WO2015109606A1 - 数据交换装置以及系统 - Google Patents

数据交换装置以及系统 Download PDF

Info

Publication number
WO2015109606A1
WO2015109606A1 PCT/CN2014/071591 CN2014071591W WO2015109606A1 WO 2015109606 A1 WO2015109606 A1 WO 2015109606A1 CN 2014071591 W CN2014071591 W CN 2014071591W WO 2015109606 A1 WO2015109606 A1 WO 2015109606A1
Authority
WO
WIPO (PCT)
Prior art keywords
optical
unit
data packet
switching
packet
Prior art date
Application number
PCT/CN2014/071591
Other languages
English (en)
French (fr)
Inventor
王岩
杨小玲
马会肖
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to PCT/CN2014/071591 priority Critical patent/WO2015109606A1/zh
Priority to CN201480058453.8A priority patent/CN105765927B/zh
Publication of WO2015109606A1 publication Critical patent/WO2015109606A1/zh
Priority to US15/220,152 priority patent/US9806909B2/en

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L12/00Data switching networks
    • H04L12/64Hybrid switching systems
    • H04L12/6418Hybrid transport
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/27Arrangements for networking
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04QSELECTING
    • H04Q11/00Selecting arrangements for multiplex systems
    • H04Q11/0001Selecting arrangements for multiplex systems using optical switching
    • H04Q11/0062Network aspects
    • H04Q11/0066Provisions for optical burst or packet networks
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04QSELECTING
    • H04Q11/00Selecting arrangements for multiplex systems
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04QSELECTING
    • H04Q5/00Selecting arrangements wherein two or more subscriber stations are connected by the same line to the exchange
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04QSELECTING
    • H04Q9/00Arrangements in telecontrol or telemetry systems for selectively calling a substation from a main station, in which substation desired apparatus is selected for applying a control signal thereto or for obtaining measured values therefrom

Definitions

  • the present invention relates to the field of data exchange, and in particular, to a data exchange apparatus and system. Background technique
  • data exchange is mainly realized by electrical switching technology or optical switching technology.
  • the electrical switching technology converts the received data packets into electrical signals and analyzes them, and obtains the exchange information of the data packets, and then exchanges the data packets. It is sent to the destination port and converted to an optical signal by electro-optical. Due to limitations in technologies such as backplanes and power consumption, electrical switching technology cannot meet the needs of high-speed data center capacity and low-latency data transmission.
  • the common optical switching technology has optical packet switching.
  • the specific steps are: for the signal entering the optical switching node, the demultiplexing device sends the optical label carrying the exchange information to the switching control unit, and the switching control unit performs the optical labeling on the optical label.
  • the photoelectric conversion is to extract and generate a control signal, and control the optical switching unit to establish an optical link according to the generated control signal, thereby enabling exchange of optical packets.
  • Optical packet switching The entire packet is not photoelectrically converted and parsed, which significantly reduces processing delay and power consumption, and significantly increases switching capacity. However, due to the size of the optical switch and the switching time of the switch, not all data packets can be exchanged by the optical packet switching device. Summary of the invention
  • the technical problem to be solved by the present invention is how to realize the number in the data exchange network According to the efficient, fast exchange.
  • a data exchange apparatus including: a photoelectric conversion unit, configured to perform photoelectric conversion on a first optical data packet and an optical label, the first optical data
  • the packet is a packet to be exchanged to be exchanged by the electrical packet, the optical label carries the exchange information of the second optical data packet, and the second optical data packet is the data packet to be exchanged to be optical packet exchange;
  • the identification unit and The photoelectric conversion unit is connected to identify whether the electrical signal output by the photoelectric conversion unit is from the optical tag or the first optical data packet; and an electrical switching unit connected to the identification unit for identifying the The electrical signal from the first optical data packet is exchanged by the unit;
  • the electro-optical conversion unit is connected to the electrical switching unit for performing electro-optical conversion on the electrical signal output by the electrical switching unit;
  • the optical switching control unit Connected to the identification unit, configured to generate a control signal according to an electrical signal from the optical tag output by the identification unit; Unit, the light switching
  • the method further includes a multiplexing unit, the multiplexing unit is connected to the electro-optical conversion unit and the optical switching unit, and configured to convert the electro-optical The unit and the data packet outputted by the optical switching unit to the same destination port are multiplexed into one way.
  • the above data exchange device in a possible implementation, further comprising a buffer unit, connected to the electrical switching unit and the electro-optical conversion unit, for storing an electrical signal output by the electrical switching unit; a sending control unit, configured to be connected to the buffer unit and the optical switching control unit, configured to generate a sending control signal according to the exchange information of the first optical data packet and the exchange information of the second optical data packet, and according to the The transmission control signal controls the buffer unit and the optical switching control unit.
  • the method further includes a demultiplexing unit, where the demultiplexing unit is connected to the photoelectric conversion unit and the optical switching unit, and is configured to be connected Separating the light of the first wavelength and the light of the second wavelength from the received optical signal, and outputting the light of the first wavelength to the photoelectric conversion unit, and outputting the light of the second wavelength to the light And an switching unit, wherein the first optical data packet and the optical label are modulated on the light of the first wavelength, and the second optical data packet is modulated on the light of the second wavelength.
  • a data exchange system including: a first processing apparatus, configured to determine, according to a predetermined rule, that an exchange mode of a data packet to be exchanged is a power packet exchange or a Optical packet switching, and generating an optical label for the second optical data packet, wherein the second optical data packet is a data packet to be exchanged that is determined to be optical packet switched; according to an embodiment of the present invention
  • the data exchange device of embodiment 3 which is connected to the first processing device, configured to perform electrical packet exchange on the first optical data packet received from the first processing device, and
  • the second optical data packet received by the first processing device performs optical packet switching, wherein the first optical data packet is a data packet to be exchanged that is determined to be using electrical packet switching.
  • the first processing device is further configured to modulate the optical tag and the first optical data packet on the light of the first wavelength And modulating the second optical data packet on the second wavelength of light;
  • the data switching device further includes a demultiplexing unit, the demultiplexing unit is connected to the photoelectric conversion unit and the optical switching unit, Separating light of the first wavelength and light of the second wavelength from the received optical signal, and outputting the light of the first wavelength to the photoelectric conversion unit, the second Light of a wavelength is output to the optical switching unit.
  • the first processing device is further configured to convert the second optical data packet protocol into a specific frame format, so that the first The two optical packets can be exchanged by the optical switching unit of the data switching device.
  • the above data exchange system in a possible implementation, further comprising a second processing device, connected to the data exchange device, for outputting data of the electro-optical conversion unit and the optical switching unit
  • the packet protocol is converted to a specific frame format so that the data packet can be used by the network device Identification.
  • the predetermined rule includes: whether the length of the to-be-exchanged data packet exceeds a predetermined threshold, and whether the priority of the to-be-exchanged data packet exceeds a predetermined level. .
  • the data packet switching apparatus By first determining whether the switching mode of the data packet to be exchanged is electrical packet switching or optical packet switching, and then switching the data packet to be exchanged to the destination port according to the determined switching manner, the data packet switching apparatus according to the embodiment of the present invention And the system can fully utilize the advantages of the optical switching technology and the electrical switching technology to realize efficient and fast exchange of data in the data exchange network.
  • the photoelectric conversion required for electrical switching and optical packet switching to extract data packet exchange information is performed by the same photoelectric conversion device, which saves photoelectric conversion equipment.
  • FIG. 1 is a block diagram showing the structure of a data exchange device according to an embodiment of the present invention.
  • FIG. 2 shows a schematic diagram of an optical label format in accordance with an embodiment of the present invention
  • FIG. 3 is a diagram showing an exemplary flowchart of the identification of the first optical data packet and the cursor by the identification unit in the data exchange device shown in FIG. 2;
  • FIG. 4 is a block diagram showing an exemplary structure of some components of a data exchange device according to an embodiment of the present invention.
  • Figure 5 is a diagram showing a data flow for wavelength division multiplexing using the multiplexing unit shown in Figure 4;
  • Figure 6 is a diagram showing an exemplary part of a component of a data switching device according to an embodiment of the present invention. Structure diagram;
  • FIG. 7 is a schematic diagram showing the principle of the optical switching control unit shown in FIG. 6 grasping the link state in the optical switching unit through the optical label;
  • FIG. 8 is a schematic diagram showing a data stream for time division multiplexing using the optical switching control unit and the buffer unit shown in FIG. 6;
  • FIG. 9 is a block diagram showing an exemplary structure of still another component of the data exchange device according to an embodiment of the present invention.
  • FIG. 10 is a block diagram showing the structure of a data exchange system according to an embodiment of the present invention.
  • Figure 11 is a diagram showing the time domain and frequency domain relationship of the first optical data packet, the second optical data packet, and the optical label outputted after being modulated by the first processing device of the data exchange system shown in Figure 10;
  • FIG. 12 is a block diagram showing the structure of a second processing apparatus according to an embodiment of the present invention. detailed description
  • the technical problem that the present invention is intended to solve is mainly how to achieve efficient and fast exchange of data in a data exchange network.
  • the inventors have ingeniously thought of effectively combining optical packet switching and conventional electrical switching, and performing photoelectric conversion and optical packet switching required for electrical switching using the same photoelectric conversion device.
  • the photoelectric conversion required to extract data packet exchange information fully utilizes the advantages of optical switching technology and electrical switching technology to realize efficient and fast exchange of data in the data exchange network, and saves photoelectric conversion equipment.
  • the first processing device determines, according to a predetermined rule, whether the switching mode of the data packet to be exchanged is a packet switching or an optical packet switching; and then the data switching device adopts an exchange manner determined by the first processing device.
  • the exchange of data packets is forwarded to the destination port.
  • the specific process of data exchange by using the data exchange device and system in the embodiment of the present invention may be that the standard Ethernet signal, that is, the data packet to be exchanged is parsed and identified by the first processing device, Forming an optical label for the second optical data packet, wherein the second optical data packet is a data packet to be exchanged by using optical packet switching, and then output to the data switching device; wherein the second optical data is included
  • the signal of the packet is output to the optical switching unit, and the signal including the first optical data packet and the optical label is output to the same photoelectric conversion unit to perform photoelectric conversion, wherein the first optical data packet is a data packet exchanged by using the electrical packet, and then
  • the first optical data packet converted into an electrical signal is output to its destination port through an electrical switching unit, and the second optical data packet exchange information carried by the optical label converted into an electrical signal is converted into a control signal in the optical switching control unit. So that the optical switching unit outputs the second optical data packet to its destination port according to the control signal; the data packet output to the destination port is
  • the data exchange device mainly includes a photoelectric conversion unit 110, an identification unit 120, an electrical exchange unit 130, an electro-optical conversion unit 140, an optical switching control unit 150, and an optical switching unit 160.
  • the photoelectric conversion unit 110 is configured to perform photoelectric conversion on the first optical data packet and the optical label, where the first optical data packet is a data packet to be exchanged to be electrically switched, and the optical label carries the second optical data. Packet exchange information, the second optical data packet is the number to be exchanged to use optical packet switching
  • the identification unit 120 is connected to the photoelectric conversion unit 110 for identifying whether the electrical signal output by the photoelectric conversion unit is from the optical tag or the first optical data packet; the electrical switching unit 130 and The identification unit 120 is connected to exchange an electrical signal from the first optical data packet output by the identification unit 120; the electrical optical conversion unit 140 is connected to the electrical switching unit 130 for The electrical signal outputted by the electrical switching unit is electrically converted; the optical switching control unit 150 is coupled to the identification unit 120 for generating a control signal according to the electrical signal from the optical tag output by the identification unit 120; The optical switching unit 160 is connected to the optical switching control unit 150, and configured to output the second optical data packet via an optical link according to the control signal.
  • the exchange of the data packet to be exchanged may be determined according to whether the length of the data packet to be exchanged exceeds a predetermined threshold or whether the priority of the data packet to be exchanged exceeds a predetermined level. the way.
  • the packets to be exchanged with a length greater than a predetermined threshold are optically exchanged, so that the data packets to be exchanged with a length less than a predetermined threshold are exchanged, so that packets with a priority greater than a predetermined level are optically exchanged, so that the priority is less than
  • the packet of the predetermined level is switched by the electric packet, so that the data packet to be exchanged can be efficiently and quickly exchanged to the destination port.
  • FIG. 2 shows a possible format and content of the optical label.
  • the optical label may include an optical label delimiter and a second optical packet exchange information, wherein the optical label is determined.
  • the delimiter is used to identify the start of the optical label
  • the second optical packet exchange information may include information such as a destination port, a length, and a priority of the second optical data packet corresponding to the optical label, and is used to generate the optical switching unit 160.
  • the control signal of the optical switch path may include an optical label delimiter and a second optical packet exchange information, wherein the optical label is determined.
  • the delimiter is used to identify the start of the optical label
  • the second optical packet exchange information may include information such as a destination port, a length, and a priority of the second optical data packet corresponding to the optical label, and is used to generate the optical switching unit 160.
  • the control signal of the optical switch path may include an optical label delimiter and a second optical packet exchange information, wherein the optical label is determined.
  • the delimiter is
  • the first optical data packet and the optical label are photoelectrically converted by the same photoelectric conversion unit 110, and therefore the identification unit 120 is required to separate the electrical signals output by the photoelectric conversion unit 110, and convert the photoelectricity into a telecommunication.
  • the first optical data packet of the number is output to the electrical switching unit 130, and the optical tag for photoelectrically converting the electrical signal is output to the optical switching control unit 150.
  • the processing flowchart of the identification unit 120 is as shown in FIG. 3, and may specifically include:
  • Step S310 preset the keyword sequence and the length of the optical tag in the identifying unit 120, where the keyword sequence is the same as the optical tag delimiter;
  • Step S320 determining whether the currently input sequence matches the preset keyword sequence
  • Step S330 if the currently input sequence does not match the preset keyword sequence, it is considered that the currently input sequence is part of the first optical data packet, and is sent to the electrical switching unit 130;
  • Step S340 If the currently input sequence matches the preset keyword sequence, the current input sequence is considered to be an optical label delimiter, and the optical label delimiter and the sequence of the predetermined length, that is, the optical label are sent.
  • the predetermined length is the length of the optical tag preset in the identification unit 120.
  • the electrical switching unit 130 may be a standard Ethernet switching chip, and the electrical switching unit 130 parses the electrical signal from the first optical data packet output by the identification unit 120, and according to the The carried destination address, such as the destination MAC address or the destination IP address, outputs it to the destination port D1 of the first optical data packet.
  • the optical switching control unit 150 extracts the exchange information of the second optical data packet corresponding to the optical label according to the received electrical signal from the optical label, generates a corresponding control signal, and outputs the corresponding control signal to the optical switching unit 160.
  • the control signal can control the optical switching unit 160 to implement the exchange of the second optical data packet.
  • the optical switching unit 160 adjusts the state of each switch unit according to the control signal, so that a corresponding optical link can be established according to the destination port of the second optical data packet, so that the second optical data packet can be output to the Its destination port D2.
  • the data exchange device of this embodiment is different from the first embodiment.
  • the data exchange device may further include a multiplexing unit 410.
  • the multiplexing unit 410 is connected to the electro-optical conversion unit 140 and the optical switching unit 160, and is configured to multiplex the data packets output from the electro-optical conversion unit 140 and the optical switching unit 160 to the same destination port into one path.
  • the data packets outputted to the same destination port D through the electro-optical conversion unit 140 and the optical switching unit 160 are multiplexed into one optical signal via the multiplexing unit 410, and then transmitted through the same optical fiber and passed through the same physical port. Processing device.
  • the multiplexing unit 410 shown in Figure 4 can be a 3dB coupler.
  • FIG. 5 is a schematic diagram showing the data stream multiplexed by the multiplexing unit 410.
  • the first optical data packet is modulated by the electro-optical conversion unit 140 on the light of the wavelength ⁇ 2 different from the wavelength ⁇ 1 of the second optical data packet. Since the two are on different wavelengths of light and do not interfere with each other during transmission, they can be simultaneously transmitted in one optical fiber.
  • the data exchange device of this embodiment is different from the first embodiment.
  • the data exchange device may further include a buffer unit 610 and a transmission control unit 620.
  • the buffer unit 610 is connected to the electrical switching unit 130 and the electro-optical conversion unit 140 for storing the electrical signal output by the electrical switching unit 130.
  • the sending control unit 620 is connected to the buffer unit 610 and the optical switching control unit 150 for The exchange information of the first optical data packet and the exchange information of the second optical data packet generate a transmission control signal, and are controlled according to the transmission control signal The buffer unit 610 and the optical switching control unit 150.
  • the transmission control unit 620 generates a transmission control signal according to the exchange information of the second optical data packet output by the optical switching control unit 150 and the exchange information of the first optical data packet output by the buffer unit 810, and controls according to the transmission control signal.
  • the buffer unit 610 controls the output of the electro-optical conversion unit 140 and the optical switching control unit 150 to the optical switching unit 160, so that the electro-optical conversion unit 140 and the optical switching unit 160 output to the destination port D at different times.
  • the exchange information includes information such as a destination port, a length, and a priority of the data packet to be exchanged.
  • the identification unit 120 outputs the first optical data packet converted into an electrical signal to the electrical switching unit 130, and the electrical switching unit 130 outputs the first optical data packet to the transmission port connected to the destination port thereof.
  • the first optical data packet is not output to the electro-optical conversion unit 140 for electro-optic conversion, but the first optical data packet is output to the buffer unit 610 connected to the electro-optical conversion unit 140.
  • the destination port corresponding to the data packet stored in the buffer unit 610 is the same, and the transmission control unit 620 controls the transmission time of the data packet.
  • the optical switching control unit 150 sends a control signal according to the exchange information carried by the received optical label, and controls the optical switching unit 160 to establish a link to implement the second optical data packet corresponding to the optical label in the optical switching unit.
  • Exchange in 160 On the other hand, by integrating the optical tag information of each link in the optical switching unit 160, the state of each link in the optical switching unit 160 is grasped, and the exchange information of the second optical data packet corresponding to the optical tag is output to the transmission control. Unit 620.
  • FIG. 7 is a schematic diagram showing the principle that the optical switching control unit 150 grasps the status of each link in the optical switching unit 160 through the optical label.
  • the dotted line frame represents the second optical data outputted to the optical switching unit 160.
  • the packet, the solid line frame represents the optical tag corresponding to the second optical data packet, and the number on the second optical data packet and the optical tag represents the destination port number.
  • the optical switching control unit 150 can grasp that the output port of the optical switching unit 160, that is, the destination port of the data packet is occupied, according to the time when the optical label arrives and the exchange information of the carried second optical data packet, for example, vertical in FIG.
  • the dotted line of the direction represents the time when the data packet occupies the destination port of destination number 3, that is, the destination port No. 3 is idle at this time.
  • the mutual negotiation process between the sending control unit 620 and the optical switching control unit 150 may include the following two aspects:
  • the transmission control unit 620 and the optical switching control unit 150 mutually negotiate to determine the timing at which the first optical data packet stored in the buffer unit 610 is transmitted to the photoelectric conversion unit 140.
  • the optical switching control unit 150 transmits the exchange information of the data packet to be exchanged in the optical switching unit 160 to the transmission control unit 620, so that the transmission control unit 620 can send a transmission control to the buffer unit 610 at the time when the destination port D is idle.
  • the signal causes the electrical signal of the corresponding destination port D in the buffer unit 610 to be output to the photoelectric conversion unit 140, and the buffer unit 610 transmits the exchange information of the first optical data packet therein to the transmission control unit 620, thereby enabling the transmission control unit 620 to enable the transmission control unit 620 Determining when the destination port is idle.
  • the transmission control unit 620 negotiates with the optical switching control unit 150 to control the optical switching state to achieve no conflict between the multiplexing of the first optical data packet and the second optical data packet. If the destination port D is occupied by the first optical data packet output by the buffer unit 610, and the second optical data packet request is output to the destination port D in the optical switching unit 160, the optical switching control unit 150 may control the optical switching unit 160 to The second optical data packet is first output to a current idle port. After the delay of the optical delay line or the electrical buffer, the sending control unit 620 sends a transmission control signal when the destination port D is idle, so that the optical switching control unit 150 controls the optical switching. Unit 160 outputs the second optical data packet to destination terminal QD.
  • FIG. 8 shows the data flow before and after the time division multiplexing of the first optical data packet and the second optical data packet outputted to the same destination port D. It can be seen that the buffer unit, the transmission control unit, and the optical switching control are performed. The mutual negotiation between the units enables the outputted first optical data packets to be inserted between the second optical data packets of the same destination port without conflict.
  • the first optical data packet and the second optical data packet can be made non-multiplexed by time-multiplexing the first optical data packet outputted to the same destination port with the second optical data packet.
  • the conflicts collectively occupy the same link.
  • the data processing device further includes a demultiplexing unit 910.
  • the demultiplexing unit 910 is connected to the photoelectric conversion unit 110 and the optical switching unit 160, and is configured to separate the first wavelength light and the second wavelength light from the received optical signal, and the first wavelength is The light is output to the photoelectric conversion unit 110, and the light of the second wavelength is output to the optical switching unit 160, wherein the first optical data packet and the optical label are modulated at the first wavelength The second optical data packet is modulated on the second wavelength of light.
  • the first optical data packet and the optical optical label are modulated on light having a wavelength of ⁇ 2
  • the second optical data packet is modulated on light having a wavelength of ⁇ 1 .
  • the optical signals modulated at different wavelengths do not interfere with each other, and thus can be simultaneously transmitted in one optical fiber and separated by the demultiplexing unit 910 before optical switching and photoelectric conversion.
  • the demultiplexing unit 910 can be a filter.
  • the light after demultiplexing by the demultiplexing unit 910 is divided into two paths, and the light having the wavelength ⁇ ⁇ , that is, the second optical data packet enters the optical switching unit 160 for optical exchange; only the light having the wavelength ⁇ 2 is the first An optical data packet and an optical tag enter the photoelectric conversion unit 110 for photoelectric conversion, thereby avoiding unnecessary photoelectric conversion.
  • the data exchange apparatus has been described above by way of example with the above embodiments, those skilled in the art can understand that the present invention is not limited thereto.
  • the user can flexibly set the demultiplexing unit, the multiplexing unit, and the combination of the buffer unit and the transmission control unit according to personal preferences and/or actual application scenarios.
  • the data switching apparatus of the embodiment of the present invention may further include a multiplexing unit, where the multiplexing unit of the embodiment may be the multiplexing unit 410 described in Embodiment 2.
  • the structure and function are the same, and the same beneficial effects can be achieved.
  • the data switching device of the embodiment of the present invention may further include a buffer unit and a sending control unit, where the buffer unit and the sending control unit of the embodiment may be combined with Embodiment 3.
  • the structure and function of the buffer unit 610 and the transmission control unit 620 are the same, and the same advantageous effects can be achieved.
  • FIG. 10 is a block diagram showing the structure of a data conversion system according to an embodiment of the present invention.
  • the data exchange system mainly includes: a first processing device 1010 and the first embodiment to the third embodiment.
  • Data exchange device 1020 The first processing device 1010 is configured to determine, according to a predetermined rule, whether the switching mode of the data packet to be exchanged is a packet switching or an optical packet switching, and generate an optical label for the second optical data packet, where the second optical data packet is Determining to be an optical packet to be exchanged packet to be exchanged; the data switching device 1020 is coupled to the first processing device 1010 for performing electrical packet exchange on the first optical data packet received from the first processing device 1010, And performing optical packet switching on the second optical data packet received from the first processing device 1010, wherein the first optical data packet is a data packet to be exchanged that is determined to be using electrical packet switching.
  • the predetermined rule may be whether a length of the to-be-exchanged data packet exceeds a predetermined threshold, and whether a priority of the to-be-exchanged data packet exceeds a predetermined level.
  • the data packet whose length is greater than the predetermined threshold may be optically packet exchanged, so that the data packet whose length is less than the predetermined threshold is subjected to electrical packet switching;
  • the priority of the packet is such that packets with a priority greater than the predetermined level are optically packet-switched, so that packets with a priority less than a predetermined level are subjected to packet switching.
  • the data exchange system according to the embodiment of the present invention can take full advantage of the electrical packet switching technology and the optical packet switching technology, so that the data packet can be quickly exchanged to the destination port.
  • the first processing device 1010 is further configured to: modulate the optical tag and the first optical data packet on light of a first wavelength, The two optical data packets are modulated on the second wavelength of light; the data exchange device 1020 uses the data described in Embodiment 4.
  • the switching device, that is, the demultiplexing unit is included on the basis of the structures of Embodiments 1 to 3.
  • the first optical data packet and the optical tag are modulated by the first processing device 1010 on light having a wavelength of ⁇ 2
  • the second optical data packet is modulated at On a light with a wavelength of ⁇ 1 .
  • the optical signals modulated at different wavelengths do not interfere with each other, and thus can be simultaneously transmitted in one optical fiber and separated by the demultiplexing unit before performing optical switching and photoelectric conversion.
  • the first processing apparatus 1010 is further configured to convert the second optical data packet protocol into a specific frame format, so that the second optical data packet can be Switched by the optical switching unit of the data switching device.
  • the data exchange system further includes a second processing device 1030, coupled to the data switching device 1020, for outputting data of the electro-optical conversion unit and the optical switching unit
  • the packet protocol is converted to a specific frame format such that the data packet can be identified by the network device.
  • the structural block diagram of the second processing device 1030 may be as shown in FIG. 12, after the data packet output by the multiplexing unit passes through the filter 1210, the optical signals of different wavelengths are separated, respectively.
  • Output to the photoelectric conversion unit 1221 and the photoelectric conversion unit 1222 convert the optical signals into electrical signals, and output them to the data processing unit 1231 and the data processing unit 1232, respectively, and the data processing unit restores the electrical signals to data packets of the Ethernet protocol. After being aggregated by the MUX (multiplexer) multiplexer, it is output to the network device.
  • the second processing apparatus 1030 may not include the filter 1210, and the second processing apparatus 1030 includes two physical ports, and outputs to the same destination port.
  • the data packets are output to the photoelectric conversion unit 1221 and the photoelectric conversion unit 1222 through two physical ports respectively.
  • the second processing device 1030 may not include the filter 1210, and only includes one.
  • the photoelectric conversion unit and the data processing unit can realize the data packet that restores the data packet to be exchanged to the Ethernet protocol, and outputs the data packet to the network device. In practical applications, users can be flexible according to personal preferences and/or actual application scenarios.
  • the data exchange devices of the first to fourth embodiments are selected and matched with a suitable second processing device.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Computing Systems (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Data Exchanges In Wide-Area Networks (AREA)
  • Optical Communication System (AREA)

Abstract

本发明公开了一种数据交换装置及系统,所述数据交换装置包括:光电转换单元、识别单元、电交换单元、电光转换单元,光交换控制单元、光交换单元。光电转换单元用于对第一光数据包和光标签进行光电转换,所述光标签携带第二光数据包的交换信息,所述第一光数据包和所述第二光数据包分别为要采用电包交换和光包交换的待交换数据包;识别单元用于识别所述光电转换单元输出的电信号来自所述光标签还是所述第一光数据包。本发明的数据交换装置及系统能够充分发挥电包交换技术和光包交换技术的优势,将待交换数据包快速交换。完成电包交换需要的光电转换和光包交换提取数据包交换信息需要的光电转换采用同一个光电转换单元,节约了光电转换设备。

Description

技术领域
[01] 本发明涉及数据交换领域, 尤其涉及一种数据交换装置及系统。 背景技术
[02] 随着通信技术和计算机技术的不断发展, 人们对于网络业务的要求越 来越多, 需要在数据交换网络中设计高效的数据交换方案, 以实现更高的带 宽利用率和更低的数据传输延迟。
[03] 目前, 数据交换主要通过电交换技术或光交换技术来实现, 电交换技 术就是将接收到的数据包进行光电转换为电信号并解析,得到数据包的交换 信息后, 将数据包交换至目的端口, 并经过电光转换为光信号后发出。 由于 背板、 能耗等技术的限制, 电交换技术无法满足高速增长的数据中心容量以 及低时延传输数据的需求。
[04] 常见的光交换技术有光包交换, 具体步骤为, 对进入光交换节点的信 号, 经过解复用装置将携带交换信息的光标签发送至交换控制单元, 交换控 制单元对光标签进行光电转换以提取并产生控制信号, 并根据所产生的控制 信号来控制光交换单元建立光链路, 从而能够实现对光包的交换。 光包交换 没有将整个数据包进行光电转换及解析, 能够明显降低处理时延及能耗, 并 且能够显著增加交换容量。 然而, 由于受到光开关的规模和开关切换时间的 限制, 并不是所有的数据包都能够由光包交换装置完成交换。 发明内容
技术问题
[05] 有鉴于此, 本发明要解决的技术问题是, 如何实现数据交换网络中数 据的高效、 快速交换。
解决方案
[06] 为了解决上述技术问题, 根据本发明一实施例, 提供了一种数据交换 装置, 包括: 光电转换单元, 用于对第一光数据包和光标签进行光电转换, 所述第一光数据包为要采用电包交换的待交换数据包,所述光标签携带第二 光数据包的交换信息, 所述第二光数据包为要采用光包交换的待交换数据 包; 识别单元, 与所述光电转换单元连接, 用于识别所述光电转换单元输出 的电信号来自所述光标签还是所述第一光数据包; 电交换单元, 与所述识别 单元连接,用于对所述识别单元输出的来自所述第一光数据包的电信号进行 交换; 电光转换单元, 与所述电交换单元连接, 用于对所述电交换单元输出 的电信号进行电光转换; 光交换控制单元, 与所述识别单元连接, 用于根据 所述识别单元输出的来自所述光标签的电信号生成控制信号; 光交换单元, 与所述光交换控制单元连接,用于根据所述控制信号将所述第二光数据包经 由光链路输出。
[07] 对上述数据交换装置, 在一种可能的实现方式中, 还包括复用单元, 所述复用单元与所述电光转换单元以及所述光交换单元连接,用于将所述电 光转换单元与所述光交换单元输出至相同目的端口的数据包复用为一路。
[08] 对上述数据交换装置, 在一种可能的实现方式中, 还包括缓存单元, 与所述电交换单元以及所述电光转换单元连接,用于存储所述电交换单元输 出的电信号;发送控制单元,与所述缓存单元以及所述光交换控制单元连接, 用于根据所述第一光数据包的交换信息以及所述第二光数据包的交换信息 生成发送控制信号, 并根据所述发送控制信号控制所述缓存单元以及所述光 交换控制单元。
[09] 对上述数据交换装置, 在一种可能的实现方式中, 还包括解复用单元, 所述解复用单元与所述光电转换单元以及所述光交换单元连接,用于从所接 收到的光信号中分离出第一波长的光和第二波长的光, 并将所述第一波长的 光输出至所述光电转换单元, 将所述第二波长的光输出至所述光交换单元, 其中, 所述第一光数据包和所述光标签被调制在所述第一波长的光上, 所述 第二光数据包被调制在所述第二波长的光上。
[10] 为了解决上述技术问题, 根据本发明又一实施例, 提供了一种数据交 换系统, 包括: 第一处理装置, 用于按照预定规则确定待交换数据包的交换 方式为电包交换还是光包交换, 并针对第二光数据包生成光标签, 其中所述 第二光数据包为被确定为采用光包交换的待交换数据包; 根据本发明实施例
1至实施例 3所述的数据交换装置, 其与所述第一处理装置连接, 用于对从所 述第一处理装置接收到的第一光数据包进行电包交换, 以及对从所述第一处 理装置接收到的第二光数据包进行光包交换,其中所述第一光数据包为被确 定为采用电包交换的待交换数据包。
[11] 对上述数据交换系统, 在一种可能的实现方式中, 所述第一处理装置 还被配置为, 将所述光标签和所述第一光数据包调制在第一波长的光上, 将 所述第二光数据包调制在第二波长的光上; 所述数据交换装置还包括解复用 单元, 所述解复用单元与所述光电转换单元以及所述光交换单元连接, 用于 从所接收到的光信号中分离出所述第一波长的光和所述第二波长的光, 并将 所述第一波长的光输出至所述光电转换单元,将所述第二波长的光输出至所 述光交换单元。
[12] 对上述数据交换系统, 在一种可能的实现方式中, 所述第一处理装置 还被配置为, 将所述第二光数据包协议转换为特定的帧格式, 以使得所述第 二光数据包能够被所述数据交换装置的光交换单元交换。
[13] 对上述数据交换系统, 在一种可能的实现方式中, 还包括第二处理装 置, 与所述数据交换装置连接, 用于将所述电光转换单元与所述光交换单元 输出的数据包协议转换为特定的帧格式, 以使得所述数据包能够被网络设备 识别。
[14] 对上述数据交换系统, 在一种可能的实现方式中, 所述预定规则包括: 所述待交换数据包的长度是否超过预定阈值、所述待交换数据包的优先级是 否超过预定等级。
有益效果
[15] 通过首先确定待交换数据包的交换方式为电包交换还是光包交换, 然 后将所述待交换数据包按照确定的交换方式交换至目的端口,根据本发明实 施例的数据包交换装置及系统, 能够充分发挥光交换技术和电交换技术各自 的优点, 从而实现数据交换网络中数据的高效、 快速交换。 另外, 电交换需 要的光电转换和光包交换提取数据包交换信息需要的光电转换是由同一光 电转换设备完成的, 节约了光电转换设备。
[16] 根据下面参考附图对示例性实施例的详细说明, 本发明的其它特征及 方面将变得清楚。 附图说明
[17] 包含在说明书中并且构成说明书的一部分的附图与说明书一起示出了 本发明的示例性实施例、 特征和方面, 并且用于解释本发明的原理。
图 1示出根据本发明一实施例的数据交换装置的结构框图;
图 2示出根据本发明一实施例的光标签格式的示意图;
图 3示出图 2所示数据交换装置中的识别单元进行第一光数据包和光标 签识别的示例性流程图;
图 4示出根据本发明一实施例的数据交换装置的部分组件的示例性结构 框图;
图 5示出利用图 4所示复用单元进行波分复用的数据流的示意图; 图 6示出根据本发明一实施例的数据交换装置的又一部分组件的示例性 结构框图;
图 7示出图 6所示光交换控制单元通过光标签掌握光交换单元中链路状 态的原理示意图;
图 8示出利用图 6所示光交换控制单元和缓存单元进行分时复用的数据 流的示意图;
图 9示出根据本发明一实施例的数据交换装置的又一部分组件的示例性 结构框图;
图 10示出根据本发明一实施例的数据交换系统的结构框图;
图 11示出经图 10所示数据交换系统的第一处理装置调制之后输出的第 一光数据包、 第二光数据包以及光标签的时域及频域关系的示意图;
图 12示出根据本发明一实施例的第二处理装置的结构框图。 具体实施方式
[18] 如背景技术部分所述, 本发明希望解决的技术问题主要是如何实现数 据交换网络中数据的高效、 快速交换。 为了解决该技术问题, 如发明内容部 分所述, 本发明人独创性地想到, 将光包交换和传统的电交换有效的结合, 并且利用同一光电转换设备完成电交换需要的光电转换和光包交换提取数 据包交换信息需要的光电转换,在充分发挥光交换技术和电交换技术各自优 点, 以实现数据交换网络中数据的高效、 快速交换的同时, 节约了光电转换 设备。
[19] 具言之, 首先通过第一处理装置按照预定规则确定待交换数据包的交 换方式为电包交换还是光包交换; 然后数据交换装置采用所述第一处理装置 确定的交换方式将所述待交换数据包交换至目的端口。
[20] 采用本发明实施例的数据交换装置及系统进行数据交换的具体流程可 以为, 标准以太网信号、 也就是待交换数据包经第一处理装置解析识别, 确 定交换方式并针对第二光数据包生成光标签, 其中, 所述第二光数据包为采 用光包交换的待交换数据包, 然后输出至数据交换装置; 其中, 包含所述第 二光数据包的信号输出至光交换单元,包含第一光数据包以及光标签的信号 输出至同一光电转换单元完成光电转换, 其中, 所述第一光数据包为采用电 包交换的数据包,然后将转换为电信号的所述第一光数据包通过电交换单元 输出至其目的端口, 转换为电信号的光标签携带的所述第二光数据包交换信 息在光交换控制单元中转换为控制信号, 以使得光交换单元根据所述控制信 号将所述第二光数据包输出至其目的端口; 输出至目的端口的数据包经由第 二处理装置的处理, 重新恢复成标准的以太网信号。
[21] 以下将参考附图详细说明本发明的各种示例性实施例、 特征和方面。 附图中相同的附图标记表示功能相同或相似的元件。尽管在附图中示出了实 施例的各种方面, 但是除非特别指出, 不必按比例绘制附图。
[22] 在这里专用的词"示例性 "意为 "用作例子、实施例或说明性"。这里作为 "示例性"所说明的任何实施例不必解释为优于或好于其它实施例。
[23] 另外, 为了更好的说明本发明, 在下文的具体实施方式中给出了众多 的具体细节。 本领域技术人员应当理解, 没有某些具体细节, 本发明同样可 以实施。 在另外一些实例中, 对于本领域技术人员熟知的方法、 手段、 元件 和电路未作详细描述, 以便于凸显本发明的主旨。
实施例 1
图 1示出根据本发明一实施例的数据交换装置的结构框图。 如图 1所示, 该数据交换装置主要包括:光电转换单元 110、识别单元 120、电交换单元 130、 电光转换单元 140、 光交换控制单元 150、 以及光交换单元 160。
其中, 所述光电转换单元 110用于对第一光数据包和光标签进行光电转 换,所述第一光数据包为要采用电包交换的待交换数据包,所述光标签携带 第二光数据包的交换信息,所述第二光数据包为要采用光包交换的待交换数 据包; 所述识别单元 120与所述光电转换单元 110连接,用于识别所述光电转 换单元输出的电信号来自所述光标签还是所述第一光数据包;所述电交换单 元 130与所述识别单元 120连接, 用于对所述识别单元 120输出的来自所述第 一光数据包的电信号进行交换;所述电光转换单元 140与所述电交换单元 130 连接,用于对所述电交换单元输出的电信号进行电光转换;所述光交换控制 单元 150与所述识别单元 120连接, 用于根据所述识别单元 120输出的来自所 述光标签的电信号生成控制信号; 所述光交换单元 160与所述光交换控制单 元 150连接, 用于根据所述控制信号将所述第二光数据包经由光链路输出。
[24] 这样可以充分发挥电包交换技术和光包交换技术的优势, 将待交换数 据包快速交换至目的端口。 另外, 由于完成电包交换需要的光电转换和光包 交换提取数据包交换信息需要的光电转换采用同一个光电转换单元,节约了 光电转换设备。
[25] 在一种可能的实现方式中, 可以根据所述待交换数据包的长度是否超 过预定阈值或者所述待交换数据包的优先级是否超过预定等级来确定所述 待交换数据包的交换方式。 例如, 令长度大于预定阈值的待交换数据包进行 光包交换, 令长度小于预定阈值的待交换数据包进行电包交换, 令优先级大 于预定等级的数据包进行光包交换,令优先级小于预定等级的数据包进行电 包交换, 这样能够保证待交换数据包高效、 快速地交换至目的端口。
[26] 图 2给出了光标签的一种可能的格式及内容, 如图 2所示, 光标签可以 包括光标签定界符和第二光数据包交换信息两部分, 其中, 光标签定界符用 于标识光标签的开始,第二光数据包交换信息可以包括所述光标签对应的第 二光数据包的目的端口、 长度以及优先级等信息, 用于产生建立光交换单元 160中光开关路径的控制信号。
[27] 第一光数据包和光标签采用同一光电转换单元 110进行光电转换, 因此 需要识别单元 120将光电转换单元 110输出的电信号分离, 将光电转换为电信 号的第一光数据包输出至电交换单元 130, 将光电转换为电信号的光标签输 出至光交换控制单元 150。
[28] 在一种可能的实现方式中, 识别单元 120的处理流程图如图 3所示, 具 体可以包括:
[29] 步骤 S310、 在识别单元 120中预设关键字序列及光标签的长度, 其中, 关键字序列与光标签定界符相同;
[30] 步骤 S320、 判断当前输入的序列与预设的关键字序列是否匹配;
[31] 步骤 S330、 若当前输入的序列与预设的关键字序列不匹配, 则认为当 前输入的序列是第一光数据包的部分, 将其发送至电交换单元 130;
[32] 步骤 S340、 若当前输入的序列与预设的关键字序列匹配, 则认为当前 输入的序列是光标签定界符, 将光标签定界符与之后预定长度的序列、 即光 标签发送至光交换控制单元 150,所述预定长度为在识别单元 120中预设的光 标签的长度。
[33] 在一种可能的实现方式中, 电交换单元 130可以是标准的以太网交换芯 片, 电交换单元 130将识别单元 120输出的来自第一光数据包的电信号进行解 析,并根据其携带的目的地址比如目的 MAC地址或者目的 IP地址将其输出至 第一光数据包的目的端口 Dl。
[34] 光交换控制单元 150根据接收到的来自光标签的电信号, 提取所述光标 签对应的第二光数据包的交换信息, 生成相应的控制信号并输出至光交换单 元 160, 所述控制信号可以控制光交换单元 160实现对第二光数据包的交换。 具体地, 光交换单元 160根据所述控制信号调整每个开关单元的状态, 从而 可以按照第二光数据包的目的端口建立相应的光链路, 从而可以使得所述第 二光数据包输出至其目的端口 D2。
[35] 本实施例中, 如果所述第一光数据包的目的端口 D1与所述第二光数据 包的目的端口 D2相同, 则将二者在不同的光纤中传输, 相应地, 需要在后续 处理装置中设置不同的物理端口。
实施例 2
[36] 本实施例的数据交换装置与实施例 1不同的是, 如图 4所示, 在一种可 能的实现方式中, 该数据交换装置还可以包括复用单元 410。 其中复用单元 410与电光转换单元 140以及光交换单元 160连接,用于将电光转换单元 140与 光交换单元 160输出至相同目的端口的数据包复用为一路。
[37] 这样,经过电光转换单元 140与光交换单元 160输出至相同目的端口 D的 数据包经由复用单元 410复用为一路光信号, 然后通过同一根光纤传输并经 过同一个物理端口进入后续处理装置。
[38] 在一种可能的实现方式中, 图 4给出的复用单元 410可以是 3dB耦合器。 图 5给出了经复用单元 410复用后的数据流的示意图,第一光数据包经电光转 换单元 140调制在与第二光数据包所在波长 λ 1不同的波长 λ 2的光上, 由于 二者在不同波长的光上,传输时互不干扰,因此可以在一根光纤中同时传输。
[39] 本实施例的数据交换装置的其他组件与实施例 1描述的一致, 这里不赘 述。 这样, 通过对交换至相同目的端口的数据包采用波分复用的方式, 即将 电光转换单元以及光交换单元输出至相同目的端口的第一光数据包和第二 光数据包调制在不同的波长上, 然后经由同一根光纤传输, 并经后续处理装 置的同一个物理端口接收, 能够节约后续处理装置的端口数目。
实施例 3
[40] 本实施例的数据交换装置与实施例 1不同的是, 如图 6所示, 在一种可 能的实现方式中, 该数据交换装置还可以包括缓存单元 610以及发送控制单 元 620。 其中缓存单元 610与电交换单元 130以及电光转换单元 140连接, 用于 存储电交换单元 130输出的电信号; 发送控制单元 620, 与缓存单元 610以及 光交换控制单元 150连接, 用于根据所述第一光数据包的交换信息以及所述 第二光数据包的交换信息生成发送控制信号, 并根据所述发送控制信号控制 所述缓存单元 610以及所述光交换控制单元 150。
[41] 发送控制单元 620根据光交换控制单元 150输出的第二光数据包的交换 信息以及缓存单元 810输出的第一光数据包的交换信息生成发送控制信号, 并根据所述发送控制信号控制缓存单元 610向电光转换单元 140的输出以及 光交换控制单元 150对光交换单元 160的控制, 从而使得电光转换单元 140与 光交换单元 160在不同的时间向目的端口 D进行输出。其中,所述交换信息包 括待交换数据包的目的端口、 长度以及优先级等信息。
[42] 具体地, 识别单元 120将转换为电信号的第一光数据包输出至电交换单 元 130, 电交换单元 130将所述第一光数据包输出至与其目的端口相连的发送 端口之后, 并不将所述第一光数据包输出至电光转换单元 140进行电光转换, 而是将所述第一光数据包输出至与电光转换单元 140相连的缓存单元 610中。 缓存单元 610中存储的数据包对应的目的端口相同, 由发送控制单元 620控制 所述数据包的发送时刻。
[43] 光交换控制单元 150—方面根据接收到的光标签携带的交换信息, 发出 控制信号, 控制光交换单元 160建立链路, 来实现与光标签对应的第二光数 据包在光交换单元 160中的交换。另一方面通过整合光交换单元 160中各链路 的光标签信息, 掌握光交换单元 160中各链路的状态, 并将所述光标签对应 的第二光数据包的交换信息输出至发送控制单元 620。
[44] 图 7给出了光交换控制单元 150通过光标签掌握光交换单元 160中各链 路状态的原理示意图, 如图 7所示, 虚线框代表输出至光交换单元 160的第二 光数据包, 实线框代表与所述第二光数据包对应的光标签, 第二光数据包与 光标签上的数字代表目的端口号。根据光标签到达的时刻以及携带的第二光 数据包的交换信息, 光交换控制单元 150可以掌握光交换单元 160的输出端口 也就是数据包的目的端口被占用情况, 例如, 图 7中竖直方向的虚线代表该 数据包占用 3号目的端口结束的时刻, 也就是说在该时刻 3号目的端口空闲。 [45] 发送控制单元 620与光交换控制单元 150的互相协商过程为可以包括如 下两个方面:
[46] 第一方面, 发送控制单元 620与光交换控制单元 150互相协商, 从而确 定缓存单元 610中存储的第一光数据包发送至光电转换单元 140的时刻。光交 换控制单元 150将所述光交换单元 160中待交换数据包的交换信息,发送至发 送控制单元 620, 从而使得发送控制单元 620能够在目的端口 D空闲的时刻, 向缓存单元 610发出发送控制信号, 令缓存单元 610中对应目的端口 D的电信 号输出至光电转换单元 140, 同时缓存单元 610将其中的第一光数据包的交换 信息发送至发送控制单元 620,从而使得发送控制单元 620能够确定所述目的 端口空闲的时刻。
[47] 第二方面, 发送控制单元 620与光交换控制单元 150协商, 通过控制光 交换状态实现第一光数据包与第二光数据包的复用无冲突。 如果目的端口 D 被缓存单元 610输出的第一光数据包占用, 且光交换单元 160中有第二光数据 包请求输出至目的端口 D时, 光交换控制单元 150可以控制光交换单元 160将 所述第二光数据包先输出至当前某一空闲端口,经过光纤延迟线或电缓存的 延迟后,发送控制单元 620在目的端口 D空闲时发出发送控制信号,使得光交 换控制单元 150控制光交换单元 160将所述第二光数据包输出至目的端 QD。
[48] 图 8示出了输出至同一目的端口 D的第一光数据包与第二光数据包分时 复用前后数据流情况, 可以看出, 通过缓存单元、 发送控制单元以及光交换 控制单元之间的互相协商, 能够使得输出的第一光数据包无冲突的插于相同 目的端口的第二光数据包之间。
[49] 本实施例的数据交换装置的其他组件与实施例 1描述的一致, 这里不赘 述。 本发明实施例的数据交换装置中, 通过将输出至相同目的端口的第一光 数据包与第二光数据包分时复用, 能够使得所述第一光数据包与第二光数据 包无冲突地共同占用相同的链路。从而可以使得交换后的数据包能够在同一 根光纤中传输, 并经由同一个物理端口进入后续处理装置, 节约了物理端口 数量。
实施例 4
[50]本实施例的数据交换装置与上述实施例不同的是, 如图 9所示, 在一种 可能的实现方式中, 该数据处理装置还包括解复用单元 910。 其中, 解复用 单元 910与光电转换单元 110以及光交换单元 160连接, 用于从所接收到的光 信号中分离出第一波长的光和第二波长的光, 并将所述第一波长的光输出至 所述光电转换单元 110, 将所述第二波长的光输出至所述光交换单元 160, 其 中, 所述第一光数据包和所述光标签被调制在所述第一波长的光上, 所述第 二光数据包被调制在所述第二波长的光上。
[51] 具体地, 所述第一光数据包和所述光标签被调制在波长为 λ 2的光上, 所述第二光数据包被调制在波长为 λ 1的光上。 调制在不同波长上的光信号 互不干扰, 因此可以在一根光纤中同时传输, 并在进行光交换和光电转换前 被解复用单元 910分离。
[52] 在一种可能的实现方式中, 解复用单元 910可以为滤波器。 经过解复用 单元 910解复用之后的光被分为两路, 波长为 λ ΐ的光、 即第二光数据包进入 光交换单元 160进行光交换; 只有波长为 λ 2的光、 即第一光数据包、 光标签 进入光电转换单元 110进行光电转换, 能够避免不必要的光电转换。
[53] 需要说明的是, 尽管以上述实施例作为示例介绍了数据交换装置如上, 但本领域技术人员能够理解, 本发明应不限于此。 事实上, 用户完全可根据 个人喜好和 /或实际应用场景灵活设定解复用单元、复用单元、 以及缓存单元 和发送控制单元的组合。
[54] 例如, 在一种可能的实现方式中, 本发明实施例的数据交换装置还可 以包括复用单元, 其中, 本实施例的复用单元可以与实施例 2所述的复用单 元 410的结构、 功能相同, 并且能够实现相同的有益效果。 [55] 再例如, 在一种可能的实现方式中, 本发明实施例的数据交换装置还 可以包括缓存单元和发送控制单元, 其中, 本实施例的缓存单元和发送控制 单元可以与实施例 3所述的缓存单元 610和发送控制单元 620的结构、 功能相 同, 并且能够实现相同的有益效果。
实施例 5
[56] 图 10示出根据本发明一实施例的数据转换系统的结构框图, 如图 10所 示, 该数据交换系统主要包括: 第一处理装置 1010以及实施例 1至实施例 3所 描述的数据交换装置 1020。 其中, 第一处理装置 1010用于按照预定规则确定 待交换数据包的交换方式为电包交换还是光包交换, 并针对第二光数据包生 成光标签, 其中所述第二光数据包为被确定为采用光包交换的待交换数据 包; 数据交换装置 1020与所述第一处理装置 1010连接, 用于对从所述第一处 理装置 1010接收到的第一光数据包进行电包交换, 以及对从所述第一处理装 置 1010接收到的第二光数据包进行光包交换, 其中所述第一光数据包为被确 定为采用电包交换的待交换数据包。
[57] 在一种可能的实现方式中, 所述预定规则可以为所述待交换数据包的 长度是否超过预定阈值、 所述待交换数据包的优先级是否超过预定等级。 也 就是说, 可以根据所述待交换数据包的长度信息, 令长度大于预定阈值的数 据包进行光包交换, 令长度小于预定阈值的数据包进行电包交换; 也可以根 据所述待交换数据包的优先级,令优先级大于预定等级的数据包进行光包交 换, 令优先级小于预定等级的数据包进行电包交换。
[58] 根据本发明实施例的数据交换系统可以充分发挥电包交换技术和光包 交换技术的优势, 从而能够将数据包快速交换至目的端口。
[59] 在一种可能的实现方式中, 所述第一处理装置 1010还被配置为, 将所 述光标签和所述第一光数据包调制在第一波长的光上,将所述第二光数据包 调制在第二波长的光上; 所述数据交换装置 1020采用实施例 4所描述的数据 交换装置, 即在实施例 1至实施例 3的结构的基础上包括解复用单元。
[60] 具体地, 如图 11所示, 所述第一光数据包和所述光标签被第一处理装 置 1010调制在波长为 λ 2的光上,所述第二光数据包被调制在波长为 λ 1的光 上。调制在不同波长上的光信号互不干扰,因此可以在一根光纤中同时传输, 并在进行光交换和光电转换前被解复用单元分离。
[61] 在一种可能的实现方式中, 所述第一处理装置 1010还被配置为, 将所 述第二光数据包协议转换为特定的帧格式, 以使得所述第二光数据包能够被 所述数据交换装置的光交换单元交换。
[62] 在一种可能的实现方式中, 该数据交换系统还包括第二处理装置 1030, 与所述数据交换装置 1020连接,用于将所述电光转换单元与所述光交换单元 输出的数据包协议转换为特定的帧格式, 以使得所述数据包能够被网络设备 识别。
[63]在一种可能的实现方式中,第二处理装置 1030的结构框图可以如图 12所 示, 经过复用单元输出的数据包经过滤波器 1210后, 将不同波长的光信号分 开, 分别输出至光电转换单元 1221和光电转换单元 1222, 将光信号转换成电 信号后分别输出至数据处理单元 1231和数据处理单元 1232,数据处理单元将 所述电信号恢复为以太网协议的数据包, 经过 MUX (multiplexer, 多路复用 器) 复用器汇聚后, 输出至网络设备中。
[64] 需要说明的是, 在数据交换装置采用实施例 1所述的装置时, 第二处理 装置 1030可以不包括滤波器 1210, 第二处理装置 1030包括两个物理端口, 输 出至相同目的端口的数据包分别经两个物理端口输出至光电转换单元 1221 以及光电转换单元 1222; 在数据交换装置采用实施例 3所述的装置时, 第二 处理装置 1030可以不包括滤波器 1210,仅包括一对光电转换单元以及数据处 理单元就能够实现将待交换数据包恢复为以太网协议的数据包, 并输出至网 络设备中。在实际应用中,用户完全可根据个人喜好和 /或实际应用场景灵活 选择本实施例 1至 4所述的数据交换装置, 并选择合适的第二处理装置与其相 匹配。
[65] 以上所述, 仅为本发明的具体实施方式, 但本发明的保护范围并不局 限于此, 任何熟悉本技术领域的技术人员在本发明揭露的技术范围内, 可轻 易想到变化或替换, 都应涵盖在本发明的保护范围之内。 因此, 本发明的保 护范围应以所述权利要求的保护范围为准。

Claims

权 利 要 求 书
1、 一种数据交换装置, 其特征在于, 包括:
光电转换单元,用于对第一光数据包和光标签进行光电转换,所述第一 光数据包为要采用电包交换的待交换数据包,所述光标签携带第二光数据包 的交换信息, 所述第二光数据包为要采用光包交换的待交换数据包;
识别单元, 与所述光电转换单元连接,用于识别所述光电转换单元输出 的电信号来自所述光标签还是所述第一光数据包;
电交换单元, 与所述识别单元连接,用于对所述识别单元输出的来自所 述第一光数据包的电信号进行交换;
电光转换单元, 与所述电交换单元连接,用于对所述电交换单元输出的 电信号进行电光转换;
光交换控制单元, 与所述识别单元连接,用于根据所述识别单元输出的 来自所述光标签的电信号生成控制信号;
光交换单元, 与所述光交换控制单元连接,用于根据所述控制信号将所 述第二光数据包经由光链路输出。
2、根据权利要求 1所述的数据交换装置,其特征在于,还包括复用单元, 所述复用单元与所述电光转换单元以及所述光交换单元连接,用于将所述电 光转换单元与所述光交换单元输出至相同目的端口的数据包复用为一路。
3、 根据权利要求 1所述的数据交换装置, 其特征在于, 还包括: 缓存单元, 与所述电交换单元以及所述电光转换单元连接,用于存储所 述电交换单元输出的电信号;
发送控制单元, 与所述缓存单元以及所述光交换控制单元连接,用于根 据所述第一光数据包的交换信息以及所述第二光数据包的交换信息生成发 送控制信号,并根据所述发送控制信号控制所述缓存单元以及所述光交换控 制单元。
4、 根据权利要求 1至 3中任一项所述的数据交换装置, 其特征在于, 还 包括解复用单元,所述解复用单元与所述光电转换单元以及所述光交换单元 连接,用于从所接收到的光信号中分离出第一波长的光和第二波长的光, 并 将所述第一波长的光输出至所述光电转换单元,将所述第二波长的光输出至 所述光交换单元,其中,所述第一光数据包和所述光标签被调制在所述第一 波长的光上, 所述第二光数据包被调制在所述第二波长的光上。
5、 一种数据交换系统, 其特征在于, 包括:
第一处理装置,用于按照预定规则确定待交换数据包的交换方式为电包 交换还是光包交换, 并针对第二光数据包生成光标签, 其中所述第二光数据 包为被确定为采用光包交换的待交换数据包;
根据权利要求 1至 3中任一项所述的数据交换装置,其与所述第一处理装 置连接, 用于对从所述第一处理装置接收到的第一光数据包进行电包交换, 以及对从所述第一处理装置接收到的第二光数据包进行光包交换,其中所述 第一光数据包为被确定为采用电包交换的待交换数据包。
6、 根据权利要求 5所述的数据交换系统, 其特征在于,
所述第一处理装置还被配置为,将所述光标签和所述第一光数据包调制 在第一波长的光上, 将所述第二光数据包调制在第二波长的光上;
所述数据交换装置还包括解复用单元,所述解复用单元与所述光电转换 单元以及所述光交换单元连接,用于从所接收到的光信号中分离出所述第一 波长的光和所述第二波长的光,并将所述第一波长的光输出至所述光电转换 单元, 将所述第二波长的光输出至所述光交换单元。
7、 根据权利要求 5或 6所述的数据交换系统, 其特征在于, 所述第一处 理装置还被配置为,将所述第二光数据包协议转换为特定的帧格式, 以使得 所述第二光数据包能够被所述数据交换装置的光交换单元交换。
8、 根据权利要求 7所述的数据交换系统, 其特征在于, 还包括第二处理 装置, 与所述数据交换装置连接,用于将所述电光转换单元与所述光交换单 元输出的数据包协议转换为特定的帧格式,以使得所述数据包能够被网络设 备识别。
9、 根据权利要求 5至 8中任一项所述的数据交换系统, 其特征在于, 所 述预定规则包括:所述待交换数据包的长度是否超过预定阈值、所述待交换 数据包的优先级是否超过预定等级。
PCT/CN2014/071591 2014-01-27 2014-01-27 数据交换装置以及系统 WO2015109606A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
PCT/CN2014/071591 WO2015109606A1 (zh) 2014-01-27 2014-01-27 数据交换装置以及系统
CN201480058453.8A CN105765927B (zh) 2014-01-27 2014-01-27 数据交换装置以及系统
US15/220,152 US9806909B2 (en) 2014-01-27 2016-07-26 Data switching apparatus and system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2014/071591 WO2015109606A1 (zh) 2014-01-27 2014-01-27 数据交换装置以及系统

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US15/220,152 Continuation US9806909B2 (en) 2014-01-27 2016-07-26 Data switching apparatus and system

Publications (1)

Publication Number Publication Date
WO2015109606A1 true WO2015109606A1 (zh) 2015-07-30

Family

ID=53680705

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2014/071591 WO2015109606A1 (zh) 2014-01-27 2014-01-27 数据交换装置以及系统

Country Status (3)

Country Link
US (1) US9806909B2 (zh)
CN (1) CN105765927B (zh)
WO (1) WO2015109606A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10313768B2 (en) 2013-04-03 2019-06-04 Huawei Technologies Co., Ltd. Data scheduling and switching method, apparatus, system
CN112269747A (zh) * 2020-10-19 2021-01-26 天津光电通信技术有限公司 一种时分复用缓存实现时隙数据包重组的方法

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113141549B (zh) * 2021-04-23 2022-02-22 航天新通科技有限公司 一种光电混合共封装交换芯片架构

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1424870A2 (en) * 2002-11-28 2004-06-02 Matsushita Electric Industrial Co., Ltd. Optical switching system
CN1610286A (zh) * 2003-10-23 2005-04-27 英特尔公司 光网络中的控制处理单元的设备结构和操作方法
CN1717113A (zh) * 2004-07-02 2006-01-04 电子科技大学 一种支持光突发/分组交换的光电混合交换结构
CN101370312A (zh) * 2007-08-17 2009-02-18 电子科技大学 一种基于环路的混合交换光网络的构造方法

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19940565C1 (de) * 1999-08-26 2001-02-01 Siemens Ag Verfahren zur Leitweglenkung von Datenpaketen eines optischen Datenpaketstromes
US7457277B1 (en) * 2002-09-20 2008-11-25 Mahi Networks, Inc. System and method for network layer protocol routing in a peer model integrated optical network
CN100391198C (zh) * 2004-12-09 2008-05-28 上海交通大学 千兆光以太标记交换网络打包拆包实现方法
CN1315310C (zh) * 2004-12-09 2007-05-09 上海交通大学 支持阻塞模式和多路复用控制的光标记交换结构
CN104104616B (zh) * 2013-04-03 2019-04-19 华为技术有限公司 数据调度和交换的方法、装置及系统

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1424870A2 (en) * 2002-11-28 2004-06-02 Matsushita Electric Industrial Co., Ltd. Optical switching system
CN1610286A (zh) * 2003-10-23 2005-04-27 英特尔公司 光网络中的控制处理单元的设备结构和操作方法
CN1717113A (zh) * 2004-07-02 2006-01-04 电子科技大学 一种支持光突发/分组交换的光电混合交换结构
CN101370312A (zh) * 2007-08-17 2009-02-18 电子科技大学 一种基于环路的混合交换光网络的构造方法

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10313768B2 (en) 2013-04-03 2019-06-04 Huawei Technologies Co., Ltd. Data scheduling and switching method, apparatus, system
CN112269747A (zh) * 2020-10-19 2021-01-26 天津光电通信技术有限公司 一种时分复用缓存实现时隙数据包重组的方法
CN112269747B (zh) * 2020-10-19 2022-04-15 天津光电通信技术有限公司 一种时分复用缓存实现时隙数据包重组的方法

Also Published As

Publication number Publication date
CN105765927A (zh) 2016-07-13
CN105765927B (zh) 2019-03-08
US20160337147A1 (en) 2016-11-17
US9806909B2 (en) 2017-10-31

Similar Documents

Publication Publication Date Title
TWI455501B (zh) 用以延伸乙太網路被動光學網路(epon)中之媒體存取控制(mac)控制訊息的設備
KR101536141B1 (ko) 이더넷과 can 통신 간의 신호 변환을 제공하는 차량용 장치 및 그 제어방법
JP6192803B2 (ja) データのスケジューリングおよび交換の方法、装置、システム
US7945163B2 (en) Station-side apparatus of wavelength multiplexing PON system, wavelength and network address allotting method and program thereof
US8027586B2 (en) Passive optical network system and optical line terminating apparatus
TW561713B (en) Point-to-multipoint optical access network with distributed central office interface capacity
US9712901B2 (en) Interconnection system, apparatus, and data transmission method
US11368768B2 (en) Optical network system
JP3923477B2 (ja) 電気バッファを利用した大容量光ルータ
US8817799B2 (en) Network processor for supporting residential gateway applications
US20090232133A1 (en) Ethernet access device and method thereof
JP2010028696A (ja) 光アクセスシステム、光通信路切替装置及び光回線装置
JP7167161B2 (ja) 通信ネットワークおよび関連デバイス
WO2015109606A1 (zh) 数据交换装置以及系统
WO2015100838A1 (zh) 一种环形光缓存器及光信号存入和读取方法
WO2015161403A1 (zh) 一种计算机系统互连装置和信号传输方法
WO2020147766A1 (zh) 一种通信方法、装置及系统
CN109274605B (zh) 一种适用于分组交换网络的同步传输方法
US20040037561A1 (en) Transmission of data
JP6461747B2 (ja) 通信方法及び通信システム
JP2002217932A (ja) 光アクセスネットワークシステム
WO2016026103A1 (zh) 数据传输的方法和媒体接入控制器
Gumaste et al. Achieving multi-rate dynamic sub-wavelength service provisioning in strongly connected light-trails (SLiTs)
Li et al. Experimental implementation of edge nodes for an OPS system based on Nios II
JP2016111636A (ja) ネットワークシステム、局側装置、及び、加入者装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14879981

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14879981

Country of ref document: EP

Kind code of ref document: A1