WO2015113438A1 - 一种火花塞及使用该火花塞的内燃机的点火系统 - Google Patents

一种火花塞及使用该火花塞的内燃机的点火系统 Download PDF

Info

Publication number
WO2015113438A1
WO2015113438A1 PCT/CN2014/091864 CN2014091864W WO2015113438A1 WO 2015113438 A1 WO2015113438 A1 WO 2015113438A1 CN 2014091864 W CN2014091864 W CN 2014091864W WO 2015113438 A1 WO2015113438 A1 WO 2015113438A1
Authority
WO
WIPO (PCT)
Prior art keywords
flow guiding
hole
spark plug
fire
insert
Prior art date
Application number
PCT/CN2014/091864
Other languages
English (en)
French (fr)
Inventor
张蝶儿
Original Assignee
张蝶儿
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 张蝶儿 filed Critical 张蝶儿
Publication of WO2015113438A1 publication Critical patent/WO2015113438A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01TSPARK GAPS; OVERVOLTAGE ARRESTERS USING SPARK GAPS; SPARKING PLUGS; CORONA DEVICES; GENERATING IONS TO BE INTRODUCED INTO NON-ENCLOSED GASES
    • H01T13/00Sparking plugs
    • H01T13/54Sparking plugs having electrodes arranged in a partly-enclosed ignition chamber
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01TSPARK GAPS; OVERVOLTAGE ARRESTERS USING SPARK GAPS; SPARKING PLUGS; CORONA DEVICES; GENERATING IONS TO BE INTRODUCED INTO NON-ENCLOSED GASES
    • H01T13/00Sparking plugs
    • H01T13/20Sparking plugs characterised by features of the electrodes or insulation
    • H01T13/32Sparking plugs characterised by features of the electrodes or insulation characterised by features of the earthed electrode

Definitions

  • the present invention relates to the field of ignition of internal combustion engines, and more particularly to a spark plug, and an ignition system for an internal combustion engine using the same.
  • the internal combustion engine is a mixture of liquid or gaseous fuel and air, and is directly input into the high-pressure combustion chamber inside the cylinder to generate explosive power. It is a heat engine that converts thermal energy into mechanical energy.
  • the spark plug is mounted to the internal combustion engine for ignition of the mixed gas in the combustion chamber.
  • FIG. 1 is a schematic structural view of an ignition system of an internal combustion engine in the prior art.
  • the ignition system of the internal combustion engine includes a combustion chamber 11, a fuel injector 12, and a spark plug 13.
  • the combustion chamber 11 includes a cavity 111 having a cavity.
  • the upper end of the cylinder 111 has a spark plug mounting passage 112 having an inner wall for mounting the spark plug 13 on the combustion chamber 11 and a spark plug mounting passage 112 adjacent to the spark plug mounting passage 112.
  • a fuel injector mounting passage 114 is used to mount the fuel injector 12 on the combustion chamber 11.
  • FIG. 2 is a schematic structural view of a prior art spark plug 13.
  • the spark plug 13 includes a center electrode 132, an insulator 134, a housing 136, and a ground electrode 138.
  • the insulator 134 is a ceramic insulator having a shaft hole extending in the axial direction, and the center electrode 132 is inserted through a shaft hole penetrating the insulator 134.
  • the housing 136 is disposed on the outer circumference of the insulator 134, and the surface of the housing 136 has a thread.
  • the ground electrode 138 is connected to the end of the casing 136 and is bent to extend opposite to the center electrode 132 to form a gap of spark discharge with the center electrode 132.
  • An ignition end portion is formed between the center electrode 132 and the ground electrode 138, and the ignition end portion generates an arc by the action of pulse electric power, thereby generating a mixed gas around the electrode by the electric spark to achieve the purpose of auto-ignition.
  • the combustion chamber 11 is a circular or elliptical cylinder, and in order to generate a strong combustion effect, the ignition end portion of the center electrode of the spark plug 13 and the ground electrode is disposed in the cylinder 111 of the combustion chamber 11, that is, The spark plug 13 is twisted by the housing 136 with the screw mounting channel 112, and the housing 136 of the spark plug 13 fills the entire spark plug mounting passage 112 through which the spark plug 13 extends so that the ignition end projects out to the combustion chamber 11 inside the cylinder 111.
  • the fuel injector 12 is disposed in the vicinity of the spark plug 13, and the nozzle of the fuel injector 12 is sprayed toward the ignition end side of the spark plug 13.
  • the housing 136 of the spark plug 13 protrudes into the cylinder of the combustion chamber 11. Since the fuel injector 12 is disposed at one side of the spark plug 13, the housing 136 blocks a portion of the fuel from directly reaching the ignition end of the spark plug. Part, which affects the combustion efficiency; after long-term use, it usually forms incomplete carbon black stains on the casing on the side of the fuel injector 12, that is, local carbon deposition caused by incomplete combustion, reducing combustion efficiency, affecting The output power of the engine.
  • the center electrode 132 and the ground electrode 138 need to be ignited many times under high temperature and high pressure conditions in the combustion chamber 11, and deposits may occur on the electrode and cause corrosion thereof, resulting in the situation of the spark plug 13. deterioration.
  • the technician In order to slow down the deterioration of the spark plug, the technician has made various improvements to the spark plug.
  • the corrosion problem of the electrode is overcome by increasing the corrosion resistance of the electrode material or increasing the number of electrodes.
  • it is necessary to propose a new electrode material to improve the corrosion resistance of the electrode material, and the corrosion problem of the electrode cannot be changed in the case of using the existing electrode material; for simultaneously setting a plurality of electrodes, since the plurality of electrodes are also exposed in the combustion chamber , will be eroded at the same time, and can not fundamentally solve the corrosion problem of the electrode.
  • FIG. 3 is a structural schematic diagram of another spark plug in the prior art.
  • the spark plug comprises an outer casing and an insulating ceramic core fixedly mounted in the outer casing; the insulating ceramic core is provided with a central electrode 7; the upper end of the central electrode protrudes from the insulating ceramic core to form a discharge end 17; the outer casing has a firing chamber 11, The discharge end 17 is in the firing chamber; the firing chamber 11 is provided with a ground electrode 13 near the end of the discharge.
  • a discharge igniter composed of a center electrode and a ground electrode is disposed in the blast chamber 11, and the mixed gas in the blast chamber 11 is ignited first, and then the flame ejected from the combustion chamber 11 ignites the mixed gas of the combustion chamber of the internal combustion engine, thereby creating An efficient ignition environment and reduced deposition rate of deposits on the electrodes.
  • the center electrode and the ground electrode are disposed in the cavity of the casing, the distance of the spark generated by the two electrodes into the combustion chamber is increased, thereby delaying the ignition time of the mixed gas of the combustion chamber due to the compression of the internal combustion engine.
  • the time of the stroke and the expansion stroke is a fixed time, and the combustion time of the mixed gas is shortened, which reduces the combustion efficiency of the internal combustion engine to a certain extent, which is not conducive to energy conservation and environmental protection.
  • a spark plug comprising an insulator, a center electrode, a housing, a flow guiding insert and a grounding electrode.
  • the insulator has a shaft hole extending in the axial direction.
  • the center electrode is inserted through the shaft hole of the insulator and exposes the end.
  • the housing has a hollow column shape and is sleeved on the surface of the insulator.
  • a flow guiding insert which is a columnar body, has a fire-blasting hole extending through the front and rear end faces thereof, and the flow guiding insert is fixedly disposed in the casing, the front end of which is opposite to the center electrode, and the rear end of which is located at the open end of the casing.
  • the outer wall of the casing is attached to the inner wall of the casing; the flow guiding insert further comprises a flow guiding hole distributed around the fire-breathing hole, and the inner diameter of the guiding hole is larger than the inner diameter of the port to form a spindle shape.
  • the grounding electrode is disposed on the inner wall of the casing, or is disposed around the fire-breathing hole at the front end of the flow guiding insert, and forms an ignition end portion having a gap of spark discharge with the end portion of the center electrode.
  • the flow guiding insert further includes a flow guiding hole extending through the front and rear ends thereof, the flow guiding hole is distributed around the fire detecting hole; or the side wall of the flow guiding insert is provided with a guiding groove in the axial direction, the guiding flow The groove forms a spindle-shaped flow guiding hole with the inner wall of the casing.
  • the flow guiding insert further includes an air inlet hole disposed on the flow guiding groove and penetrating the fire detecting hole.
  • a drainage groove perpendicular to the fire injection hole and penetrating the plurality of flow guiding grooves is further included on the side wall of the flow guiding insert.
  • the fire hole opening at the rear end of the flow guiding insert protrudes or is recessed into the open end of the casing and is a horn
  • the aperture of the rear end opening of the fire exit hole is larger than the aperture of the middle portion of the fire injection hole and smaller than the aperture of the open end of the fireproof hole.
  • a fire hole opening located at a front end of the flow guiding insert protrudes from a front end surface of the flow guiding insert, and an ignition end portion having a gap of a spark discharge is formed between the center electrode and the front end opening of the fire extinguishing hole.
  • a firing hole opening at the front end of the flow guiding insert is recessed in the front end surface of the flow guiding insert to form an ignition port, and an ignition end having a gap of a spark discharge is formed between the center electrode and the inner wall of the ignition opening.
  • the flow guiding hole of the flow guiding insert spirally surrounds the fire extinguishing hole.
  • the front end of the flow guiding insert is fixed in the housing by welding; or the flow guiding insert is located in the housing, and the open end of the housing is formed by punching to form a narrow end of the curved surface to fix the flow guiding insert.
  • the present invention also provides an ignition system for an internal combustion engine including a combustion chamber and a spark plug, the combustion chamber including a cavity of a cavity having a spark plug mounting passage on an inner wall of the cylinder; the spark plug is mounted on the spark plug On the channel.
  • the spark plug is any one of the spark plugs mentioned above.
  • a storage slot is further disposed on the spark plug mounting passage of the cylinder block, and the corresponding hole of the flow guiding hole of the spark plug is provided with a through hole, and the storage slot and the guiding hole of the cylinder body are communicated through the through hole.
  • the spark plug of the present invention utilizes fuel more fully, and improves fuel utilization.
  • the structure of the flow guiding insert can improve the ignition efficiency and the reflux efficiency of the spark plug, thereby improving the combustion efficiency of the internal combustion engine.
  • the ignition system of the internal combustion engine of the present invention avoids a part of fuel remaining on the outside of the spark plug casing to form carbon black stains, and more fully utilizes fuel, thereby improving fuel utilization.
  • FIG. 1 is a schematic view showing the structure of an ignition system of an internal combustion engine in the prior art.
  • FIG. 2 is a schematic structural view of a spark plug in the prior art.
  • FIG. 3 is a schematic structural view of another spark plug in the prior art.
  • Fig. 4 is a schematic view showing the structure of a first embodiment of a spark plug of the present invention.
  • FIG. 5 is a perspective perspective structural view of the flow guiding insert shown in FIG. 3.
  • FIG. 5 is a perspective perspective structural view of the flow guiding insert shown in FIG. 3.
  • Fig. 6 is a schematic view showing the structure of a second embodiment of the spark plug of the present invention.
  • Fig. 7 is a schematic structural view of a flow guiding insert of a second embodiment of the present invention.
  • Fig. 8 is a schematic structural view of a flow guiding insert of a third embodiment of the present invention.
  • Fig. 9 is a perspective perspective structural view showing a flow guiding insert of a fourth embodiment of the present invention.
  • Fig. 10 is a schematic structural view of a flow guiding insert of a fifth embodiment of the present invention.
  • Fig. 11 is a view showing the configuration of an ignition system of an internal combustion engine according to Embodiment 6 of the present invention.
  • FIG. 4 is a schematic structural view of Embodiment 1 of the spark plug of the present invention.
  • the spark plug 20 includes a center electrode 21, an insulator 24, a housing 26, and a flow guide insert 28.
  • the insulator 24 is a ceramic insulator having a shaft hole extending in the axial direction.
  • the center electrode 21 is inserted through a shaft hole penetrating the insulator 24 and exposes the end portion 211.
  • the housing 26 has a hollow structure and is sleeved on the surface of the insulator 24.
  • the flow guiding insert 28 is fixedly disposed in the hollow casing 26, the front end of which is opposite to the center electrode 21, the rear end of which is located at the open end of the casing 26, and the outer wall of which is fitted to the inner wall of the casing 26.
  • FIG. 5 is a schematic perspective view of the flow guiding insert shown in FIG. 3 .
  • the flow guiding insert 28 is a columnar body, wherein the shaft is provided with a fire hole 282 extending through the front and rear end faces of the flow guiding insert 28, and a flow guiding hole 283 penetrating the front and rear end faces of the flow guiding insert 28 is disposed around the fire detecting hole 282.
  • the flow guiding hole 283 is in the shape of a spindle, and the inner diameter of the front and rear ports is smaller than the inner diameter of the middle portion and the central portion.
  • the flow guiding hole 283 communicates with the fire injection hole 282 through the inner cavity of the housing at the front end of the flow guiding insert 28.
  • the end portion 211 of the center electrode 21 extends into the fire hole 282 of the flow guiding portion 28, and the inner wall of the fire hole 282 serves as the ground electrode 22, and forms an ignition end portion having a gap of spark discharge with the center electrode 21.
  • the outer surfaces of the center electrode 21 and the ground electrode 22 are welded with a precious metal such as sheet metal to improve the ignition performance.
  • the guide insert 28 can be fixed in the housing 26 in two ways, one of which is that the front end of the flow guide insert 28 is fixed to the housing 26 by welding; the second is: first insert the flow guide insert Inside the housing, the open end of the housing is stamped to form a narrow end of the arcuate surface to secure the flow guide insert 28.
  • a recess or a rib (not shown) is provided at a joint portion of the fire exit hole 282 and the flow guide hole 283 on the front end surface and/or the rear end surface of the flow guide insert to further guide The direction of flow of fuel and mixed gases.
  • the nozzle of the fuel injector directly injects fuel against the spark plug 20, and the flow guiding hole 283 and the intake hole 284 of the flow plug of the spark plug can guide the fuel into the spark plug, avoiding part of the fuel. Residues on the outside of the casing form carbon black stains, which make full use of fuel and improve fuel utilization.
  • the mixed gas formed by the fuel and the air simultaneously fills the cylinder of the combustion chamber. Since the pressure in the cylinder is much larger than the pressure at the ignition end of the spark plug, the mixed gas is passed through the flow guiding hole 283 and the fire detecting hole 282 of the flow guiding insert 28. Promptly advance to the spark plug and fill the ignition end.
  • the ignition end portion of the spark plug When the spark plug is ignited, the ignition end portion of the spark plug is filled with a mixed gas, and the mixed gas around the ignition electrode is discharged between the center electrode 21 and the ground electrode 22, and the gas in the fire hole is The gas is ignited and rapidly expands, and the pressure rapidly increases, which in turn pushes the spark to the cylinder. Further, since the diversion hole stores a large amount of mixed fuel during the intake stroke, a large amount of the mixed fuel in the diversion hole is simultaneously ignited at the moment of ignition of the spark plug, and a strong blasting airflow can be formed to promote the spark. Quickly burst into the cylinder of the internal combustion engine.
  • the pressure at the ignition end is rapidly reduced.
  • the diversion hole is used as a return channel.
  • the cylinder fuel is rapidly accumulated in the ignition end, and the ignited gas sparks quickly reach the cylinder during the fire, thereby realizing the accelerated return of the gas in the spark plug chamber and the cylinder of the combustion chamber, thereby improving the internal combustion engine. Combustion efficiency.
  • the center electrode 21 of the spark plug of the present invention is protected by the flow guiding insert, thereby avoiding the occurrence of deposits and causing corrosion thereof, thereby improving the service life thereof.
  • a plurality of baffles are required to be welded in the casing to form the diversion holes and the fire-breathing holes, and the process is complicated and difficult to implement, and the cost is also high.
  • the flow guiding insert of the present invention and the casing of the spark plug are respectively processed by the processing method of being separately assembled and fixed, which is easy to realize, and can improve the production efficiency of the spark plug.
  • the design of the spindle shape of the air guiding hole can increase the inner cavity capacity of the air guiding hole to form an auxiliary space for the spark plug blasting jet, further improve the strength and efficiency of the spark plug igniting spark injection, the guiding flow
  • the structure of the insert can improve the ignition efficiency and reflux efficiency of the spark plug, thereby improving the combustion efficiency of the internal combustion engine.
  • the spark plug of the second embodiment is substantially the same as that of the first embodiment except that the structure of the flow guiding insert of the spark plug is different.
  • FIG. 6 is a schematic structural view of Embodiment 2 of the spark plug of the present invention.
  • FIG. 7 is a schematic structural view of the flow guiding insert 38 of the second embodiment.
  • the flow guide insert 38 is a columnar body having a fire injection hole 382 and a flow guiding groove 383.
  • the fire hole 382 is circular and located at the central axis of the flow guiding portion 38 and penetrates the front and rear end faces of the flow guiding portion 38.
  • the guide groove 383 is located on the side wall of the flow guiding portion 38.
  • the guide groove 383 is formed by a washing and cutting process, and can be formed into a shape of a triangle, a polygon, an arc, or the like in cross section. Moreover, since the flow guiding insert is an independent processing component, the inner diameter of the guiding groove can be conveniently enlarged so that the inner diameter of the central portion of the guiding groove is larger than the inner diameter of the port. Since the outer wall of the flow guiding insert 38 is fitted to the inner wall of the casing, the guide groove 383 forms a spindle-shaped flow guiding hole with the inner wall of the casing. The orifice is as large as possible in order to increase the space for the blasting flow.
  • the flow guiding groove 383 only penetrates the rear end surface of the flow guiding insert, and the guiding groove 383 in the front end region of the flow guiding insert is further provided with the fire-breathing hole 382.
  • the air inlet hole 384 can be perpendicular to the fire exit hole 382 or form an angle with the fire exit hole 382.
  • the end portion 211 of the center electrode 21 extends into the fire hole 282 of the flow guiding portion 28, and the inner wall of the fire hole 282 serves as the ground electrode 22, and forms an ignition end portion having a gap of spark discharge with the center electrode 21.
  • the ignited gas is directly released through the blast hole 382 toward the cylinder. Further, the air inlet hole 384 can also accelerate the backflow of the mixed gas in the cylinder.
  • the direction of gas recirculation is substantially perpendicular to the side wall of the flow guide insert 38, so that the area near the inlet aperture 384 is the intersection of the lateral flow and the longitudinal flow, which is where the amount of gas flow is greatest. Therefore, as a preferred embodiment of the present embodiment, the end portion of the center electrode is disposed in the vicinity of the intake hole 384, and the position of the ignition end can achieve a rapid accumulation of the cylinder fuel at the time of ignition at the place where the gas flow amount is the largest and the fastest.
  • the ignition end in the case of fire, allows the ignited gas spark to quickly reach the cylinder, realizing the gas in the spark plug cavity and Accelerated backflow in the cylinder of the combustion chamber, thereby improving the combustion efficiency of the internal combustion engine. Thereby, the speed of gas backflow is further increased to improve the combustion efficiency of the internal combustion engine.
  • the spark plug of the third embodiment is substantially the same as that of the first embodiment except that the structure of the flow guiding insert of the spark plug is different.
  • FIG. 8 is a schematic perspective structural view of the flow guiding insert 58 of the third embodiment.
  • the flow guiding insert 58 is a columnar body, wherein the shaft is provided with a fire hole 582 penetrating the front and rear end faces of the flow guiding insert 58, and a flow guiding hole 583 penetrating the front and rear end faces of the flow guiding insert 58 is disposed around the fire detecting hole 582.
  • the inner diameter of the central portion of the flow guiding hole 583 is larger than the inner diameter of the port thereof to form a spindle shape, which communicates with the fire hole 582 through the inner cavity of the housing at the front end of the flow guiding insert 58.
  • the opening of the fire-breathing hole 582 at the rear end of the flow guiding insert 58 protrudes from the open end of the housing and has a flared shape.
  • the opening of the rear end of the fire-emitting hole 582 has a larger diameter than the fire-emitting hole 582.
  • the aperture of the middle section is smaller than the aperture of the open end of the housing.
  • the opening of the fire hole 582 located at the front end of the flow guiding insert 58 is recessed in the front end surface of the flow guiding insert to form an ignition opening.
  • An ignition end having a gap of a spark discharge is formed between the center electrode and the inner wall of the ignition port.
  • the flared opening structure of the fire-breathing hole can further improve the drainage speed of the mixed gas and the jetting speed of the spark when the spark plug is ignited, and the ignition efficiency of the spark plug can be further improved.
  • the spark plug of the fourth embodiment is substantially the same as that of the first embodiment except that the structure of the flow guiding insert of the spark plug is different.
  • FIG. 9 is a schematic structural diagram of the flow guiding insert 68 of the fourth embodiment.
  • the flow guiding insert 68 is a columnar body, wherein the shaft is provided with a fire hole 682 penetrating the front and rear end faces of the flow guiding insert 68, and a flow guiding groove 683 penetrating the front and rear end faces of the flow guiding insert 68 is disposed around the fire detecting hole 682. It forms a flow guiding hole with the inner wall of the casing. .
  • the inner diameter of the central portion of the orifice is larger than the inner diameter of the port, forming a spindle shape that communicates with the fire blast 682 through the interior of the housing at the front end of the flow guide insert 28.
  • the flow guiding groove 683 of the flow guiding insert and the fire detecting hole 682 are in a non-parallel state, and the guiding groove 683 spirally surrounds the fire detecting hole 682.
  • a fire hole opening at a front end of the flow guide insert protrudes from a front end surface of the flow guide insert, and an ignition end portion having a gap of a spark discharge is formed between the center electrode and the front end opening of the fire exit hole.
  • the structure of the flow guiding hole 683 can form a vortex reflow, and the reflux speed of the mixed gas can be further increased to further improve the ignition efficiency of the spark plug.
  • the spark plug of the fifth embodiment is substantially the same as that of the first embodiment except that the structure of the flow guiding insert of the spark plug is different.
  • FIG. 10 is a schematic structural diagram of the flow guiding insert 78 of the embodiment 5.
  • the flow guiding insert 78 is a columnar body.
  • a fire hole 782 and a flow guiding groove 783 are provided thereon.
  • the fire hole 782 is circular and located at the central axis of the flow guiding portion 78 and penetrates the front and rear end faces of the flow guiding portion 78.
  • the guide groove 783 is located on the side wall of the flow guiding portion 78 and penetrates the front and rear end faces of the flow guiding portion 78.
  • a drainage groove 784 extending through the plurality of flow guiding grooves 783 is further included on the side wall of the flow guiding insert 78.
  • the inner diameter of the central region of the deflector 783 is greater than the inner diameter of its port.
  • the drain groove 784 can be perpendicular to the fire exit hole, or the drain groove 784 surrounds the flow guide groove 783 and forms an angle with the fire injection hole.
  • the guide groove 783 is first formed by the washing and cutting process, and then the horizontally and horizontally cuts are formed to form the drainage groove 784 centering on the fire injection hole.
  • the guide groove 783 forms a spindle-shaped flow guiding hole with the inner wall of the casing
  • the drainage groove 784 forms a drainage hole with the inner wall of the casing.
  • the center electrode of the spark plug extends into the fire blasting hole
  • the grounding electrode is located on the inner wall of the flow guiding insert in the fire blasting hole and is perpendicular to the center electrode to form an ignition end portion having a gap of spark discharge.
  • the firing end can be located at the front end, or the middle, or the rear end of the flow guide insert.
  • the flow guiding grooves are connected through the drainage groove, and the respective flow guiding holes are penetrated through the drainage holes to form a large mixed gas storage space, which can further improve the explosive force of the spark injection of the spark plug at the ignition moment. Thereby further improving its ignition efficiency.
  • FIG. 11 is a schematic structural view of an ignition system of the internal combustion engine of the present invention.
  • the ignition system of the internal combustion engine includes a combustion chamber 81, a fuel injector 82, and a spark plug 83.
  • the combustion chamber 81 includes a cavity 811 having a cavity.
  • the upper end of the cylinder 811 has a threaded spark plug mounting passage 812 for mounting the spark plug 83 on the combustion chamber 81, and a spark plug mounting passage 812.
  • a fuel injector mounting passage 814 is used to mount the fuel injector 82 on the combustion chamber 81. Since the size of the spark plug itself is limited, in order to further increase the storage space of the spark plug mixed gas, a storage groove 816 is further provided on the inner wall of the spark plug mounting passage 812.
  • the spark plug 83 can employ the spark plugs of the above-described first to sixth embodiments, and a through hole 262 is formed in the housing corresponding to the flow guiding hole of the spark plug.
  • the spark plug 83 is mounted in the spark plug mounting passage 812, and the through hole 262 of the housing is corresponding to the storage slot 816, so that the storage slot of the cylinder and the flow guiding hole of the spark plug communicate through the through hole, thereby
  • the mixed gas storage space of the spark plug is further expanded to form a larger mixed gas fuel storage space.
  • a large amount of mixed fuel in the flow guiding hole is simultaneously ignited at the same time, and a strong blasting airflow can be formed.
  • the spark plug of the present invention may also have various modified embodiments, specifically, the structure of the fire injection hole, the flow guiding hole, the drainage hole, the air inlet hole, and the ground electrode in the flow guiding insert in the above embodiments may be Used in combination with any combination; at the end face of the flow guiding insert, the fire hole and the diversion hole or the guide groove form a fan-like or spiral structure; and, at the front end of the fire hole and/or the flow hole The inner wall of the portion or the rear end portion is provided with threaded ribs or pockets to further guide the flow of the mixed gas.

Landscapes

  • Spark Plugs (AREA)

Abstract

一种火花塞(20),包括绝缘体(24)、中心电极(21)、壳体(26)、导流插件(28)和接地电极(22)。该绝缘体(24)其具有沿轴线方向延伸的轴孔。该中心电极(21)插入贯穿该绝缘体(24)的轴孔并露出端部。该壳体(26)为中空柱状,套设在该绝缘体(24)表面。该导流插件(28)为柱状体,中心具有一贯穿其前后端面的喷火孔(282),其固定设置在该壳体(26)内,前端与中心电极(21)正对,后端位于壳体(26)的开口端,其外壁与壳体(26)的内壁贴合。该导流插件(28)还包括分布于该喷火孔(282)的四周的导流孔(283),该导流孔(283)中心内径大于其端口的内径,形成纺锤状。该接地电极(22)设置壳体(26)的内壁上,或设置在导流插件(28)的前端的喷火孔(282)周边,与中心电极(21)的端部之间形成具有火花放电的间隙的点火端部。该火花塞可提高火花塞的点火效率和回流效率,从而提高了内燃机的燃烧效率。

Description

一种火花塞及使用该火花塞的内燃机的点火系统 技术领域
本发明涉及一种内燃机的点火领域,尤其是涉及一种火花塞,及使用该火花塞的内燃机的点火系统。
背景技术
内燃机是将液体或气体燃料与空气混合后,直接输入汽缸内部的高压燃烧室燃烧爆发产生动力。是将热能转化为机械能的一种热机。火花塞是安装到内燃机上,用于燃烧室内的混合气体的打火。请参阅图1,其是现有技术中的内燃机的点火系统的结构示意图。该内燃机的点火系统包括燃烧室11、燃料喷射器12和火花塞13。该燃烧室11包括一空腔的缸体111,缸体111的上端具有一内壁为螺纹状的火花塞安装通道112,用以将火花塞13安装在燃烧室11上;以及在火花塞安装通道112附近具有一燃料喷射器安装通道114,用以将燃料喷射器12安装在燃烧室11上。请同时参阅图2,其是现有技术火花塞13的结构示意图。该火花塞13包括一中心电极132、绝缘体134、壳体136和接地电极138。该绝缘体134为陶瓷绝缘体,具有沿轴线方向延伸的轴孔,该中心电极132插入贯穿该绝缘体134的轴孔。该壳体136设置在该绝缘体134的外周,壳体136的表面具有螺纹。该接地电极138与该壳体136的端部连接,并弯曲延伸与中心电极132相对,与中心电极132之间形成火花放电的间隙。该中心电极132与接地电极138之间形成点火端部,该点火端部通过脉冲电力的作用产生电弧,进而产生电火花点燃电极周围的混合气体,达到自动点火的目的。
通常,该燃烧室11为圆形或椭圆形缸体,为了能产生强力燃烧效果,会将火花塞13的中心电极与接地电极形成的点火端部设置在燃烧室11的缸体111内,即该火花塞13通过其壳体136与火花塞安装通道112的螺纹扭合,火花塞13的壳体136填充了整个火花塞安装通道112,火花塞13穿过该火花塞安装通道112使其点火端部伸出至燃烧室11的缸体111内。为了增强点火系统的燃烧效率,该燃料喷射器12会设置在火花塞13的附近,该燃料喷射器12的喷嘴对着该火花塞13的点火端部一侧进行喷射。
但是,通常火花塞13的壳体136会伸出部分至燃烧室11的缸体内,由于燃料喷射器12是设置在火花塞13的一侧边,壳体136会阻挡部分燃料直接到达火花塞的点火端部,从而影响燃烧效率;长期使用后,通常会在燃料喷射器12一侧的壳体上形成燃烧不完全的炭黑渍,即燃烧不完全引起的局部积碳现象,降低燃烧效率,影响了发动机的输出功率。并且,由于火花塞的工作环境极端恶劣,该中心电极132和接地电极138在燃烧室11内高温高压条件下需要点火无数次,而该电极上会出现沉积物并导致其腐蚀,导致火花塞13的情况恶化。
为了减缓火花塞的恶化速度,技术人员对火花塞进行了各种改进。如通过提高电极材料的抗腐蚀性能或增加电极数量来克服电极的腐蚀问题。但是,提高电极材料的抗腐蚀性能需要提出新的电极材料,在采用现有电极材料的情况下无法改变电极的腐蚀问题;对于同时设置多个电极,由于该多个电极同样曝露在燃烧室中,将会同时受到侵蚀,并不能从根本上解决电极的抗腐蚀问题。
又或者将中心电极和接地电极设置在壳体的空腔内。请参阅图3,其是现有技术中另一火花塞的结构示意图。该火花塞包括外壳和固定安装于外壳内的绝缘瓷芯;该绝缘瓷芯内装有中心电极7;该中心电极的上端伸出绝缘瓷芯形成一个放电末端17;该外壳具有一个喷火腔11,该放电末端17处于喷火腔内;该喷火腔11内设置有接近放电末端的接地电极13。将中心电极和接地电极构成的放电点火装置设置于喷火腔11内,先点燃喷火腔11内的混合燃气,再利用喷火腔11喷出的火焰点燃内燃机燃烧室的混合气体,创造了一个高效的点火环境,并降低电极上沉积物的沉积速度。但是,对于将中心电极和接地电极设置在壳体的空腔内,会使两电极产生的火花进入燃烧室的路程增加,进而使燃烧室的混合气体的点燃时间产生延迟,由于内燃机运转的压缩冲程和膨胀冲程的时间为固定时间,则混合气体的燃烧时间缩短,在一定程度上降低了内燃机的燃烧效率,不利于节能环保。
发明内容
本发明的目的在于克服现有技术的缺点与不足,提供一种燃烧效率高的火花塞。
本发明是通过以下技术方案实现的:一种火花塞,包括绝缘体、中心电极、壳体、导流插件和接地电极。该绝缘体其具有沿轴线方向延伸的轴孔。该中心电极插入贯穿该绝缘体的轴孔并露出端部。该壳体为中空柱状,套设在该绝缘体表面。导流插件,其为柱状体,中心具有一贯穿其前后端面的喷火孔,该导流插件固定设置在该壳体内,其前端与中心电极正对,其后端位于壳体的开口端,其外壁与壳体的内壁贴合;该导流插件还包括分布于该喷火孔的四周的导流孔,该导流孔中心内径大于其端口的内径,形成纺锤状。该接地电极设置壳体的内壁上,或设置在导流插件的前端的喷火孔周边,与中心电极的端部之间形成具有火花放电的间隙的点火端部。
进一步,该导流插件还包括贯穿其前后端的导流孔,该导流孔分布于该喷火孔的四周;或该导流插件的侧壁在轴向上设有导流槽,该导流槽与壳体的内壁形成纺锤状的导流孔。
进一步,该导流插件还包括进气孔,其设置在该导流槽上并与该喷火孔贯通。
进一步,在该导流插件的侧壁上还包括与该喷火孔垂直并贯穿该多条导流槽的引流槽。
进一步,位于该导流插件的后端的喷火孔开口突出或凹入于该壳体的开口端,并呈喇叭 状,该喷火孔后端开口的孔径大于该喷火孔中段的孔径,并小于该壳体开口端的孔径。
进一步,位于该导流插件的前端的喷火孔开口突出于该导流插件前端面,该中心电极与该喷火孔前端开口之间形成具有火花放电的间隙的点火端部。
或者,位于该导流插件的前端的喷火孔开口内凹于该导流插件前端端面,形成一个点火口,该中心电极与该点火口的内壁之间形成具有火花放电的间隙的点火端部。
进一步,该导流插件的导流孔螺旋环绕该喷火孔。
进一步,该导流插件的前端通过焊接固定在该壳体内;或者该导流插件位于壳体内,该壳体的开口端通过冲压形成弧面窄口端,以将该导流插件固定。
此外,本发明还提供了一种内燃机的点火系统,其包括燃烧室和火花塞,该燃烧室包括一空腔的缸体,在缸体的内壁上具有一火花塞安装通道;该火花塞安装在该火花塞安装通道上。该火花塞为上述提及的任意一种火花塞。
进一步,在该缸体的火花塞安装通道上还设有存储槽,该火花塞的导流孔对应的壳体上设有通孔,该缸体的存储槽和导流孔通过通孔连通。相对于现有技术,本发明的火花塞更充分的利用燃料,提高了燃料的利用率。该导流插件的结构能够提高火花塞的点火效率和回流效率,从而提高了内燃机的燃烧效率。
相对于现有技术,本发明的内燃机的点火系统避免了部分燃料残留在火花塞壳体外部形成炭黑渍,更充分的利用燃料,提高了燃料的利用率。
以下结合说明书附图对本发明的火花塞进行详细说明。
附图说明
图1是现有技术中的内燃机的点火系统的结构示意图。
图2是现有技术中一种火花塞的结构示意图。
图3是现有技术中另一种火花塞的结构示意图。
图4是本发明的火花塞的实施例1结构示意图。
图5是图3所示的导流插件的立体透视结构示意图。
图6是本发明的火花塞的实施例2的结构示意图。
图7是本发明的实施例2的导流插件的结构示意图。
图8是本发明的实施例3的导流插件的结构示意图。
图9是本发明的实施例4的导流插件的立体透视结构示意图。
图10是本发明的实施例5的导流插件的结构示意图。
图11是本发明的实施例6的内燃机的点火系统的结构示意图。
具体实施方式
实施例1
请参阅图4,其是本发明的火花塞的实施例1结构示意图。该火花塞20包括中心电极21、绝缘体24、壳体26和导流插件28。该绝缘体24为陶瓷绝缘体,其具有沿轴线方向延伸的轴孔。该中心电极21插入贯穿该绝缘体24的轴孔并露出端部211。该壳体26为中空结构,套设在该绝缘体24的表面。该导流插件28固定设置在该中空的壳体26内,其前端与中心电极21正对,其后端位于壳体26的开口端,其外壁与壳体26的内壁贴合。
请同时参阅图5,其是图3所示导流插件的立体结构示意图。该导流插件28为柱状体,其中轴上设置有贯穿该导流插件28前后端面的喷火孔282,在喷火孔282的四周设置有贯穿该导流插件28前后端面的导流孔283。该导流孔283为纺锤状,其前后端口的内径小于其中部及中心区域的内径。该导流孔283通过在导流插件28前端的壳体的内腔与喷火孔282连通。该中心电极21的端部211延伸至该导流部28的喷火孔282内,该喷火孔282的内壁作为接地电极22,与中心电极21形成具有火花放电的间隙的点火端部。该中心电极21和接地电极22的外表面均焊接贵金属,如铱金,以提高其点火的性能。该导流插件28可通过两种方式固定在该壳体26内,其一为:该导流插件28的前端通过焊接固定在该壳体26上;其二为:首先将该导流插件插入该壳体内,对该壳体的开口端进行冲压,形成弧面窄口端,以将该导流插件28固定。
作为对本实施例的进一步改进,在该导流插件的前端面和/或后端面上的喷火孔282和导流孔283的连接部位设置凹穴或凸棱(图未示),以进一步引导燃料和混合气体的流动方向。
在内燃机的进气冲程时,燃料喷射器的喷嘴直接对着该火花塞20进行喷射燃料,火花塞的导流插件的导流孔283和进气孔284可引导该燃料进入火花塞内,避免了部分燃料残留在壳体外部形成炭黑渍,更充分的利用燃料,提高了燃料的利用率。另外,燃料和空气形成的混合气体同时充满燃烧室的缸体,由于缸体内的压强远大于火花塞点火端部的压强,混合气体通过导流插件28的导流孔283和喷火孔282被迅速推进至火花塞并充满点火端部周围。
在火花塞的脉冲点火时,该火花塞的喷火孔内的点火端部周围充满了混合气体,该中心电极21和接地电极22之间放电引燃电极周围的混合气体,此时喷火孔内的气体被引燃并迅速膨胀,压力迅速增大,进而推动火花向缸体方向释放。进一步,由于该导流孔在进气冲程时储存了大量混合燃料,在火花塞点火瞬间,该导流孔内大量的混合燃料同时瞬间被引燃,可形成一强度很大的爆破气流,推动火花迅速向内燃机缸体迸发。
在脉冲点火的火花迸发后,点火端的压强迅速减小,此时,该导流孔作为回流通道,加 速缸体内混合气体的回流。在点火时气缸燃料迅速大量聚集在点火端,又能在喷火时使点燃的气体火花迅速到达缸体,实现了气体在火花塞腔体内和燃烧室的缸体内的加速回流,从而提高了内燃机的燃烧效率。
相对于现有技术,本发明的火花塞的中心电极21通过导流插件的保护,避免了出现沉积物并导致其腐蚀的情况,提高了其使用寿命。其次,在传统的工艺中,需要在壳体内焊接设置多个挡片以形成该导流孔和喷火孔,工艺复杂不易实现,成本亦很高。而本发明的导流插件与火花塞的壳体采用分别加工后再套合固定的加工方法,容易实现,且可提高火花塞的生产效率。进一步,该导流孔的纺锤体形状的设计可增大该导流孔的内腔容量,以形成一火花塞燃爆喷射的辅助空间,进一步提高火花塞点燃火花喷射的强度及效率,,该导流插件的结构能够提高火花塞的点火效率和回流效率,从而提高了内燃机的燃烧效率。
实施例2
本实施例2的火花塞与实施例1的大致相同,其区别仅在于火花塞的导流插件的结构相异。请同时参阅图6和图7,其中,图6是本发明的火花塞的实施例2的结构示意图。图7是本实施例2的导流插件38的结构示意图。该导流插件38为柱状体,其上设置有喷火孔382和导流槽383。其中,该喷火孔382为圆形,位于该导流部38的中轴处,并贯穿该导流部38的前后端面。该导流槽383位于该导流部38的侧壁上。该导流槽383是通过洗切割工艺形成,可形成横截面为三角形、多边形、弧形等形状。并且由于该导流插件为独立加工部件,因此,可方便的对该导流槽的内径进行扩大加工,使该导流槽的中心区域的内径大于其端口的内径。由于该导流插件38的外壁与壳体的内壁贴合,则该导流槽383与壳体的内壁形成纺锤状的导流孔。该导流孔根据尺寸尽可能地大,以增加燃爆导流的空间。进一步,在本实施例中,该导流槽383仅贯通该导流插件的后端面,而在该导流插件的前端区域的导流槽383上还设有与该喷火孔382贯通的进气孔384。该进气孔384可与该喷火孔382垂直,或与该喷火孔382形成一定的角度。该中心电极21的端部211延伸至该导流部28的喷火孔282内,该喷火孔282的内壁作为接地电极22,与中心电极21形成具有火花放电的间隙的点火端部。
当该火花塞点火时,被引燃的气体直接通过该喷火孔382向缸体方向释放。进一步,该进气孔384还可以加速缸体内混合气体的回流。气体回流的方向基本上是垂直于该导流插件38的侧壁的,所以,在进气孔384附近的区域就是横向气流与纵向气流的交汇处,是气体流动量最大的地方。因此,作为本实施例的优选方式,将中心电极的端部设置在进气孔384的附近,在气体流动量最大最快地方,使点火端的位置既能实现在点火时气缸燃料迅速大量聚集在点火端,又能在喷火时使点燃的气体火花迅速到达缸体,实现了气体在火花塞腔体内和 燃烧室的缸体内的加速回流,从而提高了内燃机的燃烧效率。从而进一步提高气体回流的速度来提高内燃机的燃烧效率。
实施例3
本实施例3的火花塞与实施例1的大致相同,其区别仅在于火花塞的导流插件的结构相异。请参阅图8,其是本实施例3的导流插件58的透视结构示意图。该导流插件58为柱状体,其中轴上设置有贯穿该导流插件58前后端面的喷火孔582,在喷火孔582的四周设置有贯穿该导流插件58前后端面的导流孔583。该导流孔583中心区域的内径大于其端口的内径,形成纺锤状,其通过在导流插件58前端的壳体的内腔与喷火孔582连通。在本实施例中,位于该导流插件58的后端的喷火孔582开口突出于该壳体的开口端,并呈喇叭状,该喷火孔582后端开口的孔径大于该喷火孔582中段的孔径,并小于该壳体开口端的孔径。位于该导流插件58的前端的喷火孔582的开口内凹于该导流插件的前端端面,形成一个点火口。中心电极与该点火口的内壁之间形成具有火花放电的间隙的点火端部。
本实施例中,喷火孔的喇叭状开口结构能够进一步提高火花塞点火时的混合燃气的引流速度和火花的喷射速度,可进一步提高火花塞的点火效率。
实施例4
本实施例4的火花塞与实施例1的大致相同,其区别仅在于火花塞的导流插件的结构相异。请参阅图9,其是本实施例4的导流插件68的结构示意图。该导流插件68为柱状体,其中轴上设置有贯穿该导流插件68前后端面的喷火孔682,在喷火孔682的四周设置有贯穿该导流插件68前后端面的导流槽683,其与壳体的内壁形成导流孔。。该导流孔中心区域的内径大于其端口的内径,形成纺锤状,其通过在导流插件28前端的壳体的内腔与喷火孔682连通。进一步,该导流插件的导流槽683与该喷火孔682为非平行状态,而是该导流槽683螺旋环绕该喷火孔682。位于该导流插件的前端的喷火孔开口突出于该导流插件前端面,该中心电极与该喷火孔前端开口之间形成具有火花放电的间隙的点火端部。
该导流孔683的结构设置能够形成漩涡回流,可进一步提高混合气体的回流速度,以进一步提高火花塞的点火效率。
实施例5
本实施例5的火花塞与实施例1的大致相同,其区别仅在于火花塞的导流插件的结构相异。请参阅图10,其是本实施例5的导流插件78的结构示意图。该导流插件78为柱状体, 其上设置有喷火孔782和导流槽783。其中,该喷火孔782为圆形,位于该导流部78的中轴处,并贯穿该导流部78的前后端面。该导流槽783位于该导流部78的侧壁上,并贯穿该导流部78的前后端面。进一步,在该导流插件78的侧壁上还包括贯穿该多条导流槽783的引流槽784。该导流槽783的中心区域的内径大于其端口的内径。该引流槽784可与该喷火孔垂直,或该引流槽784环绕该导流槽783并与喷火孔形成一定的角度。加工时,通过洗切割工艺,首先形成导流槽783,然后再以喷火孔为中心,水平横向切割形成引流槽784。由于该导流插件78的外壁与壳体的内壁贴合,则该导流槽783与壳体的内壁形成纺锤状的导流孔,该引流槽784与壳体的内壁形成引流孔。该火花塞的中心电极伸入喷火孔内,接地电极位于喷火孔内的导流插件的内壁上,并与中心电极垂直正对,形成具有火花放电的间隙的点火端部。该点火端部可位于该导流插件的前端,或中段,或后端。在本实施例中,通过引流槽将导流槽连通,通过该引流孔将各导流孔贯穿起来,形成一个大的混合燃气储存空间,可进一步提高火花塞在引燃瞬间的火花喷射的爆发力,从而进一步提高其点火效率。
实施例6
请参阅图11,其是本发明内燃机的点火系统的结构示意图。该内燃机的点火系统包括燃烧室81、燃料喷射器82和火花塞83。该燃烧室81包括一空腔的缸体811,缸体811的上端具有一内壁为螺纹状的火花塞安装通道812,用以将火花塞83安装在燃烧室81上;以及在火花塞安装通道812附近具有一燃料喷射器安装通道814,用以将燃料喷射器82安装在燃烧室81上。由于火花塞本身的体积大小有限,因此,为了进一步提高火花塞混合气体的存储空间,在该火花塞安装通道812的内壁上还设有存储槽816。该火花塞83可采用上述实施例1~6中的火花塞,该火花塞的导流孔对应的壳体上设有通孔262。该火花塞83旋钮安装在该火花塞安装通道812内,并使该其壳体上的通孔262与存储槽816对应,使该缸体的存储槽和火花塞的导流孔通过通孔连通,从而对火花塞的混合气体存储空间进行进一步的扩展,形成更大的混合气体燃料存储空间,在火花塞点火瞬间,该导流孔内大量的混合燃料同时瞬间被引燃,可形成一强度很大的爆破气流,推动火花迅速向内燃机缸体迸发。另外,本发明的火花塞还可以有多种变形实施例,具体为上述各实施例中的导流插件中喷火孔、导流孔、引流孔、进气孔、以及接地电极的设置的结构可任意搭配结合使用;在该导流插件的端面,该喷火孔和导流孔或导流槽形成扇叶状或螺旋形的结构;以及,在该喷火孔和/或导流孔的前端部或后端部的内壁设有螺纹状凸棱或凹穴以进一步引导混合气体的流向。
本发明并不局限于上述实施方式,如果对发明的各种改动或变形不脱离本发明的精神和 范围,倘若这些改动和变形属于本发明的权利要求和等同技术范围之内,则本发明也意图包含这些改动和变形。

Claims (11)

  1. 一种火花塞,其特征在于,包括
    ——绝缘体,其具有沿轴线方向延伸的轴孔;
    ——中心电极,其插入贯穿该绝缘体的轴孔并露出端部;
    ——壳体,其为中空柱状,该壳体套设在该绝缘体表面;
    ——导流插件,其为柱状体,中心具有一贯穿其前后端面的喷火孔,该导流插件固定设置在该壳体内,其前端与中心电极正对,其后端位于壳体的开口端,其外壁与壳体的内壁贴合;该导流插件还包括分布于该喷火孔的四周的导流孔,该导流孔中心内径大于其端口的内径,形成纺锤状;
    ——接地电极,其设置壳体的内壁上,或设置在导流插件的前端的喷火孔周边,与中心电极的端部之间形成具有火花放电的间隙的点火端部。
  2. 根据权利要求1所述的火花塞,其特征在于:该导流插件的侧壁在轴向上设有导流槽,该导流槽与壳体的内壁形成纺锤状的导流孔。
  3. 根据权利要求2所述的火花塞,其特征在于:该导流插件还包括进气孔,其设置在该导流槽上并与该喷火孔贯通。
  4. 根据权利要求2所述的火花塞,其特征在于:在该导流插件的侧壁上还包括贯穿该多条导流槽的引流槽。
  5. 根据权利要求2所述的火花塞,其特征在于:位于该导流插件的后端的喷火孔开口突出或凹入于该壳体的开口端,并呈喇叭状,该喷火孔后端开口的孔径大于该喷火孔中段的孔径,并小于该壳体开口端的孔径。
  6. 根据权利要求2所述的火花塞,其特征在于:位于该导流插件的前端的喷火孔开口突出于该导流插件前端面,该中心电极与该喷火孔前端开口之间形成具有火花放电的间隙的点火端部。
  7. 根据权利要求6所述的火花塞,其特征在于:位于该导流插件的前端的喷火孔开口内凹于该导流插件前端端面,形成一个点火口,该中心电极与该点火口的内壁之间形成具有火花放电的间隙的点火端部。
  8. 根据权利要求2-8中任一权利要求所述的火花塞,其特征在于:该导流插件的导流孔螺旋环绕该喷火孔。
  9. 根据权利要求9所述的火花塞,其特征在于:该导流插件的前端通过焊接固定在该壳体内;或者该导流插件位于壳体内,该壳体的开口端通过冲压形成弧面窄口端,以将该导流插件固定。
  10. 一种内燃机的点火系统,包括燃烧室和火花塞,该燃烧室包括一空腔的缸体,在缸体的内壁上具有一火花塞安装通道;该火花塞安装在该火花塞安装通道上,其特征在于:该火花塞为权利要求1-9中的任意一火花塞。
  11. 根据权利要求10所述的内燃机的点火系统,其特征在于:在该缸体的火花塞安装通道上还设有存储槽,该火花塞的导流孔对应的壳体上设有通孔,该缸体的存储槽和导流孔通过通孔连通。
PCT/CN2014/091864 2014-01-29 2014-11-21 一种火花塞及使用该火花塞的内燃机的点火系统 WO2015113438A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201410043038.7A CN103779788B (zh) 2014-01-29 2014-01-29 一种火花塞及使用该火花塞的内燃机的点火系统
CN201410043038.7 2014-01-29

Publications (1)

Publication Number Publication Date
WO2015113438A1 true WO2015113438A1 (zh) 2015-08-06

Family

ID=50571762

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2014/091864 WO2015113438A1 (zh) 2014-01-29 2014-11-21 一种火花塞及使用该火花塞的内燃机的点火系统

Country Status (2)

Country Link
CN (1) CN103779788B (zh)
WO (1) WO2015113438A1 (zh)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103746291B (zh) * 2014-01-29 2015-11-04 张蝶儿 一种火花塞
CN103779788B (zh) * 2014-01-29 2015-11-25 张蝶儿 一种火花塞及使用该火花塞的内燃机的点火系统
CN105633800B (zh) * 2014-10-31 2017-03-29 张蝶儿 一种火花塞
CN106549305B (zh) * 2015-09-21 2019-02-05 张蝶儿 一种火花塞
CN106549303B (zh) * 2015-09-21 2019-02-05 张蝶儿 一种火花塞
CN106549306B (zh) * 2015-09-21 2019-03-26 何东铖 一种火花塞

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB119419A (en) * 1918-01-14 1918-10-03 Henri Victor Jules Jouffret Improvements relating to Sparking Plugs for Internal Combustion Engines.
GB545351A (en) * 1940-03-13 1942-05-21 H B Motor Corp Improvements in or relating to spark plugs
US2895069A (en) * 1954-10-08 1959-07-14 Jet Ignition Co Inc Spark plugs
US3056899A (en) * 1959-11-23 1962-10-02 William G Clayton Spark plug adapter
CN101006255A (zh) * 2004-06-24 2007-07-25 伍德沃德控制器公司 预燃室火花塞
CN103259195A (zh) * 2013-05-03 2013-08-21 张蝶儿 一种高效点火的火花塞
CN103746291A (zh) * 2014-01-29 2014-04-23 张蝶儿 一种火花塞
CN103779788A (zh) * 2014-01-29 2014-05-07 张蝶儿 一种火花塞及使用该火花塞的内燃机的点火系统
CN203826770U (zh) * 2014-01-29 2014-09-10 张蝶儿 一种火花塞及使用该火花塞的内燃机的点火系统
CN203826769U (zh) * 2014-01-29 2014-09-10 张蝶儿 一种火花塞

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1538750A (en) * 1922-08-25 1925-05-19 Scognamillo Salvatore Spark plug
US6013973A (en) * 1997-10-24 2000-01-11 Sato; Jun Spark plug having a sub-combustion chamber for use in fuel ignition systems
JP4106767B2 (ja) * 1998-10-16 2008-06-25 株式会社日本自動車部品総合研究所 スパークプラグ

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB119419A (en) * 1918-01-14 1918-10-03 Henri Victor Jules Jouffret Improvements relating to Sparking Plugs for Internal Combustion Engines.
GB545351A (en) * 1940-03-13 1942-05-21 H B Motor Corp Improvements in or relating to spark plugs
US2895069A (en) * 1954-10-08 1959-07-14 Jet Ignition Co Inc Spark plugs
US3056899A (en) * 1959-11-23 1962-10-02 William G Clayton Spark plug adapter
CN101006255A (zh) * 2004-06-24 2007-07-25 伍德沃德控制器公司 预燃室火花塞
CN103259195A (zh) * 2013-05-03 2013-08-21 张蝶儿 一种高效点火的火花塞
CN103746291A (zh) * 2014-01-29 2014-04-23 张蝶儿 一种火花塞
CN103779788A (zh) * 2014-01-29 2014-05-07 张蝶儿 一种火花塞及使用该火花塞的内燃机的点火系统
CN203826770U (zh) * 2014-01-29 2014-09-10 张蝶儿 一种火花塞及使用该火花塞的内燃机的点火系统
CN203826769U (zh) * 2014-01-29 2014-09-10 张蝶儿 一种火花塞

Also Published As

Publication number Publication date
CN103779788A (zh) 2014-05-07
CN103779788B (zh) 2015-11-25

Similar Documents

Publication Publication Date Title
WO2015113439A1 (zh) 一种火花塞
WO2015113438A1 (zh) 一种火花塞及使用该火花塞的内燃机的点火系统
CN104426057B (zh) 一种火花塞及使用该火花塞的内燃机的点火系统
JP2008523547A (ja) 点火プラグ
CN104767123A (zh) 一种火花塞
CN103956654A (zh) 一种火花塞
CN203826770U (zh) 一种火花塞及使用该火花塞的内燃机的点火系统
CN203826769U (zh) 一种火花塞
CN203434440U (zh) 一种火花塞
CN203218710U (zh) 一种高效点火的火花塞
CN203434439U (zh) 一种火花塞及使用该火花塞的内燃机的点火系统
CN112443401B (zh) 一种射流引弧型长间距高能等离子体点火器
CN204597221U (zh) 一种火花塞
CN101109518A (zh) 一种工业燃烧器点火枪
WO2015024515A1 (zh) 一种内燃机的点火系统及火花塞在燃烧室的安装方法
CN106549307B (zh) 一种火花塞
CN105119144A (zh) 新型火花塞
CN114961972A (zh) 预燃室和具有其的车辆
CN103259195B (zh) 一种高效点火的火花塞
US20100045157A1 (en) Parabolic dish nozzle spark plug
CN106549303B (zh) 一种火花塞
CN106549304B (zh) 一种火花塞
CN204012190U (zh) 一种火花塞
RU74524U1 (ru) Свеча зажигания
CN203430683U (zh) 一种内燃机的点火系统

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14880547

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14880547

Country of ref document: EP

Kind code of ref document: A1

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC , EPO FORM 1205A DATED 25.04.2017