WO2015111714A1 - Sucrose solution refinement method and refinement device - Google Patents
Sucrose solution refinement method and refinement device Download PDFInfo
- Publication number
- WO2015111714A1 WO2015111714A1 PCT/JP2015/051890 JP2015051890W WO2015111714A1 WO 2015111714 A1 WO2015111714 A1 WO 2015111714A1 JP 2015051890 W JP2015051890 W JP 2015051890W WO 2015111714 A1 WO2015111714 A1 WO 2015111714A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- exchange resin
- type
- column
- tower
- sucrose solution
- Prior art date
Links
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C13—SUGAR INDUSTRY
- C13B—PRODUCTION OF SUCROSE; APPARATUS SPECIALLY ADAPTED THEREFOR
- C13B20/00—Purification of sugar juices
- C13B20/14—Purification of sugar juices using ion-exchange materials
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J39/00—Cation exchange; Use of material as cation exchangers; Treatment of material for improving the cation exchange properties
- B01J39/04—Processes using organic exchangers
- B01J39/07—Processes using organic exchangers in the weakly acidic form
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J41/00—Anion exchange; Use of material as anion exchangers; Treatment of material for improving the anion exchange properties
- B01J41/04—Processes using organic exchangers
- B01J41/05—Processes using organic exchangers in the strongly basic form
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J47/00—Ion-exchange processes in general; Apparatus therefor
- B01J47/02—Column or bed processes
- B01J47/04—Mixed-bed processes
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J49/00—Regeneration or reactivation of ion-exchangers; Apparatus therefor
- B01J49/05—Regeneration or reactivation of ion-exchangers; Apparatus therefor of fixed beds
- B01J49/08—Regeneration or reactivation of ion-exchangers; Apparatus therefor of fixed beds containing cationic and anionic exchangers in separate beds
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J49/00—Regeneration or reactivation of ion-exchangers; Apparatus therefor
- B01J49/05—Regeneration or reactivation of ion-exchangers; Apparatus therefor of fixed beds
- B01J49/09—Regeneration or reactivation of ion-exchangers; Apparatus therefor of fixed beds of mixed beds
Definitions
- the present invention relates to a purification method and a purification apparatus for a sucrose solution.
- sucrose solution In the process of purifying sucrose at a refined sugar factory, the raw material sugar is dissolved in warm water, and then lime and carbonic acid are added to this to aggregate colloidal impurities into the fine crystals of calcium carbonate that are formed. Process. Next, the sucrose solution after the carbonic acid saturation treatment is filtered, decolorized with bone charcoal or activated carbon, subjected to decolorization with a Cl-type anion exchange resin as final purification, and then crystallized to obtain a purified sucrose product. In some factories, in the sucrose purification process, the sucrose solution is desalted with an ion exchange resin to produce a sucrose crystal product or a liquid product.
- the ion exchange resin equipment for desalting the sucrose solution includes (1) a reverse-bed single-bed single-bed tower, (2) a mixed-bed mixed-bed equipment, and (3) A -A single-bed / mixed-bed two-bed tower type apparatus is known.
- the sucrose solution is treated with a single bed tower of OH type strongly basic anion exchange resin and then treated with a single bed tower of H type weak acid cation exchange resin.
- the sucrose solution is treated in a mixed bed tower in which an OH-type strongly basic anion exchange resin and an H-type weakly acidic cation exchange resin are mixed. Perform desalting.
- sucrose solution is treated with a single-bed tower of OH type strongly basic anion exchange resin, and then OH type strongly basic anion exchange resin and H type weakly. Desalination is carried out by treatment with an acidic cation exchange resin in a mixed bed tower (Patent Document 1).
- Regeneration of sucrose solution purification equipment involves passing an alkaline solution through a strongly basic anion exchange resin and an acid solution through a weakly acidic cation exchange resin. Do that. Regeneration of a mixed bed column packed with a strongly basic anion exchange resin and a weakly acidic cation exchange resin is carried out by separating the cation exchange resin and the anion exchange resin by their specific gravity difference, etc. Perform by replay.
- Patent Document 3 first, an acid solution is introduced from the lower part of the tower and the weakly acidic cation exchange resin in the tower is fluidly regenerated, and at the same time, a strong basic anion exchange resin and a weakly acidic cation exchange resin are used. A method of isolating is presented.
- Japanese Patent No. 2785833 Japanese Patent Laid-Open No. 11-70000 Japanese Patent No. 3765653
- sucrose solution After carbonation saturation in the sucrose purification step contains a large amount of calcium ions (Ca 2+ ), carbonate ions (CO 3 2 ⁇ ), and bicarbonate ions (HCO 3 ⁇ ).
- Ca 2+ calcium ions
- CO 3 2 ⁇ carbonate ions
- HCO 3 ⁇ bicarbonate ions
- Patent Document 2 a method of performing a softening treatment by disposing a softening tower for removing calcium ions in the previous stage of a desalting apparatus for a sucrose solution. Can be used. However, this method requires a total of three towers in order to increase the number of softening towers, and the initial introduction cost is high.
- sweet water is generated.
- Sweet water is a low-concentration sucrose solution that is discharged from the desalinator during the initial flow when the sucrose solution is passed through a desalinator that has been previously filled with water, and the desalinator is washed after completion of purification. This represents a low-concentration sucrose solution discharged from the desalting apparatus.
- the sweet water is concentrated and then added back to the raw sugar solution to return to the purification step.
- the amount of sweet water increased by the number of towers. Since concentration of sweet water requires energy and costs increase, it has been desired to reduce the amount of sweet water generated during the purification process.
- Patent Document 3 discloses a method of separating two types of ion exchange resins in a mixed bed tower.
- a method for efficiently regenerating a sucrose solution purification apparatus including a tower filled with an ion exchange resin for removing calcium ions Since the purification apparatus described in Patent Document 2 is composed of three towers, the amount of drainage of the regenerated liquid tends to increase, and it has been desired to reduce the amount of wastewater.
- the present invention has been made in view of the above problems.
- a purification apparatus is configured from two towers, and calcium ions and the like are removed in the first tower, thereby precipitating calcium and the like in the apparatus.
- the object is to obtain a high-purity sucrose solution while suppressing it to prevent scaling.
- an object of the present invention is to reduce the amount of sweet water and the amount of drainage and reduce the cost.
- the purpose is to reduce the amount of drainage of regenerated liquid when regenerating the purification equipment.
- One embodiment is: A first column packed with OH-type strongly basic anion exchange resin and Na-type or K-type cation exchange resin; In the second tower arranged after the first tower and mixed and packed with OH type strong basic anion exchange resin and H type weak acid cation exchange resin, The present invention relates to a method for purifying a sucrose solution characterized by passing the sucrose solution in this order.
- the present invention relates to an apparatus for purifying a sucrose solution.
- a purification apparatus is constructed from two towers, and calcium ions and the like are removed in the first tower, thereby suppressing the precipitation of calcium and the like in the apparatus to prevent scaling and a high-purity sucrose solution. Obtainable. Furthermore, the amount of sweet water and the amount of drainage can be reduced and the cost can be reduced.
- the amount of drainage of the regenerated liquid can be reduced.
- sucrose solution purification equipment 1 and 2 are schematic views showing a sucrose solution purifying apparatus according to the present embodiment.
- the first column 2 is a mixed bed column in which OH type strong basic anion exchange resin and Na type or K type cation exchange resin are mixed and packed
- the second column 4 is OH type strong base. It is a mixed bed tower in which a mixed anion exchange resin and an H-type weakly acidic cation exchange resin are mixed and packed.
- the first column 2 is a multi-layered bed column in which an Na-type or K-type cation exchange resin 2a is arranged in the upper stage and an OH type strongly basic anion exchange resin 2b is arranged in the lower stage.
- the column 4 is a mixed bed column of OH type strong basic anion exchange resin and H type weak acid cation exchange resin.
- the first tower may be a mixed bed tower or a multi-layer bed tower, but a mixed bed tower is preferred because the purity of the sucrose solution can be further increased.
- a mixed bed tower is preferred because the purity of the sucrose solution can be further increased.
- an Na-type or K-type cation exchange resin is used in the upper stage (upstream side), and an OH type strongly basic anion exchange resin is used in the lower stage (downstream side) Is preferably arranged.
- the ion exchange resin as shown in FIG. 2, it is possible to prevent the sucrose solution from becoming a high alkali (high pH) state upstream of the first tower, and to remove calcium ions and the like. Scaling can be prevented by suppressing the precipitation of calcium carbonate or the like in the refiner.
- the sucrose solution is softened (removal of calcium ions, etc.), anions are removed, and decolorized in the first tower 2.
- the cation (calcium ion (Ca 2+ ), etc.) in the sucrose solution is formed by the Na-type or K-type cation exchange resin in the first tower 2, and the OH-type strongly basic anion exchange resin is used in the sucrose solution.
- An anion (carbonate ion (CO 3 2 ⁇ ), hydrogen carbonate ion (HCO 3 ⁇ ), etc.) is adsorbed.
- the dye in the sucrose solution is adsorbed by these ion exchange resins. For this reason, precipitation of calcium etc.
- sucrose solution can be purified (desalted and decolorized) by two towers. Therefore, the space for installing the apparatus can be reduced, and the amount of sweet water and the amount of drainage generated in the refining process can be reduced, thereby reducing the cost.
- the sucrose solution contains anionic impurities such as amino acids, organic acids and polysaccharides in addition to pigments and inorganic ions. These anionic impurities may form complexes with cations such as calcium ions. Even if the sucrose solution containing this complex is passed through a purification apparatus having a single column for softening and a single column filled with an anion exchange resin, calcium ions and the like do not dissociate from the complex. In this tower, calcium ions and the like cannot be removed. In contrast, in the purification apparatus of the present embodiment, the first column 2 is filled with both OH-type strongly basic anion exchange resin and Na-type or K-type cation exchange resin. .
- the H-type weakly acidic cation exchange resin of the second column 4 adsorbs sodium ions (Na + ) or potassium ions (K + ) desorbed by adsorption of calcium ions (Ca 2+ ) and the like in the first column 2,
- the OH type strongly basic anion exchange resin adsorbs carbonate ions (CO 3 2 ⁇ ), bicarbonate ions (HCO 3 ⁇ ), etc. that could not be removed in the first column 2. Further, the sucrose solution can be decolorized in the second tower 4.
- the type of the OH type strong basic anion exchange resin charged in the first tower 2 and the second tower 4 is not particularly limited, but the first tower 2 includes an acrylic OH type strong basic anion exchange resin, the second tower. 4 is preferably filled with a styrenic OH type strongly basic anion exchange resin.
- the sucrose solution contains a dye, but the acrylic OH-type strongly basic anion exchange resin has a characteristic that the affinity with the dye is low and the adsorptive power with the dye is weak.
- the styrenic OH type strongly basic anion exchange resin has a high affinity with a dye and a strong adsorbing power with the dye.
- the pigments contained in the sucrose solution exist from those having a high adsorption power to the ion exchange resin to those having a low adsorption power.
- the acrylic OH-type strongly basic anion exchange resin mainly absorbs a dye having a high adsorbing power with the ion exchange resin. Since the acrylic OH type strongly basic anion exchange resin originally has a weak adsorption power with the dye, the dye adsorbed on the ion exchange resin can be easily detached from the ion exchange resin by the regenerant. As a result, the acrylic OH type strongly basic anion exchange resin can be regenerated and used without deteriorating.
- the dye having a high adsorptive power with the ion exchange resin is mainly adsorbed. Therefore, what remains in the sucrose solution after passing through the first tower 2 is mainly ion exchange.
- the dye has a low adsorption power with the resin.
- the styrenic OH type strongly basic anion exchange resin in the second column 4 mainly adsorbs a dye having a low adsorption power with the ion exchange resin. Therefore, even a dye adsorbed on a styrene-based OH type strongly basic anion exchange resin having a high adsorbing power with the dye can be easily detached by the regenerant. As a result, the styrenic OH type strongly basic anion exchange resin can be regenerated and used without deteriorating.
- the first column 2 is filled with acrylic OH type strongly basic anion exchange resin
- the second column 4 is filled with styrene type OH type strongly basic anion exchange resin.
- the sucrose solution can be desalted with high capacity without deteriorating the resin by decolorization (dye adsorption).
- acrylic OH type strongly basic anion exchange resin charged in the first tower 2 examples include Amberlite (registered trademark, hereinafter the same) ⁇ ⁇ IRA958, IRA458 (manufactured by Dow Chemical Co.), PUROLITE (registered trademark, the same hereinafter). ) A860, A850 (manufactured by Purolite) and the like.
- the gel type resin is particularly advantageous because it has a large exchange capacity and increases the amount of sucrose solution that can be processed.
- examples of the gel-type acrylic strongly basic anion exchange resin examples include Amberlite® IRA458 (manufactured by Dow Chemical Co.) and PUROLITE A850 (manufactured by Purolite).
- the Na-type or K-type cation exchange resin packed in the first tower 2 may be a strong acid cation exchange resin or a weak acid cation exchange resin.
- Na-type strongly acidic cation exchange resins include Amberlite IR120B Na, IR124 Na, 200CT Na, 252 Na (manufactured by Dow Chemical), Diaion (registered trademark, hereinafter the same) SK1B, PK216 (manufactured by Mitsubishi Chemical Corporation) ), PUROLITE C100E (manufactured by Purolite).
- a known H-type strongly acidic cation exchange resin may be converted into a Na-type or K-type strongly acidic cation exchange resin by regenerating with a regenerating agent such as NaOH or KOH.
- a known H-type weakly acidic cation exchange resin converted into a Na-type or K-type weakly acidic cation exchange resin by regenerating with a regenerating agent such as NaOH or KOH may be used.
- Examples of the styrenic OH type strongly basic anion exchange resin charged in the second tower 4 include, for example, Amberlite IRA900, IRA402, IRA402BL (manufactured by Dow Chemical Co.), PUROLITE A500S (manufactured by Purolite), Diaion SA10A, PA308. (Mitsubishi Chemical Corporation).
- H-type weakly acidic cation exchange resin used in the second column 4 examples include Amberlite IRC76, Dowex (registered trademark, hereinafter the same), MAC-3 (manufactured by Dow Chemical), PUROLITE C115E (manufactured by Purolite). And Diaion WK10, WK11 (Mitsubishi Chemical Corporation).
- FIG. 3 is a schematic diagram showing a method for purifying a sucrose solution using the purification apparatus of FIG.
- the sucrose solution is passed through in the direction of the arrow in the figure, the sucrose solution is first passed through the first tower 2, and the sucrose solution after passing through the first tower 2 is passed through the second tower 2. 4 is passed through.
- the Na-type or K-type cation exchange resin of the first tower 2 is a cation (calcium ion Ca 2+ etc.) in a sucrose solution, and the OH type strongly basic anion exchange resin is an anion (carbonate ion (CO 3 2 ⁇ ) And bicarbonate ions (HCO 3 ⁇ ) and the like.
- ion exchange resins can adsorb the dye in the sucrose solution. Accordingly, the precipitation of calcium or the like in the first column 2 is suppressed to prevent scaling in the purification apparatus, and the decrease in the demineralization ability of the first column 2 is thereby suppressed, thereby desalting and decolorization. A high-purity sucrose solution can be obtained. Compared with the conventional refinement
- the OH-type strongly basic anion is removed from the complex by passing the sucrose solution through the first column 2. Since anion impurities are adsorbed on the exchange resin, calcium ions and the like are liberated. Since the liberated calcium ions and the like are adsorbed on the Na-type or K-type strongly acidic cation exchange resin, the complex can be effectively removed in the first column 2 and the sucrose solution can be made highly pure.
- the H-type weakly acidic cation exchange resin in the second column 4 removes sodium ions (Na + ) or potassium ions (K + ) desorbed by adsorption of calcium ions (Ca 2+ ) and the like in the first column 2.
- the OH type strongly basic anion exchange resin removes carbonate ions (CO 3 2 ⁇ ), hydrogen carbonate ions (HCO 3 ⁇ ) and the like remaining in the sucrose solution after passing through the first column 2. Further, the sucrose solution can be decolorized in the second tower 4.
- the sucrose solution used for purification is not particularly limited, but the sucrose solution used for purification is a filtrate after carbonation saturation and filtration treatment, after further activated carbon treatment after the filtration treatment, or other treatment.
- a solution from which impurities have been removed is preferable.
- These sucrose solutions contain a large amount of impurities such as calcium ions and magnesium ions. Therefore, a high-purity sucrose solution can be obtained by purifying these sucrose solutions with the purification apparatus of this embodiment.
- the sucrose solution before passing through the first tower 2 preferably has a sum of calcium ion and magnesium ion concentrations of 0.001 mol / L or more, more preferably 0.002 mol / L or more. preferable. In the present embodiment, even a sucrose solution containing high-concentration calcium ions and magnesium ions as described above, these ions are effectively removed in the first tower 2 to obtain a high-purity sucrose solution. be able to.
- FIGS. 4A to 4D are schematic diagrams showing a method for regenerating the purification apparatus of FIG.
- Na ions Na +
- K ions K +
- Adsorbs Hydroxide ions (OH ⁇ ) are desorbed from the OH type strongly basic anion exchange resin in the first column 2, and mainly carbonate ions (CO 3 2 ⁇ ), bicarbonate ions (HCO 3 ⁇ ) and chloride.
- Object ions (Cl ⁇ ) and the like are adsorbed.
- Hydrogen ions (H + ) and hydroxide ions (OH ⁇ ) are desorbed from the H-type weakly acidic cation exchange resin and the OH-type strongly basic anion exchange resin in the second column 4 respectively, and mainly Na.
- Ions (Na + ) or K ions (K + ), carbonate ions (CO 3 2 ⁇ ), and bicarbonate ions (HCO 3 ⁇ ) are adsorbed. That is, after purification of the sucrose solution, the OH type strongly basic anion exchange resin in the first column 2 is mainly CO 3 2 ⁇ -strongly basic anion exchange resin, HCO 3 ⁇ -strongly basic anion exchange resin.
- the H-type weakly acidic cation exchange resin in the second column 4 is mainly Na + -weakly acidic cation exchange resin or K + -weakly acidic cation exchange resin, and OH type strongly basic anion exchange resin.
- the H-type weakly acidic cation exchange resin in the second column 4 is mainly Na + -weakly acidic cation exchange resin or K + -weakly acidic cation exchange resin, and OH type strongly basic anion exchange resin.
- the first regeneration solution for the H-type weakly acidic cation exchange resin is passed through the second column 4.
- the first regenerating liquid flows from the bottom of the second tower 4 toward the top.
- the strongly basic anion exchange resin and the weakly acidic cation exchange resin in the second column 4 flow and are separated by the difference in specific gravity of these ion exchange resins.
- a strong basic anion exchange resin 4a is arranged at the upper part and a weak acidic cation exchange resin 4b is arranged at the lower part in the second tower 4 by the separation.
- Na ions (Na + ) or K ions (K + ) are desorbed from the weakly acidic cation exchange resin in the second column 4 and regenerated to become an H-type weakly acidic cation exchange resin. .
- the first regenerated liquid is recovered from the top of the second tower 4 and passed from the top of the first tower 2 toward the bottom.
- the first regenerating liquid flows from the bottom to the top of the second column 4, it is not necessary to flow a solution such as water so as to be countercurrent to the first regenerating liquid. Therefore, it can be recovered from the second column 4 without reducing the concentration of the first regenerated solution with water or the like.
- calcium ions (Ca 2+ ) and the like adsorbed on the cation exchange resin in the first column 2 are desorbed, and instead hydrogen ions (H + ) Is adsorbed to form an H-type cation exchange resin.
- the first regenerating solution is not particularly limited as long as it is an acid solution, and an aqueous hydrochloric acid solution can be preferably used.
- the hydrochloric acid concentration in the aqueous hydrochloric acid solution is not particularly limited as long as it does not deteriorate the ion exchange resin, but is preferably 0.05 to 2.0 N, more preferably 0.1 to 1.0 N.
- carbonate ions (CO 3 2 ⁇ ) and bicarbonate ions (HCO 3 ) are introduced by passing the first regeneration solution into the second column 4.
- the strongly basic anion exchange resin in the first column 2 and the second column 4 is regenerated. That is, this regeneration removes impurities (such as dyes) adsorbed on the base structure of the strongly basic anion exchange resin.
- a second regeneration solution for OH type strongly basic anion exchange resin containing sodium ions or potassium ions is passed from the top of the second column 4 and second Water is passed from the bottom of the tower 4.
- the water reaches the H-type weakly acidic cation exchange resin separated from the lower part of the second tower 4, and H It is possible to prevent the ion form of the weakly acidic cation exchange resin from being converted into the Na form or the K form.
- chloride ions (Cl ⁇ ) are desorbed from the strongly basic anion exchange resin in the second column 4, and instead hydroxide ions ( OH ⁇ ) is adsorbed and converted to an OH-type strongly basic anion exchange resin.
- the second regenerated solution and water passed through the second column 4 as described above are separated from each other as OH-type strongly basic anion exchange resin and H-type weakly acidic cation. Collect with an intermediate collector located at the boundary of the exchange resin.
- the second regenerated liquid and water that have passed through the second tower 4 are passed from the top of the first tower 2 toward the bottom.
- strongly basic anion exchange resin in the first column 2 is rough play, a part of the chloride ion (Cl -) was desorbed, hydroxide ions instead - adsorb (OH) OH type strongly basic anion exchange resin.
- the second regenerating solution is not particularly limited as long as it is an alkaline solution containing sodium ions or potassium ions, preferably an aqueous sodium hydroxide solution or an aqueous potassium hydroxide solution, more preferably an aqueous sodium hydroxide solution.
- the concentration of sodium hydroxide in the aqueous sodium hydroxide solution is not particularly limited as long as it does not degrade the ion exchange resin, but is preferably 0.05 to 3.0 normal, more preferably 0.5 to 2.0 normal.
- a third regeneration solution for OH type strongly basic anion exchange resin is passed from the top to the bottom of the first column 2.
- the third regenerating solution is not particularly limited as long as it is an alkaline solution, but preferably the same as the second regenerating solution.
- compressed air is allowed to flow from the bottom of the second column 4 into the second column 4, and the OH type strong basic anion exchange resin and the H type separated and arranged in the second column 4.
- a weakly acidic cation exchange resin is flowed and mixed.
- finish of inflow of compressed air OH type strong basic anion exchange resin and H type weakly acidic cation exchange resin are mixed and filled, and the 2nd tower 4 becomes a mixed bed.
- the process of FIG. 4D is performed after the process of FIG. 4C. However, the process of FIG. 4C may be performed after the process of FIG. 4D, or the processes of FIGS. 4C and 4D may be performed simultaneously. good.
- Example 1 As the sucrose solution, a solution obtained by subjecting the filtrate after carbonation saturation treatment and filtration treatment to activated carbon treatment (Brix sugar content 55%, conductivity 250 ⁇ S / cm, color value 80 ICUMSA (International Commission for Uniform Methods of Sugar Analysis), Abs720 0.002 (100 mm cell measurement)).
- This sucrose solution was passed through the purification apparatus of FIG. 1 in the order of the first column 2 and the second column 4 at 50 ° C. and 300 mL / h. Then, the conductivity, pH, color value, and turbidity (absorbance at 720 nm) of the sucrose solution at the outlet of the second tower 4 were monitored.
- ion exchange resins shown in Table 1 below were used for the first column 2 and the second column 4.
- first regeneration solution 500 mL of a 0.5 N aqueous hydrochloric acid solution (first regeneration solution) was passed from the bottom of the second tower 4 toward the top at 800 mL / h.
- first regeneration solution 500 mL of a 0.5 N aqueous hydrochloric acid solution (first regeneration solution) was passed from the bottom of the second tower 4 toward the top at 800 mL / h.
- the Amberlite IRC76 and 402BL were flowed in the second tower 4 to separate the Amberlite IRA402BL in the upper part of the second tower 4 and the Amberlite IRC76 in the lower part.
- the waste liquid (first regenerated liquid) discharged from the top of the second tower 4 was passed from the top of the first tower 2 toward the bottom.
- 300 mL of pure water was allowed to flow into the second tower 4 at the same flow rate, and the aqueous hydrochloric acid solution in the tower was extruded.
- 800 mL of pure water was poured into the second tower 4
- second regeneration solution 150 mL of 2N aqueous sodium hydroxide solution (second regeneration solution) is flowed from the top of the second column 4 at 400 mL / h, and at the same time, pure water is flowed from the bottom of the second column 4 at 400 mL / h. Washed away.
- the waste liquid (second regenerated liquid and pure water) extracted from the intermediate collector located at the boundary between Amberlite IRA402BL and Amberlite IRC76 was passed through the first tower 2. Thereafter, 200 mL of pure water was passed through the top and bottom of the second column 4 at 400 mL / h, and sodium hydroxide remaining in the second column 4 was extruded.
- Table 1 shows the types of ion exchange resins used in the first column 2 and the second column 4, and FIGS. 5 to 8 show the results of the third cycle.
- sucrose solution a solution obtained by subjecting the filtrate after carbonic acid saturation treatment and filtration treatment to activated carbon treatment (Brix sugar content 55%, conductivity 300 ⁇ S / cm, color value 725 ICUMSA) was used.
- This sucrose solution was passed through the purification apparatus of FIG. 1 in the same manner as in Example 1 at a total volume of 3.6 L at 50 ° C. and 300 mL / h. The whole amount of the sucrose solution after the purification treatment was recovered, and the conductivity, pH, and color value were measured.
- the purification apparatus of FIG. 1 was regenerated in the same manner as in Example 1. The purification of the sucrose solution and the regeneration of the purification apparatus were repeated 20 times as one cycle.
- Table 2 shows the types of ion exchange resins used in the first column 2 and the second column 4, and Table 3 shows the results of the 1st cycle, 10th cycle, and 20th cycle.
- Table 4 shows the measurement results of the exchange capacity of each ion exchange resin before and after use (new and after 20 cycles).
- Example 3 The sucrose was prepared in the same manner as in Example 2 except that the acrylic strongly basic anion exchange resin (Amberlite IRA458) shown in Table 2 was used as the strongly basic anion exchange resin in the first tower 2 of FIG. Purification of the solution and regeneration of the purification apparatus were performed.
- the ion exchange resins used in the first column 2 and the second column 4 are shown in Table 2, and the results of the 1st cycle, 10th cycle, and 20th cycle are shown in Table 5.
- Table 6 shows the measurement results of the exchange capacity of each ion exchange resin before and after use (new and after 20 cycles).
- Example 1 As shown in Table 1, the sucrose solution was purified in the same manner as in Example 1 except that Na-type cation exchange resin (Amberlite IR120B) was not used in the first column 2 of FIG. .
- Na-type cation exchange resin Amberlite IR120B
- the regeneration of the ion exchange resin in the first column 2 and the second column 4 was performed separately.
- the regeneration of the ion exchange resin in the second tower 4 was performed as follows. 500 mL of 0.5 N hydrochloric acid aqueous solution was passed through the bottom of the second column 4 at 800 mL / h. As a result, Amberlite IRC76 and IRA402BL were flowed in the second tower 4 to separate Amberlite IRA402BL in the upper part of the second tower 4 and Amberlite IRC76 in the lower part. Subsequently, 300 mL of pure water was allowed to flow into the second column 4 at the same flow rate, and hydrochloric acid in the column was extruded. Subsequently, 800 mL of pure water was poured into the second tower 4 to wash the ion exchange resin in the tower.
- the regeneration of the ion exchange resin in the first tower 2 was performed as follows. From the top of the first column 2, 300 mL of a 1N aqueous sodium hydroxide solution was passed at 400 mL / h and discharged from the bottom of the first column 2. Next, after 200 mL of pure water is flowed into the first tower 2 at the same flow rate to extrude sodium hydroxide in the first tower 2, 1200 mL of pure water is flowed into the first tower 2 at 800 mL / h, and the final washing is performed. Carried out.
- Table 1 shows the types of ion exchange resins used in the first column 2 and the second column 4, and FIGS. 5 to 8 show the results of the third cycle.
- Example 2 As shown in Table 1, the Na-type cation exchange resin (Amberlite IR120B) is not used in the first column 2 of FIG. A softening tower filled with light IR120B) was provided. Except for this, the sucrose solution was purified in the same manner as in Example 1.
- the regeneration of the ion exchange resin in the first tower 2 and the second tower 4 was performed in the same manner as in Comparative Example 1.
- Amberlite IR120B in the first-stage softening tower was regenerated as follows. First, 100 mL of a 10 mass% NaCl aqueous solution was passed through the top of the softening tower at 200 mL / h and discharged from the bottom. Thereafter, 50 mL of pure water was flowed into the softening tower at the same flow rate, and 400 mL of pure water was passed through the softening tower at 400 mL / h to wash Amberlite IR120B.
- Table 1 shows the types of ion exchange resins used in the first column 2 and the second column 4, and FIGS. 5 to 8 show the results of the third cycle.
- Example 1 the conductivity, color value, and absorbance at 720 nm are greatly reduced in Example 1 as compared with Comparative Example 1. From the results of Example 1 and Comparative Example 2, it is possible to achieve the same conductivity, color value, and absorbance at 720 nm as the two-column purification apparatus (Example 1) with the two-column purification apparatus (Example 1). I understand. Furthermore, the amount of sweet water having a Brix sugar content of 2 to 30% generated in the purification process was 450 mL in Comparative Example 2 but 360 mL in Example 1, and the amount of sweet water was reduced by 20%. We were able to.
Landscapes
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Life Sciences & Earth Sciences (AREA)
- Biochemistry (AREA)
- Treatment Of Water By Ion Exchange (AREA)
- Treatment Of Liquids With Adsorbents In General (AREA)
Abstract
The present invention refines a sucrose solution by successively passing the sucrose solution through a first column, which is filled with an OH-type strongly basic negative ion exchange resin and an Na-type or K-type positive ion exchange resin, and then a second column, which is provided to a later stage than that of the first column and is filled with a mixture of an OH-type strongly basic negative ion exchange resin and an H-type weakly acidic positive ion exchange resin. By means of the refining method, firstly it is possible to obtain a highly pure sucrose solution, to prevent scaling by suppressing the precipitation of calcium or the like within the device, and furthermore to reduce cost and reduce the amount of sweet water and waste water, and secondly it is possible to reduce the amount of waste water from regeneration liquid when regenerating the refining device.
Description
本発明は、蔗糖溶液の精製方法および精製装置に関する。
The present invention relates to a purification method and a purification apparatus for a sucrose solution.
1.蔗糖溶液の精製
精製糖工場における蔗糖の精製工程では、原料糖を温水に溶解させた後、これに石灰と炭酸を加えて形成した炭酸カルシウムの微細結晶にコロイド状不純物を凝集させる、炭酸飽充処理を行う。次いで、炭酸飽充処理後の蔗糖溶液は、濾過後、骨炭あるいは活性炭により脱色処理され、最終精製としてCl形陰イオン交換樹脂による脱色処理を経た後、結晶化されて精製蔗糖製品となる。一部の工場では、蔗糖の精製工程において、蔗糖溶液にイオン交換樹脂により脱塩処理を施して蔗糖の結晶製品あるいは液状製品を製造している。 1. Purification of sucrose solution In the process of purifying sucrose at a refined sugar factory, the raw material sugar is dissolved in warm water, and then lime and carbonic acid are added to this to aggregate colloidal impurities into the fine crystals of calcium carbonate that are formed. Process. Next, the sucrose solution after the carbonic acid saturation treatment is filtered, decolorized with bone charcoal or activated carbon, subjected to decolorization with a Cl-type anion exchange resin as final purification, and then crystallized to obtain a purified sucrose product. In some factories, in the sucrose purification process, the sucrose solution is desalted with an ion exchange resin to produce a sucrose crystal product or a liquid product.
精製糖工場における蔗糖の精製工程では、原料糖を温水に溶解させた後、これに石灰と炭酸を加えて形成した炭酸カルシウムの微細結晶にコロイド状不純物を凝集させる、炭酸飽充処理を行う。次いで、炭酸飽充処理後の蔗糖溶液は、濾過後、骨炭あるいは活性炭により脱色処理され、最終精製としてCl形陰イオン交換樹脂による脱色処理を経た後、結晶化されて精製蔗糖製品となる。一部の工場では、蔗糖の精製工程において、蔗糖溶液にイオン交換樹脂により脱塩処理を施して蔗糖の結晶製品あるいは液状製品を製造している。 1. Purification of sucrose solution In the process of purifying sucrose at a refined sugar factory, the raw material sugar is dissolved in warm water, and then lime and carbonic acid are added to this to aggregate colloidal impurities into the fine crystals of calcium carbonate that are formed. Process. Next, the sucrose solution after the carbonic acid saturation treatment is filtered, decolorized with bone charcoal or activated carbon, subjected to decolorization with a Cl-type anion exchange resin as final purification, and then crystallized to obtain a purified sucrose product. In some factories, in the sucrose purification process, the sucrose solution is desalted with an ion exchange resin to produce a sucrose crystal product or a liquid product.
蔗糖溶液の脱塩を目的としたイオン交換樹脂装置としては、(1)リバース法の単床-単床の二床塔式装置、(2)ミックスベット法の混床式装置、(3)A-MB法の単床-混床の二床塔式装置が知られている。
(1)リバース法の二床塔式装置では、蔗糖溶液を、OH形強塩基性陰イオン交換樹脂の単床塔で処理した後、H形弱酸性陽イオン交換樹脂の単床塔で処理することで脱塩を行う。
(2)ミックスベット法の混床式装置では、蔗糖溶液を、OH形強塩基性陰イオン交換樹脂とH形弱酸性陽イオン交換樹脂を混合した混床塔で処理することで、蔗糖溶液の脱塩を行う。
(3)A-MB法の二床塔式装置では、蔗糖溶液を、OH形強塩基性陰イオン交換樹脂の単床塔で処理した後、OH形強塩基性陰イオン交換樹脂とH形弱酸性陽イオン交換樹脂の混床塔での処理により脱塩を行う(特許文献1)。 The ion exchange resin equipment for desalting the sucrose solution includes (1) a reverse-bed single-bed single-bed tower, (2) a mixed-bed mixed-bed equipment, and (3) A -A single-bed / mixed-bed two-bed tower type apparatus is known.
(1) In the reverse method two-bed tower type apparatus, the sucrose solution is treated with a single bed tower of OH type strongly basic anion exchange resin and then treated with a single bed tower of H type weak acid cation exchange resin. To desalinate.
(2) In the mixed bed type mixed bed apparatus, the sucrose solution is treated in a mixed bed tower in which an OH-type strongly basic anion exchange resin and an H-type weakly acidic cation exchange resin are mixed. Perform desalting.
(3) In the two-bed tower type apparatus of the A-MB method, the sucrose solution is treated with a single-bed tower of OH type strongly basic anion exchange resin, and then OH type strongly basic anion exchange resin and H type weakly. Desalination is carried out by treatment with an acidic cation exchange resin in a mixed bed tower (Patent Document 1).
(1)リバース法の二床塔式装置では、蔗糖溶液を、OH形強塩基性陰イオン交換樹脂の単床塔で処理した後、H形弱酸性陽イオン交換樹脂の単床塔で処理することで脱塩を行う。
(2)ミックスベット法の混床式装置では、蔗糖溶液を、OH形強塩基性陰イオン交換樹脂とH形弱酸性陽イオン交換樹脂を混合した混床塔で処理することで、蔗糖溶液の脱塩を行う。
(3)A-MB法の二床塔式装置では、蔗糖溶液を、OH形強塩基性陰イオン交換樹脂の単床塔で処理した後、OH形強塩基性陰イオン交換樹脂とH形弱酸性陽イオン交換樹脂の混床塔での処理により脱塩を行う(特許文献1)。 The ion exchange resin equipment for desalting the sucrose solution includes (1) a reverse-bed single-bed single-bed tower, (2) a mixed-bed mixed-bed equipment, and (3) A -A single-bed / mixed-bed two-bed tower type apparatus is known.
(1) In the reverse method two-bed tower type apparatus, the sucrose solution is treated with a single bed tower of OH type strongly basic anion exchange resin and then treated with a single bed tower of H type weak acid cation exchange resin. To desalinate.
(2) In the mixed bed type mixed bed apparatus, the sucrose solution is treated in a mixed bed tower in which an OH-type strongly basic anion exchange resin and an H-type weakly acidic cation exchange resin are mixed. Perform desalting.
(3) In the two-bed tower type apparatus of the A-MB method, the sucrose solution is treated with a single-bed tower of OH type strongly basic anion exchange resin, and then OH type strongly basic anion exchange resin and H type weakly. Desalination is carried out by treatment with an acidic cation exchange resin in a mixed bed tower (Patent Document 1).
しかしながら、上記(1)~(3)の精製装置では、蔗糖溶液中の硬度成分を十分に除去することができなかった。そこで、下記に示すように、硬度成分除去用の軟化塔を前段に設けた脱塩装置が提案されている。
(4)カチオン交換樹脂を充填した軟化塔と、その後段に配したA-MB法の二床塔式装置からなる、脱塩装置(特許文献2)。 However, the above-described purification devices (1) to (3) cannot sufficiently remove the hardness component in the sucrose solution. Therefore, as shown below, a desalination apparatus in which a softening tower for removing hardness components is provided in the previous stage has been proposed.
(4) A desalting apparatus comprising a softening tower filled with a cation exchange resin and a two-bed tower type apparatus of A-MB method disposed in the subsequent stage (Patent Document 2).
(4)カチオン交換樹脂を充填した軟化塔と、その後段に配したA-MB法の二床塔式装置からなる、脱塩装置(特許文献2)。 However, the above-described purification devices (1) to (3) cannot sufficiently remove the hardness component in the sucrose solution. Therefore, as shown below, a desalination apparatus in which a softening tower for removing hardness components is provided in the previous stage has been proposed.
(4) A desalting apparatus comprising a softening tower filled with a cation exchange resin and a two-bed tower type apparatus of A-MB method disposed in the subsequent stage (Patent Document 2).
2.蔗糖溶液の精製装置の再生
蔗糖溶液の精製装置に充填したイオン交換樹脂の再生は、強塩基性陰イオン交換樹脂にアルカリ溶液を通液し、弱酸性陽イオン交換樹脂に酸溶液を通液することで行う。強塩基性陰イオン交換樹脂と弱酸性陽イオン交換樹脂を充填した混床塔の再生は、陽イオン交換樹脂と陰イオン交換樹脂をこれらの比重差等により分離した後、それぞれのイオン交換樹脂の再生により行う。特許文献3には、最初に、塔の下部から酸溶液を導入して塔内の弱酸性陽イオン交換樹脂を流動再生しながら、同時に、強塩基性陰イオン交換樹脂と弱酸性陽イオン交換樹脂を分離する方法が提示されている。 2. Regeneration of sucrose solution purification equipment Regeneration of ion exchange resin filled in sucrose solution purification equipment involves passing an alkaline solution through a strongly basic anion exchange resin and an acid solution through a weakly acidic cation exchange resin. Do that. Regeneration of a mixed bed column packed with a strongly basic anion exchange resin and a weakly acidic cation exchange resin is carried out by separating the cation exchange resin and the anion exchange resin by their specific gravity difference, etc. Perform by replay. InPatent Document 3, first, an acid solution is introduced from the lower part of the tower and the weakly acidic cation exchange resin in the tower is fluidly regenerated, and at the same time, a strong basic anion exchange resin and a weakly acidic cation exchange resin are used. A method of isolating is presented.
蔗糖溶液の精製装置に充填したイオン交換樹脂の再生は、強塩基性陰イオン交換樹脂にアルカリ溶液を通液し、弱酸性陽イオン交換樹脂に酸溶液を通液することで行う。強塩基性陰イオン交換樹脂と弱酸性陽イオン交換樹脂を充填した混床塔の再生は、陽イオン交換樹脂と陰イオン交換樹脂をこれらの比重差等により分離した後、それぞれのイオン交換樹脂の再生により行う。特許文献3には、最初に、塔の下部から酸溶液を導入して塔内の弱酸性陽イオン交換樹脂を流動再生しながら、同時に、強塩基性陰イオン交換樹脂と弱酸性陽イオン交換樹脂を分離する方法が提示されている。 2. Regeneration of sucrose solution purification equipment Regeneration of ion exchange resin filled in sucrose solution purification equipment involves passing an alkaline solution through a strongly basic anion exchange resin and an acid solution through a weakly acidic cation exchange resin. Do that. Regeneration of a mixed bed column packed with a strongly basic anion exchange resin and a weakly acidic cation exchange resin is carried out by separating the cation exchange resin and the anion exchange resin by their specific gravity difference, etc. Perform by replay. In
1.蔗糖溶液の精製
蔗糖精製工程の炭酸飽充処理後の蔗糖溶液には、カルシウムイオン(Ca2+)、炭酸イオン(CO3 2-)、および炭酸水素イオン(HCO3 -)が多く含まれる。このような蔗糖溶液を、OH形の強塩基性陰イオン交換樹脂を用いて脱塩すると、カルシウムイオンが炭酸塩(CaCO3)あるいは水酸化物(Ca(OH)2)として析出し、蔗糖溶液の品質の低下や設備へのスケーリング(沈着)を起こしてしまう。特に、カルシウム吸着能を有する骨炭を使用しない蔗糖精製工程では、蔗糖溶液中のカルシウムイオン濃度が高くなり、これが問題となる。 1. Purification of sucrose solution The sucrose solution after carbonation saturation in the sucrose purification step contains a large amount of calcium ions (Ca 2+ ), carbonate ions (CO 3 2− ), and bicarbonate ions (HCO 3 − ). When such a sucrose solution is desalted using an OH-type strongly basic anion exchange resin, calcium ions are precipitated as carbonate (CaCO 3 ) or hydroxide (Ca (OH) 2 ), and the sucrose solution It causes degradation of quality and scaling to equipment. In particular, in the sucrose purification process that does not use bone charcoal having calcium adsorption ability, the calcium ion concentration in the sucrose solution becomes high, which is a problem.
蔗糖精製工程の炭酸飽充処理後の蔗糖溶液には、カルシウムイオン(Ca2+)、炭酸イオン(CO3 2-)、および炭酸水素イオン(HCO3 -)が多く含まれる。このような蔗糖溶液を、OH形の強塩基性陰イオン交換樹脂を用いて脱塩すると、カルシウムイオンが炭酸塩(CaCO3)あるいは水酸化物(Ca(OH)2)として析出し、蔗糖溶液の品質の低下や設備へのスケーリング(沈着)を起こしてしまう。特に、カルシウム吸着能を有する骨炭を使用しない蔗糖精製工程では、蔗糖溶液中のカルシウムイオン濃度が高くなり、これが問題となる。 1. Purification of sucrose solution The sucrose solution after carbonation saturation in the sucrose purification step contains a large amount of calcium ions (Ca 2+ ), carbonate ions (CO 3 2− ), and bicarbonate ions (HCO 3 − ). When such a sucrose solution is desalted using an OH-type strongly basic anion exchange resin, calcium ions are precipitated as carbonate (CaCO 3 ) or hydroxide (Ca (OH) 2 ), and the sucrose solution It causes degradation of quality and scaling to equipment. In particular, in the sucrose purification process that does not use bone charcoal having calcium adsorption ability, the calcium ion concentration in the sucrose solution becomes high, which is a problem.
上記のような問題への対応策として、特許文献2に開示されているように、蔗糖溶液の脱塩装置の前段に、カルシウムイオン除去用の軟化塔を配置して、軟化処理を行う方法を用いることができる。しかし、この方法では、軟化塔を増やすため全部で三つの塔が必要となり、初期導入コストが高い。
As a countermeasure against the above problems, as disclosed in Patent Document 2, a method of performing a softening treatment by disposing a softening tower for removing calcium ions in the previous stage of a desalting apparatus for a sucrose solution. Can be used. However, this method requires a total of three towers in order to increase the number of softening towers, and the initial introduction cost is high.
蔗糖の精製工程では、甘水が発生する。甘水とは、予め水を満たした脱塩装置内に蔗糖溶液を通液する際、初期の通液時に脱塩装置から排出される低濃度の蔗糖溶液や、精製終了後に脱塩装置を洗浄する際に脱塩装置から排出される低濃度の蔗糖溶液を表す。一般的に、精製工程では収率を増加させるために、甘水を濃縮した後、原料糖溶液に添加することによって精製工程に戻している。上記のように三つの塔からなる脱塩装置では、塔の数が増えた分だけ甘水の量が増加した。甘水の濃縮にはエネルギーが必要となりコストが増加するため、精製工程中で生じる甘水量を低減することが要望されていた。
In the sucrose purification process, sweet water is generated. Sweet water is a low-concentration sucrose solution that is discharged from the desalinator during the initial flow when the sucrose solution is passed through a desalinator that has been previously filled with water, and the desalinator is washed after completion of purification. This represents a low-concentration sucrose solution discharged from the desalting apparatus. In general, in order to increase the yield in the purification step, the sweet water is concentrated and then added back to the raw sugar solution to return to the purification step. As described above, in the desalination apparatus consisting of three towers, the amount of sweet water increased by the number of towers. Since concentration of sweet water requires energy and costs increase, it has been desired to reduce the amount of sweet water generated during the purification process.
2.蔗糖溶液の精製装置の再生
特許文献3は、混床塔内の2種類のイオン交換樹脂を分離する方法を開示している。しかし、カルシウムイオン除去用のイオン交換樹脂を充填した塔を含む、蔗糖溶液の精製装置を効率的に再生する方法が要望されていた。特許文献2に記載の精製装置は三つの塔から構成されるため、再生液の排水量が多くなりがちであり、排水量を低減することが要望されていた。 2. Regeneration of Sucrose Solution PurificationDevice Patent Document 3 discloses a method of separating two types of ion exchange resins in a mixed bed tower. However, there has been a demand for a method for efficiently regenerating a sucrose solution purification apparatus including a tower filled with an ion exchange resin for removing calcium ions. Since the purification apparatus described in Patent Document 2 is composed of three towers, the amount of drainage of the regenerated liquid tends to increase, and it has been desired to reduce the amount of wastewater.
特許文献3は、混床塔内の2種類のイオン交換樹脂を分離する方法を開示している。しかし、カルシウムイオン除去用のイオン交換樹脂を充填した塔を含む、蔗糖溶液の精製装置を効率的に再生する方法が要望されていた。特許文献2に記載の精製装置は三つの塔から構成されるため、再生液の排水量が多くなりがちであり、排水量を低減することが要望されていた。 2. Regeneration of Sucrose Solution Purification
本発明は上記課題に鑑みてなされたものであり、第1に、二つの塔から精製装置を構成し、第1塔でカルシウムイオン等を除去することで、装置内でのカルシウム等の析出を抑制してスケーリングを防止すると共に高純度の蔗糖溶液を得ることを目的とする。更に、本発明は甘水量および排水量を低減すると共にコストを低減することを目的とする。
The present invention has been made in view of the above problems. First, a purification apparatus is configured from two towers, and calcium ions and the like are removed in the first tower, thereby precipitating calcium and the like in the apparatus. The object is to obtain a high-purity sucrose solution while suppressing it to prevent scaling. Furthermore, an object of the present invention is to reduce the amount of sweet water and the amount of drainage and reduce the cost.
第2に、精製装置を再生する際に、再生液の排水量を低減することを目的とする。
Secondly, the purpose is to reduce the amount of drainage of regenerated liquid when regenerating the purification equipment.
一実施形態は、
OH形強塩基性陰イオン交換樹脂と、Na形またはK形陽イオン交換樹脂とを充填した第1塔と、
第1塔の後段に配し、OH形強塩基性陰イオン交換樹脂とH形弱酸性陽イオン交換樹脂とを混合充填した第2塔に、
蔗糖溶液をこの順に通液することを特徴とする蔗糖溶液の精製方法に関する。 One embodiment is:
A first column packed with OH-type strongly basic anion exchange resin and Na-type or K-type cation exchange resin;
In the second tower arranged after the first tower and mixed and packed with OH type strong basic anion exchange resin and H type weak acid cation exchange resin,
The present invention relates to a method for purifying a sucrose solution characterized by passing the sucrose solution in this order.
OH形強塩基性陰イオン交換樹脂と、Na形またはK形陽イオン交換樹脂とを充填した第1塔と、
第1塔の後段に配し、OH形強塩基性陰イオン交換樹脂とH形弱酸性陽イオン交換樹脂とを混合充填した第2塔に、
蔗糖溶液をこの順に通液することを特徴とする蔗糖溶液の精製方法に関する。 One embodiment is:
A first column packed with OH-type strongly basic anion exchange resin and Na-type or K-type cation exchange resin;
In the second tower arranged after the first tower and mixed and packed with OH type strong basic anion exchange resin and H type weak acid cation exchange resin,
The present invention relates to a method for purifying a sucrose solution characterized by passing the sucrose solution in this order.
他の実施形態は、
OH形強塩基性陰イオン交換樹脂と、Na形またはK形陽イオン交換樹脂とを充填した第1塔と、
第1塔の後段に配し、OH形強塩基性陰イオン交換樹脂とH形弱酸性陽イオン交換樹脂とを混合充填した第2塔と、
を有することを特徴とする蔗糖溶液の精製装置に関する。 Other embodiments are:
A first column packed with OH-type strongly basic anion exchange resin and Na-type or K-type cation exchange resin;
A second tower disposed after the first tower and filled with an OH-type strongly basic anion exchange resin and an H-type weakly acidic cation exchange resin;
The present invention relates to an apparatus for purifying a sucrose solution.
OH形強塩基性陰イオン交換樹脂と、Na形またはK形陽イオン交換樹脂とを充填した第1塔と、
第1塔の後段に配し、OH形強塩基性陰イオン交換樹脂とH形弱酸性陽イオン交換樹脂とを混合充填した第2塔と、
を有することを特徴とする蔗糖溶液の精製装置に関する。 Other embodiments are:
A first column packed with OH-type strongly basic anion exchange resin and Na-type or K-type cation exchange resin;
A second tower disposed after the first tower and filled with an OH-type strongly basic anion exchange resin and an H-type weakly acidic cation exchange resin;
The present invention relates to an apparatus for purifying a sucrose solution.
第1に、二つの塔から精製装置を構成し、第1塔でカルシウムイオン等を除去することで、装置内でのカルシウム等の析出を抑制してスケーリングを防止すると共に高純度の蔗糖溶液を得ることができる。更に、甘水量および排水量を低減すると共にコストを低減することができる。
First, a purification apparatus is constructed from two towers, and calcium ions and the like are removed in the first tower, thereby suppressing the precipitation of calcium and the like in the apparatus to prevent scaling and a high-purity sucrose solution. Obtainable. Furthermore, the amount of sweet water and the amount of drainage can be reduced and the cost can be reduced.
第2に、精製装置を再生する際に、再生液の排水量を低減することができる。
Secondly, when the refining apparatus is regenerated, the amount of drainage of the regenerated liquid can be reduced.
以下では、実施形態に基づいて本発明を説明する。なお、以下の実施形態は本発明の一例であって、本発明は下記の実施形態に限定されるものではない。
Hereinafter, the present invention will be described based on embodiments. The following embodiment is an example of the present invention, and the present invention is not limited to the following embodiment.
(蔗糖溶液の精製装置)
図1および2は、本実施形態の蔗糖溶液の精製装置を示す模式図である。図1の精製装置では、第1塔2がOH形強塩基性陰イオン交換樹脂とNa形またはK形陽イオン交換樹脂を混合充填した混床塔であり、第2塔4がOH形強塩基性陰イオン交換樹脂とH形弱酸性陽イオン交換樹脂とを混合充填した混床塔である。図2の精製装置では、第1塔2が、上段にNa形またはK形陽イオン交換樹脂2a、下段にOH形強塩基性陰イオン交換樹脂2bを配した複層床塔であり、第2塔4がOH形強塩基性陰イオン交換樹脂とH形弱酸性陽イオン交換樹脂の混床塔である。 (Sucrose solution purification equipment)
1 and 2 are schematic views showing a sucrose solution purifying apparatus according to the present embodiment. In the purification apparatus of FIG. 1, thefirst column 2 is a mixed bed column in which OH type strong basic anion exchange resin and Na type or K type cation exchange resin are mixed and packed, and the second column 4 is OH type strong base. It is a mixed bed tower in which a mixed anion exchange resin and an H-type weakly acidic cation exchange resin are mixed and packed. In the purification apparatus of FIG. 2, the first column 2 is a multi-layered bed column in which an Na-type or K-type cation exchange resin 2a is arranged in the upper stage and an OH type strongly basic anion exchange resin 2b is arranged in the lower stage. The column 4 is a mixed bed column of OH type strong basic anion exchange resin and H type weak acid cation exchange resin.
図1および2は、本実施形態の蔗糖溶液の精製装置を示す模式図である。図1の精製装置では、第1塔2がOH形強塩基性陰イオン交換樹脂とNa形またはK形陽イオン交換樹脂を混合充填した混床塔であり、第2塔4がOH形強塩基性陰イオン交換樹脂とH形弱酸性陽イオン交換樹脂とを混合充填した混床塔である。図2の精製装置では、第1塔2が、上段にNa形またはK形陽イオン交換樹脂2a、下段にOH形強塩基性陰イオン交換樹脂2bを配した複層床塔であり、第2塔4がOH形強塩基性陰イオン交換樹脂とH形弱酸性陽イオン交換樹脂の混床塔である。 (Sucrose solution purification equipment)
1 and 2 are schematic views showing a sucrose solution purifying apparatus according to the present embodiment. In the purification apparatus of FIG. 1, the
図1および2に示すように、第1塔は混床塔であっても、複層床塔であっても良いが、蔗糖溶液の純度をより高くできるため、混床塔が好ましい。図2に示すように、第1塔を複層床塔とする場合、上段(上流側)にNa形またはK形陽イオン交換樹脂、下段(下流側)にOH形強塩基性陰イオン交換樹脂を配するのが好ましい。図2のようにイオン交換樹脂を配することにより、第1塔の上流側で蔗糖溶液が高アルカリ(高pH)の状態になることを防止でき、カルシウムイオン等を除去することができるため、精製装置内での炭酸カルシウム等の析出を抑制してスケーリングを防止できる。
As shown in FIGS. 1 and 2, the first tower may be a mixed bed tower or a multi-layer bed tower, but a mixed bed tower is preferred because the purity of the sucrose solution can be further increased. As shown in FIG. 2, when the first column is a multi-layered column, an Na-type or K-type cation exchange resin is used in the upper stage (upstream side), and an OH type strongly basic anion exchange resin is used in the lower stage (downstream side) Is preferably arranged. By arranging the ion exchange resin as shown in FIG. 2, it is possible to prevent the sucrose solution from becoming a high alkali (high pH) state upstream of the first tower, and to remove calcium ions and the like. Scaling can be prevented by suppressing the precipitation of calcium carbonate or the like in the refiner.
図1および2に示す精製装置では、第1塔2で蔗糖溶液の軟化(カルシウムイオン等の除去)および陰イオンの除去と、脱色を行う。具体的には、第1塔2のNa形またはK形陽イオン交換樹脂により蔗糖溶液中の陽イオン(カルシウムイオン(Ca2+)等)、OH形強塩基性陰イオン交換樹脂により蔗糖溶液中の陰イオン(炭酸イオン(CO3
2-)、および炭酸水素イオン(HCO3
-)等)を吸着する。更に、これらのイオン交換樹脂により、蔗糖溶液中の色素を吸着する。このため、精製装置内でのカルシウム等の析出を抑制して、スケーリングを防止することができる。従って、カルシウム等の析出やスケーリングにより、精製装置の脱塩能力が低下するのを抑制して、高純度の蔗糖溶液を得ることができる。従来は、蔗糖溶液の軟化用の単独の塔を設けていたため、全部で三つの塔からなる精製装置とする必要があった。これに対して、本実施形態では、二つの塔で蔗糖溶液の精製(脱塩および脱色)を行うことができる。従って、装置を設置するスペースを低減できると共に、精製工程で生じる甘水の量および排水量を低減して、コストを低減することができる。
In the purification apparatus shown in FIGS. 1 and 2, the sucrose solution is softened (removal of calcium ions, etc.), anions are removed, and decolorized in the first tower 2. Specifically, the cation (calcium ion (Ca 2+ ), etc.) in the sucrose solution is formed by the Na-type or K-type cation exchange resin in the first tower 2, and the OH-type strongly basic anion exchange resin is used in the sucrose solution. An anion (carbonate ion (CO 3 2− ), hydrogen carbonate ion (HCO 3 − ), etc.) is adsorbed. Furthermore, the dye in the sucrose solution is adsorbed by these ion exchange resins. For this reason, precipitation of calcium etc. in a refiner | purifier can be suppressed and scaling can be prevented. Accordingly, it is possible to obtain a high-purity sucrose solution by suppressing the desalting ability of the purification apparatus from being reduced by precipitation or scaling of calcium or the like. Conventionally, since a single tower for softening the sucrose solution was provided, it was necessary to use a purification apparatus consisting of three towers in total. On the other hand, in this embodiment, the sucrose solution can be purified (desalted and decolorized) by two towers. Therefore, the space for installing the apparatus can be reduced, and the amount of sweet water and the amount of drainage generated in the refining process can be reduced, thereby reducing the cost.
更に、蔗糖溶液は、色素や無機イオン以外にも、アミノ酸や有機酸、多糖類など陰イオン不純物を含む。これらの陰イオン不純物は、カルシウムイオン等の陽イオンと複合体を形成することがある。この複合体を含む蔗糖溶液を、軟化用の単独の塔と、陰イオン交換樹脂を充填した単独の塔を有する精製装置に通液しても、複合体からカルシウムイオン等が解離しないため、何れの塔においてもカルシウムイオン等を除去することができない。これに対して、本実施形態の精製装置では、第1塔2内に、OH形強塩基性陰イオン交換樹脂とNa形またはK形陽イオン交換樹脂の両方のイオン交換樹脂が充填されている。このため、陰イオン不純物はOH形強塩基性陰イオン交換樹脂に吸着するため、複合体中のカルシウムイオン等が遊離する。遊離したカルシウムイオン等はNa形またはK形陽イオン交換樹脂に吸着する。従って、蔗糖溶液が陰イオン不純物を含有する場合であっても、第1塔2内でこれを効果的に除去でき、蔗糖溶液を高純度とすることができる。
Furthermore, the sucrose solution contains anionic impurities such as amino acids, organic acids and polysaccharides in addition to pigments and inorganic ions. These anionic impurities may form complexes with cations such as calcium ions. Even if the sucrose solution containing this complex is passed through a purification apparatus having a single column for softening and a single column filled with an anion exchange resin, calcium ions and the like do not dissociate from the complex. In this tower, calcium ions and the like cannot be removed. In contrast, in the purification apparatus of the present embodiment, the first column 2 is filled with both OH-type strongly basic anion exchange resin and Na-type or K-type cation exchange resin. . For this reason, since anion impurities are adsorbed on the OH-type strongly basic anion exchange resin, calcium ions and the like in the complex are liberated. The liberated calcium ions and the like are adsorbed on the Na-type or K-type cation exchange resin. Therefore, even when the sucrose solution contains anionic impurities, it can be effectively removed in the first tower 2 and the sucrose solution can be made highly pure.
第2塔4のH形弱酸性陽イオン交換樹脂では第1塔2でのカルシウムイオン(Ca2+)等の吸着により脱離したナトリウムイオン(Na+)またはカリウムイオン(K+)を吸着し、OH形強塩基性陰イオン交換樹脂では第1塔2で除去できなかった炭酸イオン(CO3
2-)、および炭酸水素イオン(HCO3
-)等を吸着する。更に、第2塔4内では、蔗糖溶液の脱色も行うことができる。
The H-type weakly acidic cation exchange resin of the second column 4 adsorbs sodium ions (Na + ) or potassium ions (K + ) desorbed by adsorption of calcium ions (Ca 2+ ) and the like in the first column 2, The OH type strongly basic anion exchange resin adsorbs carbonate ions (CO 3 2− ), bicarbonate ions (HCO 3 − ), etc. that could not be removed in the first column 2. Further, the sucrose solution can be decolorized in the second tower 4.
第1塔2および第2塔4に充填するOH形強塩基性陰イオン交換樹脂の種類は特に限定されないが、第1塔2にはアクリル系OH形強塩基性陰イオン交換樹脂、第2塔4にはスチレン系OH形強塩基性陰イオン交換樹脂を充填するのが好ましい。通常、蔗糖溶液中には色素が含まれるが、アクリル系OH形強塩基性陰イオン交換樹脂は色素との親和性が低く、色素との吸着力が弱いという特性を有する。一方、スチレン系OH形強塩基性陰イオン交換樹脂は色素との親和性が高く、色素との吸着力が強いという特性を有する。ここで、蔗糖溶液に含まれる色素にはイオン交換樹脂との吸着力が高いものから低いものまで存在する。
The type of the OH type strong basic anion exchange resin charged in the first tower 2 and the second tower 4 is not particularly limited, but the first tower 2 includes an acrylic OH type strong basic anion exchange resin, the second tower. 4 is preferably filled with a styrenic OH type strongly basic anion exchange resin. Usually, the sucrose solution contains a dye, but the acrylic OH-type strongly basic anion exchange resin has a characteristic that the affinity with the dye is low and the adsorptive power with the dye is weak. On the other hand, the styrenic OH type strongly basic anion exchange resin has a high affinity with a dye and a strong adsorbing power with the dye. Here, the pigments contained in the sucrose solution exist from those having a high adsorption power to the ion exchange resin to those having a low adsorption power.
従って、アクリル系OH形強塩基性陰イオン交換樹脂には主にイオン交換樹脂との吸着力が高い色素が吸着する。アクリル系OH形強塩基性陰イオン交換樹脂は元々、色素との吸着力が弱いため、このイオン交換樹脂に吸着した色素は、再生剤によってイオン交換樹脂から容易に脱離させることができる。この結果、アクリル系OH形強塩基性陰イオン交換樹脂を劣化させることなく、再生させて使用することができる。
Therefore, the acrylic OH-type strongly basic anion exchange resin mainly absorbs a dye having a high adsorbing power with the ion exchange resin. Since the acrylic OH type strongly basic anion exchange resin originally has a weak adsorption power with the dye, the dye adsorbed on the ion exchange resin can be easily detached from the ion exchange resin by the regenerant. As a result, the acrylic OH type strongly basic anion exchange resin can be regenerated and used without deteriorating.
上記のように第1塔2では主にイオン交換樹脂との吸着力が高い色素が吸着するため、第1塔2を通液後の蔗糖溶液中に残留しているのは、主にイオン交換樹脂との吸着力が低い色素となる。このため、第2塔4のスチレン系OH形強塩基性陰イオン交換樹脂には主にイオン交換樹脂との吸着力が低い色素が吸着する。従って、色素との吸着力が高いスチレン系OH形強塩基性陰イオン交換樹脂に吸着した色素であっても、再生剤によって容易に脱離させることができる。この結果、スチレン系OH形強塩基性陰イオン交換樹脂を劣化させることなく、再生させて使用することができる。
As described above, in the first tower 2, the dye having a high adsorptive power with the ion exchange resin is mainly adsorbed. Therefore, what remains in the sucrose solution after passing through the first tower 2 is mainly ion exchange. The dye has a low adsorption power with the resin. For this reason, the styrenic OH type strongly basic anion exchange resin in the second column 4 mainly adsorbs a dye having a low adsorption power with the ion exchange resin. Therefore, even a dye adsorbed on a styrene-based OH type strongly basic anion exchange resin having a high adsorbing power with the dye can be easily detached by the regenerant. As a result, the styrenic OH type strongly basic anion exchange resin can be regenerated and used without deteriorating.
以上のように、第1塔2にはアクリル系OH形強塩基性陰イオン交換樹脂、第2塔4にはスチレン系OH形強塩基性陰イオン交換樹脂を充填することにより、これらのイオン交換樹脂を脱色(色素吸着)によって劣化させることなく、高い能力で蔗糖溶液の脱塩を行うことができる。
As described above, the first column 2 is filled with acrylic OH type strongly basic anion exchange resin, and the second column 4 is filled with styrene type OH type strongly basic anion exchange resin. The sucrose solution can be desalted with high capacity without deteriorating the resin by decolorization (dye adsorption).
第1塔2に充填するアクリル系OH形強塩基性陰イオン交換樹脂としては、例えばアンバーライト(登録商標、以下、同様) IRA958、IRA458(ダウケミカル社製)、PUROLITE(登録商標、以下、同様) A860、A850(ピュロライト社製)などを挙げることができる。アクリル系OH形強塩基性陰イオン交換樹脂のうち、特にゲル型樹脂は、交換容量が大きく、処理できる蔗糖溶液の量が多くなることから有利である。ゲル型アクリル系強塩基性陰イオン交換樹脂としてはアンバーライト IRA458(ダウケミカル社製)、PUROLITE A850(ピュロライト社製)を挙げることができる。
Examples of the acrylic OH type strongly basic anion exchange resin charged in the first tower 2 include Amberlite (registered trademark, hereinafter the same) 同 様 IRA958, IRA458 (manufactured by Dow Chemical Co.), PUROLITE (registered trademark, the same hereinafter). ) A860, A850 (manufactured by Purolite) and the like. Of the acrylic OH type strongly basic anion exchange resins, the gel type resin is particularly advantageous because it has a large exchange capacity and increases the amount of sucrose solution that can be processed. Examples of the gel-type acrylic strongly basic anion exchange resin include Amberlite® IRA458 (manufactured by Dow Chemical Co.) and PUROLITE A850 (manufactured by Purolite).
第1塔2に充填するNa形またはK形陽イオン交換樹脂は、強酸性陽イオン交換樹脂であっても、弱酸性陽イオン交換樹脂であっても良い。Na形強酸性陽イオン交換樹脂としては例えば、アンバーライト IR120B Na、IR124 Na、200CT Na、252 Na(ダウケミカル社製)、ダイヤイオン(登録商標、以下、同様) SK1B、PK216(三菱化学社製)、PUROLITE C100E(ピュロライト社製)を挙げることができる。公知のH形強酸性陽イオン交換樹脂をNaOHやKOH等の再生剤で再生させることによって、Na形またはK形強酸性陽イオン交換樹脂に変換したものを用いても良い。同様に、公知のH形弱酸性陽イオン交換樹脂をNaOHやKOH等の再生剤で再生させることによって、Na形またはK形弱酸性陽イオン交換樹脂に変換したものを用いても良い。
The Na-type or K-type cation exchange resin packed in the first tower 2 may be a strong acid cation exchange resin or a weak acid cation exchange resin. Examples of Na-type strongly acidic cation exchange resins include Amberlite IR120B Na, IR124 Na, 200CT Na, 252 Na (manufactured by Dow Chemical), Diaion (registered trademark, hereinafter the same) SK1B, PK216 (manufactured by Mitsubishi Chemical Corporation) ), PUROLITE C100E (manufactured by Purolite). A known H-type strongly acidic cation exchange resin may be converted into a Na-type or K-type strongly acidic cation exchange resin by regenerating with a regenerating agent such as NaOH or KOH. Similarly, a known H-type weakly acidic cation exchange resin converted into a Na-type or K-type weakly acidic cation exchange resin by regenerating with a regenerating agent such as NaOH or KOH may be used.
第2塔4に充填するスチレン系OH形強塩基性陰イオン交換樹脂としては、例えば、アンバーライト IRA900、IRA402、IRA402BL(ダウケミカル社製)、PUROLITE A500S(ピュロライト社製)、ダイヤイオン SA10A、PA308(三菱化学社製)などを挙げることができる。
Examples of the styrenic OH type strongly basic anion exchange resin charged in the second tower 4 include, for example, Amberlite IRA900, IRA402, IRA402BL (manufactured by Dow Chemical Co.), PUROLITE A500S (manufactured by Purolite), Diaion SA10A, PA308. (Mitsubishi Chemical Corporation).
第2塔4に用いるH形弱酸性陽イオン交換樹脂としては、例えば、アンバーライト IRC76、ダウエックス(登録商標、以下、同様) MAC-3(ダウケミカル社製)、PUROLITE C115E(ピュロライト社製)、ダイヤイオン WK10、WK11(三菱化学社製)などを挙げることができる。
Examples of the H-type weakly acidic cation exchange resin used in the second column 4 include Amberlite IRC76, Dowex (registered trademark, hereinafter the same), MAC-3 (manufactured by Dow Chemical), PUROLITE C115E (manufactured by Purolite). And Diaion WK10, WK11 (Mitsubishi Chemical Corporation).
(蔗糖溶液の精製方法)
図3は、図1の精製装置を用いた蔗糖溶液の精製方法を示す模式図である。この精製方法では,図中の矢印の方向に蔗糖溶液を通液し、最初に第1塔2内に蔗糖溶液を通液した後、第1塔2を通液後の蔗糖溶液を第2塔4内に通液する。この第1塔2のNa形またはK形陽イオン交換樹脂では蔗糖溶液中の陽イオン(カルシウムイオンCa2+等)、OH形強塩基性陰イオン交換樹脂では陰イオン(炭酸イオン(CO3 2-)および炭酸水素イオン(HCO3 -)等)を吸着できる。これらのイオン交換樹脂により、蔗糖溶液中の色素を吸着できる。従って、第1塔2でのカルシウム等の析出を抑制して精製装置内でのスケーリングを防止すると共に、これにより第1塔2の脱塩能力が低下するのを抑制して、脱塩および脱色を行った高純度の蔗糖溶液を得ることができる。従来の精製装置と比べて、装置を設置するスペースを低減できると共に、精製工程で生じる甘水の量および排水量を低減して、コストを低減することができる。更に、蔗糖溶液中に、陰イオン不純物およびカルシウムイオン等の複合体が含有される場合、第1塔2内にこの蔗糖溶液を通液することにより、この複合体からOH形強塩基性陰イオン交換樹脂に陰イオン不純物が吸着するためにカルシウムイオン等が遊離する。遊離したカルシウムイオン等はNa形またはK形強酸性陽イオン交換樹脂に吸着するため、第1塔2内で複合体を効果的に除去でき、蔗糖溶液を高純度とすることができる。 (Purification method of sucrose solution)
FIG. 3 is a schematic diagram showing a method for purifying a sucrose solution using the purification apparatus of FIG. In this purification method, the sucrose solution is passed through in the direction of the arrow in the figure, the sucrose solution is first passed through thefirst tower 2, and the sucrose solution after passing through the first tower 2 is passed through the second tower 2. 4 is passed through. The Na-type or K-type cation exchange resin of the first tower 2 is a cation (calcium ion Ca 2+ etc.) in a sucrose solution, and the OH type strongly basic anion exchange resin is an anion (carbonate ion (CO 3 2− ) And bicarbonate ions (HCO 3 − ) and the like. These ion exchange resins can adsorb the dye in the sucrose solution. Accordingly, the precipitation of calcium or the like in the first column 2 is suppressed to prevent scaling in the purification apparatus, and the decrease in the demineralization ability of the first column 2 is thereby suppressed, thereby desalting and decolorization. A high-purity sucrose solution can be obtained. Compared with the conventional refinement | purification apparatus, while being able to reduce the space which installs an apparatus, the quantity of the sweet water and drainage amount which arise in a refinement | purification process can be reduced, and cost can be reduced. Furthermore, when a complex such as an anionic impurity and calcium ion is contained in the sucrose solution, the OH-type strongly basic anion is removed from the complex by passing the sucrose solution through the first column 2. Since anion impurities are adsorbed on the exchange resin, calcium ions and the like are liberated. Since the liberated calcium ions and the like are adsorbed on the Na-type or K-type strongly acidic cation exchange resin, the complex can be effectively removed in the first column 2 and the sucrose solution can be made highly pure.
図3は、図1の精製装置を用いた蔗糖溶液の精製方法を示す模式図である。この精製方法では,図中の矢印の方向に蔗糖溶液を通液し、最初に第1塔2内に蔗糖溶液を通液した後、第1塔2を通液後の蔗糖溶液を第2塔4内に通液する。この第1塔2のNa形またはK形陽イオン交換樹脂では蔗糖溶液中の陽イオン(カルシウムイオンCa2+等)、OH形強塩基性陰イオン交換樹脂では陰イオン(炭酸イオン(CO3 2-)および炭酸水素イオン(HCO3 -)等)を吸着できる。これらのイオン交換樹脂により、蔗糖溶液中の色素を吸着できる。従って、第1塔2でのカルシウム等の析出を抑制して精製装置内でのスケーリングを防止すると共に、これにより第1塔2の脱塩能力が低下するのを抑制して、脱塩および脱色を行った高純度の蔗糖溶液を得ることができる。従来の精製装置と比べて、装置を設置するスペースを低減できると共に、精製工程で生じる甘水の量および排水量を低減して、コストを低減することができる。更に、蔗糖溶液中に、陰イオン不純物およびカルシウムイオン等の複合体が含有される場合、第1塔2内にこの蔗糖溶液を通液することにより、この複合体からOH形強塩基性陰イオン交換樹脂に陰イオン不純物が吸着するためにカルシウムイオン等が遊離する。遊離したカルシウムイオン等はNa形またはK形強酸性陽イオン交換樹脂に吸着するため、第1塔2内で複合体を効果的に除去でき、蔗糖溶液を高純度とすることができる。 (Purification method of sucrose solution)
FIG. 3 is a schematic diagram showing a method for purifying a sucrose solution using the purification apparatus of FIG. In this purification method, the sucrose solution is passed through in the direction of the arrow in the figure, the sucrose solution is first passed through the
第2塔4のH形弱酸性陽イオン交換樹脂では、第1塔2でのカルシウムイオン(Ca2+)等の吸着により脱離したナトリウムイオン(Na+)またはカリウムイオン(K+)を除去し、OH形強塩基性陰イオン交換樹脂では、第1塔2通液後も蔗糖溶液中に残存する炭酸イオン(CO3
2-)、および炭酸水素イオン(HCO3
-)等を除去する。更に、第2塔4内では、蔗糖溶液の脱色を行うこともできる。
The H-type weakly acidic cation exchange resin in the second column 4 removes sodium ions (Na + ) or potassium ions (K + ) desorbed by adsorption of calcium ions (Ca 2+ ) and the like in the first column 2. The OH type strongly basic anion exchange resin removes carbonate ions (CO 3 2− ), hydrogen carbonate ions (HCO 3 − ) and the like remaining in the sucrose solution after passing through the first column 2. Further, the sucrose solution can be decolorized in the second tower 4.
精製に用いる蔗糖溶液としては特に限定されないが、精製に用いる蔗糖溶液は、炭酸飽充処理および濾過処理を行った後の濾過液、上記濾過処理後に更に活性炭処理を行った後、または他の処理により不純物を除去した溶液であることが好ましい。これらの蔗糖溶液は、多量のカルシウムイオンやマグネシウムイオン等の不純物を含有している。従って、これらの蔗糖溶液を本実施形態の精製装置で精製することによって、高純度の蔗糖溶液を得ることができる。なお、第1塔2に通液する前の蔗糖溶液は、カルシウムイオンとマグネシウムイオンの濃度の和が、0.001mol/L以上であることが好ましく、0.002mol/L以上であることがより好ましい。本実施形態では、上記のような高濃度のカルシウムイオンとマグネシウムイオンを含有する蔗糖溶液であっても第1塔2内でこれらのイオンを効果的に除去して、高純度の蔗糖溶液を得ることができる。
The sucrose solution used for purification is not particularly limited, but the sucrose solution used for purification is a filtrate after carbonation saturation and filtration treatment, after further activated carbon treatment after the filtration treatment, or other treatment. A solution from which impurities have been removed is preferable. These sucrose solutions contain a large amount of impurities such as calcium ions and magnesium ions. Therefore, a high-purity sucrose solution can be obtained by purifying these sucrose solutions with the purification apparatus of this embodiment. The sucrose solution before passing through the first tower 2 preferably has a sum of calcium ion and magnesium ion concentrations of 0.001 mol / L or more, more preferably 0.002 mol / L or more. preferable. In the present embodiment, even a sucrose solution containing high-concentration calcium ions and magnesium ions as described above, these ions are effectively removed in the first tower 2 to obtain a high-purity sucrose solution. be able to.
(蔗糖溶液の精製装置の再生方法)
図4A~4Dは、図1の精製装置を再生する方法を示す模式図である。蔗糖溶液の精製によって、第1塔2内のNa形またはK形陽イオン交換樹脂から、Naイオン(Na+)またはKイオン(K+)が脱離して、主にカルシウムイオン(Ca2+)等が吸着する。第1塔2内のOH形強塩基性陰イオン交換樹脂から水酸化物イオン(OH-)が脱離して、主に炭酸イオン(CO3 2-)、炭酸水素イオン(HCO3 -)および塩化物イオン(Cl-)などが吸着する。第2塔4内のH形弱酸性陽イオン交換樹脂およびOH形強塩基性陰イオン交換樹脂から、それぞれ水素イオン(H+)および水酸化物イオン(OH-)が脱離して、主にNaイオン(Na+)またはKイオン(K+)、ならびに炭酸イオン(CO3 2-)および炭酸水素イオン(HCO3 -)が吸着する。すなわち、蔗糖溶液の精製後、第1塔2内のOH形強塩基性陰イオン交換樹脂は主にCO3 2--強塩基性陰イオン交換樹脂、HCO3 --強塩基性陰イオン交換樹脂およびCl--強塩基性陰イオン交換樹脂となり、Na形またはK形陽イオン交換樹脂は主にCa2+-陽イオン交換樹脂になる。精製後、第2塔4内のH形弱酸性陽イオン交換樹脂は主にNa+-弱酸性陽イオン交換樹脂またはK+-弱酸性陽イオン交換樹脂となり、OH形強塩基性陰イオン交換樹脂は主にCO3 2--強塩基性陰イオン交換樹脂およびHCO3 --強塩基性陰イオン交換樹脂となる。 (Regeneration method of sucrose solution purification equipment)
4A to 4D are schematic diagrams showing a method for regenerating the purification apparatus of FIG. By refinement of the sucrose solution, Na ions (Na + ) or K ions (K + ) are desorbed from the Na-type or K-type cation exchange resin in thefirst tower 2, mainly calcium ions (Ca 2+ ), etc. Adsorbs. Hydroxide ions (OH − ) are desorbed from the OH type strongly basic anion exchange resin in the first column 2, and mainly carbonate ions (CO 3 2− ), bicarbonate ions (HCO 3 − ) and chloride. Object ions (Cl − ) and the like are adsorbed. Hydrogen ions (H + ) and hydroxide ions (OH − ) are desorbed from the H-type weakly acidic cation exchange resin and the OH-type strongly basic anion exchange resin in the second column 4 respectively, and mainly Na. Ions (Na + ) or K ions (K + ), carbonate ions (CO 3 2− ), and bicarbonate ions (HCO 3 − ) are adsorbed. That is, after purification of the sucrose solution, the OH type strongly basic anion exchange resin in the first column 2 is mainly CO 3 2− -strongly basic anion exchange resin, HCO 3 − -strongly basic anion exchange resin. And Cl − -strongly basic anion exchange resin, and Na-type or K-type cation exchange resin mainly becomes Ca 2+ -cation exchange resin. After purification, the H-type weakly acidic cation exchange resin in the second column 4 is mainly Na + -weakly acidic cation exchange resin or K + -weakly acidic cation exchange resin, and OH type strongly basic anion exchange resin. Are mainly CO 3 2− -strongly basic anion exchange resins and HCO 3 − -strongly basic anion exchange resins.
図4A~4Dは、図1の精製装置を再生する方法を示す模式図である。蔗糖溶液の精製によって、第1塔2内のNa形またはK形陽イオン交換樹脂から、Naイオン(Na+)またはKイオン(K+)が脱離して、主にカルシウムイオン(Ca2+)等が吸着する。第1塔2内のOH形強塩基性陰イオン交換樹脂から水酸化物イオン(OH-)が脱離して、主に炭酸イオン(CO3 2-)、炭酸水素イオン(HCO3 -)および塩化物イオン(Cl-)などが吸着する。第2塔4内のH形弱酸性陽イオン交換樹脂およびOH形強塩基性陰イオン交換樹脂から、それぞれ水素イオン(H+)および水酸化物イオン(OH-)が脱離して、主にNaイオン(Na+)またはKイオン(K+)、ならびに炭酸イオン(CO3 2-)および炭酸水素イオン(HCO3 -)が吸着する。すなわち、蔗糖溶液の精製後、第1塔2内のOH形強塩基性陰イオン交換樹脂は主にCO3 2--強塩基性陰イオン交換樹脂、HCO3 --強塩基性陰イオン交換樹脂およびCl--強塩基性陰イオン交換樹脂となり、Na形またはK形陽イオン交換樹脂は主にCa2+-陽イオン交換樹脂になる。精製後、第2塔4内のH形弱酸性陽イオン交換樹脂は主にNa+-弱酸性陽イオン交換樹脂またはK+-弱酸性陽イオン交換樹脂となり、OH形強塩基性陰イオン交換樹脂は主にCO3 2--強塩基性陰イオン交換樹脂およびHCO3 --強塩基性陰イオン交換樹脂となる。 (Regeneration method of sucrose solution purification equipment)
4A to 4D are schematic diagrams showing a method for regenerating the purification apparatus of FIG. By refinement of the sucrose solution, Na ions (Na + ) or K ions (K + ) are desorbed from the Na-type or K-type cation exchange resin in the
本実施形態の再生方法ではまず、図4Aに示すように、第2塔4内に、H形弱酸性陽イオン交換樹脂用の第1の再生液を通液する。この際、第1の再生液は第2塔4の底部から頂部に向かって通液する。これにより、第2塔4内の強塩基性陰イオン交換樹脂と弱酸性陽イオン交換樹脂は流動し、これらのイオン交換樹脂の比重の差によって分離される。本実施形態では、分離によって、第2塔4内で上部に強塩基性陰イオン交換樹脂4a、下部に弱酸性陽イオン交換樹脂4bが配される。第1の再生液によって、第2塔4内の弱酸性陽イオン交換樹脂からNaイオン(Na+)またはKイオン(K+)が脱離して再生され、H形弱酸性陽イオン交換樹脂となる。
In the regeneration method of the present embodiment, first, as shown in FIG. 4A, the first regeneration solution for the H-type weakly acidic cation exchange resin is passed through the second column 4. At this time, the first regenerating liquid flows from the bottom of the second tower 4 toward the top. Thereby, the strongly basic anion exchange resin and the weakly acidic cation exchange resin in the second column 4 flow and are separated by the difference in specific gravity of these ion exchange resins. In the present embodiment, a strong basic anion exchange resin 4a is arranged at the upper part and a weak acidic cation exchange resin 4b is arranged at the lower part in the second tower 4 by the separation. By the first regeneration solution, Na ions (Na + ) or K ions (K + ) are desorbed from the weakly acidic cation exchange resin in the second column 4 and regenerated to become an H-type weakly acidic cation exchange resin. .
次に、第1の再生液を、第2塔4の頂部から回収し、第1塔2の頂部から底部に向かって通液する。この際、第1の再生液は第2塔4の底部から頂部に向かって通液するため、第1の再生液と向流となるように水等の溶液を流す必要がない。従って、水等によって第1の再生液の濃度を低下させることなく、第2塔4から回収することができる。第1塔2内への第1の再生液の通液により、第1塔2内の陽イオン交換樹脂に吸着したカルシウムイオン(Ca2+)等を脱離させ、代わりに水素イオン(H+)を吸着させて、H形陽イオン交換樹脂とする。
第1の再生液は酸溶液であれば特に限定されず、好ましくは塩酸水溶液が使用できる。塩酸水溶液中の塩酸濃度はイオン交換樹脂を劣化させないものであれば特に限定されないが、0.05~2.0規定が好ましく、0.1~1.0規定がより好ましい。上記のように、第1の再生液として塩酸水溶液を使用した場合、第2塔4内への第1の再生液の通液により、炭酸イオン(CO3 2-)および炭酸水素イオン(HCO3 -)が吸着した第2塔4内の強塩基性陰イオン交換樹脂から炭酸イオン(CO3 2-)および炭酸水素イオン(HCO3 -)が脱離して、塩化物イオン(Cl-)が吸着し、Cl--強塩基性陰イオン交換樹脂となる。同様に、第1塔2内への第1の再生液の通液により、第1塔2内の、炭酸イオン(CO3 2-)および炭酸水素イオン(HCO3 -)が吸着した強塩基性陰イオン交換樹脂は、Cl--強塩基性陰イオン交換樹脂となる。 Next, the first regenerated liquid is recovered from the top of thesecond tower 4 and passed from the top of the first tower 2 toward the bottom. At this time, since the first regenerating liquid flows from the bottom to the top of the second column 4, it is not necessary to flow a solution such as water so as to be countercurrent to the first regenerating liquid. Therefore, it can be recovered from the second column 4 without reducing the concentration of the first regenerated solution with water or the like. By passing the first regeneration solution through the first column 2, calcium ions (Ca 2+ ) and the like adsorbed on the cation exchange resin in the first column 2 are desorbed, and instead hydrogen ions (H + ) Is adsorbed to form an H-type cation exchange resin.
The first regenerating solution is not particularly limited as long as it is an acid solution, and an aqueous hydrochloric acid solution can be preferably used. The hydrochloric acid concentration in the aqueous hydrochloric acid solution is not particularly limited as long as it does not deteriorate the ion exchange resin, but is preferably 0.05 to 2.0 N, more preferably 0.1 to 1.0 N. As described above, when an aqueous hydrochloric acid solution is used as the first regeneration solution, carbonate ions (CO 3 2− ) and bicarbonate ions (HCO 3 ) are introduced by passing the first regeneration solution into thesecond column 4. -) strongly basic anion exchange resin from carbonate ions in the second column 4 was adsorbed (CO 3 2-) and bicarbonate ions (HCO 3 -) is eliminated, chloride ion (Cl -) adsorption Cl − -strongly basic anion exchange resin. Similarly, strong basicity in which carbonate ions (CO 3 2− ) and hydrogen carbonate ions (HCO 3 − ) in the first column 2 are adsorbed by passing the first regenerating solution into the first column 2. anion exchange resin, Cl - - a strongly basic anion exchange resin.
第1の再生液は酸溶液であれば特に限定されず、好ましくは塩酸水溶液が使用できる。塩酸水溶液中の塩酸濃度はイオン交換樹脂を劣化させないものであれば特に限定されないが、0.05~2.0規定が好ましく、0.1~1.0規定がより好ましい。上記のように、第1の再生液として塩酸水溶液を使用した場合、第2塔4内への第1の再生液の通液により、炭酸イオン(CO3 2-)および炭酸水素イオン(HCO3 -)が吸着した第2塔4内の強塩基性陰イオン交換樹脂から炭酸イオン(CO3 2-)および炭酸水素イオン(HCO3 -)が脱離して、塩化物イオン(Cl-)が吸着し、Cl--強塩基性陰イオン交換樹脂となる。同様に、第1塔2内への第1の再生液の通液により、第1塔2内の、炭酸イオン(CO3 2-)および炭酸水素イオン(HCO3 -)が吸着した強塩基性陰イオン交換樹脂は、Cl--強塩基性陰イオン交換樹脂となる。 Next, the first regenerated liquid is recovered from the top of the
The first regenerating solution is not particularly limited as long as it is an acid solution, and an aqueous hydrochloric acid solution can be preferably used. The hydrochloric acid concentration in the aqueous hydrochloric acid solution is not particularly limited as long as it does not deteriorate the ion exchange resin, but is preferably 0.05 to 2.0 N, more preferably 0.1 to 1.0 N. As described above, when an aqueous hydrochloric acid solution is used as the first regeneration solution, carbonate ions (CO 3 2− ) and bicarbonate ions (HCO 3 ) are introduced by passing the first regeneration solution into the
上記の工程では、第1塔2および第2塔4内の強塩基性陰イオン交換樹脂が回生される。すなわち、この回生により、強塩基性陰イオン交換樹脂の母体構造等に吸着した不純物(色素など)が除去される。
In the above process, the strongly basic anion exchange resin in the first column 2 and the second column 4 is regenerated. That is, this regeneration removes impurities (such as dyes) adsorbed on the base structure of the strongly basic anion exchange resin.
次に、図4Bに示すように、第2塔4の頂部から、ナトリウムイオンまたはカリウムイオンを含有するOH形強塩基性陰イオン交換樹脂用の第2の再生液を通液すると共に、第2塔4の底部から水を通液する。この水を第2の再生液と向流とすることで、第2の再生液が第2塔4内の下部に分離されたH形弱酸性陽イオン交換樹脂にまで水が到達して、H形弱酸性陽イオン交換樹脂のイオン形がNa形またはK形に変換されるのを防止することができる。第2塔4内への第2の再生液の通液により、第2塔4内の強塩基性陰イオン交換樹脂から塩化物イオン(Cl-)を脱離させ、代わりに水酸化物イオン(OH-)を吸着させて、OH形強塩基性陰イオン交換樹脂に変換する。
Next, as shown in FIG. 4B, a second regeneration solution for OH type strongly basic anion exchange resin containing sodium ions or potassium ions is passed from the top of the second column 4 and second Water is passed from the bottom of the tower 4. By making this water counter-current with the second regenerating liquid, the water reaches the H-type weakly acidic cation exchange resin separated from the lower part of the second tower 4, and H It is possible to prevent the ion form of the weakly acidic cation exchange resin from being converted into the Na form or the K form. By passing the second regeneration solution into the second column 4, chloride ions (Cl − ) are desorbed from the strongly basic anion exchange resin in the second column 4, and instead hydroxide ions ( OH − ) is adsorbed and converted to an OH-type strongly basic anion exchange resin.
上記のようにして第2塔4内に通液した第2の再生液および水は、図4Bに示すように、互いに分離されたOH形強塩基性陰イオン交換樹脂とH形弱酸性陽イオン交換樹脂の境界部に位置する中間コレクターで回収する。次に、第2塔4内を通液後の第2の再生液および水を、第1塔2の頂部から底部に向かって通液する。これにより、第1塔2内の強塩基性陰イオン交換樹脂が粗再生されて、一部の塩化物イオン(Cl-)を脱離させ、代わりに水酸化物イオン(OH-)を吸着させて、OH形強塩基性陰イオン交換樹脂とする。これと共に、第1塔2内のH形陽イオン交換樹脂の水素イオン(H+)を脱離させて、代わりにナトリウムイオン(Na+)またはカリウムイオン(K+)を吸着させてそれぞれ、Na形またはK形陽イオン交換樹脂とする。第2の再生液はナトリウムイオンまたはカリウムイオンを含有するアルカリ溶液であれば特に限定されず、好ましくは水酸化ナトリウム水溶液または水酸化カリウム水溶液が使用され、より好ましくは水酸化ナトリウム水溶液が使用される。水酸化ナトリウム水溶液中の水酸化ナトリウム濃度はイオン交換樹脂を劣化させないものであれば特に限定されないが、0.05~3.0規定が好ましく、0.5~2.0規定がより好ましい。
As shown in FIG. 4B, the second regenerated solution and water passed through the second column 4 as described above are separated from each other as OH-type strongly basic anion exchange resin and H-type weakly acidic cation. Collect with an intermediate collector located at the boundary of the exchange resin. Next, the second regenerated liquid and water that have passed through the second tower 4 are passed from the top of the first tower 2 toward the bottom. Thus, strongly basic anion exchange resin in the first column 2 is rough play, a part of the chloride ion (Cl -) was desorbed, hydroxide ions instead - adsorb (OH) OH type strongly basic anion exchange resin. At the same time, the hydrogen ions (H + ) of the H-type cation exchange resin in the first column 2 are desorbed, and instead sodium ions (Na + ) or potassium ions (K + ) are adsorbed, respectively. Or K-type cation exchange resin. The second regenerating solution is not particularly limited as long as it is an alkaline solution containing sodium ions or potassium ions, preferably an aqueous sodium hydroxide solution or an aqueous potassium hydroxide solution, more preferably an aqueous sodium hydroxide solution. . The concentration of sodium hydroxide in the aqueous sodium hydroxide solution is not particularly limited as long as it does not degrade the ion exchange resin, but is preferably 0.05 to 3.0 normal, more preferably 0.5 to 2.0 normal.
次に、図4Cに示すように、OH形強塩基性陰イオン交換樹脂用の第3の再生液を、第1塔2の頂部から底部に向かって通液する。これにより、第1塔2内の強塩基性陰イオン交換樹脂の一部に吸着していた炭酸イオン(CO3
2-)および炭酸水素イオン(HCO3
-)、および塩化物イオン(Cl-)を脱離させ、代わりに水酸化物イオン(OH-)を吸着させて、OH形強塩基性陰イオン交換樹脂に変換する。第3の再生液はアルカリ溶液であれば特に限定されないが、好ましくは、第2の再生液と同じものとするのが良い。
Next, as shown in FIG. 4C, a third regeneration solution for OH type strongly basic anion exchange resin is passed from the top to the bottom of the first column 2. As a result, carbonate ions (CO 3 2− ), bicarbonate ions (HCO 3 − ), and chloride ions (Cl − ) adsorbed on a part of the strongly basic anion exchange resin in the first column 2. Is converted to an OH-type strongly basic anion exchange resin by adsorbing hydroxide ions (OH − ) instead. The third regenerating solution is not particularly limited as long as it is an alkaline solution, but preferably the same as the second regenerating solution.
次に、図4Dに示すように、第2塔4の底部から第2塔4内に圧縮空気を流し、第2塔4内で分離配置されたOH形強塩基性陰イオン交換樹脂とH形弱酸性陽イオン交換樹脂を流動させて混合させる。これにより、圧縮空気の流入の終了後の第2塔4内ではOH形強塩基性陰イオン交換樹脂とH形弱酸性陽イオン交換樹脂が混合充填され、第2塔4は混床となる。
Next, as shown in FIG. 4D, compressed air is allowed to flow from the bottom of the second column 4 into the second column 4, and the OH type strong basic anion exchange resin and the H type separated and arranged in the second column 4. A weakly acidic cation exchange resin is flowed and mixed. Thereby, in the 2nd tower 4 after completion | finish of inflow of compressed air, OH type strong basic anion exchange resin and H type weakly acidic cation exchange resin are mixed and filled, and the 2nd tower 4 becomes a mixed bed.
上記再生方法では、図4Aの工程で水等の溶液を流す必要がない。更に、従来の三つの塔の精製装置を再生する場合と比べて再生液の量を低減することができる。
In the above regeneration method, it is not necessary to flow a solution such as water in the process of FIG. 4A. Furthermore, the amount of regenerated liquid can be reduced as compared with the case of regenerating the conventional three-column purification apparatus.
各塔への各再生液の通液後、各塔へ水を通液して、各塔に残留している再生液を押し出して塔外へ排出させる。図4Dの工程の後に、各塔へ水を通液して、塔内のイオン交換樹脂を洗浄しても良い。本実施形態の精製装置は二つの塔からなるため、三つの塔からなる精製装置と比較して、上記工程で用いる水の量も減らすことができる。上記実施形態では、図4Cの工程の後に図4Dの工程を実施したが、図4Dの工程の後に図4Cの工程を実施しても良いし、図4Cと4Dの工程を同時に実施しても良い。
After passing each regenerated liquid through each tower, water is passed through each tower, and the regenerated liquid remaining in each tower is pushed out and discharged outside the tower. After the step of FIG. 4D, water may be passed through each tower to wash the ion exchange resin in the tower. Since the purification apparatus of this embodiment consists of two towers, the amount of water used in the above process can also be reduced compared to a purification apparatus consisting of three towers. In the above embodiment, the process of FIG. 4D is performed after the process of FIG. 4C. However, the process of FIG. 4C may be performed after the process of FIG. 4D, or the processes of FIGS. 4C and 4D may be performed simultaneously. good.
(実施例1)
蔗糖溶液として、炭酸飽充処理および濾過処理を行った後の濾過液を活性炭処理したものを用いた(Brix糖度55%、導電率250μS/cm、色価80 ICUMSA(International Commission for Uniform Methods of Sugar Analysis)、Abs720 0.002(100mmセル測定))。この蔗糖溶液を、図1の精製装置に、50℃、300mL/hで、第1塔2、および第2塔4の順に通液した。そして、第2塔4出口の蔗糖溶液の導電率、pH、色価、濁度(720nmでの吸光度)をモニタリングした。なお、第1塔2および第2塔4には、下記表1に示すイオン交換樹脂を用いた。 Example 1
As the sucrose solution, a solution obtained by subjecting the filtrate after carbonation saturation treatment and filtration treatment to activated carbon treatment (Brix sugar content 55%, conductivity 250 μS / cm, color value 80 ICUMSA (International Commission for Uniform Methods of Sugar Analysis), Abs720 0.002 (100 mm cell measurement)). This sucrose solution was passed through the purification apparatus of FIG. 1 in the order of thefirst column 2 and the second column 4 at 50 ° C. and 300 mL / h. Then, the conductivity, pH, color value, and turbidity (absorbance at 720 nm) of the sucrose solution at the outlet of the second tower 4 were monitored. For the first column 2 and the second column 4, ion exchange resins shown in Table 1 below were used.
蔗糖溶液として、炭酸飽充処理および濾過処理を行った後の濾過液を活性炭処理したものを用いた(Brix糖度55%、導電率250μS/cm、色価80 ICUMSA(International Commission for Uniform Methods of Sugar Analysis)、Abs720 0.002(100mmセル測定))。この蔗糖溶液を、図1の精製装置に、50℃、300mL/hで、第1塔2、および第2塔4の順に通液した。そして、第2塔4出口の蔗糖溶液の導電率、pH、色価、濁度(720nmでの吸光度)をモニタリングした。なお、第1塔2および第2塔4には、下記表1に示すイオン交換樹脂を用いた。 Example 1
As the sucrose solution, a solution obtained by subjecting the filtrate after carbonation saturation treatment and filtration treatment to activated carbon treatment (Brix sugar content 55%, conductivity 250 μS / cm, color value 80 ICUMSA (International Commission for Uniform Methods of Sugar Analysis), Abs720 0.002 (100 mm cell measurement)). This sucrose solution was passed through the purification apparatus of FIG. 1 in the order of the
次いで、0.5規定の塩酸水溶液(第1の再生液)500mLを、800mL/hで第2塔4の底部から頂部に向かって通液した。これにより、第2塔4内で、アンバーライト IRC76と402BLを流動させて、第2塔4の上部にアンバーライト IRA402BL、下部にアンバーライト IRC76を分離させた。この後、第2塔4の頂部から排出された廃液(第1の再生液)を、第1塔2の頂部から底部に向かって通液した。次いで、純水300mLを同流速で第2塔4内に流し、塔内の塩酸水溶液を押出した。続いて、純水800mLを第2塔4内に流し、塔内のイオン交換樹脂を洗浄した。
Next, 500 mL of a 0.5 N aqueous hydrochloric acid solution (first regeneration solution) was passed from the bottom of the second tower 4 toward the top at 800 mL / h. As a result, the Amberlite IRC76 and 402BL were flowed in the second tower 4 to separate the Amberlite IRA402BL in the upper part of the second tower 4 and the Amberlite IRC76 in the lower part. Thereafter, the waste liquid (first regenerated liquid) discharged from the top of the second tower 4 was passed from the top of the first tower 2 toward the bottom. Subsequently, 300 mL of pure water was allowed to flow into the second tower 4 at the same flow rate, and the aqueous hydrochloric acid solution in the tower was extruded. Subsequently, 800 mL of pure water was poured into the second tower 4 to wash the ion exchange resin in the tower.
次に、第2塔4の頂部から2規定の水酸化ナトリウム水溶液(第2の再生液)150mLを400mL/hで流し、これと同時に、第2塔4の底部から純水を400mL/hで流した。アンバーライト IRA402BLとアンバーライト IRC76の境界に位置する中間コレクターから抜出した廃液(第2の再生液および純水)を、第1塔2内に通液した。この後、第2塔4の頂部および底部から純水200mLを400mL/hで通液して、第2塔4内に残る水酸化ナトリウムを押出した。次に、第2塔4の頂部から純水1200mLを800mL/hの流速で流し、第2塔4の底部より排出した。その後、第2塔4の底部より圧縮空気を導入し、アンバーライト IRA402BLとアンバーライト IRC76を混合させて再び、混床とした。
Next, 150 mL of 2N aqueous sodium hydroxide solution (second regeneration solution) is flowed from the top of the second column 4 at 400 mL / h, and at the same time, pure water is flowed from the bottom of the second column 4 at 400 mL / h. Washed away. The waste liquid (second regenerated liquid and pure water) extracted from the intermediate collector located at the boundary between Amberlite IRA402BL and Amberlite IRC76 was passed through the first tower 2. Thereafter, 200 mL of pure water was passed through the top and bottom of the second column 4 at 400 mL / h, and sodium hydroxide remaining in the second column 4 was extruded. Next, 1200 mL of pure water was allowed to flow from the top of the second column 4 at a flow rate of 800 mL / h and discharged from the bottom of the second column 4. Thereafter, compressed air was introduced from the bottom of the second tower 4, and Amberlite IRA402BL and Amberlite IRC76 were mixed to form a mixed bed again.
次に、第1塔2の頂部から、1規定の水酸化ナトリウム水溶液(第3の再生液)100mLを、400mL/hで通液して、第1塔2の底部から排出させた。次いで、純水200mLを同流速で第1塔2内に流して第1塔2内の水酸化ナトリウムを押出した後、純水1200mLを800mL/hで第1塔2内に流し、最終洗浄を実施した。
Next, 100 mL of a 1N aqueous sodium hydroxide solution (third regeneration solution) was passed through the top of the first tower 2 at 400 mL / h and discharged from the bottom of the first tower 2. Next, after 200 mL of pure water is flowed into the first tower 2 at the same flow rate to extrude sodium hydroxide in the first tower 2, 1200 mL of pure water is flowed into the first tower 2 at 800 mL / h, and the final washing is performed. Carried out.
上記した蔗糖溶液の精製および精製装置の再生を1サイクルとして3回、繰り返した。第1塔2および第2塔4内に使用したイオン交換樹脂の種類を表1、3サイクル目の結果を図5~8に示す。
The above-described purification of the sucrose solution and regeneration of the purification apparatus were repeated three times as one cycle. Table 1 shows the types of ion exchange resins used in the first column 2 and the second column 4, and FIGS. 5 to 8 show the results of the third cycle.
(実施例2)
蔗糖溶液として、炭酸飽充処理および濾過処理を行った後の濾過液を活性炭処理したものを用いた(Brix糖度55%、導電率300μS/cm、色価725 ICUMSA)。この蔗糖溶液を50℃、300mL/hで合計3.6L、実施例1と同様にして図1の精製装置内に通液した。精製処理後の蔗糖溶液を全量回収し、導電率、pH、色価を測定した。次に、実施例1と同様の方法で図1の精製装置の再生を行った。上記の蔗糖溶液の精製と精製装置の再生を1サイクルとして20回、繰り返した。第1塔2および第2塔4内に使用したイオン交換樹脂の種類を表2、1サイクル目、10サイクル目、および20サイクル目の結果を表3に示す。使用前後(新品と20サイクル後)の各イオン交換樹脂の交換容量の測定結果を表4に示す。 (Example 2)
As the sucrose solution, a solution obtained by subjecting the filtrate after carbonic acid saturation treatment and filtration treatment to activated carbon treatment (Brix sugar content 55%, conductivity 300 μS / cm, color value 725 ICUMSA) was used. This sucrose solution was passed through the purification apparatus of FIG. 1 in the same manner as in Example 1 at a total volume of 3.6 L at 50 ° C. and 300 mL / h. The whole amount of the sucrose solution after the purification treatment was recovered, and the conductivity, pH, and color value were measured. Next, the purification apparatus of FIG. 1 was regenerated in the same manner as in Example 1. The purification of the sucrose solution and the regeneration of the purification apparatus were repeated 20 times as one cycle. Table 2 shows the types of ion exchange resins used in thefirst column 2 and the second column 4, and Table 3 shows the results of the 1st cycle, 10th cycle, and 20th cycle. Table 4 shows the measurement results of the exchange capacity of each ion exchange resin before and after use (new and after 20 cycles).
蔗糖溶液として、炭酸飽充処理および濾過処理を行った後の濾過液を活性炭処理したものを用いた(Brix糖度55%、導電率300μS/cm、色価725 ICUMSA)。この蔗糖溶液を50℃、300mL/hで合計3.6L、実施例1と同様にして図1の精製装置内に通液した。精製処理後の蔗糖溶液を全量回収し、導電率、pH、色価を測定した。次に、実施例1と同様の方法で図1の精製装置の再生を行った。上記の蔗糖溶液の精製と精製装置の再生を1サイクルとして20回、繰り返した。第1塔2および第2塔4内に使用したイオン交換樹脂の種類を表2、1サイクル目、10サイクル目、および20サイクル目の結果を表3に示す。使用前後(新品と20サイクル後)の各イオン交換樹脂の交換容量の測定結果を表4に示す。 (Example 2)
As the sucrose solution, a solution obtained by subjecting the filtrate after carbonic acid saturation treatment and filtration treatment to activated carbon treatment (Brix sugar content 55%, conductivity 300 μS / cm, color value 725 ICUMSA) was used. This sucrose solution was passed through the purification apparatus of FIG. 1 in the same manner as in Example 1 at a total volume of 3.6 L at 50 ° C. and 300 mL / h. The whole amount of the sucrose solution after the purification treatment was recovered, and the conductivity, pH, and color value were measured. Next, the purification apparatus of FIG. 1 was regenerated in the same manner as in Example 1. The purification of the sucrose solution and the regeneration of the purification apparatus were repeated 20 times as one cycle. Table 2 shows the types of ion exchange resins used in the
(実施例3)
図1の第1塔2の強塩基性陰イオン交換樹脂として、表2に示すアクリル系強塩基性陰イオン交換樹脂(アンバーライト IRA458)を使用した以外は、実施例2と同様の方法で蔗糖溶液の精製および精製装置の再生を行った。第1塔2および第2塔4内に使用したイオン交換樹脂を表2、1サイクル目、10サイクル目、および20サイクル目の結果を表5に示す。使用前後(新品と20サイクル後)の各イオン交換樹脂の交換容量の測定結果を表6に示す。 Example 3
The sucrose was prepared in the same manner as in Example 2 except that the acrylic strongly basic anion exchange resin (Amberlite IRA458) shown in Table 2 was used as the strongly basic anion exchange resin in thefirst tower 2 of FIG. Purification of the solution and regeneration of the purification apparatus were performed. The ion exchange resins used in the first column 2 and the second column 4 are shown in Table 2, and the results of the 1st cycle, 10th cycle, and 20th cycle are shown in Table 5. Table 6 shows the measurement results of the exchange capacity of each ion exchange resin before and after use (new and after 20 cycles).
図1の第1塔2の強塩基性陰イオン交換樹脂として、表2に示すアクリル系強塩基性陰イオン交換樹脂(アンバーライト IRA458)を使用した以外は、実施例2と同様の方法で蔗糖溶液の精製および精製装置の再生を行った。第1塔2および第2塔4内に使用したイオン交換樹脂を表2、1サイクル目、10サイクル目、および20サイクル目の結果を表5に示す。使用前後(新品と20サイクル後)の各イオン交換樹脂の交換容量の測定結果を表6に示す。 Example 3
The sucrose was prepared in the same manner as in Example 2 except that the acrylic strongly basic anion exchange resin (Amberlite IRA458) shown in Table 2 was used as the strongly basic anion exchange resin in the
(比較例1)
表1に示すように、図1の第1塔2において、Na形陽イオン交換樹脂(アンバーライト IR120B)を使用しなかった以外は、実施例1と同様の方法で蔗糖溶液の精製を行った。 (Comparative Example 1)
As shown in Table 1, the sucrose solution was purified in the same manner as in Example 1 except that Na-type cation exchange resin (Amberlite IR120B) was not used in thefirst column 2 of FIG. .
表1に示すように、図1の第1塔2において、Na形陽イオン交換樹脂(アンバーライト IR120B)を使用しなかった以外は、実施例1と同様の方法で蔗糖溶液の精製を行った。 (Comparative Example 1)
As shown in Table 1, the sucrose solution was purified in the same manner as in Example 1 except that Na-type cation exchange resin (Amberlite IR120B) was not used in the
第1塔2および第2塔4内のイオン交換樹脂の再生はそれぞれ、別々に行った。
第2塔4内のイオン交換樹脂の再生は以下のように行った。0.5規定の塩酸水溶液500mLを、800mL/hで第2塔4の底部から通液した。これにより、第2塔4内で、アンバーライト IRC76とIRA402BLを流動させて、第2塔4の上部にアンバーライト IRA402BL、下部にアンバーライト IRC76を分離させた。次いで、純水300mLを同流速で第2塔4内に流し、塔内の塩酸を押出した。続いて、純水800mLを第2塔4内に流し、塔内のイオン交換樹脂を洗浄した。 The regeneration of the ion exchange resin in thefirst column 2 and the second column 4 was performed separately.
The regeneration of the ion exchange resin in thesecond tower 4 was performed as follows. 500 mL of 0.5 N hydrochloric acid aqueous solution was passed through the bottom of the second column 4 at 800 mL / h. As a result, Amberlite IRC76 and IRA402BL were flowed in the second tower 4 to separate Amberlite IRA402BL in the upper part of the second tower 4 and Amberlite IRC76 in the lower part. Subsequently, 300 mL of pure water was allowed to flow into the second column 4 at the same flow rate, and hydrochloric acid in the column was extruded. Subsequently, 800 mL of pure water was poured into the second tower 4 to wash the ion exchange resin in the tower.
第2塔4内のイオン交換樹脂の再生は以下のように行った。0.5規定の塩酸水溶液500mLを、800mL/hで第2塔4の底部から通液した。これにより、第2塔4内で、アンバーライト IRC76とIRA402BLを流動させて、第2塔4の上部にアンバーライト IRA402BL、下部にアンバーライト IRC76を分離させた。次いで、純水300mLを同流速で第2塔4内に流し、塔内の塩酸を押出した。続いて、純水800mLを第2塔4内に流し、塔内のイオン交換樹脂を洗浄した。 The regeneration of the ion exchange resin in the
The regeneration of the ion exchange resin in the
次に、第2塔4の頂部から1規定の水酸化ナトリウム水溶液150mLを400mL/hで流し、これと同時に、第2塔4の底部から純水を400mL/hで流した。アンバーライト IRA402BLとアンバーライト IRC76の境界に位置する中間コレクターから廃液を排出させた。この後、第2塔4の頂部および底部から純水200mLを400mL/hで通液して、第2塔4内に残る水酸化ナトリウムを押出した。次に、第2塔4の頂部から、純水1200mLを800mL/hの流速で流し、第2塔4の底部より排出させた。その後、第2塔4の底部より圧縮空気を導入し、アンバーライト IRA402BLとアンバーライト IRC76を混合させて再び、混床とした。
Next, 150 mL of a 1N sodium hydroxide aqueous solution was flowed from the top of the second column 4 at 400 mL / h, and at the same time, pure water was flowed from the bottom of the second column 4 at 400 mL / h. Waste liquid was discharged from an intermediate collector located at the boundary between Amberlite IRA402BL and Amberlite IRC76. Thereafter, 200 mL of pure water was passed through the top and bottom of the second column 4 at 400 mL / h, and sodium hydroxide remaining in the second column 4 was extruded. Next, 1200 mL of pure water was allowed to flow from the top of the second column 4 at a flow rate of 800 mL / h and was discharged from the bottom of the second column 4. Thereafter, compressed air was introduced from the bottom of the second tower 4, and Amberlite IRA402BL and Amberlite IRC76 were mixed to form a mixed bed again.
第1塔2内のイオン交換樹脂の再生は以下のように行った。第1塔2の頂部から、1規定の水酸化ナトリウム水溶液300mLを、400mL/hで通液して、第1塔2の底部から排出させた。次いで、純水200mLを同流速で第1塔2内に流して第1塔2内の水酸化ナトリウムを押出した後、純水1200mLを800mL/hで第1塔2内に流し、最終洗浄を実施した。
The regeneration of the ion exchange resin in the first tower 2 was performed as follows. From the top of the first column 2, 300 mL of a 1N aqueous sodium hydroxide solution was passed at 400 mL / h and discharged from the bottom of the first column 2. Next, after 200 mL of pure water is flowed into the first tower 2 at the same flow rate to extrude sodium hydroxide in the first tower 2, 1200 mL of pure water is flowed into the first tower 2 at 800 mL / h, and the final washing is performed. Carried out.
上記した蔗糖溶液の精製および精製装置の再生を1サイクルとして3回、繰り返した。第1塔2および第2塔4内に使用したイオン交換樹脂の種類を表1、3サイクル目の結果を図5~8に示す。
The above-described purification of the sucrose solution and regeneration of the purification apparatus were repeated three times as one cycle. Table 1 shows the types of ion exchange resins used in the first column 2 and the second column 4, and FIGS. 5 to 8 show the results of the third cycle.
(比較例2)
表1に示すように、図1の第1塔2においてNa形陽イオン交換樹脂(アンバーライト IR120B)を使用せず、代わりに第1塔2の前段に更に、Na形陽イオン交換樹脂(アンバーライト IR120B)を充填した軟化塔を設けた。これ以外は、実施例1と同様の方法で蔗糖溶液の精製を行った。 (Comparative Example 2)
As shown in Table 1, the Na-type cation exchange resin (Amberlite IR120B) is not used in thefirst column 2 of FIG. A softening tower filled with light IR120B) was provided. Except for this, the sucrose solution was purified in the same manner as in Example 1.
表1に示すように、図1の第1塔2においてNa形陽イオン交換樹脂(アンバーライト IR120B)を使用せず、代わりに第1塔2の前段に更に、Na形陽イオン交換樹脂(アンバーライト IR120B)を充填した軟化塔を設けた。これ以外は、実施例1と同様の方法で蔗糖溶液の精製を行った。 (Comparative Example 2)
As shown in Table 1, the Na-type cation exchange resin (Amberlite IR120B) is not used in the
第1塔2および第2塔4内のイオン交換樹脂の再生は比較例1と同様にして行った。1段目の軟化塔内のアンバーライト IR120Bの再生は、以下のように行った。最初に、10質量%のNaCl水溶液100mLを、200mL/hで軟化塔の頂部から通液し、底部から排出させた。その後、純水50mLを同流速で軟化塔内に流し、さらに純水400mLを400mL/hで軟化塔内に通液してアンバーライト IR120Bを洗浄した。
The regeneration of the ion exchange resin in the first tower 2 and the second tower 4 was performed in the same manner as in Comparative Example 1. Amberlite IR120B in the first-stage softening tower was regenerated as follows. First, 100 mL of a 10 mass% NaCl aqueous solution was passed through the top of the softening tower at 200 mL / h and discharged from the bottom. Thereafter, 50 mL of pure water was flowed into the softening tower at the same flow rate, and 400 mL of pure water was passed through the softening tower at 400 mL / h to wash Amberlite IR120B.
上記した蔗糖溶液の精製および精製装置の再生を1サイクルとして3回、繰り返した。第1塔2および第2塔4内に使用したイオン交換樹脂の種類を表1、3サイクル目の結果を図5~8に示す。
The above-described purification of the sucrose solution and regeneration of the purification apparatus were repeated three times as one cycle. Table 1 shows the types of ion exchange resins used in the first column 2 and the second column 4, and FIGS. 5 to 8 show the results of the third cycle.
図5~8の結果より、実施例1は比較例1と比べて、導電率、色価、720nmでの吸光度が大きく低減していることが分かる。実施例1と比較例2の結果から、2塔の精製装置(実施例1)で、3塔の精製装置(比較例2)と同等の導電率、色価、720nmでの吸光度を達成できることが分かる。更に、精製工程において発生したBrix糖度が2~30%の甘水の量は、比較例2では450mLであったのに対して実施例1では360mLであり、甘水の量を20%、低減することができた。
5 to 8, it can be seen that the conductivity, color value, and absorbance at 720 nm are greatly reduced in Example 1 as compared with Comparative Example 1. From the results of Example 1 and Comparative Example 2, it is possible to achieve the same conductivity, color value, and absorbance at 720 nm as the two-column purification apparatus (Example 1) with the two-column purification apparatus (Example 1). I understand. Furthermore, the amount of sweet water having a Brix sugar content of 2 to 30% generated in the purification process was 450 mL in Comparative Example 2 but 360 mL in Example 1, and the amount of sweet water was reduced by 20%. We were able to.
表3、5の結果より、実施例2および3では、20サイクル後であっても蔗糖溶液のpHがほとんど変わらず、低い導電率および色価の蔗糖溶液が得られることが分かる。なお、サイクル数の増加と共に色価は若干、増加するが、色価の上昇幅は実施例2と比べて実施例3の方が小さく、第1塔にアクリル系陰イオン交換樹脂を用いることでイオン交換樹脂の劣化の速度が緩やかになることが分かる。
From the results of Tables 3 and 5, it can be seen that in Examples 2 and 3, the pH of the sucrose solution hardly changed even after 20 cycles, and a sucrose solution having low conductivity and color value was obtained. Although the color value slightly increases as the number of cycles increases, the increase in color value is smaller in Example 3 than in Example 2, and the acrylic anion exchange resin is used in the first column. It can be seen that the rate of deterioration of the ion exchange resin becomes moderate.
表4、6の結果より、実施例3の第1塔にアクリル系陰イオン交換樹脂(アンバーライト IRA458)を用いた場合には、第1塔のアクリル系陰イオン交換樹脂は色素等に汚染されにくいため、実施例2における第1塔のスチレン系陰イオン交換樹脂(アンバーライト IRA402BL)と比べて使用後の総交換容量の低下を大幅に抑制できることがわかる。さらに、第2塔のスチレン系陰イオン交換樹脂(アンバーライト IRA402BL)については、第1塔にアクリル系陰イオン交換樹脂を用いた実施例3が第1塔にスチレン系陰イオン交換樹脂を用いた実施例2と比べて使用後の総交換容量の低下を抑制できることがわかる。
From the results of Tables 4 and 6, when an acrylic anion exchange resin (Amberlite IRA458) was used in the first tower of Example 3, the acrylic anion exchange resin in the first tower was contaminated with pigments. Since it is difficult, it can be seen that a decrease in the total exchange capacity after use can be significantly suppressed as compared with the styrene-based anion exchange resin (Amberlite IRA402BL) in the first column in Example 2. Furthermore, for the styrene anion exchange resin (Amberlite IRA402BL) in the second tower, Example 3 using an acrylic anion exchange resin in the first tower used a styrene anion exchange resin in the first tower. It turns out that the fall of the total exchange capacity | capacitance after use can be suppressed compared with Example 2. FIG.
2 第1塔
2a Na形またはK形陽イオン交換樹脂
2b OH形強塩基性陰イオン交換樹脂
4 第2塔
4a 強塩基性陰イオン交換樹脂
4b 弱酸性陽イオン交換樹脂 2First column 2a Na-type or K-type cation exchange resin 2b OH type strongly basic anion exchange resin 4 Second column 4a Strongly basic anion exchange resin 4b Weakly acidic cation exchange resin
2a Na形またはK形陽イオン交換樹脂
2b OH形強塩基性陰イオン交換樹脂
4 第2塔
4a 強塩基性陰イオン交換樹脂
4b 弱酸性陽イオン交換樹脂 2
Claims (9)
- OH形強塩基性陰イオン交換樹脂と、Na形またはK形陽イオン交換樹脂とを充填した第1塔と、
第1塔の後段に配し、OH形強塩基性陰イオン交換樹脂とH形弱酸性陽イオン交換樹脂とを混合充填した第2塔に、
蔗糖溶液をこの順に通液することを特徴とする蔗糖溶液の精製方法。 A first column packed with OH-type strongly basic anion exchange resin and Na-type or K-type cation exchange resin;
In the second tower arranged after the first tower and mixed and packed with OH type strong basic anion exchange resin and H type weak acid cation exchange resin,
A method for purifying a sucrose solution, wherein the sucrose solution is passed in this order. - 前記第1塔は、前記OH形強塩基性陰イオン交換樹脂と、Na形またはK形陽イオン交換樹脂を混合充填した混床塔であることを特徴とする請求項1に記載の蔗糖溶液の精製方法。 The sucrose solution according to claim 1, wherein the first column is a mixed bed column in which the OH type strong basic anion exchange resin and the Na type or K type cation exchange resin are mixed and packed. Purification method.
- 前記第1塔に充填されたOH形強塩基性陰イオン交換樹脂がアクリル系のOH形強塩基性陰イオン交換樹脂であり、
前記第2塔に充填されたOH形強塩基性陰イオン交換樹脂がスチレン系のOH形強塩基性陰イオン交換樹脂であることを特徴とする請求項1または2に記載の蔗糖溶液の精製方法。 The OH type strong basic anion exchange resin packed in the first tower is an acrylic OH type strong basic anion exchange resin,
The method for purifying a sucrose solution according to claim 1 or 2, wherein the OH type strongly basic anion exchange resin packed in the second column is a styrene type OH type strongly basic anion exchange resin. . - 前記第1塔に通液前の蔗糖溶液は、カルシウムイオンとマグネシウムイオンの濃度の和が、0.001mol/L以上であることを特徴とする請求項1~3の何れか1項に記載の蔗糖溶液の精製方法。 The sucrose solution before passing through the first tower has a sum of calcium ion and magnesium ion concentrations of 0.001 mol / L or more, according to any one of claims 1 to 3. Purification method of sucrose solution.
- 前記第1および第2塔に蔗糖溶液を通液した後、更に、
前記第2塔内に、H形弱酸性陽イオン交換樹脂用の第1の再生液を通液する工程と、
前記第2塔内を通液後の第1の再生液を前記第1塔に通液する工程と、
前記第2塔内に、ナトリウムイオンまたはカリウムイオンを含有するOH形強塩基性陰イオン交換樹脂用の第2の再生液を通液する工程と、
前記第2塔内を通液後の第2の再生液を前記第1塔に通液する工程と、
をこの順に有することを特徴とする請求項1~4の何れか1項に記載の蔗糖溶液の精製方法。 After passing the sucrose solution through the first and second towers,
Passing the first regeneration solution for the H-type weakly acidic cation exchange resin through the second column;
Passing the first regenerated liquid after passing through the second tower through the first tower;
Passing a second regeneration solution for OH type strongly basic anion exchange resin containing sodium ions or potassium ions into the second column;
Passing the second regenerated solution after passing through the second column through the first column;
The method for purifying a sucrose solution according to any one of claims 1 to 4, wherein the sucrose solution is contained in this order. - 前記第2塔内に第1の再生液を通液する工程では、
前記第2塔内に第1の再生液を通液して、前記第2塔内で強塩基性陰イオン交換樹脂および弱酸性陽イオン交換樹脂を流動させて互いに分離させることを特徴とする請求項5に記載の蔗糖溶液の精製方法。 In the step of passing the first regenerating liquid into the second tower,
The first regeneration solution is passed through the second column, and the strong base anion exchange resin and the weakly acidic cation exchange resin are caused to flow and separate from each other in the second column. Item 6. A method for purifying a sucrose solution according to Item 5. - 更に、前記第1塔内に、OH形強塩基性陰イオン交換樹脂用の第3の再生液を通液する工程を有することを特徴とする請求項5または6に記載の蔗糖溶液の精製方法。 The method for purifying a sucrose solution according to claim 5 or 6, further comprising a step of passing a third regeneration solution for OH-type strongly basic anion exchange resin through the first column. .
- OH形強塩基性陰イオン交換樹脂と、Na形またはK形陽イオン交換樹脂とを充填した第1塔と、
第1塔の後段に配し、OH形強塩基性陰イオン交換樹脂とH形弱酸性陽イオン交換樹脂とを混合充填した第2塔と、
を有することを特徴とする蔗糖溶液の精製装置。 A first column packed with OH-type strongly basic anion exchange resin and Na-type or K-type cation exchange resin;
A second tower disposed after the first tower and filled with an OH-type strongly basic anion exchange resin and an H-type weakly acidic cation exchange resin;
An apparatus for purifying a sucrose solution, comprising: - 前記第1塔に充填されたOH形強塩基性陰イオン交換樹脂がアクリル系のOH形強塩基性陰イオン交換樹脂であり、
前記第2塔に充填されたOH形強塩基性陰イオン交換樹脂がスチレン系のOH形強塩基性陰イオン交換樹脂であることを特徴とする請求項8に記載の蔗糖溶液の精製装置。 The OH type strong basic anion exchange resin packed in the first tower is an acrylic OH type strong basic anion exchange resin,
9. The apparatus for purifying a sucrose solution according to claim 8, wherein the OH type strongly basic anion exchange resin packed in the second tower is a styrene type OH type strongly basic anion exchange resin.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201580002711.5A CN105917009A (en) | 2014-01-23 | 2015-01-23 | Sucrose solution refinement method and refinement device |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2014-010046 | 2014-01-23 | ||
JP2014010046A JP6265750B2 (en) | 2014-01-23 | 2014-01-23 | Method and apparatus for purifying sucrose solution |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2015111714A1 true WO2015111714A1 (en) | 2015-07-30 |
Family
ID=53681511
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2015/051890 WO2015111714A1 (en) | 2014-01-23 | 2015-01-23 | Sucrose solution refinement method and refinement device |
Country Status (3)
Country | Link |
---|---|
JP (1) | JP6265750B2 (en) |
CN (1) | CN105917009A (en) |
WO (1) | WO2015111714A1 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2020058301A (en) * | 2018-10-11 | 2020-04-16 | オルガノ株式会社 | Refiner and refining method of sugar solution |
Families Citing this family (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP7032435B2 (en) * | 2017-04-28 | 2022-03-08 | ダウ グローバル テクノロジーズ エルエルシー | Treatment of sugar solution |
JP6942603B2 (en) * | 2017-10-19 | 2021-09-29 | オルガノ株式会社 | Purified sugar manufacturing equipment and manufacturing method |
CN110902761A (en) * | 2019-11-28 | 2020-03-24 | 武汉大学 | Method for adjusting pH value and conductivity of laboratory desalted water |
CN111254230B (en) * | 2020-03-04 | 2022-04-12 | 德兰梅勒(北京)分离技术股份有限公司 | Refined sugar decoloring device and decoloring, backwashing, regenerating and cleaning processes |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0228000A (en) * | 1988-07-15 | 1990-01-30 | Itochu Seito Kk | Method for cleaning sugar liquid |
JPH1170000A (en) * | 1997-08-28 | 1999-03-16 | Japan Organo Co Ltd | Apparatus for purifying sucrose syrup and regeneration of sucrose syrup purification apparatus |
JPH1175899A (en) * | 1997-09-09 | 1999-03-23 | Japan Organo Co Ltd | Purification of sucrose solution |
WO2002083701A1 (en) * | 2001-04-12 | 2002-10-24 | Towa Chemical Industry Co., Ltd. | Method of desalting sugar solution and anion exchanger |
JP2005087141A (en) * | 2003-09-19 | 2005-04-07 | Nippon Rensui Co Ltd | Apparatus for purifying sugar syrup and sugar syrup purifying method |
JP3765653B2 (en) * | 1997-09-08 | 2006-04-12 | オルガノ株式会社 | Separation method of mixed resin in mixed bed type ion exchange resin tower and regeneration method of mixed bed type sucrose purification device |
Family Cites Families (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4968353A (en) * | 1988-07-15 | 1990-11-06 | C. Itoh Sugar Co., Ltd. | Method for refining sugar liquor |
-
2014
- 2014-01-23 JP JP2014010046A patent/JP6265750B2/en active Active
-
2015
- 2015-01-23 CN CN201580002711.5A patent/CN105917009A/en active Pending
- 2015-01-23 WO PCT/JP2015/051890 patent/WO2015111714A1/en active Application Filing
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0228000A (en) * | 1988-07-15 | 1990-01-30 | Itochu Seito Kk | Method for cleaning sugar liquid |
JPH1170000A (en) * | 1997-08-28 | 1999-03-16 | Japan Organo Co Ltd | Apparatus for purifying sucrose syrup and regeneration of sucrose syrup purification apparatus |
JP3765653B2 (en) * | 1997-09-08 | 2006-04-12 | オルガノ株式会社 | Separation method of mixed resin in mixed bed type ion exchange resin tower and regeneration method of mixed bed type sucrose purification device |
JPH1175899A (en) * | 1997-09-09 | 1999-03-23 | Japan Organo Co Ltd | Purification of sucrose solution |
WO2002083701A1 (en) * | 2001-04-12 | 2002-10-24 | Towa Chemical Industry Co., Ltd. | Method of desalting sugar solution and anion exchanger |
JP2005087141A (en) * | 2003-09-19 | 2005-04-07 | Nippon Rensui Co Ltd | Apparatus for purifying sugar syrup and sugar syrup purifying method |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2020058301A (en) * | 2018-10-11 | 2020-04-16 | オルガノ株式会社 | Refiner and refining method of sugar solution |
JP7214427B2 (en) | 2018-10-11 | 2023-01-30 | オルガノ株式会社 | Sugar solution refiner and refinement method |
Also Published As
Publication number | Publication date |
---|---|
JP2015136336A (en) | 2015-07-30 |
CN105917009A (en) | 2016-08-31 |
JP6265750B2 (en) | 2018-01-24 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2015111714A1 (en) | Sucrose solution refinement method and refinement device | |
US3589999A (en) | Deionization process | |
JP5189255B2 (en) | Iodine recovery from polarizing film manufacturing wastewater | |
WO2015129698A1 (en) | Method for purifying sucrose solution and device therefor | |
JP4385407B2 (en) | Method for treating tetraalkylammonium ion-containing liquid | |
LU505449B1 (en) | Sucrose decoloring method and system | |
JP4210403B2 (en) | Regeneration method of mixed-bed type sugar liquid purification equipment | |
CN113072081A (en) | Impurity removal process for lithium sulfate purification completion liquid | |
KR101258730B1 (en) | Method for the treatment of tetraalkylammonium ion-containing development waste liquor | |
JP3968678B2 (en) | Method for treating tetraalkylammonium ion-containing liquid | |
JP3613376B2 (en) | Pure water production apparatus and pure water production method | |
JP3040115B2 (en) | Purification method and processing equipment for sucrose solution | |
JP2607534B2 (en) | Device for removing odor components in pure water | |
JP4800931B2 (en) | Sugar liquid purification method and purification apparatus | |
JPH0577400B2 (en) | ||
JP3592495B2 (en) | Sucrose liquid purifying apparatus and method for regenerating sucrose liquid purifying apparatus | |
JP2006254794A (en) | Method for regenerating phenolic absorbing resin in sugar solution refining system and sugar solution refining apparatus | |
JP3592452B2 (en) | Mixed-bed sugar liquid purification equipment | |
JP4294203B2 (en) | Regeneration method of sugar liquid purification equipment | |
JP4216998B2 (en) | Regeneration method of mixed-bed type sugar liquid purification equipment | |
JPS5924663B2 (en) | Solution processing method | |
JP6942603B2 (en) | Purified sugar manufacturing equipment and manufacturing method | |
JP2785833B2 (en) | Sucrose solution desalination purification equipment | |
JPS5823156B2 (en) | Pure water production method | |
JP2008297568A (en) | Method of electrolyzing sodium chloride aqueous solution |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 15740011 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 15740011 Country of ref document: EP Kind code of ref document: A1 |