WO2015108103A1 - Metal slab for overpass - Google Patents

Metal slab for overpass Download PDF

Info

Publication number
WO2015108103A1
WO2015108103A1 PCT/JP2015/050933 JP2015050933W WO2015108103A1 WO 2015108103 A1 WO2015108103 A1 WO 2015108103A1 JP 2015050933 W JP2015050933 W JP 2015050933W WO 2015108103 A1 WO2015108103 A1 WO 2015108103A1
Authority
WO
WIPO (PCT)
Prior art keywords
rib
floor slab
plate
deck plate
bolt
Prior art date
Application number
PCT/JP2015/050933
Other languages
French (fr)
Japanese (ja)
Inventor
英一郎 佐伯
Original Assignee
日之出水道機器株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日之出水道機器株式会社 filed Critical 日之出水道機器株式会社
Priority to JP2015557865A priority Critical patent/JP6387020B2/en
Publication of WO2015108103A1 publication Critical patent/WO2015108103A1/en

Links

Images

Classifications

    • EFIXED CONSTRUCTIONS
    • E01CONSTRUCTION OF ROADS, RAILWAYS, OR BRIDGES
    • E01DCONSTRUCTION OF BRIDGES, ELEVATED ROADWAYS OR VIADUCTS; ASSEMBLY OF BRIDGES
    • E01D19/00Structural or constructional details of bridges
    • E01D19/12Grating or flooring for bridges; Fastening railway sleepers or tracks to bridges
    • E01D19/125Grating or flooring for bridges

Definitions

  • the present invention relates to a metal floor slab of a road bridge.
  • a number of road bridges constructed in and after Japan's high-growth period have reached their useful lives, and maintenance costs and workloads have become enormous, and rebuilding work is also increasing.
  • the floor slabs of road bridges are roughly divided into concrete floor slabs, composite floors of steel and concrete, and steel floor slabs.
  • a conventional steel floor slab has a structure in which a reinforcing rib is joined to a long deck plate such as a steel plate by welding, and compared to a concrete floor slab or a synthetic floor slab. It is lightweight.
  • there is no concrete work after erection and the construction period can be shortened.
  • the steel floor plate disclosed in Patent Document 1 includes a long deck plate such as a steel plate directly supporting a load of a vehicle, and a reinforcing rib such as a U-shaped steel provided on the lower surface in the longitudinal direction of the deck plate. It is supported by at least one of the main girder extending in the axial direction (the traveling direction of the vehicle) and the transverse girder extending in the direction orthogonal to the main girder.
  • the reinforcing rib of the steel floor slab disclosed in the above Patent Document 1 is constituted by a longitudinal rib extending in the bridge axial direction, in the conventional steel floor slab, a transverse rib extending in a direction orthogonal to the longitudinal rib additionally
  • the longitudinal ribs are welded to the deck plate, and the transverse ribs to the longitudinal ribs and the main girder by welding.
  • the longitudinal rib extending in the bridge axial direction functions as a main rib to reinforce the deck plate against the load applied to the steel floor plate by the passing of the vehicle
  • the horizontal rib has a function to transmit the load to the main girder
  • the main girder, the longitudinal rib and the transverse rib respectively bear the load applied to the steel floor slab by the weight of the steel floor slab and the passage of the vehicle.
  • the metal floor plate of the road bridge of the present invention is a floor plate supported on the upper surface of the main girder extending in the axial direction of the road bridge, and is provided on the deck plate and the lower surface of the deck plate. And a formed reinforcing rib, wherein the deck plate and the reinforcing rib are integrally formed by casting.
  • the deck plate has legs for transmitting the weight of the floor slab and the vertical load applied to the floor slab to the upper surface of the main girder, and joining means for joining the floor slab to the upper surface of the main girder .
  • the joining means comprises a bolt mounting portion through which a bolt can be inserted from the upper surface of the deck plate, and the bolt mounting portion and the upper surface of the main girder are fastened by a bolt and a nut.
  • the connecting means comprises a bolt mounting portion in which a nut can be inserted from the upper surface of the deck plate and a bolt can be inserted from below, and the bolt mounting portion and the upper surface of the main girder are fastened by the bolt and the nut.
  • the bolt mounting portion is formed in connection with the reinforcing rib.
  • the leg portion has a plurality of notches cut in the vertical direction along the bridge axis direction.
  • the reinforcing rib comprises a main rib extending in a direction orthogonal to the bridge axial direction.
  • the reinforcing rib includes a main rib extending in a direction orthogonal to the bridge axial direction, and a secondary rib connected between the adjacent main ribs and transmitting a load applied to the floor plate to the main rib.
  • the reinforcing rib is a flat rib vertically projecting from the lower surface of the deck plate.
  • the deck plate is formed in a top view trapezoid.
  • the deck plate and the reinforcing rib are integrally formed by casting to form the floor plate, so that the reinforcing rib for the deck plate needed in the conventional steel floor plate is No need for welding. Therefore, there is no joint by welding, and fatigue cracking (fatigue damage) of the welded part does not occur, so that the fatigue performance of the floor slab can be remarkably improved. Moreover, it is possible to freely set dimensions such as the shape, thickness, height, etc.
  • FIG. 7 is a partial cross-sectional view showing another embodiment of joining the metal floor slab of FIG. 6 and a main girder.
  • FIG. 1 is a perspective view showing a part of a road bridge.
  • FIG. 2 is a top view showing a state in which the metal floor slab according to the present embodiment is laid on the main girder and the cross girder of the road bridge.
  • FIG. 3 is a perspective view of the metal floor slab according to the present embodiment as viewed from above.
  • FIG. 4 is a perspective view of the metal floor plate of FIG. 3 as viewed from below.
  • 5 (a) is a side view of the metal floor slab of FIG. 3 as viewed from direction A
  • FIG. 5 (b) is a plan view of a part of the metal floor slab of FIG. (C) is the side view which looked at a part of metal floor slab of FIG. 3 from the B direction.
  • the road bridge 1 of this embodiment includes a main girder 4 extending in the bridge axis direction (vehicle passing direction) X and a transverse girder 6 extending in a direction Y orthogonal to the main girder 4 (see FIG. 2). And a plurality of floor slabs 14 and a road surface 16 constructed by paving such as asphalt on the upper surface of the floor slab 14).
  • the main girder 4 and the cross girder 6 are formed of an H-shaped steel having an upper flange 8, a lower flange 10 and a web 12.
  • FIG. 1 shows a state in which two floor slabs 14 are supported by three main girder 4 as a part of road bridge 1.
  • the floor slab 14 has a size that covers one of the grid divisions divided by the main girder 4 and the cross girder 6, and the plurality of floor slabs 14 are the upper surfaces of the main girder 4. And the upper surfaces of the cross beams 6 are closely spaced with one another.
  • the floor slab 14 includes a deck plate 18 and reinforcing ribs 20.
  • the deck plate 18 is formed in a rectangular plate shape, and the road surface 16 is constructed on the upper surface 18 a side of the deck plate 18 by paving such as asphalt, and the reinforcing rib 20 is formed on the lower surface 18 b of the deck plate 18.
  • the floor slab 14 is formed by integrally casting the deck plate 18 and the reinforcing rib 20 with a spheroidal graphite cast iron (FCD) material, so that the floor slab 14 does not have warpage or internal defects, and a predetermined performance is ensured.
  • FCD spheroidal graphite cast iron
  • the mold shape of the floor slab 14 and the cooling time in the casting process of the floor slab 14 are considered in advance.
  • the floor slab 14 is not limited to the spheroidal graphite cast iron (FCD) material, and may be made of another kind of cast iron, cast steel, or a dissimilar metal such as aluminum alloy.
  • the reinforcing rib 20 includes a main rib 22 extending in a direction Y orthogonal to the bridge axial direction X, and a sub rib 24 extending in the bridge axial direction X.
  • Each of the main rib 22 and the sub rib 24 is a so-called flat rib projecting in a plate shape in the vertical direction Z from the lower surface 18 b of the deck plate 18 and forms a reinforcing rib 20 in a grid shape in plan view as a whole There is.
  • the deck plate 18 is provided with legs 26 and bolt mounting portions (joining means). The legs 26 project from the lower surface 18b of the deck plate 18 in the vertical direction Z at both ends of the deck plate 18 in the direction Y, and the main ribs 22 are connected.
  • the main rib 22 is formed by connecting a bolt mounting portion 28 which is thicker than the thickness t1 of the main rib 22 with a distance D3 in the vicinity of the leg portion 26.
  • the bolt mounting portion 28 has a shape capable of inserting and holding a bolt (joining means) 32 described later from the upper surface 18 a of the deck plate 18.
  • the shape of the head of the bolt 32 used in the present invention is not limited to a polygonal one such as a hexagon, and may be a circular one.
  • the main rib 22 is formed to have a thickness t1 and a height H1 in the vertical direction Z, extends between the opposing legs 26 so as to be connected to each leg 26, and the lower surface of the deck plate 18 A plurality of rib spacings (pitches) P1 are provided in the bridge axis direction X of 18b.
  • the auxiliary rib 24 is formed between the adjacent main ribs 22 so as to be continuous with the main rib 22 and extends over the entire area of the lower surface 18b of the deck plate 18 in the bridge axial direction X.
  • the load generated on the plate 14 is transmitted to the main rib 22.
  • the auxiliary rib 24 is formed of a long rib 24a and a short rib 24b.
  • the long rib 24a is formed to have a thickness t2 and H2 whose height in the vertical direction Z is substantially the same as the main rib 22.
  • the short rib 24b is formed to have a thickness t3 and H3 having a height in the vertical direction Z shorter than that of the long rib 24a, parallel to the long rib 24a, and orthogonal to the bridge axis direction X of the lower surface 18b of the deck plate 18.
  • a plurality of rib spacings P2 are provided in the direction Y to be arranged.
  • Four bolt holes 34 are bored in parallel in the vertical direction Z at both ends of the long rib 24 a in the bridge axis direction X, respectively. Further, two bolt holes 34 are bored in parallel in the vertical direction Z at both ends of the short rib 24 b in the bridge axis direction X, respectively.
  • the specifications of the road bridge 1 and the floor slab 14 are illustrated.
  • the specifications of the road bridge 1 are shown below (see FIG. 2).
  • Road surface width Wr 10 m
  • -Center distance D1 of the main girder 4 2.5 m
  • -Center distance D2 of transverse beam 6 5.0 m
  • the specifications of the floor slab 14 are shown below (see FIG. 4).
  • -Size of deck plate 18 (longitudinal L1 ⁇ width W1): 5.0 m ⁇ 2.5 m, -Thickness t of the deck plate 18: 12 mm, ⁇ H of main rib 22 H 1: 215 mm, ⁇ Thickness t1: 15 mm of main rib 22, -Rib spacing (pitch) P1: 320 mm of the main rib 22, The number of main ribs 22: 16, The height H2 of the long rib 24a (sub rib 24): 215 mm, The number of long ribs 24a: 1, The height H3 of the short rib 24b (sub rib 24): 100 mm, The number of short ribs 24b: 6, ⁇ Thickness t2 of secondary rib 24: 15 mm
  • the thickness, height, rib interval (pitch) of the main rib 22 and the sub rib 24, the thickness of the deck plate 18, etc. are not limited to the above specifications, and may be determined according to the result of the stress analysis simulation in advance. For example, the thickness of a portion of the main rib 22 may be increased or increased, or the thickness of the tip and the root of the main rib 22 may be appropriately optimized so that stress concentration does not occur in the floor plate 14. .
  • FIG. 6 is a partial cross-sectional view showing a portion where a metal floor slab according to a different example 1 of the present invention adjacent in the Y direction abuts on a main girder.
  • FIG. 7: is the side view which showed the site
  • the legs 26 of the deck plates 18 of the floor slabs 14 adjacent in the direction Y orthogonal to the bridge axial direction X abut.
  • the load generated on the floor plate 14 due to the passage of the vehicle is transmitted from the main rib 22 to the leg 26 or from the sub rib 24 to the leg 26 via the main rib 22, and is indicated by an arrow from right above the main girder 4. It is transmitted to the main girder 4 in the vertical direction C shown.
  • the floor plate 14 and the upper flange 8 of the main girder 4 are frictionally joined by the bolt 32 and the nut (joining means) 36 at the bolt mounting portion 28 in which the bolt holes 38 are bored.
  • the bolt holes 38 are composed of an upper hole 38a communicating with each other and a lower hole 38b smaller in diameter than the upper hole 38a.
  • the upper hole 38a has such a depth that the head 32a of the bolt 32 can be sunk from the upper surface 18a of the deck plate 18 when the bolt 32 is inserted from the upper surface 18a of the deck plate 18, and the upper hole 38a and the lower hole 38b The head 32 a is locked by the step and can hold the bolt 32.
  • the length of the bolt 32 can be shortened by making the head portion 32 a of the bolt 32 engagable from the upper surface 18 a of the deck plate 18.
  • the upper hole 38a may be formed into a polygon having the same shape as the head 32a of the bolt 32 and with substantially the same size as the head 32a of the bolt 32. With such a configuration, it is possible to realize the rotation prevention of the bolt 32 when the nut 36 is screwed to the bolt 32.
  • the upper flange 8 of the main girder 4 is also formed with a through hole 40 consistent with the bolt hole 38, and the floor plate 14 and the main girder are engaged by screwing the nut 36 to the bolt 32 projecting downward from the through hole 40. 4 are frictionally joined by the bolt 32 and the nut 36. Further, it is preferable to cover the opening of the upper hole 38a with a cap (not shown) to protect the bolt 32.
  • the floor plate 14 is not joined to the cross beam 6 by the bolt and the nut.
  • the floor slabs 14 adjacent in the bridge axial direction X are connected to each other by a connecting plate 42.
  • Bolt holes 44 are drilled in the connection plate 42 at positions corresponding to the bolt holes 34 drilled in the sub ribs 24 of the adjacent floor slabs 14.
  • Adjacent floor slabs 14 are connected to each other by the connection plate 42 by inserting the bolt 46 into the consistent bolt holes 34 and 44 and fastening them with a nut (not shown).
  • the reinforcing rib 20 can be freely set by casting, and waste materials can be omitted, and weight reduction can be achieved.
  • the R surface can be easily applied to the corners (corners) of the floor slab 14 with a mold, it is easy to equalize stress generated in the floor slab 14, reduce stress concentration, and improve fatigue durability. It can be realized. According to a stress analysis simulation performed on the floor slab 14 using a material having a fatigue limit of 300 MPa, a proof stress of 400 MPa, an allowable stress of 235 MPa (safety factor of 1.7), a Young's modulus of 170 GPa and a Poisson's ratio of 0.28.
  • the longitudinal rib extending in the bridge axial direction X functions as a main rib to reinforce the deck plate against the load generated on the steel floor slab by the passage of the vehicle, and is orthogonal to the bridge axial direction X
  • the transverse rib extending in the direction Y has a function of transmitting the load to the main girder, and the main girder, the longitudinal rib and the transverse rib respectively bear the load generated on the steel floor slab by the passing of the vehicle.
  • the floor slab 14 of the present embodiment can easily realize an optimal shape design according to the generated stress.
  • the main rib 22 having a rib height higher than at least the short rib 24b of the sub rib 24 is extended in the direction Y orthogonal to the main girder 4, and the load generated on the floor slab 14 by the passing of the vehicle is It is transmitted to the main girder 4 from directly above via the leg portion 26 or from the auxiliary rib 24 to the main girder 4 via the main rib 22 and the leg portion 26. Therefore, as compared with the case of the conventional steel floor slab in which the longitudinal rib (main rib) is disposed parallel to the main girder, the load generated on the floor slab 14 by the passage of the vehicle is efficiently dispersed to the main girder 4 And the rigidity of the road bridge 1 can be improved as compared with the prior art.
  • the main rib 22 and the auxiliary rib 24 into flat ribs with a simple shape, a floor that improves the strength, rigidity, and fatigue performance of the floor slab 14 while reducing the stress acting on the floor slab 14
  • the mold of the plate 14 can be manufactured relatively easily.
  • the floor slab 14 has a size that covers one of the grid divisions divided by the main girder 4 and the cross girder 6, and supports the floor slab 14 in contact with the upper flange 8 of the main girder 4 Because it is a "simple beam" support method, one steel floor plate has a size that spans multiple main girders like a conventional steel floor plate, and one steel floor is supported by multiple main girders. Compared with the supporting method by “continuous beam”, a large moment is not generated at the end of the main rib 22, and the joint between the floor plate 14 and the main girder 4 can be made into a simple structure.
  • the leg portion for transmitting the vertical load is disposed by arranging the bolt mounting portion 28 as a separate part from the leg portion 26 and separating the portion for transmitting the vertical load and the horizontal load to the main girder 4.
  • the position 26 can be as close to the web 12 of the main girder 4 as possible, and the eccentric moment generated on the upper flange 8 of the main girder 4 can be reduced.
  • the bolt mounting portion 28 so as to be connected to the main rib 22, even if a moment acts on the bolt mounting portion 28, the strength of the bolt mounting portion 28 can be secured by the rigidity of the main rib 22.
  • the upper flange 8 of the main girder 4 and the adjacent floor slab 14 are friction-joined together by means of the bolts 32 and the nuts 36 to form a composite of the main girder 4 and the floor slab 14
  • the effects can be exhibited, and the rigidity and strength of the road bridge 1 can be improved.
  • construction becomes easy, and construction period shortening and cost reduction can be realized.
  • the reinforcing rib 20 of this embodiment is a flat rib and has a rib shape of an open cross section, the torsional rigidity is small, and even if there is an uneven part on the surface of the upper flange 8 of the existing main girder 4. As it is easy to attach, the floor plate 14 can be easily attached.
  • the present invention is not limited to the form of this embodiment, and various different embodiments are possible.
  • the bolt 32 is inserted from the upper surface 18a of the deck plate 18, but as shown in FIG. It may be. Specifically, the bolt 32 is inserted from below the through hole 40 formed in the upper flange 8 of the main girder 4 into the bolt hole 38 drilled in the bolt mounting portion 28, and the nut 36 is bolted from the upper surface 18 a of the deck plate 18 The floor plate 14 and the main girder 4 are inserted into the upper holes 38a of the bolt holes 38 drilled at 38 and held by the step between the upper holes 38a and the lower holes 38b, and the nut 36 is screwed to the bolt 32. Are frictionally joined by the bolt 32 and the nut 36.
  • the upper hole 38a may be a polygon having the same shape as that of the nut 36 and may have substantially the same size as the nut 36. With such a configuration, it is possible to realize the rotation prevention of the nut 36 at the time of screwing the bolt 32 to the nut 36. In addition, it is preferable to cover the opening of the upper hole 38a with a cap (not shown) to protect the nut 36.
  • the floor slab 14 is supported by being brought into contact with the main girder 4, but the floor slab 14 is made to abut against both the main girder 4 and the transverse girder 6 or the transverse girder 6.
  • the bolt mounting portion 28 may be formed to be connected to the sub rib 24 and the floor plate 14 and the cross beam 6 may be fastened by a bolt and a nut.
  • the bolt mounting portion 28 may be formed in another portion without being connected to the reinforcing rib 20 (the main rib 22 or the sub rib 24).
  • the reinforcing rib 20 is formed of the main rib 22 and the sub rib 24, the sub rib 24 is not essential, and the reinforcing rib 20 may be formed of only the main rib 22. Further, the heights of the main rib 22 and the sub rib 24 may be formed to be the same height.
  • FIG. 8 is a bottom perspective view of a metal floor slab according to another embodiment of the present invention.
  • the floor slabs 14 of the first embodiment are divided into four in the bridge axial direction X so that the floor slabs 14 have the same size.
  • the specifications of the floor slab 48 of a size obtained by dividing the floor slab 14 of Example 1 into four in the bridge axial direction X will be exemplified below. Description of the same configuration as that of the first embodiment will be omitted.
  • -Size of deck plate 18 (longitudinal length L2 ⁇ lateral width W2): 1.25 m ⁇ 2.5 m
  • the number of main ribs 22 4
  • the floor slab 48 having a size obtained by dividing the floor slab 14 of Example 1 into four in the bridge axial direction X is smaller and lighter than the floor slab 14 of Example 1. Therefore, since one floor plate 48 can be transported by a small car and construction with a small crane becomes possible, the workability in construction of the road bridge 1 can be improved and the cost can be reduced. Further, by dividing, even if there is a landless portion on the surface of the upper flange 8 of the main girder 4, the floor plate 48 can be easily attached.
  • Example 1 Form a connected slab version having the same size as the floor slab 14 of
  • FIG. 9 is a bottom perspective view of a metal floor slab according to still another embodiment of the present invention.
  • the floor slabs 48 are extended in the direction Y orthogonal to the bridge axial direction X, and the floor slabs 54 of the expanded size are connected. Description of the same configuration as that of the first embodiment and the second embodiment will be omitted.
  • projection part 56 is illustrated.
  • -Size of the deck plate 18 vertical length L2 ⁇ horizontal width W3: 1.25 m ⁇ 3.5 m
  • the road surface width Wr is increased by 1.0 m than in the case of the first embodiment.
  • the road bridge 1 can be constructed and used for the outside lanes where installation of a column or the like is required.
  • the floor slabs 54 adjacent to each other in the bridge axial direction X are connected by bolting each other via the connection plate 42,
  • FIG. 10 is a side view showing a metal floor slab according to still another embodiment of the present invention installed on a main girder.
  • the leg portion 26 of the floor slab 57 is formed with a notch 26 a cut out in the vertical direction Z.
  • the notches 26a have, for example, a substantially isosceles triangle shape with the upper direction as a vertex, and a plurality of notches 26a are arranged at equal intervals along the bridge axis direction X of the leg 26.
  • Each notch 26a is positioned in the leg 26 substantially in the middle between the positions where the main ribs 22 are connected.
  • the main girder 4 has a bow shape that is slightly convex upward in the bridge axis direction X in consideration of the weight of the floor slab and pavement such as asphalt so as to become horizontal when the road bridge 1 is constructed. Pre-designed, so-called camber processing is applied. Therefore, when the floor plate 57 and the main girder 4 are joined by forming the notches 26 a in the leg portion 26, the floor plate 57 can be easily placed following the main girder 4 of the upwardly convex bow shape. It is possible. Further, since the leg portion 26 and the floor plate 57 are allowed to be deformed, the main girder 4 and the floor plate 57 can be joined in a state of being familiar with each other.
  • FIG. 11 is a top view of a metal floor plate 62 according to still another embodiment of the present invention.
  • FIG. 12 is a view showing an example of the arrangement of the metal floor slab 62 in the bridge axis direction X.
  • FIG. 13 is a view showing another example of the arrangement of the metal floor slab 62 in the bridge axis direction X.
  • the deck plate 18 of the present embodiment is formed in an isosceles trapezoid in top view, extends in the bridge axis direction X, and is a pair of opposite long sides 64a and 64b parallel to each other, and a bridge axis It extends in a direction Y orthogonal to the direction X, and is composed of another pair of opposite sides of equal length legs 66a, 66b.
  • the legs 66a and 66b are inclined at an angle of ⁇ from the direction Y as viewed in FIG. 11 so that the base angles formed with the long bottom 64a and the short bottom 64b are equal.
  • a curve having a radius of curvature R1 based on the inclination angle 2 ⁇ formed in the legs 66a and 66b and the number n of floor slabs 62 can be formed in the bridge axial direction X of the road bridge 1.
  • the floor slabs 62 connected in the bridge axial direction X may be arranged, for example, in a direction opposite to that of FIG. By combining them, it is also possible to form a curve of a radius of curvature R2 which is gentler than in the case of FIG.
  • the road bridge 1 may have not only straight lines but also curves, and it is only necessary to use the floor plate 62 in which the deck plate 18 is formed in a trapezoidal shape in the top view with an angle of ⁇ as in this embodiment.
  • the road bridge 1 having a curve of a desired radius of curvature can be formed by variously changing the arrangement method.
  • FIG. 14 is a top perspective view of a metal floor slab according to still another embodiment of the present invention.
  • a floor slab 60 having a large number of convex portions 58 in which a plurality of convex portions in a plan view hexagonal shape having different sizes overlap each other on the upper surface 18a of the deck plate 18 is formed.
  • the road surface 16 it is possible to improve the bondability of the pavement material such as asphalt to the upper surface 18a of the deck plate 18, which is preferable.
  • the convex part 58 has the slip resistance performance of a vehicle, since it can be used without paving the road bridge 1, the further weight reduction of the road bridge 1 is attained.

Abstract

A slab (14, 48, 54, 57, 60, 62) is supported on the upper surface of a main beam (4) which extends in the bridge-axis direction of an overpass (1), wherein a deck plate (18) and reinforcement ribs (20) formed on the bottom surface (18b) of the deck plate are provided. The deck plate and the reinforcement ribs are integrally formed by casting.

Description

道路橋の金属製床版Road deck metal floor version
 本発明は、道路橋の金属製床版に関する。 The present invention relates to a metal floor slab of a road bridge.
 近年、日本の高度成長期以降に数多く施工された道路橋が耐用年数を迎え、維持管理にかかる費用や作業負荷は膨大となり、架け替え工事も増加している。
 道路橋の床版は、コンクリート系床版、鋼とコンクリートとの合成床版、鋼床版に大別される。従来の鋼床版は、例えば特許文献1に開示されるように、鋼板などの長尺のデッキプレートに補強リブを溶接により接合した構造であり、コンクリート系床版や合成床版に比して軽量である。また、架設後のコンクリート工事がなく、工期を短縮することができるという特徴を有している。
In recent years, a number of road bridges constructed in and after Japan's high-growth period have reached their useful lives, and maintenance costs and workloads have become enormous, and rebuilding work is also increasing.
The floor slabs of road bridges are roughly divided into concrete floor slabs, composite floors of steel and concrete, and steel floor slabs. For example, as disclosed in Patent Document 1, a conventional steel floor slab has a structure in which a reinforcing rib is joined to a long deck plate such as a steel plate by welding, and compared to a concrete floor slab or a synthetic floor slab. It is lightweight. In addition, there is no concrete work after erection, and the construction period can be shortened.
 特許文献1に開示される鋼床版は、車両の荷重を直接支持する鋼板などの長尺のデッキプレートと、デッキプレートの長手方向下面に設けたU形鋼等の補強リブとを備え、橋軸方向(車両の通行方向)に延びる主桁と、主桁と直交する方向に延びる横桁との少なくとも何れか一方に支持される。 The steel floor plate disclosed in Patent Document 1 includes a long deck plate such as a steel plate directly supporting a load of a vehicle, and a reinforcing rib such as a U-shaped steel provided on the lower surface in the longitudinal direction of the deck plate. It is supported by at least one of the main girder extending in the axial direction (the traveling direction of the vehicle) and the transverse girder extending in the direction orthogonal to the main girder.
特開昭63-89705号公報Japanese Patent Application Laid-Open No. 63-89705
 上記特許文献1に開示される鋼床版の補強リブは、橋軸方向に延びる縦リブにより構成されているが、従来の鋼床版においては、加えて縦リブと直交する方向に延びる横リブを有し、縦リブはデッキプレートに、横リブは縦リブおよび主桁に、それぞれ溶接により接合されている。この場合、橋軸方向に延びる縦リブは、車両の通行により鋼床版に加わる荷重に対してデッキプレートを補強する主リブとして機能し、横リブは主桁に荷重を伝達する機能を有し、主桁、縦リブおよび横リブがそれぞれ鋼床版の自重および車両の通行により鋼床版に加わる荷重を負担している。 Although the reinforcing rib of the steel floor slab disclosed in the above Patent Document 1 is constituted by a longitudinal rib extending in the bridge axial direction, in the conventional steel floor slab, a transverse rib extending in a direction orthogonal to the longitudinal rib additionally The longitudinal ribs are welded to the deck plate, and the transverse ribs to the longitudinal ribs and the main girder by welding. In this case, the longitudinal rib extending in the bridge axial direction functions as a main rib to reinforce the deck plate against the load applied to the steel floor plate by the passing of the vehicle, and the horizontal rib has a function to transmit the load to the main girder The main girder, the longitudinal rib and the transverse rib respectively bear the load applied to the steel floor slab by the weight of the steel floor slab and the passage of the vehicle.
 しかしながら、従来の鋼床版は溶接により接合されており、これらの溶接部は活荷重を直接受けることにより、溶接部は疲労性能が劣化しているため疲労損傷が激しく、近年大きな社会問題となっている。
 本発明はこのような課題に鑑みてなされたものであり、その目的とするところは、従来の鋼床版と同等以上の強度、剛性を有し、疲労性能が高い道路橋の金属製床版を提供することにある。併せて、道路橋の施工性を向上させ、工期短縮と軽量化によるコスト低減を図るものである。
However, conventional steel floor slabs are joined by welding, and these welds are subjected to live load directly, and the welds have severe fatigue performance due to deterioration of fatigue performance, which has become a serious social problem in recent years ing.
This invention is made in view of such a subject, and the place made into the purpose is the metal floor plate of the road bridge which has the strength and rigidity equivalent to the conventional steel floor slab or more, and is high in fatigue performance. To provide. At the same time, the construction of the road bridge will be improved, and the cost reduction will be achieved by shortening the construction period and reducing the weight.
 上記目的を達成するため、本発明の道路橋の金属製床版は、道路橋の橋軸方向に延びる主桁の上面に支持される床版であって、デッキプレートと、デッキプレートの下面に形成した補強リブとを備え、デッキプレートおよび補強リブを鋳造により一体成形したことを特徴とする。
 好ましくは、デッキプレートには、床版の自重および床版に加わる鉛直荷重を主桁の上面に伝達する脚部と、床版と主桁の上面とを接合する接合手段とを有している。
In order to achieve the above object, the metal floor plate of the road bridge of the present invention is a floor plate supported on the upper surface of the main girder extending in the axial direction of the road bridge, and is provided on the deck plate and the lower surface of the deck plate. And a formed reinforcing rib, wherein the deck plate and the reinforcing rib are integrally formed by casting.
Preferably, the deck plate has legs for transmitting the weight of the floor slab and the vertical load applied to the floor slab to the upper surface of the main girder, and joining means for joining the floor slab to the upper surface of the main girder .
 好ましくは、接合手段は、ボルトをデッキプレートの上面から挿通可能なボルト装着部を備え、ボルト装着部と主桁の上面とをボルトおよびナットにより締結する。
 好ましくは、接合手段は、ナットをデッキプレートの上面から挿入可能かつボルトを下方から挿通可能なボルト装着部を備え、ボルト装着部と主桁の上面とをボルトおよびナットにより締結する。
 好ましくは、ボルト装着部を補強リブに連接して形成する。
 好ましくは、脚部には、垂直方向に切り欠かれた切欠部を橋軸方向に沿って複数有する。
Preferably, the joining means comprises a bolt mounting portion through which a bolt can be inserted from the upper surface of the deck plate, and the bolt mounting portion and the upper surface of the main girder are fastened by a bolt and a nut.
Preferably, the connecting means comprises a bolt mounting portion in which a nut can be inserted from the upper surface of the deck plate and a bolt can be inserted from below, and the bolt mounting portion and the upper surface of the main girder are fastened by the bolt and the nut.
Preferably, the bolt mounting portion is formed in connection with the reinforcing rib.
Preferably, the leg portion has a plurality of notches cut in the vertical direction along the bridge axis direction.
 好ましくは、補強リブは、橋軸方向と直交する方向に延びる主リブからなる。
 もしくは、補強リブは、橋軸方向と直交する方向に延びる主リブと、隣接する主リブの間に連接されて主リブに床版に加わる荷重を伝達する副リブとからなる。
 好ましくは、補強リブはデッキプレートの下面から垂直に板状に突設された平リブである。
 好ましくは、デッキプレートは、上面視台形に形成する。
Preferably, the reinforcing rib comprises a main rib extending in a direction orthogonal to the bridge axial direction.
Alternatively, the reinforcing rib includes a main rib extending in a direction orthogonal to the bridge axial direction, and a secondary rib connected between the adjacent main ribs and transmitting a load applied to the floor plate to the main rib.
Preferably, the reinforcing rib is a flat rib vertically projecting from the lower surface of the deck plate.
Preferably, the deck plate is formed in a top view trapezoid.
 本発明の道路橋の金属製床版によれば、デッキプレートおよび補強リブを鋳造により一体成形して床版を形成することにより、従来の鋼床版において必要であったデッキプレートに対する補強リブの溶接が不要となる。したがって、溶接による接合部がなくなり、溶接部の疲労亀裂(疲労損傷)が発生しないことから、床版の疲労性能を格段に向上させることができる。しかも、鋳造により補強リブの形状や厚み、高さ等の寸法を自由に設定可能であることおよび補強リブ基端のコーナー部(角部)にR面をなめらかに容易に施すことができることから、床版に発生する応力の均一化および応力集中の緩和が可能となり、疲労耐久性の向上が実現できる。 According to the metal floor plate of the road bridge of the present invention, the deck plate and the reinforcing rib are integrally formed by casting to form the floor plate, so that the reinforcing rib for the deck plate needed in the conventional steel floor plate is No need for welding. Therefore, there is no joint by welding, and fatigue cracking (fatigue damage) of the welded part does not occur, so that the fatigue performance of the floor slab can be remarkably improved. Moreover, it is possible to freely set dimensions such as the shape, thickness, height, etc. of the reinforcing rib by casting, and the R surface can be smoothly applied easily to the corner portion (corner portion) of the proximal end of the reinforcing rib, It becomes possible to equalize the stress generated in the floor slab and reduce the stress concentration, and it is possible to realize improvement in fatigue durability.
本発明の一実施例における道路橋の一部を示した斜視図である。It is a perspective view showing a part of road bridge in one example of the present invention. 道路橋の主桁、および横桁に本発明の実施例1に係る金属製床版を敷き詰めた状態を示す上面図である。It is a top view which shows the state which laid the metal floor slab which concerns on Example 1 of this invention on the main girder of a road bridge, and a cross girder. 本発明の実施例1に係る金属製床版を上面から見た斜視図である。It is the perspective view which looked at the metal floor slab concerning Example 1 of this invention from the upper surface. 図3の金属製床版を下面から見た斜視図である。It is the perspective view which looked at the metal floor slab of FIG. 3 from the lower surface. (a)図3の金属製床版をA方向から見た側面図、(b)図3の金属製床版の一部を下面から見た平面図、(c)図3の金属製床版の一部をB方向から見た側面図である。(A) A side view of the metal floor slab of FIG. 3 as viewed from the direction A, (b) a plan view of a part of the metal floor slab of FIG. 3 as viewed from the bottom, (c) the metal floor slab of FIG. It is the side view which looked at a part of from the B direction. Y方向に隣接する異なる本発明の実施例1に係る金属製床版が主桁に当接する部位を示した部分断面図である。It is the fragmentary sectional view which showed the part which the metal floor slab which concerns on Example 1 of this invention which adjoins the Y direction contact | abuts on the main girder. X方向に隣接する異なる本発明の実施例1に係る金属製床版同士が連結される部位を示した側面図である。It is the side view which showed the site | part to which metal decks which concern on Example 1 of this invention which adjoins the X direction are connected. 本発明の実施例2に係る金属製床版を下面から見た斜視図である。It is the perspective view which looked at the metal floor slab which concerns on Example 2 of this invention from the lower surface. 本発明の実施例3に係る金属製床版を下面から見た斜視図である。It is the perspective view which looked at the metal floor slab which concerns on Example 3 of this invention from the lower surface. 本発明の実施例4に係る金属製床版が主桁に設置されている状態を示した側面図である。It is the side view which showed the state in which the metal floor slab which concerns on Example 4 of this invention is installed in the main girder. 本発明の実施例5に係る金属製床版を上面から見た図である。It is the figure which looked at the metal floor slab concerning Example 5 of this invention from the upper surface. 図11の金属製床版の橋軸方向における配置状態の一例を示した図である。It is the figure which showed an example of the arrangement | positioning state in the bridge shaft direction of the metal floor slab of FIG. 図11の金属製床版の橋軸方向における配置状態の別例を示した図である。It is the figure which showed the other example of the arrangement | positioning state in the bridge shaft direction of the metal floor slab of FIG. デッキプレートの上面に凸部を形成した本発明の実施例6に係る金属製床版を上面から見た斜視図である。It is the perspective view which looked at the metal floor slab which concerns on Example 6 of this invention which formed the convex part in the upper surface of the deck plate from the upper surface. 図6の金属製床版と主桁との接合における別の実施形態を示した部分断面図である。FIG. 7 is a partial cross-sectional view showing another embodiment of joining the metal floor slab of FIG. 6 and a main girder.
 以下、図面に基づき本発明の実施の形態について説明する。
(実施例1)
 図1は、道路橋の一部を示した斜視図である。図2は、道路橋の主桁、および横桁に本実施例に係る金属製床版を敷き詰めた状態を示す上面図である。図3は、本実施例に係る金属製床版を上面から見た斜視図である。図4は、図3の金属製床版を下面から見た斜視図である。図5(a)は、図3の金属製床版をA方向から見た側面図、図5(b)は、図3の金属製床版の一部を下面から見た平面図、図5(c)は、図3の金属製床版の一部をB方向から見た側面図である。
Hereinafter, embodiments of the present invention will be described based on the drawings.
Example 1
FIG. 1 is a perspective view showing a part of a road bridge. FIG. 2 is a top view showing a state in which the metal floor slab according to the present embodiment is laid on the main girder and the cross girder of the road bridge. FIG. 3 is a perspective view of the metal floor slab according to the present embodiment as viewed from above. FIG. 4 is a perspective view of the metal floor plate of FIG. 3 as viewed from below. 5 (a) is a side view of the metal floor slab of FIG. 3 as viewed from direction A, and FIG. 5 (b) is a plan view of a part of the metal floor slab of FIG. (C) is the side view which looked at a part of metal floor slab of FIG. 3 from the B direction.
 本実施例の道路橋1は、図1に示すように、橋軸方向(車両の通行方向)Xに延びる主桁4と、主桁4と直交する方向Yに延びる横桁6(図2参照)と、複数の床版14と、床版14の上面にアスファルト等の舗装により施工された路面16とから構成される。主桁4および横桁6は、上部フランジ8、下部フランジ10、およびウエブ12を有するH形鋼から形成されている。 As shown in FIG. 1, the road bridge 1 of this embodiment includes a main girder 4 extending in the bridge axis direction (vehicle passing direction) X and a transverse girder 6 extending in a direction Y orthogonal to the main girder 4 (see FIG. 2). And a plurality of floor slabs 14 and a road surface 16 constructed by paving such as asphalt on the upper surface of the floor slab 14). The main girder 4 and the cross girder 6 are formed of an H-shaped steel having an upper flange 8, a lower flange 10 and a web 12.
 床版14は、主桁4の上部フランジ8の上面に支持され、床版14の自重および床版14に加わる路面16の自重と車両の通行により発生する荷重とを主桁4に伝達している。なお、図1は道路橋1の一部として3つの主桁4により2つの床版14を支持した状態を示している。
 図2に示すように、床版14は、主桁4および横桁6により格子状に区画されたうちの1つの区画を覆う大きさを有し、複数の床版14が主桁4の上面および横桁6の上面に互いに隙間なく敷き詰められている。
The floor slab 14 is supported on the upper surface of the upper flange 8 of the main girder 4 and transmits to the main girder 4 the weight of the floor slab 14 and the weight of the road surface 16 applied to the floor slab 14 and the load generated by the passing of vehicles. There is. FIG. 1 shows a state in which two floor slabs 14 are supported by three main girder 4 as a part of road bridge 1.
As shown in FIG. 2, the floor slab 14 has a size that covers one of the grid divisions divided by the main girder 4 and the cross girder 6, and the plurality of floor slabs 14 are the upper surfaces of the main girder 4. And the upper surfaces of the cross beams 6 are closely spaced with one another.
 図3および図4に示すように、床版14はデッキプレート18と補強リブ20とを備えている。デッキプレート18は、長方形の板状に形成され、デッキプレート18の上面18a側にアスファルト等の舗装により路面16が施工され、デッキプレート18の下面18bに補強リブ20を形成している。 As shown in FIGS. 3 and 4, the floor slab 14 includes a deck plate 18 and reinforcing ribs 20. The deck plate 18 is formed in a rectangular plate shape, and the road surface 16 is constructed on the upper surface 18 a side of the deck plate 18 by paving such as asphalt, and the reinforcing rib 20 is formed on the lower surface 18 b of the deck plate 18.
 床版14はデッキプレート18および補強リブ20を球状黒鉛鋳鉄(FCD)材で一体に鋳造して成形され、床版14に反りや内部欠陥が発生せず所定の性能が確保されるように、床版14の鋳型形状や床版14の鋳造工程における冷却時間などが予め検討される。なお、床版14は球状黒鉛鋳鉄(FCD)材に限らず他種の鋳鉄や鋳鋼、アルミニウム合金等の異種金属にて製造しても良い。 The floor slab 14 is formed by integrally casting the deck plate 18 and the reinforcing rib 20 with a spheroidal graphite cast iron (FCD) material, so that the floor slab 14 does not have warpage or internal defects, and a predetermined performance is ensured. The mold shape of the floor slab 14 and the cooling time in the casting process of the floor slab 14 are considered in advance. The floor slab 14 is not limited to the spheroidal graphite cast iron (FCD) material, and may be made of another kind of cast iron, cast steel, or a dissimilar metal such as aluminum alloy.
 補強リブ20は、橋軸方向Xと直交する方向Yに延びる主リブ22と、橋軸方向Xに延びる副リブ24とから構成される。主リブ22および副リブ24は、何れもデッキプレート18の下面18bから垂直方向Zに板状に突設された、いわゆる平リブであり、全体として平面視格子状の補強リブ20を形成している。
 図5(a)~(c)に示すように、デッキプレート18は脚部26とボルト装着部(接合手段)28とを備えている。脚部26は、方向Yにおけるデッキプレート18の両端において、デッキプレート18の下面18bから垂直方向Zに板状に突設しており、主リブ22が連接される。
The reinforcing rib 20 includes a main rib 22 extending in a direction Y orthogonal to the bridge axial direction X, and a sub rib 24 extending in the bridge axial direction X. Each of the main rib 22 and the sub rib 24 is a so-called flat rib projecting in a plate shape in the vertical direction Z from the lower surface 18 b of the deck plate 18 and forms a reinforcing rib 20 in a grid shape in plan view as a whole There is.
As shown in FIGS. 5 (a) to 5 (c), the deck plate 18 is provided with legs 26 and bolt mounting portions (joining means). The legs 26 project from the lower surface 18b of the deck plate 18 in the vertical direction Z at both ends of the deck plate 18 in the direction Y, and the main ribs 22 are connected.
 主リブ22には、脚部26近傍に距離D3を存して主リブ22の厚みt1よりも厚肉にしたボルト装着部28を連接して形成している。ボルト装着部28は後述するボルト(接合手段)32をデッキプレート18の上面18aから挿通して保持可能な形状を有している。なお、本発明において使用するボルト32の頭部の形状は、六角形等の多角形のものに限らず、円形のものであっても良い。
 主リブ22は、厚みt1、垂直方向Zの高さH1を有して形成され、対向する脚部26間に亘って各脚部26に連接して延設されており、デッキプレート18の下面18bの橋軸方向Xにリブ間隔(ピッチ)P1を存して複数配置されている。
The main rib 22 is formed by connecting a bolt mounting portion 28 which is thicker than the thickness t1 of the main rib 22 with a distance D3 in the vicinity of the leg portion 26. The bolt mounting portion 28 has a shape capable of inserting and holding a bolt (joining means) 32 described later from the upper surface 18 a of the deck plate 18. The shape of the head of the bolt 32 used in the present invention is not limited to a polygonal one such as a hexagon, and may be a circular one.
The main rib 22 is formed to have a thickness t1 and a height H1 in the vertical direction Z, extends between the opposing legs 26 so as to be connected to each leg 26, and the lower surface of the deck plate 18 A plurality of rib spacings (pitches) P1 are provided in the bridge axis direction X of 18b.
 副リブ24は、隣接する主リブ22の間に主リブ22と連接して形成され、デッキプレート18の下面18bの橋軸方向Xにおける全域に亘って延設されており、車両の通行により床版14に発生する荷重を主リブ22に伝達する。副リブ24は、長リブ24aと短リブ24bとから形成されている。長リブ24aは、厚みt2、垂直方向Zの高さが主リブ22とほぼ同じH2を有して形成され、本実施例では、デッキプレート18の下面18bの橋軸方向Xと直交する方向Yにおける中央に1つだけ配置されている。 The auxiliary rib 24 is formed between the adjacent main ribs 22 so as to be continuous with the main rib 22 and extends over the entire area of the lower surface 18b of the deck plate 18 in the bridge axial direction X. The load generated on the plate 14 is transmitted to the main rib 22. The auxiliary rib 24 is formed of a long rib 24a and a short rib 24b. The long rib 24a is formed to have a thickness t2 and H2 whose height in the vertical direction Z is substantially the same as the main rib 22. In this embodiment, the direction Y orthogonal to the bridge axis direction X of the lower surface 18b of the deck plate 18 Only one is placed at the center of the.
 短リブ24bは、厚みt3、垂直方向Zの高さが長リブ24aよりも短いH3を有して形成され、長リブ24aに平行して、デッキプレート18の下面18bの橋軸方向Xと直交する方向Yにリブ間隔P2を存して複数配置されている。
 長リブ24aの橋軸方向Xにおける両端部にはそれぞれ、垂直方向Zに4つのボルト孔34が並んで穿孔されている。また、短リブ24bの橋軸方向Xにおける両端部にはそれぞれ、垂直方向Zに2つのボルト孔34が並んで穿孔されている。
The short rib 24b is formed to have a thickness t3 and H3 having a height in the vertical direction Z shorter than that of the long rib 24a, parallel to the long rib 24a, and orthogonal to the bridge axis direction X of the lower surface 18b of the deck plate 18. A plurality of rib spacings P2 are provided in the direction Y to be arranged.
Four bolt holes 34 are bored in parallel in the vertical direction Z at both ends of the long rib 24 a in the bridge axis direction X, respectively. Further, two bolt holes 34 are bored in parallel in the vertical direction Z at both ends of the short rib 24 b in the bridge axis direction X, respectively.
 以下に、道路橋1および床版14の仕様を例示する。
 道路橋1の仕様を以下に示す(図2参照)。
・路面幅Wr:10m、
・主桁4の中心間隔D1:2.5m、
・横桁6の中心間隔D2:5.0m
Below, the specifications of the road bridge 1 and the floor slab 14 are illustrated.
The specifications of the road bridge 1 are shown below (see FIG. 2).
Road surface width Wr: 10 m,
-Center distance D1 of the main girder 4: 2.5 m,
-Center distance D2 of transverse beam 6: 5.0 m
 床版14の仕様を以下に示す(図4参照)。
・デッキプレート18の大きさ(縦長L1×横幅W1):5.0m×2.5m、
・デッキプレート18の厚みt:12mm、
・主リブ22の高さH1:215mm、
・主リブ22の厚みt1:15mm、
・主リブ22のリブ間隔(ピッチ)P1:320mm、
・主リブ22の数:16、
・長リブ24a(副リブ24)の高さH2:215mm、
・長リブ24aの数:1、
・短リブ24b(副リブ24)の高さH3:100mm、
・短リブ24bの数:6、
・副リブ24の厚みt2:15mm
The specifications of the floor slab 14 are shown below (see FIG. 4).
-Size of deck plate 18 (longitudinal L1 × width W1): 5.0 m × 2.5 m,
-Thickness t of the deck plate 18: 12 mm,
・ H of main rib 22 H 1: 215 mm,
・ Thickness t1: 15 mm of main rib 22,
-Rib spacing (pitch) P1: 320 mm of the main rib 22,
The number of main ribs 22: 16,
The height H2 of the long rib 24a (sub rib 24): 215 mm,
The number of long ribs 24a: 1,
The height H3 of the short rib 24b (sub rib 24): 100 mm,
The number of short ribs 24b: 6,
・ Thickness t2 of secondary rib 24: 15 mm
 なお、主リブ22および副リブ24の厚み、高さ、リブ間隔(ピッチ)や、デッキプレート18の厚み等は、上記の仕様に限定されるものではなく、事前の応力解析シミュレーションの結果に応じて床版14に応力集中が発生しないよう、例えば、一部の主リブ22の厚みを大きくしたり、高くしたり、主リブ22の先端と付け根の厚みを変えるなど、適宜最適に設定される。 The thickness, height, rib interval (pitch) of the main rib 22 and the sub rib 24, the thickness of the deck plate 18, etc. are not limited to the above specifications, and may be determined according to the result of the stress analysis simulation in advance. For example, the thickness of a portion of the main rib 22 may be increased or increased, or the thickness of the tip and the root of the main rib 22 may be appropriately optimized so that stress concentration does not occur in the floor plate 14. .
 図6は、Y方向に隣接する異なる本発明の実施例1に係る金属製床版が主桁に当接する部位を示した部分断面図である。図7は、X方向に隣接する異なる本発明の実施例1に係る金属製床版同士が連結される部位を示した側面図である。
 図6に示すように、主桁4の上部フランジ8の上面には、橋軸方向Xと直交する方向Yに隣接する床版14のそれぞれのデッキプレート18の脚部26が当接されている。車両の通行により床版14に発生する荷重は、主リブ22から脚部26に伝達され、あるいは副リブ24から主リブ22を介して脚部26に伝達され、主桁4の直上から矢印で示す鉛直方向Cに主桁4へ伝達される。
FIG. 6 is a partial cross-sectional view showing a portion where a metal floor slab according to a different example 1 of the present invention adjacent in the Y direction abuts on a main girder. FIG. 7: is the side view which showed the site | part with which metal floor slabs which concern on Example 1 of this invention which mutually adjoins in the X direction are connected.
As shown in FIG. 6, on the upper surface of the upper flange 8 of the main girder 4, the legs 26 of the deck plates 18 of the floor slabs 14 adjacent in the direction Y orthogonal to the bridge axial direction X abut. . The load generated on the floor plate 14 due to the passage of the vehicle is transmitted from the main rib 22 to the leg 26 or from the sub rib 24 to the leg 26 via the main rib 22, and is indicated by an arrow from right above the main girder 4. It is transmitted to the main girder 4 in the vertical direction C shown.
 また、床版14と主桁4の上部フランジ8とは、ボルト孔38が穿孔されたボルト装着部28においてボルト32およびナット(接合手段)36により摩擦接合される。詳しくは、ボルト孔38は、互いに連通する上孔38aと、上孔38aよりも小径の下孔38bとから構成されている。上孔38aは、ボルト32をデッキプレート18の上面18aから挿通したときボルト32の頭部32aがデッキプレート18の上面18aから埋没可能な深さを有し、上孔38aと下孔38bとの段差により頭部32aが係止され、ボルト32を保持可能である。 Further, the floor plate 14 and the upper flange 8 of the main girder 4 are frictionally joined by the bolt 32 and the nut (joining means) 36 at the bolt mounting portion 28 in which the bolt holes 38 are bored. Specifically, the bolt holes 38 are composed of an upper hole 38a communicating with each other and a lower hole 38b smaller in diameter than the upper hole 38a. The upper hole 38a has such a depth that the head 32a of the bolt 32 can be sunk from the upper surface 18a of the deck plate 18 when the bolt 32 is inserted from the upper surface 18a of the deck plate 18, and the upper hole 38a and the lower hole 38b The head 32 a is locked by the step and can hold the bolt 32.
 このように、ボルト32の頭部32aをデッキプレート18の上面18aから埋没可能とすることにより、ボルト32の長さを短くすることができる。なお、上孔38aを、ボルト32の頭部32aと同形の多角形とするとともにボルト32の頭部32aと略同一の寸法で形成しても良い。このような構成とすることにより、ボルト32にナット36を螺合する際のボルト32の回り止めを併せて実現することが可能となる。 Thus, the length of the bolt 32 can be shortened by making the head portion 32 a of the bolt 32 engagable from the upper surface 18 a of the deck plate 18. The upper hole 38a may be formed into a polygon having the same shape as the head 32a of the bolt 32 and with substantially the same size as the head 32a of the bolt 32. With such a configuration, it is possible to realize the rotation prevention of the bolt 32 when the nut 36 is screwed to the bolt 32.
 主桁4の上部フランジ8にもボルト孔38と一貫となる貫通孔40が形成され、貫通孔40から下方に突出されたボルト32にナット36を螺合することにより、床版14と主桁4とがボルト32およびナット36により摩擦接合される。また、上孔38aの開口に図示しないキャップを被せ、ボルト32を保護するのが好ましい。なお、本実施例においては、床版14は横桁6とボルトおよびナットにより接合されない。 The upper flange 8 of the main girder 4 is also formed with a through hole 40 consistent with the bolt hole 38, and the floor plate 14 and the main girder are engaged by screwing the nut 36 to the bolt 32 projecting downward from the through hole 40. 4 are frictionally joined by the bolt 32 and the nut 36. Further, it is preferable to cover the opening of the upper hole 38a with a cap (not shown) to protect the bolt 32. In the present embodiment, the floor plate 14 is not joined to the cross beam 6 by the bolt and the nut.
 図7に示すように、橋軸方向Xに隣接する床版14は、連結プレート42により互いに連結されている。
 連結プレート42には、隣接する床版14の副リブ24同士に穿孔された各ボルト孔34に対応する位置にボルト孔44が穿孔されている。一貫するボルト孔34、44に、ボルト46を挿通して図示しないナットで締結することにより隣接する床版14同士が連結プレート42により互いに連結される。なお、図7では短リブ24bにおける連結のみを示したが、長リブ24aにおいても同様の連結プレート42を用いたボルト46による連結が行われる。
As shown in FIG. 7, the floor slabs 14 adjacent in the bridge axial direction X are connected to each other by a connecting plate 42.
Bolt holes 44 are drilled in the connection plate 42 at positions corresponding to the bolt holes 34 drilled in the sub ribs 24 of the adjacent floor slabs 14. Adjacent floor slabs 14 are connected to each other by the connection plate 42 by inserting the bolt 46 into the consistent bolt holes 34 and 44 and fastening them with a nut (not shown). Although only the connection in the short rib 24b is shown in FIG. 7, the connection by the bolt 46 using the same connection plate 42 is performed also in the long rib 24a.
 本実施例では、デッキプレート18および補強リブ20を鋳造により一体成形して床版14を形成することにより、従来の鋼床版において必要であったデッキプレートに対する補強リブの溶接が不要となる。したがって、溶接による接合部がなくなり、溶接部の疲労亀裂(疲労損傷)が発生しないことから、床版14の疲労性能を格段に向上させることができる。また、現場での溶接作業を行わないで済むため、道路橋1の施工の大幅な効率化を図ることができる。 In this embodiment, by integrally forming the deck plate 18 and the reinforcing rib 20 by casting to form the floor plate 14, welding of the reinforcing rib to the deck plate, which is required in the conventional steel floor plate, becomes unnecessary. Therefore, there is no joint by welding, and fatigue crack (fatigue damage) of the weld does not occur, so that the fatigue performance of the floor slab 14 can be significantly improved. Moreover, since it is not necessary to perform welding work on the site, significant efficiency improvement of construction of the road bridge 1 can be achieved.
 さらに、鋳造により補強リブ20の形状や厚み、高さ等の寸法を自由に設定可能であり、無駄な材料を省略でき軽量化を図ることができる。また、鋳型により床版14のコーナー(角部)等にR面を容易に施すことができるため、床版14に発生する応力の均一化、応力の集中緩和および疲労耐久性の向上を容易に実現することができる。
 また、床版14として、疲労限300MPa、耐力値400MPa、許容応力度235MPa(安全率1.7)、ヤング率170GPa、ポアソン比0.28を有する材料にて行った応力解析シミュレーションによれば、同程度の大きさの最大応力が発生する条件下で、従来構造の鋼床版よりも本実施例の鋳物の床版14の方が床版自体の重量を軽減することが可能であり、もしくは同程度の重量の床版において、床版に発生する最大応力を低減可能であることが判明している。
Furthermore, dimensions such as the shape, thickness, height and the like of the reinforcing rib 20 can be freely set by casting, and waste materials can be omitted, and weight reduction can be achieved. In addition, since the R surface can be easily applied to the corners (corners) of the floor slab 14 with a mold, it is easy to equalize stress generated in the floor slab 14, reduce stress concentration, and improve fatigue durability. It can be realized.
According to a stress analysis simulation performed on the floor slab 14 using a material having a fatigue limit of 300 MPa, a proof stress of 400 MPa, an allowable stress of 235 MPa (safety factor of 1.7), a Young's modulus of 170 GPa and a Poisson's ratio of 0.28. Under the condition that the maximum stress of the same size is generated, it is possible to reduce the weight of the slab itself in the casting of the present embodiment than the steel slab of the conventional structure, or It has been found that the floor plate of comparable weight can reduce the maximum stress occurring on the floor plate.
 また、従来の鋼床版は、橋軸方向Xに延びる縦リブは、車両の通行により鋼床版に発生する荷重に対してデッキプレートを補強する主リブとして機能し、橋軸方向Xと直交する方向Yに延びる横リブは、主桁に荷重を伝達する機能を有し、主桁、縦リブおよび横リブがそれぞれ車両の通行により鋼床版に発生する荷重を負担していた。
 これに対し本実施例の床版14は、発生応力に応じた最適な形状設計が容易に実現できる。また、少なくとも副リブ24の短リブ24bよりもリブ高さが高い主リブ22を主桁4と直交する方向Yに延設し、車両の通行により床版14に発生する荷重を主リブ22から脚部26を介して主桁4に真上から、あるいは副リブ24から主リブ22および脚部26を介して主桁4に真上から伝達する。したがって、縦リブ(主リブ)が主桁と平行に配置される従来の鋼床版の場合に比して、車両の通行により床版14に発生する荷重を主桁4に効率的に分散して伝達することができ、道路橋1の剛性を従来に比して向上することができる。
Further, in the conventional steel floor slab, the longitudinal rib extending in the bridge axial direction X functions as a main rib to reinforce the deck plate against the load generated on the steel floor slab by the passage of the vehicle, and is orthogonal to the bridge axial direction X The transverse rib extending in the direction Y has a function of transmitting the load to the main girder, and the main girder, the longitudinal rib and the transverse rib respectively bear the load generated on the steel floor slab by the passing of the vehicle.
On the other hand, the floor slab 14 of the present embodiment can easily realize an optimal shape design according to the generated stress. Further, the main rib 22 having a rib height higher than at least the short rib 24b of the sub rib 24 is extended in the direction Y orthogonal to the main girder 4, and the load generated on the floor slab 14 by the passing of the vehicle is It is transmitted to the main girder 4 from directly above via the leg portion 26 or from the auxiliary rib 24 to the main girder 4 via the main rib 22 and the leg portion 26. Therefore, as compared with the case of the conventional steel floor slab in which the longitudinal rib (main rib) is disposed parallel to the main girder, the load generated on the floor slab 14 by the passage of the vehicle is efficiently dispersed to the main girder 4 And the rigidity of the road bridge 1 can be improved as compared with the prior art.
 また、主リブ22および副リブ24を簡単な形状の平リブとすることにより、床版14に作用する応力を低減しながら、床版14の強度、剛性、および疲労性能を向上させるような床版14の鋳型を比較的容易に製作可能である。
 また、床版14は主桁4および横桁6により格子状に区画されたうちの1つの区画を覆う大きさを有し、床版14を主桁4の上部フランジ8に当接して支持する「単純はり」的な支持方法であるため、従来の鋼床版のように1つの鋼床版が複数の主桁を跨ぐ大きさを有し、1つの鋼床版を複数の主桁で支持する「連続ばり」による支持方法と比較して、主リブ22の端部に大きなモーメントが発生せず、また、床版14と主桁4との接合部を単純構造にすることができる。
Also, by making the main rib 22 and the auxiliary rib 24 into flat ribs with a simple shape, a floor that improves the strength, rigidity, and fatigue performance of the floor slab 14 while reducing the stress acting on the floor slab 14 The mold of the plate 14 can be manufactured relatively easily.
Also, the floor slab 14 has a size that covers one of the grid divisions divided by the main girder 4 and the cross girder 6, and supports the floor slab 14 in contact with the upper flange 8 of the main girder 4 Because it is a "simple beam" support method, one steel floor plate has a size that spans multiple main girders like a conventional steel floor plate, and one steel floor is supported by multiple main girders. Compared with the supporting method by “continuous beam”, a large moment is not generated at the end of the main rib 22, and the joint between the floor plate 14 and the main girder 4 can be made into a simple structure.
 また、本実施例のように、ボルト装着部28を脚部26と別部位として配置し、鉛直荷重と水平荷重を主桁4に伝達する箇所を分離することにより、鉛直荷重を伝達する脚部26の位置をできるだけ主桁4のウエブ12に近い位置とすることができ、主桁4の上部フランジ8に発生する偏芯モーメントを減少させることができる。
 また、ボルト装着部28を主リブ22に連接して形成することにより、ボルト装着部28にモーメントが作用したとしても、主リブ22の剛性によりボルト装着部28の強度を確保することができる。
Further, as in the present embodiment, the leg portion for transmitting the vertical load is disposed by arranging the bolt mounting portion 28 as a separate part from the leg portion 26 and separating the portion for transmitting the vertical load and the horizontal load to the main girder 4. The position 26 can be as close to the web 12 of the main girder 4 as possible, and the eccentric moment generated on the upper flange 8 of the main girder 4 can be reduced.
Further, by forming the bolt mounting portion 28 so as to be connected to the main rib 22, even if a moment acts on the bolt mounting portion 28, the strength of the bolt mounting portion 28 can be secured by the rigidity of the main rib 22.
 また、図6に示すように、主桁4の上部フランジ8と隣接する床版14とをボルト32とナット36により摩擦接合して一体にすることにより、主桁4と床版14との合成効果を発揮させることができ、道路橋1の剛性と強度を向上することができる。
 また、主桁4と床版14とをボルト32およびナット36により締結する構造とすることにより、従来の鋼床版を主桁および/または横桁に溶接する場合に比して、現場での施工が容易になり、工期短縮とコスト低減を実現することができる。
Further, as shown in FIG. 6, the upper flange 8 of the main girder 4 and the adjacent floor slab 14 are friction-joined together by means of the bolts 32 and the nuts 36 to form a composite of the main girder 4 and the floor slab 14 The effects can be exhibited, and the rigidity and strength of the road bridge 1 can be improved.
Also, by using a structure in which the main girder 4 and the floor plate 14 are fastened by the bolt 32 and the nut 36, compared to the case where a conventional steel floor plate is welded to the main girder and / or the transverse girder, Construction becomes easy, and construction period shortening and cost reduction can be realized.
 また、本実施例の補強リブ20は平リブであり、開断面のリブ形状を有するため、ねじれ剛性が小さく、既存の主桁4の上部フランジ8の表面に不陸の箇所が存在してもなじむため、床版14の取り付けが容易となる。
 なお、本発明は本実施例の形態に制約されるものではなく、種々の異なった実施形態が可能である。
In addition, since the reinforcing rib 20 of this embodiment is a flat rib and has a rib shape of an open cross section, the torsional rigidity is small, and even if there is an uneven part on the surface of the upper flange 8 of the existing main girder 4. As it is easy to attach, the floor plate 14 can be easily attached.
The present invention is not limited to the form of this embodiment, and various different embodiments are possible.
 例えば、本実施例においては、図6に示すように、ボルト32をデッキプレート18の上面18aから挿通しているが、図15に示すように、図6とはボルト32の挿通方向が逆であっても良い。
 詳しくは、ボルト32を主桁4の上部フランジ8に形成した貫通孔40の下方からボルト装着部28に穿孔されたボルト孔38に挿通し、ナット36をデッキプレート18の上面18aからボルト装着部38に穿孔されたボルト孔38の上孔38aに挿入して上孔38aと下孔38bとの段差により保持させ、ナット36をボルト32に螺合することにより、床版14と主桁4とがボルト32およびナット36により摩擦接合される。
For example, in the present embodiment, as shown in FIG. 6, the bolt 32 is inserted from the upper surface 18a of the deck plate 18, but as shown in FIG. It may be.
Specifically, the bolt 32 is inserted from below the through hole 40 formed in the upper flange 8 of the main girder 4 into the bolt hole 38 drilled in the bolt mounting portion 28, and the nut 36 is bolted from the upper surface 18 a of the deck plate 18 The floor plate 14 and the main girder 4 are inserted into the upper holes 38a of the bolt holes 38 drilled at 38 and held by the step between the upper holes 38a and the lower holes 38b, and the nut 36 is screwed to the bolt 32. Are frictionally joined by the bolt 32 and the nut 36.
 なお、頭部の形状が多角形のボルト32を使用する場合には、上孔38aを、ナット36と同形の多角形とするとともにナット36と略同一の寸法としても良い。このような構成とすることにより、ナット36にボルト32を螺合する際のナット36の回り止めを併せて実現することが可能となる。また、上孔38aの開口に図示しないキャップを被せ、ナット36を保護するのが好ましい。 When the bolt 32 having a polygonal head shape is used, the upper hole 38a may be a polygon having the same shape as that of the nut 36 and may have substantially the same size as the nut 36. With such a configuration, it is possible to realize the rotation prevention of the nut 36 at the time of screwing the bolt 32 to the nut 36. In addition, it is preferable to cover the opening of the upper hole 38a with a cap (not shown) to protect the nut 36.
 また、本実施例においては、床版14を主桁4に当接させて支持するようにしているが、床版14を主桁4および横桁6の両方、もしくは横桁6に当接させて支持するようにしても良く、その場合、ボルト装着部28を副リブ24に連接して形成し、床版14と横桁6とをボルトおよびナットにより締結するようにしても良い。
 また、ボルト装着部28を補強リブ20(主リブ22もしくは副リブ24)に連接せず、別部位に形成するようにしても良い。
Further, in the present embodiment, the floor slab 14 is supported by being brought into contact with the main girder 4, but the floor slab 14 is made to abut against both the main girder 4 and the transverse girder 6 or the transverse girder 6. In this case, the bolt mounting portion 28 may be formed to be connected to the sub rib 24 and the floor plate 14 and the cross beam 6 may be fastened by a bolt and a nut.
In addition, the bolt mounting portion 28 may be formed in another portion without being connected to the reinforcing rib 20 (the main rib 22 or the sub rib 24).
 また、本実施例においては、補強リブ20は主リブ22および副リブ24から形成されるが、副リブ24は必須ではなく、主リブ22のみで補強リブ20を形成しても良い。
 また、主リブ22と副リブ24の高さを同じ高さに形成するようにしても良い。
Further, in the present embodiment, although the reinforcing rib 20 is formed of the main rib 22 and the sub rib 24, the sub rib 24 is not essential, and the reinforcing rib 20 may be formed of only the main rib 22.
Further, the heights of the main rib 22 and the sub rib 24 may be formed to be the same height.
(実施例2)
 図8は、本発明の他の実施例である金属製床版を下面から見た斜視図である。
 この実施例では、実施例1の床版14を橋軸方向Xに4分割した大きさの床版48を連結して、床版14の大きさにしている。
(Example 2)
FIG. 8 is a bottom perspective view of a metal floor slab according to another embodiment of the present invention.
In this embodiment, the floor slabs 14 of the first embodiment are divided into four in the bridge axial direction X so that the floor slabs 14 have the same size.
 以下に、実施例1の床版14を橋軸方向Xに4分割した大きさの床版48の仕様を例示する。なお、実施例1の場合と同じ形態のものについては説明を省略する。
・デッキプレート18の大きさ(縦長L2×横幅W2):1.25m×2.5m、
・主リブ22の数:4
 実施例1の床版14を橋軸方向Xに4分割した大きさの床版48は、実施例1の床版14に比して小さく軽量となる。したがって、1つの床版48を小型車で運搬できるとともに、小型クレーンでの施工が可能となるため、道路橋1の建設における作業性を向上させ、コストを低減することができる。また、分割することで、主桁4の上部フランジ8の表面に不陸の箇所が存在してもなじむため、床版48の取り付けが容易となる。
The specifications of the floor slab 48 of a size obtained by dividing the floor slab 14 of Example 1 into four in the bridge axial direction X will be exemplified below. Description of the same configuration as that of the first embodiment will be omitted.
-Size of deck plate 18 (longitudinal length L2 × lateral width W2): 1.25 m × 2.5 m,
The number of main ribs 22: 4
The floor slab 48 having a size obtained by dividing the floor slab 14 of Example 1 into four in the bridge axial direction X is smaller and lighter than the floor slab 14 of Example 1. Therefore, since one floor plate 48 can be transported by a small car and construction with a small crane becomes possible, the workability in construction of the road bridge 1 can be improved and the cost can be reduced. Further, by dividing, even if there is a landless portion on the surface of the upper flange 8 of the main girder 4, the floor plate 48 can be easily attached.
 この実施例の床版48を用いる場合には、橋軸方向Xに隣接する床版48同士を、実施例1で示した連結プレート42を介して互いにボルト接合することにより連結し、実施例1の床版14と同じ大きさを有する床版連結体を形成する。 In the case of using the floor slabs 48 of this embodiment, the floor slabs 48 adjacent in the bridge axial direction X are connected by bolting each other via the connection plate 42 shown in Example 1, Example 1 Form a connected slab version having the same size as the floor slab 14 of
(実施例3)
 図9は、本発明のさらに他の実施例である金属製床版を下面から見た斜視図である。
 この実施例では、床版48を橋軸方向Xと直交する方向Yに張り出して拡幅した大きさの床版54を連結している。なお、実施例1および実施例2の場合と同じ形態のものについては説明を省略する。
(Example 3)
FIG. 9 is a bottom perspective view of a metal floor slab according to still another embodiment of the present invention.
In this embodiment, the floor slabs 48 are extended in the direction Y orthogonal to the bridge axial direction X, and the floor slabs 54 of the expanded size are connected. Description of the same configuration as that of the first embodiment and the second embodiment will be omitted.
 以下に、拡幅した張出部56を有する床版54の仕様を例示する。
・デッキプレート18の大きさ(縦長L2×横幅W3):1.25m×3.5m
 この実施例のように、床版48を橋軸方向Xと直交する方向Yに拡幅した大きさの床版54とした場合には、路面幅Wrを実施例1の場合よりも1.0m拡幅した道路橋1を建設することができ、高欄等の設置が必要とされる外側車線に使用される。
Below, the specification of the floor slab 54 which has the extended overhang | projection part 56 is illustrated.
-Size of the deck plate 18 (vertical length L2 × horizontal width W3): 1.25 m × 3.5 m
In the case of the floor slab 54 having a size in which the floor slab 48 is expanded in the direction Y orthogonal to the bridge axial direction X as in this embodiment, the road surface width Wr is increased by 1.0 m than in the case of the first embodiment. The road bridge 1 can be constructed and used for the outside lanes where installation of a column or the like is required.
 この床版54を用いる場合にも、実施例2の場合と同様に、橋軸方向Xに隣接する床版54同士を連結プレート42を介して互いにボルト接合することにより連結し、床版連結体を形成する。 Also in the case of using the floor slab 54, as in the case of the second embodiment, the floor slabs 54 adjacent to each other in the bridge axial direction X are connected by bolting each other via the connection plate 42, Form
(実施例4)
 図10は、本発明のさらに他の実施例である金属製床版が、主桁に設置されている状態を示した側面図である。この実施例では、床版57の脚部26には、垂直方向Zに切り欠かれた切欠部26aを形成している。この切欠部26aは、例えば上方向を頂点とする略二等辺三角形状をなし、脚部26の橋軸方向Xに沿って等間隔を存し複数配置されている。各切欠部26aは脚部26において各主リブ22が連接される位置の略中間に位置付けられている。
(Example 4)
FIG. 10 is a side view showing a metal floor slab according to still another embodiment of the present invention installed on a main girder. In this embodiment, the leg portion 26 of the floor slab 57 is formed with a notch 26 a cut out in the vertical direction Z. The notches 26a have, for example, a substantially isosceles triangle shape with the upper direction as a vertex, and a plurality of notches 26a are arranged at equal intervals along the bridge axis direction X of the leg 26. Each notch 26a is positioned in the leg 26 substantially in the middle between the positions where the main ribs 22 are connected.
 従来、道路橋1を建設した際に水平となるよう、床版およびアスファルト等の舗装の重量を考慮して、主桁4は、橋軸方向Xにおいて全体的に上方に若干凸となる弓なり形状に予め設計され、いわゆるキャンバー加工が施されている。
 したがって、脚部26に切欠部26aを形成することにより、床版57と主桁4とを接合する際に、床版57が上方凸の弓なり形状の主桁4に追従して容易に載置可能である。また、脚部26ひいては床版57が変形することが許容されるため、主桁4と床版57とが馴染むような状態で接合することができる。
Conventionally, the main girder 4 has a bow shape that is slightly convex upward in the bridge axis direction X in consideration of the weight of the floor slab and pavement such as asphalt so as to become horizontal when the road bridge 1 is constructed. Pre-designed, so-called camber processing is applied.
Therefore, when the floor plate 57 and the main girder 4 are joined by forming the notches 26 a in the leg portion 26, the floor plate 57 can be easily placed following the main girder 4 of the upwardly convex bow shape. It is possible. Further, since the leg portion 26 and the floor plate 57 are allowed to be deformed, the main girder 4 and the floor plate 57 can be joined in a state of being familiar with each other.
(実施例5)
 図11は、本発明のさらに他の実施例である金属製床版62を上面から見た図である。図12は、金属製床版62の橋軸方向Xにおける配置状態の一例を示した図である。図13は、金属製床版62の橋軸方向Xにおける配置状態の別例を示した図である。この実施例では、実施例2の床版48(実施例1の床版14を橋軸方向Xに4分割した大きさの床版48)のデッキプレート18を上面視台形に形成した床版62を使用している。
(Example 5)
FIG. 11 is a top view of a metal floor plate 62 according to still another embodiment of the present invention. FIG. 12 is a view showing an example of the arrangement of the metal floor slab 62 in the bridge axis direction X. As shown in FIG. FIG. 13 is a view showing another example of the arrangement of the metal floor slab 62 in the bridge axis direction X. As shown in FIG. In this embodiment, a floor plate 62 in which the deck plate 18 of the floor plate 48 of the second embodiment (the floor plate 48 of the size obtained by dividing the floor plate 14 of the first embodiment in four in the bridge axial direction X) is formed trapezoidally in top view You are using
 詳しくは、本実施例のデッキプレート18は、上面視等脚台形に形成され、橋軸方向Xに向けて延び、互いに平行な1組の対辺である長底64a、短底64bと、橋軸方向Xと直交する方向Yに向けて延び、もう一組の対辺であって長さの等しい脚66a、66bとから構成されている。脚66a、66bは、それぞれ長底64a、短底64bと形成する底角が等しくなるように、図11で見て方向Yからθの角度を有して傾斜している。 More specifically, the deck plate 18 of the present embodiment is formed in an isosceles trapezoid in top view, extends in the bridge axis direction X, and is a pair of opposite long sides 64a and 64b parallel to each other, and a bridge axis It extends in a direction Y orthogonal to the direction X, and is composed of another pair of opposite sides of equal length legs 66a, 66b. The legs 66a and 66b are inclined at an angle of θ from the direction Y as viewed in FIG. 11 so that the base angles formed with the long bottom 64a and the short bottom 64b are equal.
 図12に示すように、複数の床版62をデッキプレート18の長底64a、短底64bが同一側となる向きで隣り合う脚66a、66bにおいて連結することにより、1枚の床版62の脚66a、66bにおいて形成される傾斜角度2θと、床版62の数nとに基づいた曲率半径R1のカーブを道路橋1の橋軸方向Xに向けて形成することができる。
 また、図13に示すように、橋軸方向Xに向けて連結された床版62を例えば3つ目毎に図12とは逆向きに配置して連結したり、矩形である床版48と組み合わせたりすることにより、図12の場合に比して緩やかな曲率半径R2のカーブを道路橋1に形成することもできる。
As shown in FIG. 12, by connecting a plurality of floor slabs 62 at adjacent legs 66a and 66b in a direction in which the long bottom 64a and the short bottom 64b of the deck plate 18 are on the same side, one floor slab 62 is obtained. A curve having a radius of curvature R1 based on the inclination angle 2θ formed in the legs 66a and 66b and the number n of floor slabs 62 can be formed in the bridge axial direction X of the road bridge 1.
Further, as shown in FIG. 13, the floor slabs 62 connected in the bridge axial direction X may be arranged, for example, in a direction opposite to that of FIG. By combining them, it is also possible to form a curve of a radius of curvature R2 which is gentler than in the case of FIG.
 道路橋1は直線だけでなくカーブを有しているものもあり、この実施例のように、デッキプレート18をθの角度を有する上面視台形に形成した床版62を使用するだけで、その配置の仕方を種々変更することにより、所望の曲率半径のカーブを有する道路橋1を形成することができる。 The road bridge 1 may have not only straight lines but also curves, and it is only necessary to use the floor plate 62 in which the deck plate 18 is formed in a trapezoidal shape in the top view with an angle of θ as in this embodiment. The road bridge 1 having a curve of a desired radius of curvature can be formed by variously changing the arrangement method.
(実施例6)
 図14は、本発明のさらに他の実施例である金属製床版を上面から見た斜視図である。この実施例では、デッキプレート18の上面18aに、例えば大きさの異なる平面視六角形状の凸を2段重ねた凸部58を一様に多数有する床版60を形成している。この場合には、路面16を施工する際、デッキプレート18の上面18aに対するアスファルト等の舗装材の接合性を高めることができて好ましい。
(Example 6)
FIG. 14 is a top perspective view of a metal floor slab according to still another embodiment of the present invention. In this embodiment, for example, a floor slab 60 having a large number of convex portions 58 in which a plurality of convex portions in a plan view hexagonal shape having different sizes overlap each other on the upper surface 18a of the deck plate 18 is formed. In this case, when constructing the road surface 16, it is possible to improve the bondability of the pavement material such as asphalt to the upper surface 18a of the deck plate 18, which is preferable.
 また、凸部58が車両の耐スリップ性能を有する場合には、道路橋1を舗装しないで使用することができるため、道路橋1のさらなる軽量化が可能となる。 Moreover, when the convex part 58 has the slip resistance performance of a vehicle, since it can be used without paving the road bridge 1, the further weight reduction of the road bridge 1 is attained.
  1  道路橋
  4  主桁
  8  上部フランジ
 14  床版(金属製床版)
 18  デッキプレート
18a  デッキプレートの上面
18b  デッキプレートの下面
 20  補強リブ
 22  主リブ
 24  副リブ
 26  脚部
26a  切欠部
 28  ボルト装着部(接合手段)
 32  ボルト(接合手段)
 36  ナット(接合手段)
 48  床版(金属製床版)
 54  床版(金属製床版)
 57  床版(金属製床版)
 60  床版(金属製床版)
 62  床版(金属製床版)
1 Road bridge 4 Main girder 8 Upper flange 14 Floor version (metal floor version)
18 deck plate 18a upper surface 18b of deck plate lower surface of deck plate 20 reinforcing rib 22 main rib 24 sub rib 26 leg 26a notch 28 bolt mounting portion (joining means)
32 bolt (joining method)
36 Nut (joining means)
48 floor version (metal floor version)
54 floor version (metal floor version)
57 floor version (metal floor version)
60 floor version (metal floor version)
62 Floor version (metal floor version)

Claims (10)

  1.  道路橋の橋軸方向に延びる主桁の上面に支持される床版であって、
     デッキプレートと、
     前記デッキプレートの下面に形成した補強リブと
    を備え、
     前記デッキプレートおよび前記補強リブを鋳造により一体成形したことを特徴とする道路橋の金属製床版。
    A floor slab supported on the upper surface of a main girder extending in the axial direction of the road bridge,
    Deck plate,
    And a reinforcing rib formed on the lower surface of the deck plate,
    A metal floor plate of a road bridge, wherein the deck plate and the reinforcing rib are integrally formed by casting.
  2.  前記デッキプレートには、
     前記床版の自重および前記床版に加わる鉛直荷重を前記主桁の上面に伝達する脚部と、
     前記床版と前記主桁の上面とを接合する接合手段と
    を有していることを特徴とする請求項1に記載の道路橋の金属製床版。
    The deck plate is
    A leg that transmits the weight of the floor slab and the vertical load applied to the floor slab to the upper surface of the main girder;
    2. A metal floor slab of a road bridge according to claim 1, further comprising joining means for joining the floor slab and the upper surface of the main girder.
  3.  前記接合手段は、ボルトを前記デッキプレートの上面から挿通可能なボルト装着部を備え、前記ボルト装着部と前記主桁の上面とを前記ボルトおよびナットにより締結することを特徴とする請求項2に記載の道路橋の金属製床版。 The jointing means according to claim 2, further comprising: a bolt mounting portion through which a bolt can be inserted from the upper surface of the deck plate, and fastening the bolt mounting portion and the upper surface of the main girder with the bolt and nut. A metal floor version of the described road bridge.
  4.  前記接合手段は、ナットを前記デッキプレートの上面から挿入可能かつボルトを下方から挿通可能なボルト装着部を備え、前記ボルト装着部と前記主桁の上面とを前記ボルトおよびナットにより締結することを特徴とする請求項2に記載の道路橋の金属製床版。 The joining means comprises a bolt mounting portion capable of inserting a nut from the upper surface of the deck plate and inserting a bolt from below, and fastening the bolt mounting portion and the upper surface of the main girder with the bolt and the nut The metal floor plate of the road bridge according to claim 2 characterized by the above.
  5.  前記ボルト装着部を前記補強リブに連接して形成することを特徴とする請求項3または4に記載の道路橋の金属製床版。 The metal floor plate of a road bridge according to claim 3 or 4, wherein the bolt mounting portion is formed by being connected to the reinforcing rib.
  6.  前記脚部には、垂直方向に切り欠かれた切欠部を前記橋軸方向に沿って複数有することを特徴とする請求項2乃至5の何れか一項に記載の道路橋の金属製床版。 The metal floor plate of the road bridge according to any one of claims 2 to 5, wherein a plurality of notches cut in the vertical direction are provided in the leg portion along the bridge axial direction. .
  7.  前記補強リブは、前記橋軸方向と直交する方向に延びる主リブからなることを特徴とする、請求項1乃至6の何れか一項に記載の道路橋の金属製床版。 The metal floor slab of a road bridge according to any one of claims 1 to 6, wherein the reinforcing rib comprises a main rib extending in a direction orthogonal to the bridge axial direction.
  8.  前記補強リブは、
     前記橋軸方向と直交する方向に延びる主リブと、
     隣接する前記主リブの間に連接されて前記主リブに前記床版に加わる荷重を伝達する副リブと
    からなることを特徴とする請求項1乃至6の何れか一項に記載の道路橋の金属製床版。
    The reinforcing rib is
    A main rib extending in a direction orthogonal to the bridge axis direction;
    The road bridge according to any one of claims 1 to 6, further comprising: a secondary rib connected between the adjacent main ribs to transmit a load applied to the floor plate to the main rib. Metal floor version.
  9.  前記補強リブは、前記デッキプレートの下面から垂直に板状に突設された平リブであることを特徴とする請求項1乃至8の何れか一項に記載の道路橋の金属製床版。 The metal floor slab of the road bridge according to any one of claims 1 to 8, wherein the reinforcing rib is a flat rib vertically provided in a plate shape from the lower surface of the deck plate.
  10.  前記デッキプレートは、
     上面視台形に形成することを特徴とする請求項1乃至9の何れか一項に記載の道路橋の金属製床版。
    The deck plate is
    The metal floor slab of the road bridge according to any one of claims 1 to 9, which is formed in a trapezoidal shape in top view.
PCT/JP2015/050933 2014-01-16 2015-01-15 Metal slab for overpass WO2015108103A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015557865A JP6387020B2 (en) 2014-01-16 2015-01-15 Metal deck of road bridge

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014-005797 2014-01-16
JP2014005797 2014-01-16

Publications (1)

Publication Number Publication Date
WO2015108103A1 true WO2015108103A1 (en) 2015-07-23

Family

ID=53542989

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/050933 WO2015108103A1 (en) 2014-01-16 2015-01-15 Metal slab for overpass

Country Status (2)

Country Link
JP (1) JP6387020B2 (en)
WO (1) WO2015108103A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105113405A (en) * 2015-08-21 2015-12-02 同济大学 Composite bridge deck based on steel and UHPC (Ultra High Performance Concrete)
JP2017110394A (en) * 2015-12-16 2017-06-22 日本鉄塔工業株式会社 Steel frame deck bridge
JP2019039572A (en) * 2017-08-22 2019-03-14 アイシン精機株式会社 refrigerator

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5031624Y1 (en) * 1970-11-25 1975-09-16
JPS5851208Y2 (en) * 1981-07-11 1983-11-22 勝巳 福岡 Structures such as bridges and elevated roads
JPH0718630A (en) * 1993-07-01 1995-01-20 Nippon Steel Corp Bridge
JP2000008327A (en) * 1998-06-24 2000-01-11 Kawada Industries Inc Erection constructing method for curved steel floor plate bridge
JP2002155507A (en) * 2000-11-17 2002-05-31 Koichi Matsumoto Bridge

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090077758A1 (en) * 2007-09-21 2009-03-26 Groupe Canam Inc. Bridge deck panel
JP6068510B2 (en) * 2012-12-28 2017-02-01 株式会社Aoi Deck plate support and slab construction method using it

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5031624Y1 (en) * 1970-11-25 1975-09-16
JPS5851208Y2 (en) * 1981-07-11 1983-11-22 勝巳 福岡 Structures such as bridges and elevated roads
JPH0718630A (en) * 1993-07-01 1995-01-20 Nippon Steel Corp Bridge
JP2000008327A (en) * 1998-06-24 2000-01-11 Kawada Industries Inc Erection constructing method for curved steel floor plate bridge
JP2002155507A (en) * 2000-11-17 2002-05-31 Koichi Matsumoto Bridge

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105113405A (en) * 2015-08-21 2015-12-02 同济大学 Composite bridge deck based on steel and UHPC (Ultra High Performance Concrete)
JP2017110394A (en) * 2015-12-16 2017-06-22 日本鉄塔工業株式会社 Steel frame deck bridge
JP2019039572A (en) * 2017-08-22 2019-03-14 アイシン精機株式会社 refrigerator

Also Published As

Publication number Publication date
JP6387020B2 (en) 2018-09-05
JPWO2015108103A1 (en) 2017-03-23

Similar Documents

Publication Publication Date Title
JP5053016B2 (en) Girder structure using corrugated steel web
JP4993768B2 (en) Road fence
JP5961041B2 (en) Steel slab and steel slab bridge equipped with the same
WO2015108103A1 (en) Metal slab for overpass
JP2008050774A (en) Method of repairing steel floor plate
JP4897643B2 (en) Reinforced concrete composite steel slab girder bridge
JP4668760B2 (en) Steel bridge repair and reinforcement structure and method
JP4682839B2 (en) Steel slab reinforcement structure and steel slab reinforcement method
JP4143935B2 (en) Vertical rib composite floor slab
JP4347158B2 (en) Steel bridge, steel bridge reinforcement method and repair method
JP4650255B2 (en) Steel slab reinforcement structure and existing steel slab reinforcement method
JP4585614B1 (en) Method for constructing synthetic steel slab bridge, ribbed steel slab, and synthetic steel slab bridge
JP2010229733A (en) Floor slab for bridge, made of steel pipe, floor slab structure for the bridge, and steel pipe
JP2006336231A (en) Composite floor slab
JP2008231688A (en) Bridge structure using composite floor slab, its construction method, and form for composite floor slab
JP6286737B2 (en) Fixed structure of floor slab panel
JP6655746B2 (en) Bridge structure and floor slab replacement method
JP7206060B2 (en) Composite panel construction
JP4607785B2 (en) Continuous viaduct
JP4030825B2 (en) Floor slab mounting structure and floor slab replacement method using the same
JP4437064B2 (en) Construction method and formwork structure of concrete floor slab for composite floor slab bridge
JP4293696B2 (en) Construction method of composite floor slab bridge
JP6489078B2 (en) Floor slab support structure
KR20210001147U (en) Shear connector for steel frame structure and bridge structure with the same
KR200432583Y1 (en) Temporary bridge without deck plate of bridge

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15737136

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2015557865

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15737136

Country of ref document: EP

Kind code of ref document: A1