WO2015111347A1 - 流路制御方法および細胞培養装置 - Google Patents

流路制御方法および細胞培養装置 Download PDF

Info

Publication number
WO2015111347A1
WO2015111347A1 PCT/JP2014/084015 JP2014084015W WO2015111347A1 WO 2015111347 A1 WO2015111347 A1 WO 2015111347A1 JP 2014084015 W JP2014084015 W JP 2014084015W WO 2015111347 A1 WO2015111347 A1 WO 2015111347A1
Authority
WO
WIPO (PCT)
Prior art keywords
flow path
cell culture
culture
control method
closed system
Prior art date
Application number
PCT/JP2014/084015
Other languages
English (en)
French (fr)
Inventor
島瀬 明大
今井 一成
英一郎 高田
定光 麻生
Original Assignee
株式会社 日立ハイテクノロジーズ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社 日立ハイテクノロジーズ filed Critical 株式会社 日立ハイテクノロジーズ
Priority to US15/107,548 priority Critical patent/US10208277B2/en
Priority to JP2015558762A priority patent/JP6165891B2/ja
Publication of WO2015111347A1 publication Critical patent/WO2015111347A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M23/00Constructional details, e.g. recesses, hinges
    • C12M23/40Manifolds; Distribution pieces
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L3/00Containers or dishes for laboratory use, e.g. laboratory glassware; Droppers
    • B01L3/50Containers for the purpose of retaining a material to be analysed, e.g. test tubes
    • B01L3/502Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures
    • B01L3/5027Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures by integrated microfluidic structures, i.e. dimensions of channels and chambers are such that surface tension forces are important, e.g. lab-on-a-chip
    • B01L3/502738Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures by integrated microfluidic structures, i.e. dimensions of channels and chambers are such that surface tension forces are important, e.g. lab-on-a-chip characterised by integrated valves
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L3/00Containers or dishes for laboratory use, e.g. laboratory glassware; Droppers
    • B01L3/56Labware specially adapted for transferring fluids
    • B01L3/567Valves, taps or stop-cocks
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M23/00Constructional details, e.g. recesses, hinges
    • C12M23/02Form or structure of the vessel
    • C12M23/14Bags
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M23/00Constructional details, e.g. recesses, hinges
    • C12M23/58Reaction vessels connected in series or in parallel
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M29/00Means for introduction, extraction or recirculation of materials, e.g. pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16KVALVES; TAPS; COCKS; ACTUATING-FLOATS; DEVICES FOR VENTING OR AERATING
    • F16K7/00Diaphragm valves or cut-off apparatus, e.g. with a member deformed, but not moved bodily, to close the passage ; Pinch valves
    • F16K7/02Diaphragm valves or cut-off apparatus, e.g. with a member deformed, but not moved bodily, to close the passage ; Pinch valves with tubular diaphragm
    • F16K7/04Diaphragm valves or cut-off apparatus, e.g. with a member deformed, but not moved bodily, to close the passage ; Pinch valves with tubular diaphragm constrictable by external radial force
    • F16K7/045Diaphragm valves or cut-off apparatus, e.g. with a member deformed, but not moved bodily, to close the passage ; Pinch valves with tubular diaphragm constrictable by external radial force by electric or magnetic means
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2200/00Solutions for specific problems relating to chemical or physical laboratory apparatus
    • B01L2200/02Adapting objects or devices to another
    • B01L2200/025Align devices or objects to ensure defined positions relative to each other
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2200/00Solutions for specific problems relating to chemical or physical laboratory apparatus
    • B01L2200/06Fluid handling related problems
    • B01L2200/0647Handling flowable solids, e.g. microscopic beads, cells, particles
    • B01L2200/0668Trapping microscopic beads
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2300/00Additional constructional details
    • B01L2300/08Geometry, shape and general structure
    • B01L2300/0809Geometry, shape and general structure rectangular shaped
    • B01L2300/0816Cards, e.g. flat sample carriers usually with flow in two horizontal directions
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2300/00Additional constructional details
    • B01L2300/08Geometry, shape and general structure
    • B01L2300/0832Geometry, shape and general structure cylindrical, tube shaped
    • B01L2300/0838Capillaries
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2300/00Additional constructional details
    • B01L2300/08Geometry, shape and general structure
    • B01L2300/0861Configuration of multiple channels and/or chambers in a single devices
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2400/00Moving or stopping fluids
    • B01L2400/04Moving fluids with specific forces or mechanical means
    • B01L2400/0475Moving fluids with specific forces or mechanical means specific mechanical means and fluid pressure
    • B01L2400/0487Moving fluids with specific forces or mechanical means specific mechanical means and fluid pressure fluid pressure, pneumatics
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2400/00Moving or stopping fluids
    • B01L2400/06Valves, specific forms thereof
    • B01L2400/0622Valves, specific forms thereof distribution valves, valves having multiple inlets and/or outlets, e.g. metering valves, multi-way valves
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2400/00Moving or stopping fluids
    • B01L2400/06Valves, specific forms thereof
    • B01L2400/0633Valves, specific forms thereof with moving parts
    • B01L2400/0655Valves, specific forms thereof with moving parts pinch valves

Definitions

  • the present invention relates to a valve for controlling a flow path in a device having a plurality of flow paths, such as a cell culture apparatus and an automatic analyzer.
  • pinch valve that controls fluid by crushing (pinching) an elastic flow channel from the outside.
  • Examples of cell culture devices and automatic analyzers equipped with these valves are disclosed in JP 2011 -142837 and JP-A-1-12265.
  • the pinch valve can control the opening and closing of the flow path without directly touching the fluid flowing inside the flow path, there is no possibility of contaminating the fluid, and the valve itself is not soiled. Therefore, it is useful in devices that care about contamination, such as cell culture devices and automatic analyzers.
  • a channel that is contaminated by the flow of a medium or the like is basically discarded, and a pinch valve that does not contaminate the valve itself can be reused and is economical.
  • Patent Document 1 Although a hand using a multiple switching valve as in Patent Document 1 may be considered for controlling a plurality of flow paths, the use of the multiple valve is not desirable from the viewpoint of contamination because the inside of the valve is in contact with liquid.
  • the present application is a flow path control method for X flow paths satisfying X ⁇ 2 N, and by using N valves, a plurality of flow paths are selectively controlled to be opened and closed simultaneously. Select.
  • the pinch valve necessary for controlling a plurality of flow paths can be minimized without the risk of contamination, so that the apparatus can be reduced in size and cost.
  • FIG. 1 is an example in which eight tubes 1 are controlled by three universal pinch valves 2.
  • the universal pinch valve has a structure as shown in FIG. 2 and can be controlled normally by two actuators, normally open and normally closed, by controlling one actuator.
  • a pinch valve when used as a “pinch valve” without notice, it means a universal pinch valve.
  • the pinch member 3 is fixed to the movable iron core 4 and moves according to the movement of the movable iron core 4.
  • the pinch member 3 and the movable iron core 4 are collectively referred to as an actuator.
  • the support member 5 is fixed to the case 6 and this member does not move.
  • the support member 5 includes an NC (Normal Close) side member 5 a and a NO (Normal Open) side member 5 b, and a tube to be controlled is passed between the support member 5 and the pinch member 3.
  • the actuator moves up and down in this figure by the force of the spring 7 and the magnetic force generated by the coil 8.
  • the actuator When the coil 8 is not energized, the actuator is pushed up by the force of the spring 7, and the tube installed on the NC side is crushed (pinched).
  • the actuator When the coil 8 is energized, the actuator is attracted to the fixed iron core 9 side, and the NO side tube is crushed. At this time, the tube on the NC side returns to its original state due to elasticity.
  • the actuator drive source may use pressure (pneumatic pressure, hydraulic pressure), or mechanical force such as a cam, in addition to using electromagnetics as shown in the figure.
  • the pinch member 3 and the support member 5 are provided with a shape in which a plurality of tubes can be installed simultaneously on each of the NC side and the NO side, and the installed tubes can be controlled simultaneously.
  • Fig. 3 shows how 8 tubes pass through 3 pinch valves.
  • the eight tubes i to viii are passed through the three pinch valves A, B, and C in the state of (a).
  • the NC / NO state of the pinch valve for each tube is summarized as shown in (b).
  • FIG. 4 shows a pinch valve control method for tube selection.
  • the tube can be opened.
  • (B) illustrates the details.
  • (I) is a state in which all the pinch valves are OFF, and at this time, the tube of i is in an open state.
  • the pinch valve of A is turned ON, it becomes as shown in (ii), the tube of i is closed, and the tube of ii is opened.
  • one of the eight tubes can be opened by controlling three pinch valves.
  • Eight types of control can be performed with a combination of three pinch valves, but the number of tubes may be less than that. For example, if you try to select and control seven tubes with one pinch valve with three pinch valves, each tube can be controlled, and even if one that does not exist is selected, the remaining seven tubes It does not affect the opening and closing of. There is no problem if the number of tubes is less than the number of combinations of control of the pinch valves. Since 2 N types of control are possible with respect to the number N of pinch valves, it is only necessary to have N pinch valves for selecting X channels that satisfy X ⁇ 2 N.
  • the tube selection method of the present invention it is important to pass a plurality of tubes to the pinch valve. However, since it is complicated, it takes time to set one by one on the spot. . Moreover, the possibility of mistakes cannot be excluded. Therefore, it is preferable that the tube on the NC side and the tube on the NO side of each pinch valve are selected and collected in advance so that they can be set together.
  • the tube holder 10 has two tube holding portions 10a and 10b, and handles tubes for NC and NO, respectively.
  • the tube holder 10 has a fitting portion 10c so that the tube holder 10 can be slid and fitted into the support member 5 of the pinch valve.
  • the tube 1 is passed through the tube holder 10 separately for NC / NO, and the tube 1 is set to the pinch valve by fitting the tube holder 10 into the support member 5 of the pinch valve.
  • a tube set in which 2 N tubes 1 are passed through N tube holders 10 in a correct combination in advance may be prepared. The user is freed from the hassle of passing the tube.
  • the tube may be divided into the NC side / NO side and bundled with tape or adhesive instead of the tube holder 10.
  • the tube holder 11 in FIG. 6 has two tube holding portions 11a and 11b and a flexible portion 11c, and first passes the NO side tube, then drives the actuator to open the NC side, and the NC side tube. It is good to pass through.
  • the NC side and the NO side should be devised to prevent erroneous insertion. For example, it may have a shape that cannot be erroneously inserted, or may be devised to make erroneous insertion less likely by color coding.
  • the pinch valve 12 can be disassembled into a main body 12a, a pinch member 12b, and a support member 12c, and the support member 12c can be further disassembled into 12c1 and 12c2.
  • an NO tube is passed between the support member 12c2 and the pinch member 12b, and an NC tube is passed over the NO tube, thereby joining the support members 12c1 and 12c2.
  • a snap-fit structure is employed as a coupling method, inexpensive and easy coupling is possible.
  • the support member 12c2 and the pinch valve body 12a, and the pinch member 12b and the actuator 12d are combined and used as shown in FIG. It should be noted that when the pinch member 12b and the actuator 12d are coupled, the vertical movement of the actuator must be transmitted to the pinch member.
  • a snap fit may be employed in which a convex portion is fitted in the concave portion and the positional relationship between the two is restricted.
  • the flow path handled in the present invention is not limited to the circular pipe structure.
  • the present invention can also be applied to a flow path formed by laminating films. Any flow path having elasticity or flexibility that can be deformed with respect to the pinch force of the pinch valve may be used.
  • the present flow path control method is applied to a cell culture device.
  • a closed culture container having a fluid inlet and outlet is connected to a supply bag and a recovery bag containing a medium to form a single sealed system (hereinafter referred to as closed culture). System), and some cells are cultured by exchanging the medium inside the system.
  • closed culture a single sealed system
  • Patent Document 2 discloses the method. Since it is a closed system, there is an advantage that there is no risk of contamination from the outside, but basically there is a restriction that the liquid must be controlled from the outside of the system.
  • the pinch valve is a control member suitable for this apparatus because it can be controlled from outside the system.
  • Fig. 8 shows a closed culture system.
  • the culture vessel 13 having an inlet and an outlet is in a sealed state in which a supply bag 14 and a collection bag 15 are connected via tubes (upstream side 16 and downstream side 17).
  • the driving force of the liquid needs to be applied from the outside of the system, and the tube is squeezed from the outside by the peristaltic pump 18 and fed.
  • the ironing pump 18 may be installed in either the upstream or downstream tube.
  • FIG. 9A shows an example in which supply bags are connected in parallel.
  • the liquid types necessary for cell culture include cell suspension, medium, washing liquid, enzyme liquid, and the like. It is desirable that the cell culture apparatus can handle a plurality of supply bags at the same time.
  • the plurality of supply bags 14 are connected to the common channel 16 by individual channels 19.
  • a channel selection mechanism 20 is placed at a location where the individual channels 19 are arranged.
  • the flow path selection mechanism 20 is a mechanism having N universal type pinch valves, and is a mechanism capable of selecting 2 N flow paths. The flow path selection mechanism 20 performs control so that one of them is opened.
  • the peristaltic pump 18 is installed in the upstream or downstream common flow path portion, and after selecting the flow path, the peristaltic pump is driven to send the selected liquid type to the culture vessel.
  • FIG. 9B shows a case where there are a plurality of culture vessels and they are connected in parallel. It is common to increase the number of culture vessels in order to increase the yield.
  • a plurality of cells may be cultured to be used for testing separately from transplantation.
  • a plurality of culture vessels 13 are placed in parallel, and each is connected to a common channel by an individual channel 21. If the flow path selection mechanism 20 is placed at a place where the individual flow paths 21 are arranged, a culture vessel to be fed can be selected.
  • the flow path selection mechanism 20 may be installed on the upstream side or the downstream side of the culture vessel.
  • FIG. 9C shows a case where there are a plurality of collection bags connected in parallel. Such a connection method can be used when it is desired to separate the collected materials. By branching from the common flow channel 17 to the individual flow channel 22 and installing the flow channel selection mechanism 20 at that location, it is possible to select the collection destination.
  • FIG. 1 For example, there are a plurality of supply bags 14, culture containers 13, and collection bags 15, which are connected via upper and lower common flow paths 16 and 17. If the flow path selection mechanism 20 is installed at each individual flow path, an arbitrary liquid type can be sent to an arbitrary culture vessel and recovered at an arbitrary recovery destination.
  • M supply bags and N culture vessels may be connected in a combination of M ⁇ N.
  • the M supply bags 14 and the N culture vessels 13 may be connected by (M ⁇ N) individual flow paths 23, respectively, and the flow path selection mechanism 20 may be installed at that location. Even if the number of upstream side is large, if the downstream side is combined into one, only one drive source (squeezing pump) is required. When it is desired to separate a plurality of recovered materials from the culture vessel, if these recovered materials should not carry over at all, they may be separated on the recovery side as shown in (f).
  • the P culture containers 13 and the Q collection bags 15 may be connected to each other by (P ⁇ Q) individual flow paths 24, and the flow path selection mechanism 20 may be installed at that location. If the upstream side is combined, one drive source is sufficient.
  • the flow path control method is applied to an automatic analyzer.
  • FIG. 1 there is a reagent dispensing system as shown in FIG.
  • One of the three-way switching valves 30 is connected to a flow path 32 connected to the reagent container 31 and the other is connected to a flow path 34 connected to the nozzle 33.
  • a common port of the three-way switching valve 30 is connected to the syringe 36 via the flow path 35.
  • the flow paths 35 extending from a common port of a plurality of reagent dispensing three-way switching valves are combined into a common flow path 37, and a common syringe 38 is connected to the common flow path 37.
  • the flow path selection mechanism 20 of the present invention is installed at a plurality of individual flow paths 35. After selecting the flow path by the flow path selection mechanism 20, the reagent 38 can be operated to dispense an arbitrary reagent. This method has the advantage that the reagent dispensing system remains a closed system, so that no leak can occur and maintenance is easy.

Landscapes

  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Organic Chemistry (AREA)
  • Wood Science & Technology (AREA)
  • Zoology (AREA)
  • General Engineering & Computer Science (AREA)
  • Clinical Laboratory Science (AREA)
  • General Health & Medical Sciences (AREA)
  • Biomedical Technology (AREA)
  • Biochemistry (AREA)
  • Sustainable Development (AREA)
  • Microbiology (AREA)
  • Genetics & Genomics (AREA)
  • Biotechnology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Mechanical Engineering (AREA)
  • Dispersion Chemistry (AREA)
  • Analytical Chemistry (AREA)
  • Hematology (AREA)
  • Apparatus Associated With Microorganisms And Enzymes (AREA)

Abstract

 本発明により、閉鎖系システムの課題であった、複数流路の制御に必要な電磁弁を最小限にすることが可能になるから、コストの安い細胞培養装置を実現できる。 X≦2Nを満たすX本の流路の流路制御方法であって、N個の弁を用いて、同時に複数の流路を選択的に開閉制御することにより、X通りの流路を選択する。

Description

流路制御方法および細胞培養装置
 本発明は、細胞培養装置や自動分析装置等、複数の流路を持つ装置における、流路制御用の弁に関する。
 複数の試薬を1本のシリンダで分注するのに、多連切替え弁なる弁があり、これを備えた自動分析装置の一例が特開昭60-93356号公報に記載されている。
 また、弾性を備えた流路を外側から押しつぶして(ピンチして)流体を制御する、ピンチ弁なる弁があり、これを備えた細胞培養装置、自動分析装置の一例が、それぞれ、特開2011-142837号公報、特開平1-12265号公報に記載されている。
特開昭60-93356号公報 特開2011-142837号公報 特開平1-12265号公報
 ピンチ弁は、流路の内側を流れる流体に直接触れることなく流路の開閉を制御できるため、流体を汚染する可能性もなく、また、弁自身も汚れない。そのため、細胞培養装置や自動分析装置のように、コンタミネーションを気にする装置で重宝される。特に細胞培養装置では、培地等が流れて汚染された流路は使い捨てるのが基本であり、弁自身が汚れないピンチ弁は使い回すことができるため経済的でもある。
 複数の流路があり、選択的に開閉を制御しようとする場合、それぞれの流路にピンチ弁を設ければ、少なくとも制御は可能である。しかし、流路が増えればピンチ弁の数も増え、その分だけコストアップにつながり、装置も大型化してしまう。
 複数の流路の制御に、特許文献1のような多連切替え弁を使用する手も考えられるが、弁内部が接液するため、コンタミネーションの観点から使用は望ましくない。
 コンタミネーションのリスクなく、小型かつ安価な弁が望まれる。
 上記課題を解決するために、例えば特許請求の範囲に記載の構成を採用する。
  本願はX≦2Nを満たすX本の流路の流路制御方法であって、N個の弁を用いて、同時に複数の流路を選択的に開閉制御することにより、X通りの流路を選択する。
 本発明により、コンタミネーションのリスクなく、かつ複数流路の制御に必要なピンチ弁を最小限にすることができるから、装置の小型化、低コスト化が可能となる。
本発明の流路制御方法の概略説明図である。 ユニバーサル型ピンチ弁の構造を示す図である。 3箇所のピンチ弁に対する8本のチューブの通し方を示す図である。 チューブ選択のためのピンチ弁制御方法を示す図である。 各ピンチ弁でNC側になるチューブ、NO側になるチューブを、選り分けてまとめておき、一括でセットできるようにする一例を示す図である。 チューブホルダの別例を示す図である。 ピンチ部材と支持部材の構造の一例を示す図である。 閉鎖培養系を示す図である。 流路選択機構を備えた閉鎖培養系を示す図である。 自動分析装置の試薬分注系を示す図である。 流路選択機構を備えた試薬分注系を示す図である。
 以下、実施例を図面を用いて説明する。
 図1は、8本のチューブ1を3個のユニバーサル型ピンチ弁2で制御する例である。ユニバーサル型ピンチ弁とは、1つのアクチュエータの制御で、常時開と常時閉の2通りの制御が可能で、図2のような構造をしている。以下、断りなく“ピンチ弁”と使用した時は、ユニバーサル型ピンチ弁のことを指す。
 ピンチ部材3は、可動鉄心4に固定され、可動鉄心4の動きに合わせて動くようになっている。ピンチ部材3と可動鉄心4を合わせて、アクチュエータともいう。支持部材5はケース6に固定され、こちらの部材は動かない。支持部材5は、NC(Normal Close)側部材5aと、NO(Normal Open)側部材5bからなり、支持部材5とピンチ部材3の間に制御したいチューブを通す。
 アクチュエータは、ばね7による力と、コイル8によって発生させた磁力により、この図において上下に動く。コイル8に通電しないと、ばね7の力によりアクチュエータは押し上げられ、NC側に設置したチューブがつぶされる(ピンチされる)。コイル8に通電すると、アクチュエータが固定鉄心9側に吸引され、NO側のチューブがつぶされる。このとき、NC側のチューブは弾性により元に戻る。なお、アクチュエータの駆動源としては、本図のような電磁気を利用する以外に、圧力(空圧、液圧)、あるいはカムのように機械的な力を利用してもよい。
 ピンチ部材3および支持部材5は、NC側、NO側それぞれ、同時に複数本のチューブを設置できる形状を備え、設置されたチューブを同時に制御することが可能となっている。
 図3に3箇所のピンチ弁に対する8本のチューブの通し方を示す。8本のチューブi~viiiは、3箇所のピンチ弁A、B、Cに対し、(a)の状態で通されている。チューブ毎にピンチ弁のNC/NO状態をまとめると、(b)のようになる。
 図4はチューブ選択のためのピンチ弁制御方法を示す。選択するチューブに対し、3箇所のピンチ弁を(a)のON/OFF組合せで制御すると、開放状態にすることができる。
(b)はその詳細を図示したものである。(i)は全てのピンチ弁がOFFの状態で、このとき、iのチューブが開放状態である。ここで、Aのピンチ弁をONすると、(ii)のようになり、iのチューブは閉塞し、iiのチューブが開放状態となる。同様にして、3箇所のピンチ弁を制御して、8本のチューブのいずれかを開放にすることができる。
 3個のピンチ弁の組合せで8通りの制御ができるが、チューブの数をそれ以下で使用してもよい。例えば、3個のピンチ弁で1本少ない7本のチューブを選択制御しようとした場合、それぞれのチューブは制御できるし、もしその存在しない1本が選択されたとしても、残りの7本のチューブの開閉に影響が出るわけではない。チューブの数は、ピンチ弁の制御の組合せの数より少なければ問題ない。ピンチ弁の数Nに対して、2N通りの制御が可能だから、X≦2Nを満たすX本の流路選択に、N個のピンチ弁があればよいことになる。
 また、敢えて1本を未使用とし、全てのピンチ弁でNO側を通過する組合せでは使用しないようにすれば、電源を落としたときに、必ず全てのチューブが閉塞している状態が得られる。停電などで、意図せずチューブが開放状態となることが回避でき、フェイルセーフにもなる。
 なお、ユニバーサル型ではなく、1つのアクチュエータで、開閉のどちらかを切替えるNC型またはNO型ピンチ弁を使用する場合、2つの組合せでユニバーサル型と同じ機能が実現できるから、X≦2Nを満たすX本の流路選択に、NC型またはN型ピンチ弁を2N個用意しても、上記の流路選択は可能である。
 以下実施例では、ピンチ弁にチューブをセットする方法について、説明する。
 本発明の流路(チューブ)選択方法は、複数あるチューブの、ピンチ弁への通し方が重要であるが、一方で複雑なため、その場で1本1本セットしようとすると、時間がかかる。また、通し間違いの可能性も排除できない。そこで、あらかじめ、各ピンチ弁でNC側になるチューブ、NO側になるチューブを、選り分けてまとめておき、一括でセットできるようにするとよい。
 図5にその一例を示す。チューブホルダ10は、2つのチューブ保持部10a、10bを持ち、それぞれ、NC用、NO用にチューブを受け持つ。チューブホルダ10は、ピンチ弁の支持部材5にスライドしてはめ込むことができるように、勘合部10cを持つ。チューブ1はあらかじめチューブホルダ10にNC用/NO用選り分けて通されており、チューブホルダ10をピンチ弁の支持部材5にはめ込むことで、チューブ1がピンチ弁にセットされる。2N本のチューブ1がN個のチューブホルダ10に、あらかじめ正しい組合せで通されたチューブセットが用意されていてもよい。ユーザはチューブを通す煩わしさから開放される。
 チューブホルダを支持部材にはめ込む際に、NC側とNO側を間違えないように、勘合部の形状を非対称にして、逆はめ込み防止の仕掛けを設ける工夫があってもよい。チューブホルダおよびピンチ弁が複数ある場合、対となるチューブホルダとピンチ弁の支持部材が分かるように、色分けする工夫もよい。
 チューブをあらかじめ選り分けておくことが重要なので、チューブホルダ10のような形ではなく、チューブをNC側/NO側に分けて、それぞれをテープや接着剤で束ねたような形でもよい。
 ピンチ弁のNC側は狭く、チューブを通しづらいので、ピンチ部材3の位置を切替えながらNO側とNC側を順に通すようにしてもよい。図6のチューブホルダ11は2つのチューブ保持部11a、11bと、可撓部分11cを持ち、先にNO側のチューブを通し、次にアクチュエータを駆動してNC側を開放し、NC側のチューブを通すようにするとよい。NC側とNO側は誤挿入を防ぐ工夫があるとよい。例えば、誤挿入できない形状を有してもよいし、あるいは、色分けすることで、誤挿入を起きにくくする工夫でもよい。
 ピンチ弁から、ピンチ部材と支持部材を着脱可能な構造とし、チューブにピンチ部材、支持部材を組み込んだ状態で、チューブセットとしてもよい。図7(a)のように、ピンチ弁12は本体12aとピンチ部材12b、支持部材12cに分解でき、支持部材12cは、更に12c1、12c2に分解可能である。(b)のように、支持部材12c2とピンチ部材12bの間にNO用チューブを通し、その上にNC用のチューブを通し、支持部材12c1と12c2を結合させる。このような状態でチューブセットとして用意してもよい。結合の方法として、スナップフィット構造を採用すれば、安価かつ容易な結合が可能である。使用するときは、(c)のように、支持部材12c2とピンチ弁本体12a、ピンチ部材12bとアクチュエータ12dを結合させて使用する。なお、ピンチ部材12bとアクチュエータ12dの結合にあたっては、アクチュエータの上下の動きがピンチ部材に伝達できるようになってなければならない。例えば、凹部に凸部が嵌り込み両者の位置関係が拘束されるようなスナップフィットを採用するとよい。
 なお、本発明で取り扱う流路は円管構造に限らない。チューブ以外に、フィルムを張り合わせて成形した流路等にも適用できる。ピンチ弁のピンチ力に対し変形可能な、弾性ないし可撓性を備えた流路であればよい。
 以下実施例は、本流路制御方法を細胞培養装置に適用した例である。
 細胞培養装置の中には、流体の導入口と排出口を持つ密閉型の培養容器に、培地の入った供給バッグや回収バッグを接続して一つの密閉した系を形成し(以下、閉鎖培養系)、その系の内部で培地交換等を行うことで、細胞を培養するものがあり、例えば前出特許文献2にその方法が記載されている。密閉系であるから、外部からのコンタミネーションのリスクがないといった利点があるが、基本的には系の外側から液体の制御を行わなければならないという制約がある。ピンチ弁は、系の外部から制御できるため、本装置に適した制御部材である。
 図8に閉鎖培養系を示す。入口と出口を備えた培養容器13は、供給バッグ14、回収バッグ15がチューブ(上流側16、下流側17)を介して接続され、密閉された状態にある。液体の駆動力は系の外側から与える必要があり、しごきポンプ18により、チューブを外側からしごいて送液する。なお、しごきポンプ18は上流側と下流側のどちらのチューブに設置してもよい。
 図8のように培養容器や供給バッグ、回収バッグが単数で分岐がない場合は、流路を制御する必要はないが、これらが複数あって並列に接続されている場合、流路を選択しながら送液しなければならない。流路の選択に、本発明の流路選択方法を適用する。
 図9(a)に供給バッグが並列に接続される例を示す。細胞培養に必要な液種として、細胞懸濁液をはじめ、培地、洗浄液、酵素液、などがあり、細胞培養装置としては、同時に複数の供給バッグを扱えることが望ましい。複数の供給バッグ14は、それぞれ個別流路19で共通流路16に接続されている。個別流路19が並ぶ箇所に、流路選択機構20を置く。流路選択機構20は、N個のユニバーサル型のピンチ弁を備えた機構で、2N本の流路の選択が可能な機構である。流路選択機構20は、どれか1本が開放となるように制御する。
 ペリスタポンプ18は上流または下流の共通流路部分に設置され、流路選択後、ペリスタポンプを駆動することで、選択した液種が培養容器へ送られる。
 図9(b)は、培養容器が複数あって並列に接続されている場合である。収量を上げるために、培養容器を増やすことはよく行われる。また、移植用と別に検査用に供するために複数枚培養することもある。複数の培養容器13は並列で置かれ、それぞれ個別流路21で共通流路に接続される。個別流路21が並ぶ箇所に、流路選択機構20を置けば、送液する培養容器を選択できる。流路選択機構20は、培養容器の上流側に設置しても、下流側に設置してもよい。
 図9(c)は、回収バッグが複数あって、並列に接続されている場合である。回収物を分離したい場合に、このような接続方法が使用できる。共通流路17から、個別流路22に分岐し、その箇所に流路選択機構20を設置すれば、回収先の選択が可能となる。
 図9(d)のように、これらを組合せてもよい。例えば、供給バッグ14、培養容器13、回収バッグ15が、それぞれ複数あり、上下の共通流路16、17を介して接続されている。それぞれの個別流路の箇所に流路選択機構20を設置すれば、任意の液種を、任意の培養容器に送り、任意の回収先に回収することができる。
 図9(e)のように、M個の供給バッグと、N個の培養容器が、M×Nの組合せで接続されている場合もある。流路は複雑になるが、流路を共用しないので、上流において異なる液種のキャリーオーバーが発生しないメリットがある。M個の供給バッグ14と、N個の培養容器13が、それぞれ(M×N)本の個別流路23で接続され、その箇所に流路選択機構20を設置すればよい。なお、上流側の本数が多くとも、下流側を一つにまとめれば、駆動源(しごきポンプ)は一つで済む。
培養容器から複数の回収物を分離したい場合、もしこれらの回収物にキャリーオーバーが全くあってはならない場合、(f)のように回収側で分けてもよい。P個の培養容器13と、Q個の回収バッグ15が、それぞれ(P×Q)本の個別流路24で接続され、その箇所に流路選択機構20を設置すればよい。上流側を一つにまとめれば、駆動源は一つで済む。
 以下実施例は、本流路制御方法を自動分析装置に適用した例である。
 自動分析装置において、例えば、図10のような試薬分注系がある。三方切替え弁30の一方は、試薬容器31につながる流路32、他方はノズル33につながる流路34が接続される。三方切替え弁30の共通ポートは流路35を介しシリンジ36に接続されている。三方切替え弁30を試薬容器31側に向け、シリンジ36を引くと、試薬をシリンジ側に吸引できる。三方切替え弁30をノズル33側に切替え、シリンジ36を押すと、ノズルから試薬を吐出することができる。
 複数の試薬を扱うには、この試薬分注系を複数持てばよいが、1本のシリンジで制御する方法として、多連切替え弁を用いる方法があり、例えば、前出特許文献1に記載されている。多連切替え弁の一方に複数の試薬分注系の流路が接続され、もう一方にシリンジが接続され、試薬分注系を選択してシリンジを制御することで、任意の試薬分注が可能となる。
特許文献1に記載の多連切替え弁は、すべり弁同士を押し当てて切替えることで、リークなく切替えているが、押し当てている構造上、この部分からのリークが0ではない。リークを極力抑えるためには、メンテナンスが非常に重要であり、かつ手間であった。
 図11のように、複数の試薬分注系の三方切替え弁の共通ポートから延びた各流路35を共通流路37にまとめ、その先に共通のシリンジ38を接続する。複数の個別流路35の箇所に本発明の流路選択機構20を設置する。流路選択機構20で流路を選択した後に、シリンジ38を操作することで、任意の試薬の分注が行える。この方法だと、試薬分注系は閉じた系のままのため、リークは起こりえず、メンテナンスが容易になる利点がある。
1 チューブ、2 ピンチ弁、3 ピンチ部材、4 可動鉄心、5 支持部材、6 ケース、7 ばね、8 コイル、9 固定鉄心、10 チューブホルダ、11 チューブホルダ、12 ピンチ弁、13 培養容器、14 供給バッグ、15 回収バッグ、16 上流側チューブ、17 下流側チューブ、18 しごきポンプ、19 個別流路、20 流路選択機構、21 個別流路、22 個別流路、23 個別流路、24 個別流路、30 三方切替え弁、31 試薬容器、32 流路、33 ノズル、34 流路、35 流路、36 シリンジ、37 共通流路、38 シリンジ

Claims (9)

  1.  X≦2Nを満たすX本の流路の流路制御方法であって、
     N個の弁を用いて、同時に複数の流路を選択的に開閉制御することにより、X通りの流路を選択する流路制御方法。
  2.  請求項1の流路制御方法において、
     前記N個の制御弁の駆動源がOFFとなった場合に、N個の制御弁の全てで流路が開放状態になる組合せでは使用しない、流路制御方法。
  3.  流体の導入口と排出口を持つ、密閉系の培養容器に、
     培養に必要な液体類を収容する供給バッグと、
     使用後の液体を回収する回収バッグと、が接続され、
     閉鎖された系を形成し、前記閉鎖系内で細胞の培養を行う、細胞培養装置であって、
     前記供給バッグは、X≦2Lを満たすX個あって、これらが1つの共通流路に並列に接続されており、X本の流路のうち1つの選択方法として、請求項1の流路制御方法を用いる細胞培養装置。
  4.  流体の導入口と排出口を持つ、密閉系の培養容器に、
     培養に必要な液体類を収容する供給バッグと、
     使用後の液体を回収する回収バッグと、が接続され、
     閉鎖された系を形成し、前記閉鎖系内で細胞の培養を行う、細胞培養装置であって、前記培養容器は、X≦2Mを満たすX個あって、これらが導入口側および排出口側のそれぞれの共通流路に並列に接続されており、X本の流路のうち1つの選択方法として、請求項1の流路制御方法を取る細胞培養装置。
  5.  流体の導入口と排出口を持つ、密閉系の培養容器に、
     培養に必要な液体類を収容する供給バッグと、
     使用後の液体を回収する回収バッグと、が接続され、
     閉鎖された系を形成し、前記閉鎖系内で細胞の培養を行う、細胞培養装置であって、
    前記回収バッグは、X≦2Nを満たすX個あって、これらが1つの流路に並列に接続されており、X本の流路のうち1つの選択方法として、請求項1の流路制御方法を取る細胞培養装置。
  6.  流体の導入口と排出口を持つ、密閉系の培養容器に、
     培養に必要な液体類を収容する供給バッグと、
     使用後の液体を回収する回収バッグと、が接続され、
     閉鎖された系を形成し、前記閉鎖系内で細胞の培養を行う、細胞培養装置であって、
    前記供給バッグおよび前記培養容器が、それぞれA個、B個あって、X≦2Pを満たすX本の個別流路で接続されており、これらの個別流路のうち1つの選択方法として、請求項1の流路制御方法を取る細胞培養装置。
  7.  流体の導入口と排出口を持つ、密閉系の培養容器に、
     培養に必要な液体類を収容する供給バッグと、
     使用後の液体を回収する回収バッグと、が接続され、
     閉鎖された系を形成し、前記閉鎖系内で細胞の培養を行う、細胞培養装置であって、
    前記培養容器および前記回収バッグが、それぞれC個、D個あって、X≦2Qを満たすX本の個別流路で接続されており、これらの個別流路のうち1つの選択方法として、請求項1の流路制御方法を取る細胞培養装置。
  8.  請求項3乃至5の細胞培養装置であって、共通流路部に液体駆動源を備える細胞培養装置。
  9.  請求項3乃至7の細胞培養装置であって、請求項2に記載の流体制御方法を取る細胞培養装置。
PCT/JP2014/084015 2014-01-27 2014-12-24 流路制御方法および細胞培養装置 WO2015111347A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US15/107,548 US10208277B2 (en) 2014-01-27 2014-12-24 Flow-path control method, and cell culture device
JP2015558762A JP6165891B2 (ja) 2014-01-27 2014-12-24 流路制御方法および細胞培養装置

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014-012071 2014-01-27
JP2014012071 2014-01-27

Publications (1)

Publication Number Publication Date
WO2015111347A1 true WO2015111347A1 (ja) 2015-07-30

Family

ID=53681164

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/084015 WO2015111347A1 (ja) 2014-01-27 2014-12-24 流路制御方法および細胞培養装置

Country Status (3)

Country Link
US (1) US10208277B2 (ja)
JP (1) JP6165891B2 (ja)
WO (1) WO2015111347A1 (ja)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019155033A1 (en) * 2018-02-09 2019-08-15 General Electric Company Bioprocessing vessel
US10889792B2 (en) 2018-02-09 2021-01-12 Global Life Sciences Solutions Usa Llc Cell expansion vessel systems and methods

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008054603A (ja) * 2006-08-31 2008-03-13 Shibuya Kogyo Co Ltd 細胞培養装置
WO2012020458A1 (ja) * 2010-08-12 2012-02-16 株式会社日立製作所 自動培養装置
JP2012217435A (ja) * 2011-04-13 2012-11-12 Hitachi Ltd 細胞培養装置

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6093356A (ja) 1983-10-28 1985-05-25 Hitachi Ltd 分注装置
JP2548732B2 (ja) 1987-07-03 1996-10-30 株式会社日立製作所 生化学自動分析装置
US6079691A (en) * 1997-03-18 2000-06-27 Dragone; Rocco V. Pinch valve assembly
JP5140095B2 (ja) 2010-01-13 2013-02-06 株式会社日立製作所 自動培養装置、及び培養容器設置方法
KR101589356B1 (ko) 2011-04-13 2016-01-27 가부시키가이샤 히타치세이사쿠쇼 세포 배양 장치 및 반송 장치

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008054603A (ja) * 2006-08-31 2008-03-13 Shibuya Kogyo Co Ltd 細胞培養装置
WO2012020458A1 (ja) * 2010-08-12 2012-02-16 株式会社日立製作所 自動培養装置
JP2012217435A (ja) * 2011-04-13 2012-11-12 Hitachi Ltd 細胞培養装置

Also Published As

Publication number Publication date
US10208277B2 (en) 2019-02-19
JP6165891B2 (ja) 2017-07-19
JPWO2015111347A1 (ja) 2017-03-23
US20160319233A1 (en) 2016-11-03

Similar Documents

Publication Publication Date Title
AU2019355273B2 (en) Multi-valve fluid cartridge
US10995313B2 (en) Cell culturing system for cultivating adherent cells and liquid supply interface comprising a cell culture container
JP6165891B2 (ja) 流路制御方法および細胞培養装置
US10053665B2 (en) Cell magnetic sorting system, sorting apparatus, and treatment device
US20150344833A1 (en) Medium exchange system
EP4234679A2 (en) An assembly
US20220033750A1 (en) Device for Distributing a Flow
CN110308295A (zh) 一种微流控多通道进样及具有其的清洗装置及清洗方法
CN214830299U (zh) 用于自动分离核酸和蛋白质的系统、设备和生物样本盒
US20080138251A1 (en) Sample preparation device
US11608487B2 (en) Fluid supply interface having a safety valve for a cell culture system, use of such a fluid supply interface for managing cell culture containers, and cell culture management system
WO2023206096A1 (zh) 液体转移装置及多路并联的液体转移装置
JP2016205996A (ja) 前処理装置
CN114570449B (zh) 液体转移装置及多路并联的液体转移装置
US20240024797A1 (en) Multi-column chromatography systems with rotatable valve assemblies
CN101987302A (zh) 快速多功能液体操作装置
EP3898927A1 (en) Device for distributing a flow
JP2015228801A (ja) 培地用バルブ及びこれを備えた培地供給システム

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14879696

Country of ref document: EP

Kind code of ref document: A1

DPE1 Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101)
ENP Entry into the national phase

Ref document number: 2015558762

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 15107548

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14879696

Country of ref document: EP

Kind code of ref document: A1