道高△h,见图中标号为10的位置,Xdown和Xmap的距离为CMOS直线误差△L,见图中标号为11的位置。
由于CMOS传感器和光栅尺尺身存在倾角,CMOS传感器得到图2图样,在上采样窗口1得到的绝对位置Xup,见图中标号为4的位置,实际在下采样窗口3的对应位置应该是Xmap,见图中标号为6的位置。可是,CMOS解码以读码基准线7所在位置开始解码,下采样窗口3将得到的是Xdown,见图中标号为5的位置,故Xdown和Xmap的距离
△L=Xmap-Xdown=Xup-Xdowm
码道高△h是一个设定值,则在基准线7、倾角指示线8和CMOS直线误差△L围成的三角形中有:
φ1=Arctan(△L/△h)
假定CMOS最小象元大小为δ,则夹角分辨率为θmin
θmin=Arctan(δ/△h)
通过处理器不断采集光栅图样,并计算CMOS的倾斜角φ1,见图中标号为9的位置,可以知道CMOS图像传感器和光栅尺尺身的平行度。通过外部调整,可以不断缩小CMOS倾斜角φ1。
如图2,为矫正CMOS传感器21和光栅尺尺身20平行度误差后的光栅样图。
图3中,倾斜光栅尺12和运动基准方向13之间的夹角为光栅尺尺身倾角φ2,见图中标号为18的位置。当光栅尺向前实际移动Lmov时,见图中标号为19的位置,实际光栅尺读数应为Xmov,见图中标号为16的位置,倾斜光栅尺12上读码为Xerr,见图中标号为14的位置,映射到基准方向13上读码为Xread,见图中标号为15的位置。且有
Xread=Xerr
读码误差为△X,见图中标号为17的位置,有
△X=Xread-Xmov=Xerr-Xmov
Cos(φ2)=Lmov/Xread
若在某位置处读码为X,则补偿后实际绝对位置L:
L=X·Cos(φ2)=(X·Lmov)/Xread

Claims (4)

  1. 一种绝对光栅尺辅助安装和误差补偿方法,其特征在于所述辅助安装和误差补偿方法包括如下方式:
    (1)安装CMOS传感器和光栅尺尺身时,CMOS传感器读取上下两个采样窗口,由于光栅尺尺身和CMOS传感器存在夹角,上下两个窗口数将存在一个差值,通过不断调整光栅尺尺身或者CMOS传感器,使得读码差值最小,达到调零光栅尺尺身和CMOS传感器存在夹角目的;
    (2)安装光栅尺尺身和机械外壳时,在运动方向上运动固定位移,并记录光栅编码读数,得到误差补偿量,在实际运动中做为误差补偿值,纠正光栅尺身和运动方向的夹角引入的累计误差值。
  2. 根据权利要求1所述绝对光栅尺辅助安装和误差补偿方法,其特征在于需要设定采样窗口和下采样窗口之间码道高距离为△h,CMOS图像传感器得到上采样窗口、忽略采样窗口、下采样窗口共同组成CMOS传感器捕获的图像,在上采样窗口读取上绝对位置Xup,在下采样窗口读取下绝对位置Xdown,上绝对位置在下采样窗口中的位置Xmap,连接上绝对位置和下绝对位置作为读码基准线,连接上绝对位置和上绝对位置在下采样窗口中的位置作为倾角指示线,计算CMOS直线误差△L:
    △L=Xmap-Xdown=Xup-Xdowm。
  3. 根据权利要求2所述的绝对光栅尺辅助安装和误差补偿方法, 码道高是一个设定值,则在基准线、倾角指示线和CMOS直线误差△L围成的三角形中有:
    φ1=Arctan(△L/△h)
    假定CMOS最小象元大小为δ,则夹角分辨率为θmin
    θmin=Arctan(δ/△h)
    通过处理器不断采集光栅图样,并计算CMOS倾斜角φ1,就能知道CMOS图像传感器和光栅尺尺身的平行度,通过外部调整,不断缩小CMOS倾斜角φ1。
  4. 根据权利要求1所述绝对光栅尺辅助安装和误差补偿方法,其特征在于倾斜光栅尺和运动基准方向之间的夹角φ2为光栅尺尺身倾角,当光栅尺向前实际移动Lmov时,实际光栅尺读数应为Xmov,倾斜光栅尺上读码为Xerr,映射到基准方向上读码为Xread,且有
    Xread=Xerr
    读码误差为△X,
    △X=Xread-Xmov=Xerr-Xmov
    Cos(φ2)=Lmov/Xread
    若在某位置处读码为X,则补偿后实际绝对位置L:
    L=X·Cos(φ2)=(X·Lmov)/Xread。
PCT/CN2015/071694 2014-01-28 2015-01-28 绝对光栅尺辅助安装和误差补偿方法 WO2015113493A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US14/439,096 US9417100B2 (en) 2014-01-28 2015-01-28 Method of assisted mounting and error compensation for absolute grating ruler

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201410040694.1A CN103759660B (zh) 2014-01-28 2014-01-28 一种绝对光栅尺辅助安装和误差补偿方法
CN201410040694.1 2014-01-28

Publications (1)

Publication Number Publication Date
WO2015113493A1 true WO2015113493A1 (zh) 2015-08-06

Family

ID=50526936

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2015/071694 WO2015113493A1 (zh) 2014-01-28 2015-01-28 绝对光栅尺辅助安装和误差补偿方法

Country Status (3)

Country Link
US (1) US9417100B2 (zh)
CN (1) CN103759660B (zh)
WO (1) WO2015113493A1 (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112461126A (zh) * 2020-11-05 2021-03-09 广东工业大学 双读数头绝对式光栅尺的测量系统、方法及相关设备
CN114545022A (zh) * 2022-01-28 2022-05-27 中国科学院电工研究所 一种高速直线电机定位测速实时仿真方法及系统
CN115900558A (zh) * 2022-11-11 2023-04-04 长光(沧州)光栅传感技术有限公司 一种折弯机光栅尺读数头指示光栅与主光栅粘接对齐装置

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103759660B (zh) * 2014-01-28 2016-03-23 广东工业大学 一种绝对光栅尺辅助安装和误差补偿方法
CN103994723B (zh) * 2014-06-10 2017-01-11 广东工业大学 基于纵横转换放大细分的宏微复合光栅尺测量系统
CN105973287B (zh) * 2016-05-04 2018-07-06 广东工业大学 一种多轨绝对光栅尺图像编码解码方法
CN106500606B (zh) * 2016-12-26 2022-02-25 清华大学深圳研究生院 一种多码道光栅尺
CN108151658B (zh) * 2018-01-24 2023-08-11 清华大学深圳研究生院 一种判断光栅尺参考点绝对位置的装置及方法
CN112050741B (zh) * 2020-09-11 2021-07-16 广东广纳芯科技有限公司 周期栅阵的周期长度的测量方法
CN112123008B (zh) * 2020-09-23 2022-03-29 江苏洛柳精密科技有限公司 一种光栅尺的防护安装
CN113551578B (zh) * 2021-08-01 2023-07-07 李里 条形位移码、条形位移码尺和位移检测装置
CN114952023B (zh) * 2022-06-24 2024-01-30 长沙麓邦光电科技有限公司 用于制备光栅尺的夹具及其联控方法
CN116045814B (zh) * 2023-04-03 2023-06-09 合肥安迅精密技术有限公司 对光栅尺信号质量进行评估的方法及装置、存储介质
CN116817759B (zh) * 2023-06-06 2024-01-16 苏州英示测量科技有限公司 光栅尺及其测量方法、系统

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5038491A (en) * 1988-07-01 1991-08-13 Canon Kabushiki Kaisha Scale for use for measurement of the displacement of an object to be examined, and displacement measuring apparatus
EP0660085A1 (de) * 1993-12-22 1995-06-28 Troll, Christian, Dr.-Ing. habil. Absolutes Positionsmesssystem
CN101055195A (zh) * 2006-04-14 2007-10-17 安华高科技杰纳勒尔Ip(新加坡)私人有限公司 光学编码设备
CN101162139A (zh) * 2006-10-13 2008-04-16 深圳市大族精密机电有限公司 光栅尺信号误差补偿方法
CN103175567A (zh) * 2013-03-01 2013-06-26 中国科学院长春光学精密机械与物理研究所 一种绝对式光栅尺读数头参数的在线修正装置
US20130292557A1 (en) * 2012-05-02 2013-11-07 Canon Kaushiki Kaisha Encoder and apparatus using the same
CN103512500A (zh) * 2013-07-26 2014-01-15 广东工业大学 一种高速绝对光栅尺的图像采集电路
CN103759660A (zh) * 2014-01-28 2014-04-30 广东工业大学 一种绝对光栅尺辅助安装和误差补偿方法

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1074831C (zh) * 1998-09-04 2001-11-14 清华大学 采用复式光栅对加工/测量误差进行实时修正的方法及装置
CN1138128C (zh) * 2000-01-25 2004-02-11 中国科学院光电技术研究所 圆光栅角度计量误差校正法
KR20100135048A (ko) * 2009-06-16 2010-12-24 삼성전자주식회사 경사 보상이 가능한 인코더, 이를 이용한 하드 디스크 드라이브 및 하드 디스크 드라이브를 위한 서보 트랙 기록 장치
JP2011145151A (ja) * 2010-01-14 2011-07-28 Tohoku Univ 回折格子の形状誤差評価方法
CN102538685A (zh) * 2011-12-29 2012-07-04 中国科学院长春光学精密机械与物理研究所 具有修正扭转误差功能的位移检测系统
CN202770411U (zh) * 2012-06-01 2013-03-06 沈阳工业大学 光栅栅距实时在线测量装置

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5038491A (en) * 1988-07-01 1991-08-13 Canon Kabushiki Kaisha Scale for use for measurement of the displacement of an object to be examined, and displacement measuring apparatus
EP0660085A1 (de) * 1993-12-22 1995-06-28 Troll, Christian, Dr.-Ing. habil. Absolutes Positionsmesssystem
CN101055195A (zh) * 2006-04-14 2007-10-17 安华高科技杰纳勒尔Ip(新加坡)私人有限公司 光学编码设备
CN101162139A (zh) * 2006-10-13 2008-04-16 深圳市大族精密机电有限公司 光栅尺信号误差补偿方法
US20130292557A1 (en) * 2012-05-02 2013-11-07 Canon Kaushiki Kaisha Encoder and apparatus using the same
CN103175567A (zh) * 2013-03-01 2013-06-26 中国科学院长春光学精密机械与物理研究所 一种绝对式光栅尺读数头参数的在线修正装置
CN103512500A (zh) * 2013-07-26 2014-01-15 广东工业大学 一种高速绝对光栅尺的图像采集电路
CN103759660A (zh) * 2014-01-28 2014-04-30 广东工业大学 一种绝对光栅尺辅助安装和误差补偿方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
CHEN, BINGHUA ET AL.: "Ways of Automatic Pipe Length Measurement and Its Error Analysis", JOURNAL OF MECHANICAL &ELECTRICAL ENGINEERING, vol. 24, no. 3, 31 March 2007 (2007-03-31), pages 13 - 15 *

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112461126A (zh) * 2020-11-05 2021-03-09 广东工业大学 双读数头绝对式光栅尺的测量系统、方法及相关设备
CN112461126B (zh) * 2020-11-05 2023-01-03 广东工业大学 双读数头绝对式光栅尺的测量系统、方法及相关设备
CN114545022A (zh) * 2022-01-28 2022-05-27 中国科学院电工研究所 一种高速直线电机定位测速实时仿真方法及系统
CN115900558A (zh) * 2022-11-11 2023-04-04 长光(沧州)光栅传感技术有限公司 一种折弯机光栅尺读数头指示光栅与主光栅粘接对齐装置
CN115900558B (zh) * 2022-11-11 2023-11-03 长光(沧州)光栅传感技术有限公司 一种折弯机光栅尺读数头指示光栅与主光栅粘接对齐装置

Also Published As

Publication number Publication date
CN103759660A (zh) 2014-04-30
US9417100B2 (en) 2016-08-16
CN103759660B (zh) 2016-03-23
US20160025522A1 (en) 2016-01-28

Similar Documents

Publication Publication Date Title
WO2015113493A1 (zh) 绝对光栅尺辅助安装和误差补偿方法
KR102518930B1 (ko) 시트 두께 측정 장치
US20150286211A1 (en) Method and machine system for positioning two movable units in a relative position to each other
JP2008051696A (ja) 光軸偏向型レーザ干渉計、その校正方法、補正方法、及び、測定方法
EP2990754B1 (en) Shape measurement machine
EP1239263A2 (en) Position measuring apparatus and working apparatus using the same
TWI609171B (zh) Shape measuring device, processing device, and shape measuring device calibration method
KR100925647B1 (ko) 원통 내면에 오일 그루브를 가공하는 가공툴의 위치보정용센싱장치 및 이를 이용한 가공툴의 위치보정방법
JP4970204B2 (ja) 真直度測定装置、厚み変動測定装置及び直交度測定装置
CN111591051A (zh) 一种面向印刷显示的打印高度控制系统及方法
CN203712418U (zh) 一种数控机床用绝对式光栅尺
CN106949855B (zh) 一种转轴角位移测量装置
JP5290038B2 (ja) 測定装置及び測定方法
CN111443657B (zh) 一种机台编码器安装偏移的修正方法
CN113465518B (zh) 一种消除激光测高机构安装产生的机械误差的方法
CN215768312U (zh) 一种玻璃复检装置
JPH0469359B2 (zh)
KR101679339B1 (ko) 선형 위치 결정 장치 및 이의 오차 보상 방법
JPS6110708A (ja) 測定用カメラを使用した寸法測定装置
CN113063382A (zh) 一种新型钢管测长方法
LU102452B1 (en) A method for realizing zero adjustment using shadow imaging of a pin under a divergent light source
RU2783678C1 (ru) Оптико-электронный способ измерения диаметра цилиндрического объекта
CN112595238B (zh) 一种高低速兼容直线位移增量精密测量方法
CN220583261U (zh) 一种比较仪自动检定装置
JP7485958B2 (ja) 外径測定装置及び外径測定方法

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 14439096

Country of ref document: US

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15743052

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15743052

Country of ref document: EP

Kind code of ref document: A1

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 28.08.2018)

122 Ep: pct application non-entry in european phase

Ref document number: 15743052

Country of ref document: EP

Kind code of ref document: A1