WO2015113330A1 - Système de navigation autonome utilisant un code d'information d'image pour fournir des informations de correction - Google Patents

Système de navigation autonome utilisant un code d'information d'image pour fournir des informations de correction Download PDF

Info

Publication number
WO2015113330A1
WO2015113330A1 PCT/CN2014/076023 CN2014076023W WO2015113330A1 WO 2015113330 A1 WO2015113330 A1 WO 2015113330A1 CN 2014076023 W CN2014076023 W CN 2014076023W WO 2015113330 A1 WO2015113330 A1 WO 2015113330A1
Authority
WO
WIPO (PCT)
Prior art keywords
module
data
image information
information code
navigation system
Prior art date
Application number
PCT/CN2014/076023
Other languages
English (en)
Chinese (zh)
Inventor
王博
李冰
Original Assignee
北京融智利达科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 北京融智利达科技有限公司 filed Critical 北京融智利达科技有限公司
Publication of WO2015113330A1 publication Critical patent/WO2015113330A1/fr

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C21/00Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00
    • G01C21/005Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00 with correlation of navigation data from several sources, e.g. map or contour matching
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C21/00Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00
    • G01C21/26Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00 specially adapted for navigation in a road network
    • G01C21/34Route searching; Route guidance
    • G01C21/3407Route searching; Route guidance specially adapted for specific applications
    • G01C21/3415Dynamic re-routing, e.g. recalculating the route when the user deviates from calculated route or after detecting real-time traffic data or accidents
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C21/00Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00
    • G01C21/10Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00 by using measurements of speed or acceleration
    • G01C21/12Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00 by using measurements of speed or acceleration executed aboard the object being navigated; Dead reckoning
    • G01C21/16Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00 by using measurements of speed or acceleration executed aboard the object being navigated; Dead reckoning by integrating acceleration or speed, i.e. inertial navigation
    • G01C21/165Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00 by using measurements of speed or acceleration executed aboard the object being navigated; Dead reckoning by integrating acceleration or speed, i.e. inertial navigation combined with non-inertial navigation instruments

Definitions

  • the present invention relates to a navigation system, and more particularly to a navigation system that provides navigation information using image information codes. Background technique
  • Satellite signal failures may occur, such as indoor public places such as shopping malls, or areas where outdoor satellite signals are blocked by obstacles. Where these satellite signals fail, they cannot rely on satellite positioning for navigation.
  • the Chinese invention patent application No. 201210417954.3 discloses a navigation method, apparatus and system based on image information code.
  • the image information code is preset in a key location within the geographical area that needs to be navigated, and the current location information and the direction information are obtained by the information code acquiring unit and the graphic code parsing unit on the navigation device. Then according to the destination, the path acquisition unit can give a planned path. This allows navigation in places where satellite signals are not available indoors.
  • the present invention provides an autonomous navigation system that provides correction information using an image information code.
  • An autonomous navigation system for providing correction information by using an image information code, comprising an image information code preset in a geographical position, and a mobile terminal;
  • the mobile terminal includes an image information code acquisition and analysis module, and an electric a sub-map module;
  • the image information code acquisition parsing module is connected to the electronic map module;
  • the image information code acquisition parsing module acquires current location data and direction data by identifying the image information code;
  • the mobile terminal further includes an electronic compass module and an inertial measurement module; the electronic compass module and the inertial measurement module are respectively connected to the electronic map module;
  • the image information code acquisition parsing module acquires current position data and direction data, initialize the electronic compass module and the inertial measurement module; the electronic compass module and the inertial measurement module according to the mobile terminal measured by itself The mobile data derives current location data and direction data of the mobile terminal; the electronic map module displays the location data and direction data generated by the electronic compass module and the inertial measurement module on a map.
  • the movement data includes a speed and a direction when the mobile terminal moves.
  • the inertial measurement module includes a three-axis gyroscope and a three-axis accelerometer; the output data of the electronic compass module and the output data of the three-axis gyroscope are respectively subjected to quaternion processing to obtain attitude update information; The output data of the three-axis accelerometer is combined with the attitude update information to obtain updated speed data, and the position data and the direction data displayed on the map are obtained. .
  • the pre-processing of the output data of the electronic compass module includes de-polarization filtering; the pre-processing of the output data of the three-axis gyroscope includes low-pass filtering; output data to the three-axis accelerometer The pre-processing includes low pass filtering.
  • the autonomous navigation system further includes a database server, wherein the mobile terminal is connected to the database server through a wireless network; the database server stores useful information corresponding to the image information code; and the database server responds to the request of the mobile terminal, Send the appropriate useful information.
  • the electronic map module gives a path plan based on the current location and the target location.
  • the electronic map module performs constraint processing on the position data and the direction data calculated by the electronic compass module and the inertial measurement module.
  • the prompt information for re-finding the image information code for correction is issued.
  • the image information code includes one of the following information codes: a one-dimensional code, a two-dimensional code, and a graphic code.
  • the image information code includes current location data, direction data, and/or the database server address.
  • an electronic map module on the basis of the existing image information code navigation system, an electronic map module, an electronic compass module and an inertial measurement module are arranged on the mobile terminal.
  • the electronic map module can display the position and orientation data obtained based on the image information code on the map. If the position and direction data obtained by the image information code is used as the initial data, the moved position and direction data (periodically obtained) obtained from the measurement data of the electronic compass module and the inertial measurement module are used as the basis of the real-time navigation information. Displayed on the map. So far, the autonomous navigation system of the present invention can obtain real-time navigation information after leaving the initially positioned image information code position, and can perform effective navigation, thereby achieving the object of the present invention.
  • 1 is a first embodiment of an autonomous navigation system of the present invention.
  • FIG. 2 is a schematic diagram of a mobile terminal in the embodiment shown in FIG. 1.
  • Figure 3 is a second embodiment of the autonomous navigation system of the present invention.
  • Figure 4 is a flow chart showing the operation of the autonomous navigation system of the present invention.
  • FIG. 5 is a schematic diagram of the real-time navigation information outputted by the electronic compass module and the inertial measurement module of the autonomous navigation system of the present invention. detailed description
  • An autonomous navigation system refers to a navigation system that can rely on the navigation device itself (such as the mobile terminal mentioned in the present invention) to provide navigation information without relying on external assistance (such as satellite positioning).
  • the mobile terminal as a navigation device, may be a special handheld mobile device or a similar device such as a smart phone loaded with a specific software.
  • the constraint processing of the data by the electronic map module means that the electronic map module compares the position data and the direction data with the stored map information. If the position data and the direction data deviate from a reasonable path, for example, the position data is in the wall. The position is corrected according to the correction algorithm, and then the correct and reasonable position is displayed on the map (if the position is displayed on the road).
  • An autonomous navigation system that provides correction information using an image information code includes an image information code pre-set at a geographic location and a mobile terminal.
  • the image information code is an image set in a geographical position, such as the image information code set on the wall of a passage in a large shopping mall.
  • the image information code may be a one-dimensional code, a two-dimensional code, or a graphic code.
  • the image information code includes at least data of the current location and data of the direction. The position data is easily acquired because the image information code itself is fixedly disposed at a position, and position data of this position can be set in the image information code in advance.
  • the determining of the direction data may also be calculated: when the mobile terminal reads the image information code, the image information code must be facing, and the operator also faces the image information code. Therefore, the mobile terminal When the image information code is read, its direction data is also determined. Also, the direction data may be set in advance in the image information code. When the mobile terminal reads the image information code set at different positions, the current location data and direction data provided by the image information code can be obtained.
  • FIG 2 shows the principle of the mobile terminal shown in Figure 1.
  • the mobile terminal includes an image information code acquisition parsing module, an electronic map module, an electronic compass module, and an inertial measurement module.
  • the image information code acquisition parsing module, the electronic compass module and the inertial measurement module are respectively connected to the electronic map module.
  • the electronic map module stores the map information in a data manner, and can match the location data in the map information, and through the constraint processing, the specific location information is marked on the map.
  • the electronic map module can give a planned path based on the stored map information and display it on the map.
  • the image information code acquisition parsing module acquires current location data and direction data by identifying the image information code.
  • the image information code acquisition and analysis module generally includes an image acquisition component such as an image capture lens for reading an image information code, and the read image information code is parsed, and the current location data (mobile terminal and operator) is obtained therefrom.
  • Direction data is obtained therefrom.
  • the electronic compass module also called the digital compass, is a module based on electronic technology that uses the geomagnetic field to determine the direction. It is now widely used in smartphones.
  • the inertial measurement module measures the acceleration of travel and integrates the velocity data.
  • the electronic compass module and the inertial measurement module derive the current position data and direction data of the mobile terminal according to the speed and direction of the mobile terminal measured by itself, and output the data to the electronic map module.
  • the submap module is displayed on the map after being constrained. Since the electronic compass module and the inertial measurement module periodically measure and output the position data and the direction data, after the operator leaves the image information code, the position and direction of the traveling process are still displayed in real time on the electronic map module.
  • Figure 5 shows the principle of the real-time navigation information (real-time position and direction) output by the autonomous navigation system's electronic compass module and inertial measurement module.
  • the inertial measurement module includes a three-axis gyroscope and a three-axis accelerometer
  • the electronic compass module includes a three-axis electronic compass.
  • the initialization is that the image information code acquisition parsing module acquires the current position data and the direction data (initialization information) through the image information code, and the inertial measurement module (including the three-axis gyroscope and the three-axis accelerometer) and the electronic compass module (including The three-axis electronic compass is initialized.
  • the initialization information can be corrected as the previous period navigation information to the inertial measurement module and the electronic compass module.
  • the data output from the three-axis gyroscope, the three-axis accelerometer, and the three-axis electronic compass are separately preprocessed.
  • the preprocessing of the data output by the three-axis electronic compass is de-extreme filtering.
  • the three-axis electronic compass signal is susceptible to interference.
  • the output data at a certain time has a large deviation from the output data at the previous time and the latter time, and is called a "wild value". Therefore, in the system application, the de-extreme filtering method is needed to remove the "field value".
  • the de-emphasis filter determines whether the "wild value" is present by setting a threshold (for example, 200% of the data at the previous time).
  • the data after deducting the "field value" is replaced by the arithmetic mean of the data at the previous time and the next time.
  • the preprocessing of the data output by the three-axis gyroscope and the three-axis accelerometer is low-pass filtering.
  • the three-axis gyroscope and the three-axis accelerometer measure the angular velocity and acceleration of the motion, respectively, because the human walking speed is slow, so the high-frequency noise of the two outputs is filtered out by the low-pass filter to complete the preprocessing of the data.
  • the output data of the electronic compass module and the output data of the three-axis gyroscope are subjected to quaternion processing to obtain attitude update information.
  • the quaternion method is prior art and will not be described here. Since the present invention can employ an inertial measurement module with low precision and an electronic compass module, the accuracy of the quaternion method can meet the requirements.
  • the initial value of the quaternion is given by the first step, specifically the direction data, the pitch data, and the roll data given in the first step.
  • the determination of the pitch data and the roll data is based on the following situation: Since the mobile terminal is in a vertical ground state when acquiring the image information code, it is determined that the pitch data and the roll data are data in a horizontal state.
  • the output data of the three-axis accelerometer is subjected to the aforementioned pre-processing and the result of the force coordinate transformation is obtained.
  • the updated speed data is obtained in combination with the posture update information, and the updated position data (autonomous navigation information) displayed on the map is obtained by using the position data of the previous cycle (or the position data obtained by initializing in the first step).
  • the local gravity acceleration value required at this time can be queried according to the local gravity model according to the position data provided in the first step.
  • the force coordinate transformation is prior art and will not be described here.
  • the embodiment shown in Fig. 3 differs from the embodiment shown in Fig. 1 in that a database server is also provided, to which the mobile terminal is connected via a wireless network.
  • the address information of the corresponding database server is also set in the image information code, so that the mobile terminal can establish a connection with the database server.
  • the database server stores useful information for each image information code.
  • the useful information referred to herein may be the position and direction set in the aforementioned image information code, or other information related to the image information code position, for example, a map inside or around the building in which the image information code is located, and nearby Service facilities (toilet, elevator, exit, parking space, etc.), store discount information, advertising information, etc.
  • the database server sends corresponding useful information to the mobile terminal in response to the request of the mobile terminal.
  • FIG. 4 shows the working process of the autonomous navigation system of the present invention. The details are as follows.
  • the mobile terminal After the operator finds the image information code, the mobile terminal acquires the image information code, and the image information code acquisition parsing module in the mobile terminal parses the current position and direction data.
  • the current position and orientation data obtained in the previous step can be used to initialize the electronic compass module and the inertia measurement module. Since the mobile terminal should be in a stationary state when acquiring the image information code, the inertial measurement module is initialized with a speed of zero.
  • the operator searches for and selects a destination on the map provided by the electronic map module, and the electronic map module plans the optimal path according to the current location and displays it on the map.
  • the current location information is obtained and displayed.
  • the inertial measurement module is used to measure the acceleration of the travel, and the speed is obtained after integration.
  • the position information provided by the electronic compass module and the inertial measurement module is used for the dead reckoning to obtain the current position and direction.
  • the electronic map module constrains the position and orientation obtained from the electronic compass module and the inertial measurement module and displays them on the map.
  • step 4 it is determined whether the deviation between the position and direction obtained by the electronic compass module and the inertial measurement module and the optimal path exceeds a threshold (for example, deviated by 10 meters). If the threshold is not exceeded, step 4 is continued, which is achieved. The purpose of displaying real-time navigation information during travel. If the threshold is exceeded, go to step 6.
  • a threshold for example, deviated by 10 meters
  • step 5 If it is determined in step 5 that the deviation between the position and direction obtained by the electronic compass module and the inertial measurement module and the optimal path exceeds the threshold value, a prompt message for re-finding the image information code for correction is issued to prompt the operator to re-execute the first
  • the step is to prompt the operator to find the most recent image information code to correct the deviation.

Landscapes

  • Engineering & Computer Science (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Automation & Control Theory (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Navigation (AREA)

Abstract

L'invention concerne un système de navigation autonome utilisant un code d'information d'image pour fournir des informations de correction, comprenant un code d'information d'image et un terminal mobile préréglé à un emplacement géographique. Le terminal mobile comprend un module d'acquisition et d'analyse de code d'information d'image et un module de carte électronique. Le terminal mobile comprend également un module de boussole électronique et un module de mesure inertielle. Le module de boussole électronique et le module de mesure inertielle sont connectés au module de carte électronique. Le module de carte électronique affiche sur la carte les données de position et les données directionnelles générées par le module de boussole électronique et le module de mesure inertielle. Le système de navigation réalise l'objectif consistant à délivrer en sortie des informations de navigation en temps réel après avoir obtenu un code d'information d'image.
PCT/CN2014/076023 2014-01-28 2014-04-23 Système de navigation autonome utilisant un code d'information d'image pour fournir des informations de correction WO2015113330A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201410042811.8 2014-01-28
CN201410042811.8A CN103776443A (zh) 2014-01-28 2014-01-28 一种利用图像信息码提供校正信息的自主导航系统

Publications (1)

Publication Number Publication Date
WO2015113330A1 true WO2015113330A1 (fr) 2015-08-06

Family

ID=50568967

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2014/076023 WO2015113330A1 (fr) 2014-01-28 2014-04-23 Système de navigation autonome utilisant un code d'information d'image pour fournir des informations de correction

Country Status (2)

Country Link
CN (1) CN103776443A (fr)
WO (1) WO2015113330A1 (fr)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3480561A4 (fr) * 2016-06-29 2019-08-28 Hangzhou Hikvision Digital Technology Co., Ltd. Procédé, dispositif et système de navigation

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104007460B (zh) * 2014-05-30 2017-02-08 北京中电华远科技有限公司 一种消防员单兵定位导航装置
CN105806331A (zh) * 2014-12-30 2016-07-27 Tcl集团股份有限公司 一种应用于室内机器人的定位方法和室内机器人
CN105806337B (zh) * 2014-12-30 2019-07-19 Tcl集团股份有限公司 一种应用于室内机器人的定位方法和室内机器人
CN106441266B (zh) * 2015-08-05 2021-07-09 腾讯科技(深圳)有限公司 基于二维码的导航方法以及导航系统
CN106643752A (zh) * 2015-10-30 2017-05-10 中国移动通信集团公司 一种导航信息生成方法、系统及终端设备
CN107402009A (zh) * 2016-05-20 2017-11-28 奇酷互联网络科技(深圳)有限公司 一种室内导航的方法及移动终端
CN106052696B (zh) * 2016-08-17 2017-05-03 西安理工大学 一种基于移动终端的博物馆实时路径诱导方法
CN109839108A (zh) * 2017-11-29 2019-06-04 云南电网有限责任公司玉溪供电局 一种地形辅助惯性导航装置
CN108871339A (zh) * 2018-06-29 2018-11-23 深圳市富微科创电子有限公司 一种基于oid编码的定位系统及方法
CN110426038B (zh) * 2019-07-01 2023-01-24 达闼机器人股份有限公司 机器人导航控制方法、装置、计算设备及计算机存储介质
CN113566847B (zh) * 2021-07-22 2022-10-11 北京百度网讯科技有限公司 导航校准方法和装置、电子设备、计算机可读介质
CN113532444B (zh) * 2021-09-16 2021-12-14 深圳市海清视讯科技有限公司 导航路径处理方法、装置、电子设备及存储介质
CN116153135B (zh) * 2023-04-04 2023-10-20 湖南朗赫科技有限公司 一种应用于地下停车场的地图导航方法及系统

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1837844A (zh) * 2006-04-12 2006-09-27 陈龙军 一种二维条码移动终端辅助定位方法
CN102484651A (zh) * 2009-08-13 2012-05-30 高通股份有限公司 使用数据码标记来访问移动站的位置信息
US20120197519A1 (en) * 2011-01-31 2012-08-02 James Joseph Richardson Coded marker navigation system and method
CN102834696A (zh) * 2010-01-18 2012-12-19 高通股份有限公司 使用物体来对准和校准惯性导航系统
CN102937452A (zh) * 2012-10-26 2013-02-20 北京百度网讯科技有限公司 一种基于图像信息码的导航方法、装置和系统
CN103292805A (zh) * 2013-05-28 2013-09-11 武汉理工大学 一种室内导航系统及其室内导航方法
CN103353305A (zh) * 2013-06-13 2013-10-16 张砚炳 基于手机传感器的室内定位方法及系统
CN103487054A (zh) * 2013-10-08 2014-01-01 天津国信浩天三维科技有限公司 一种新型手持室内定位器、定位系统及其定位方法
CN103487049A (zh) * 2013-09-04 2014-01-01 罗朝劲 新型地理位置定位方案
CN103618797A (zh) * 2013-12-04 2014-03-05 柳明福 一种基于标记的室内定位方法

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008087737A1 (fr) * 2007-01-19 2008-07-24 Pioneer Corporation Dispositif de détection d'une position de destination, procédé de détection d'une position de destination, programme de détection d'une position de destination et support d'enregistrement
CN101586962B (zh) * 2008-05-21 2012-02-08 环旭电子股份有限公司 惯性导航系统地图回馈校正方法
CN102109349B (zh) * 2010-12-13 2013-03-13 北京航空航天大学 一种具有ecef模型的mimu系统

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1837844A (zh) * 2006-04-12 2006-09-27 陈龙军 一种二维条码移动终端辅助定位方法
CN102484651A (zh) * 2009-08-13 2012-05-30 高通股份有限公司 使用数据码标记来访问移动站的位置信息
CN102834696A (zh) * 2010-01-18 2012-12-19 高通股份有限公司 使用物体来对准和校准惯性导航系统
US20120197519A1 (en) * 2011-01-31 2012-08-02 James Joseph Richardson Coded marker navigation system and method
CN102937452A (zh) * 2012-10-26 2013-02-20 北京百度网讯科技有限公司 一种基于图像信息码的导航方法、装置和系统
CN103292805A (zh) * 2013-05-28 2013-09-11 武汉理工大学 一种室内导航系统及其室内导航方法
CN103353305A (zh) * 2013-06-13 2013-10-16 张砚炳 基于手机传感器的室内定位方法及系统
CN103487049A (zh) * 2013-09-04 2014-01-01 罗朝劲 新型地理位置定位方案
CN103487054A (zh) * 2013-10-08 2014-01-01 天津国信浩天三维科技有限公司 一种新型手持室内定位器、定位系统及其定位方法
CN103618797A (zh) * 2013-12-04 2014-03-05 柳明福 一种基于标记的室内定位方法

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3480561A4 (fr) * 2016-06-29 2019-08-28 Hangzhou Hikvision Digital Technology Co., Ltd. Procédé, dispositif et système de navigation
US10504365B2 (en) 2016-06-29 2019-12-10 Hangzhou Hikvision Digital Technology Co., Ltd. Navigation method, device and system

Also Published As

Publication number Publication date
CN103776443A (zh) 2014-05-07

Similar Documents

Publication Publication Date Title
WO2015113330A1 (fr) Système de navigation autonome utilisant un code d'information d'image pour fournir des informations de correction
CN107145578B (zh) 地图构建方法、装置、设备和系统
US10715963B2 (en) Navigation method and device
JP6202535B2 (ja) パーソナルナビゲーションデバイスのサービスの継続性を確保するための方法、およびそのデバイス
EP3213031B1 (fr) Localisation et mappage simultanés à l'aide de champs magnétiques terrestres
Elloumi et al. Indoor pedestrian localization with a smartphone: A comparison of inertial and vision-based methods
CN104736964B (zh) 移动装置的地图辅助式基于传感器定位
US9207677B2 (en) Vehicle positioning method and its system
US10444019B2 (en) Generating map data
US20130211718A1 (en) Apparatus and method for providing indoor navigation service
JP2011506913A (ja) 人のナビゲーション用の支援装置
WO2016198009A1 (fr) Procédé et appareil de vérification de cap
US20220329988A1 (en) System and method for real-time indoor navigation
WO2020114214A1 (fr) Procédé et appareil de guidage de non-voyant, support d'informations et dispositif électronique
US20170082440A1 (en) Information processing system, information processing method, and non-transitory computer readable storage medium
JP5742794B2 (ja) 慣性航法装置及びプログラム
TWM560099U (zh) 運用擴增實境技術之室內精確導航系統
KR101523147B1 (ko) 실내 측위 장치 및 방법
Kuusniemi et al. Multi-sensor multi-network seamless positioning with visual aiding
Sternberg et al. Precise indoor mapping as a basis for coarse indoor navigation
JP6494552B2 (ja) フロア間の遷移に基づいて位置の補正が可能な位置推定装置、プログラム及び方法
JP6340862B2 (ja) 屋内測位サーバ、屋内測位方法、プログラム、及び、屋内測位システム
CN106352875A (zh) 一种基于航位推算的导航系统及方法
JP2006250673A (ja) ナビゲーション装置およびナビゲーション用プログラム
JP2020085783A (ja) 歩行者用測位装置、歩行者用測位システム及び歩行者用測位方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14881125

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14881125

Country of ref document: EP

Kind code of ref document: A1