JP4650255B2 - Steel slab reinforcement structure and existing steel slab reinforcement method - Google Patents

Steel slab reinforcement structure and existing steel slab reinforcement method Download PDF

Info

Publication number
JP4650255B2
JP4650255B2 JP2005369220A JP2005369220A JP4650255B2 JP 4650255 B2 JP4650255 B2 JP 4650255B2 JP 2005369220 A JP2005369220 A JP 2005369220A JP 2005369220 A JP2005369220 A JP 2005369220A JP 4650255 B2 JP4650255 B2 JP 4650255B2
Authority
JP
Japan
Prior art keywords
steel
deck
bridge axis
plate
vertical
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2005369220A
Other languages
Japanese (ja)
Other versions
JP2007170044A (en
Inventor
浩 和田
巧 鈴木
摂 野澤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Obayashi Corp
Original Assignee
Obayashi Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Obayashi Corp filed Critical Obayashi Corp
Priority to JP2005369220A priority Critical patent/JP4650255B2/en
Publication of JP2007170044A publication Critical patent/JP2007170044A/en
Application granted granted Critical
Publication of JP4650255B2 publication Critical patent/JP4650255B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、橋梁や高架道路に用いられる鋼床版の剛性及び耐久性を向上させる鋼床版の補強構造及び既設鋼床版の補強方法に関するものである。   The present invention relates to a steel floor slab reinforcement structure and a method for reinforcing an existing steel deck that improve the rigidity and durability of a steel deck used for bridges and elevated roads.

一般的に、橋梁や高架道路の鋼床版は、デッキプレートの下面に略U字形の縦リブが溶接により固着され補強されている。長期間にわたってデッキプレートの上を車両等が走行すると、車両等の輪荷重により鋼床版の変形が繰り返され、その結果、鋼床版が損傷するという問題点があった。そこで、以下に示すように、鋼床版の剛性を向上させるための技術が多く提案されている。   Generally, steel slabs of bridges and elevated roads are reinforced by welding substantially U-shaped vertical ribs to the lower surface of the deck plate. When a vehicle or the like travels on the deck plate for a long period of time, the steel deck is repeatedly deformed by the wheel load of the vehicle or the like, and as a result, the steel deck is damaged. Therefore, as shown below, many techniques for improving the rigidity of the steel deck are proposed.

例えば、特許文献1には、デッキプレート下面と縦リブとで形成される閉断面空間内に充填材を充填する方法が開示されている。これは閉断面空間内に充填材を充填することにより、縦リブの断面疲労強度を向上させるとともに、デッキプレートと縦リブとの溶接部分を補強し、デッキプレートと縦リブとの溶接部分に生じる疲労亀裂を防止するためのものである。   For example, Patent Document 1 discloses a method of filling a filler in a closed cross-sectional space formed by a deck plate lower surface and vertical ribs. This is because the filler in the closed cross-section space is filled to improve the cross-sectional fatigue strength of the vertical ribs, and the welded part between the deck plate and the vertical ribs is reinforced, resulting in the welded part between the deck plate and the vertical ribs. This is to prevent fatigue cracks.

また、特許文献2には、縦リブの下方に主桁間に架設される新設の横桁を設け、縦リブと新設の横桁との間に縦リブを支持するための支持部材を設ける補強構造が開示されている。これは、支持部材及び新設の横桁を設けることにより、デッキプレートに作用する載荷荷重を支持部材及び新設の横桁を介して主桁に伝達し、縦リブに作用する応力を小さくして溶接部分に生じる疲労を軽減し、デッキプレートと縦リブとの溶接部分に生じる疲労亀裂を防止するためのものである。
特開2001−248114号公報 特開2002−173912号公報
Further, in Patent Document 2, a reinforcement is provided in which a new cross beam installed between main girders is provided below the vertical rib, and a support member for supporting the vertical rib is provided between the vertical rib and the new cross beam. A structure is disclosed. This is because by providing a support member and a newly installed cross beam, the load applied to the deck plate is transmitted to the main beam via the support member and the newly installed cross beam, and the stress acting on the vertical rib is reduced and welded. It is intended to reduce fatigue generated in the portion and prevent fatigue cracks generated in the welded portion between the deck plate and the vertical rib.
JP 2001-248114 A JP 2002-173912 A

しかしながら、特許文献1に記載の閉断面空間内に充填材を充填する方法では、縦リブが設置された橋軸方向の剛性は向上するものの、鋼床版自身の荷重(以下、死荷重という)が増加し、その増加した荷重はデッキプレートにかかる反面、デッキプレートに作用する載荷荷重をデッキプレートのみで支えている縦リブ間には、鋼床版の剛性を向上させるための補強の手段が講じられていないために、デッキプレートの橋軸と直交する方向の構造性能は低下してしまうという問題点があった。   However, in the method of filling the closed cross-section space described in Patent Document 1, the rigidity in the bridge axis direction in which the longitudinal ribs are installed is improved, but the load of the steel deck slab itself (hereinafter referred to as dead load). While the increased load is applied to the deck plate, there is a means of reinforcement to improve the rigidity of the steel slab between the vertical ribs that support the loading load acting on the deck plate only by the deck plate. Since it was not taken, the structural performance in the direction perpendicular to the bridge axis of the deck plate was lowered.

そして、特許文献2に記載の縦リブを支持するための支持部材を設ける方法では、既設の鋼床版の支持点を変更(増加)しただけであり、既設部分の劣化程度・範囲が大きい場合は対策にならないという問題点があった。また、特許文献1と同様に、縦リブ間には補強の手段が講じられていないために、橋軸と直交する方向の構造性能は低いままであるという問題点があった。さらに、縦リブと横桁との間に、精度良く嵌合又は固定できるような支持部材が必要であるが、鋼床版は長期間にわたり使用されており局部的な歪み等の変形が生じているために、予め工場等にて製作した支持部材を取付けることは困難であり、現場で現状に合わせた加工を施さねばならず、手間及び時間がかかるという問題点があった。   And in the method of providing the support member for supporting the longitudinal rib described in Patent Document 2, only the support point of the existing steel slab is changed (increased), and the deterioration degree / range of the existing part is large. There was a problem that was not a countermeasure. Further, as in Patent Document 1, there is a problem that the structural performance in the direction orthogonal to the bridge axis remains low because no reinforcing means is provided between the longitudinal ribs. Furthermore, a support member that can be fitted or fixed with high precision is required between the vertical rib and the cross beam. However, the steel slab has been used for a long time and deformation such as local distortion has occurred. For this reason, it is difficult to attach a support member manufactured in advance at a factory or the like, and it is necessary to perform processing according to the current situation at the site, which takes time and labor.

そこで、本発明は、上記の問題点を鑑みてなされたものであり、その目的は、橋梁や高架道路等の走行路を占用することなく施工が可能であって、かつ、剛性及び耐久性を向上させる鋼床版の補強構造及び既設鋼床版の補強方法を提供することである。   Therefore, the present invention has been made in view of the above problems, and its purpose is that construction can be performed without occupying a traveling path such as a bridge or an elevated road, and rigidity and durability can be improved. To provide a reinforcing structure for a steel slab and a method for reinforcing an existing steel slab.

前記目的を達成するため、本発明の鋼床版の補強構造は、デッキプレートを橋軸と直交する方向に並ぶように複数配設された主桁と、隣接する該主桁同士を結合するとともに、橋軸方向に所定の間隔で配設された横桁とで支持し、該デッキプレートの下面に橋軸方向に延設された縦リブを橋軸と直交する方向に複数個設置して構成された鋼床版であって、隣接する前記主桁間と隣接する前記横桁間との間の前記縦リブの下方に配設された鋼板と、前記鋼板を支持するために、隣接する主桁間に架設された新設の横桁とを備え、前記デッキプレート及び前記縦リブの下面と前記鋼板との間に充填材を充填してなることを特徴とする(第1の発明)。   In order to achieve the above object, the steel slab reinforcement structure of the present invention combines a plurality of main girders arranged so that deck plates are arranged in a direction perpendicular to the bridge axis and the adjacent main girders. , Supported by horizontal girders arranged at predetermined intervals in the bridge axis direction, and constructed by installing a plurality of vertical ribs extending in the bridge axis direction on the lower surface of the deck plate in a direction perpendicular to the bridge axis A steel plate disposed below the vertical rib between the adjacent main girders and between the adjacent horizontal girders, and an adjacent main plate for supporting the steel plate. And a new horizontal girder installed between the girders, and a filler is filled between the bottom surface of the deck plate and the vertical rib and the steel plate (first invention).

本発明による鋼床版の補強構造によれば、鋼板及び新設の横桁を設け、デッキプレート及び縦リブの下面と鋼板との間に充填材を充填することにより、デッキプレートに作用する載荷荷重を充填材を介して鋼板及び新設の横桁に伝達することが可能である。したがって、デッキプレートに作用する載荷荷重を既設鋼床版に作用させることなく、新設した鋼板及び新設の横桁にて支持するために、耐力及び耐久性の高い構造とすることが可能となる。   According to the reinforcing structure of a steel deck according to the present invention, a loading load acting on a deck plate is provided by providing a steel plate and a newly installed cross girder and filling a filler between the bottom surface of the deck plate and the longitudinal rib and the steel plate. Can be transmitted to the steel plate and the newly installed cross beam through the filler. Therefore, since the loaded load acting on the deck plate does not act on the existing steel slab, and is supported by the newly installed steel plate and the newly installed cross beam, it is possible to achieve a structure with high yield strength and durability.

また、デッキプレート及び縦リブの下面と鋼板との間に充填された充填材により、鋼床版の橋軸と直交する方向の変形が抑制されるために、剛性が向上し、デッキプレートと縦リブとの溶接接合部に作用する応力が低減される。さらに、橋軸方向にも充填材が充填されているために、橋軸方向の剛性も向上し、鋼床版全体の剛性が向上する。   In addition, the filler filled between the bottom surface of the deck plate and the vertical ribs and the steel plate suppresses deformation in the direction perpendicular to the bridge axis of the steel slab, so that the rigidity is improved and the deck plate and the vertical plate are The stress acting on the weld joint with the rib is reduced. Furthermore, since the filler is also filled in the bridge axis direction, the rigidity in the bridge axis direction is also improved, and the rigidity of the entire steel deck is improved.

そして、本発明による鋼床版の補強構造によれば、長期間にわたり使用されて変形が生じた既設の鋼床版を補強する場合においても、デッキプレート及び縦リブの下面を変形自在な充填材で覆うために、設計通りの補強構造を構築することが可能となる。   According to the reinforcing structure of a steel deck according to the present invention, even when reinforcing an existing steel deck that has been used for a long period of time and has been deformed, the bottom plate of the deck plate and the vertical rib can be freely deformed. Therefore, it is possible to construct a reinforcing structure as designed.

第2の発明は、第1の発明において、前記縦リブの両側に、下縁が前記鋼板の上面に接合されて橋軸方向に延設された縦補強部材により構成されてなることを特徴とする。
本発明による縦補強部材によれば、縦補強材が橋軸方向に伸びているために、橋軸方向の剛性を向上させることが可能となる。
A second invention is characterized in that, in the first invention, the longitudinal ribs are formed by longitudinal reinforcing members which are joined to the upper surface of the steel plate and extend in the bridge axis direction on both sides of the longitudinal rib. To do.
According to the longitudinal reinforcing member of the present invention, since the longitudinal reinforcing material extends in the bridge axis direction, the rigidity in the bridge axis direction can be improved.

第3の発明は、第2の発明において、前記縦補強部材は、逆T字形の断面形状を有することを特徴とする。
本発明による逆T字形の断面形状を有する縦補強部材によれば、市販されているTバー等の形鋼を用いることが可能であり、入手性がよい。また、水平なフランジ部分を有するために鋼板に固着することが容易であり、取付け作業性に優れる。
In a third aspect based on the second aspect, the longitudinal reinforcing member has an inverted T-shaped cross-sectional shape.
According to the longitudinal reinforcing member having an inverted T-shaped cross-sectional shape according to the present invention, a commercially available shape steel such as a T-bar can be used, and the availability is good. Moreover, since it has a horizontal flange part, it is easy to adhere to a steel plate and is excellent in attachment workability.

第4の発明は、第2の発明において、前記縦補強部材は、略逆U字形の断面形状を有することを特徴とする。
本発明による略逆U字形の断面形状を有する縦補強部材によれば、縦補強部材が橋軸方向に設置されることにより鋼床版の橋軸方向の剛性が向上するために、縦補強部材と鋼板との間に形成される閉断面空間内への充填材の充填を省略することが可能となる。したがって、デッキプレート及び縦リブの下方と鋼板との間の空間内すべてに充填材を充填する方法よりも死荷重を減少させることが可能となる。
According to a fourth invention, in the second invention, the longitudinal reinforcing member has a substantially inverted U-shaped cross-sectional shape.
According to the longitudinal reinforcing member having a substantially inverted U-shaped cross-sectional shape according to the present invention, since the longitudinal reinforcing member is installed in the bridge axis direction, the rigidity in the bridge axis direction of the steel deck is improved. It is possible to omit the filling of the filler into the closed cross-sectional space formed between the steel plate and the steel plate. Therefore, the dead load can be reduced as compared with the method of filling the entire space in the space between the deck plate and the longitudinal rib and the steel plate.

第5の発明は、第2又は4の発明において、前記鋼板の上面と前記略逆U字形の断面形状を有する縦補強部材とで形成される閉断面空間内に、橋軸と直交する方向に横補強部材が設置されてなることを特徴とする。
本発明による横補強部材によれば、横補強材が橋軸と直交する方向に設置されるために、橋軸と直交する方向の剛性を向上させることが可能となる。
5th invention is 2nd or 4th invention, in the direction orthogonal to a bridge axis in the closed cross-section space formed by the upper surface of the said steel plate, and the vertical reinforcement member which has the said substantially reverse U-shaped cross-sectional shape. A lateral reinforcing member is installed.
According to the lateral reinforcing member of the present invention, since the lateral reinforcing material is installed in a direction orthogonal to the bridge axis, it is possible to improve the rigidity in the direction orthogonal to the bridge axis.

第6の発明は、第1の発明において、前記縦リブの下面と前記鋼板の上面との隙間にスペーサーを設けたことを特徴とする。
本発明によるスペーサーによれば、縦リブの下面と鋼板の上面との間に常に隙間が確保されるために、縦リブの下面と鋼板の上面との間に確実に充填材を充填することが可能となる。
A sixth invention is characterized in that, in the first invention, a spacer is provided in a gap between the lower surface of the vertical rib and the upper surface of the steel plate.
According to the spacer of the present invention, since a gap is always ensured between the lower surface of the vertical rib and the upper surface of the steel plate, the filler can be reliably filled between the lower surface of the vertical rib and the upper surface of the steel plate. It becomes possible.

第7の発明は、第4又は5の発明において、前記デッキプレートの下面と前記縦補強部材の上面との隙間にスペーサーを設けたことを特徴とする。
本発明によるスペーサーによれば、デッキプレートの下面と縦補強部材の上面との間に常に隙間が確保されるために、デッキプレートの下面と縦補強部材の上面との間に確実に充填材を充填することが可能となる。
According to a seventh invention, in the fourth or fifth invention, a spacer is provided in a gap between the lower surface of the deck plate and the upper surface of the vertical reinforcing member.
According to the spacer of the present invention, since a gap is always ensured between the lower surface of the deck plate and the upper surface of the vertical reinforcing member, the filler is surely inserted between the lower surface of the deck plate and the upper surface of the vertical reinforcing member. Filling becomes possible.

第8の発明は、第1の発明において、前記充填材として無収縮モルタルを用いることを特徴とする。
本発明による充填材として無収縮モルタルを用いることによれば、デッキプレートに輪荷重が作用しても充填材は収縮しないために、鋼床版の変形が抑制される。したがって、鋼床版の剛性が向上し、デッキプレートと縦リブとの溶接接合部に作用する応力が低減される。また、隙間無く充填されるために、デッキプレートに作用した荷重を確実に鋼板及び新設の横桁に伝達することが可能となる。
The eighth invention is characterized in that, in the first invention, non-shrink mortar is used as the filler.
By using the non-shrink mortar as the filler according to the present invention, the filler does not shrink even if a wheel load acts on the deck plate, so that deformation of the steel deck is suppressed. Therefore, the rigidity of the steel deck is improved, and the stress acting on the welded joint between the deck plate and the vertical rib is reduced. In addition, since it is filled without a gap, the load acting on the deck plate can be reliably transmitted to the steel plate and the newly installed cross beam.

第9の発明の既設鋼床版の補強方法は、デッキプレートを橋軸と直交する方向に並ぶように複数配設された主桁と、隣接する該主桁同士を結合するとともに、橋軸方向に所定の間隔で配設された横桁とで支持し、該デッキプレートの下面に橋軸方向に延設された縦リブを橋軸と直交する方向に複数個設置して構成された鋼床版を補強する既設鋼床版の補強方法において、橋軸方向に延設される縦補強部材が隣接する前記縦リブ間に配設されるように鋼板の上面に該縦補強部材を接合する工程と、隣接する前記主桁間と隣接する前記横桁間との間の前記縦リブの下方に前記鋼板を設置する工程と、前記鋼板を支持するための新設の横桁を隣接する主桁間に架設する工程と、前記デッキプレート及び前記縦リブの下面と前記鋼板との間に充填材を充填する工程とを備えることを特徴とする。
本発明による既設鋼床版の補強方法によれば、鋼床版の下側から工事可能なために、橋梁、高架道路等の走行路を占用する必要はなく、日中に安全、かつ短期間で既設の鋼床版を補強することが可能となる。
According to a ninth aspect of the present invention, there is provided a method for reinforcing an existing steel slab in which a plurality of main girders arranged so that deck plates are arranged in a direction orthogonal to the bridge axis and the adjacent main girders are coupled to each other, and the bridge axis direction The steel floor is constructed by supporting a plurality of vertical ribs extending in the bridge axis direction on the lower surface of the deck plate in a direction perpendicular to the bridge axis. In the method for reinforcing an existing steel floor slab that reinforces a plate, the step of joining the vertical reinforcing member to the upper surface of the steel plate so that the vertical reinforcing member extending in the bridge axis direction is disposed between the adjacent vertical ribs A step of installing the steel plate below the longitudinal rib between the adjacent main beams and between the adjacent horizontal beams, and a new horizontal beam for supporting the steel plate between the adjacent main beams And a filler between the bottom surface of the deck plate and the vertical rib and the steel plate. Characterized in that it comprises the step of Hama.
According to the method for reinforcing an existing steel slab according to the present invention, it is possible to perform construction from the underside of the steel slab, so there is no need to occupy a road such as a bridge or an elevated road, and it is safe during the day and for a short period of time. It becomes possible to reinforce the existing steel deck.

本発明の鋼床版の補強構造及び既設鋼床版の補強方法を用いることにより、橋梁や高架道路等の走行路を占用することなく施工が可能であって、かつ、剛性及び耐久性を向上させることが可能となる。   By using the steel slab reinforcement structure and the method of reinforcing an existing steel slab of the present invention, construction is possible without occupying a running path such as a bridge or an elevated road, and rigidity and durability are improved. It becomes possible to make it.

以下、本発明の好ましい実施形態について図面を用いて詳細に説明する。図1は、本発明の第一実施形態に係る鋼床版の補強構造を適用した高架道路の横断面図、図2は、図1のA−A’矢視図である。図1及び図2に示すように、高架道路2は、鋼床版10と、橋軸と直交する方向(以下、橋軸直交方向という)に並ぶように複数配設され、鋼床版10を支持する主桁18と、隣接する主桁18同士を結合するとともに、橋軸方向に所定の間隔で配設され、鋼床版10を支持する横桁17と、鋼床版10の上側に施工されたアスファルト等の舗装20とから構成される。   Hereinafter, preferred embodiments of the present invention will be described in detail with reference to the drawings. FIG. 1 is a cross-sectional view of an elevated road to which a steel slab reinforcement structure according to a first embodiment of the present invention is applied, and FIG. 2 is a view taken along the line A-A ′ in FIG. 1. As shown in FIGS. 1 and 2, a plurality of elevated roads 2 are arranged so as to be aligned with a steel deck 10 and a direction orthogonal to the bridge axis (hereinafter referred to as a bridge axis orthogonal direction). The main girder 18 to be supported and the adjacent main girder 18 are coupled to each other, and are arranged at predetermined intervals in the bridge axis direction, and are installed on the upper side of the steel floor slab 10 to support the steel deck 10. And asphalt 20 or the like.

また、鋼床版10は、デッキプレート12と、デッキプレート12の下面に設置された縦リブ14と、縦リブ14の下方に設置された鋼板16と、鋼板16を支持するために、隣接する主桁18間に架設された新設の横桁22と、各縦リブ14の両側に設置された縦補強部材4とから構成される。   The steel deck 10 is adjacent to support the deck plate 12, the vertical rib 14 installed on the lower surface of the deck plate 12, the steel plate 16 installed below the vertical rib 14, and the steel plate 16. It is composed of a new horizontal girder 22 installed between the main girders 18 and vertical reinforcing members 4 installed on both sides of each vertical rib 14.

縦リブ14は略U字形の断面形状を有する形鋼であり、この両端部がデッキプレート12の下面に溶接にて固着され、橋軸方向に延設される。また、縦リブ14は、橋軸直交方向に複数個設置される。   The vertical ribs 14 are shaped steel having a substantially U-shaped cross-section, and both ends thereof are fixed to the lower surface of the deck plate 12 by welding and extend in the bridge axis direction. A plurality of vertical ribs 14 are installed in the direction perpendicular to the bridge axis.

鋼板16は、隣接する主桁18間と隣接する横桁17間との間の縦リブ14の下方に所定の隙間を隔てて、主桁18間の幅、新設の横桁22間の長さにて配設される。
この新設の横桁22は、鋼板16の橋軸方向の両縁部を支持するために、橋軸方向に所定の間隔にて設置される。
また、主桁18は上下端縁にそれぞれフランジを有するI形断面形状の形鋼であり、その両側には橋軸方向に所定の間隔で新設の横桁22を取付けるための主桁用リブ19が溶接等にて固着されている。
The steel plate 16 has a width between the main beams 18 and a length between the newly installed horizontal beams 22 with a predetermined gap below the vertical ribs 14 between the adjacent main beams 18 and between the adjacent horizontal beams 17. It is arranged at.
In order to support both edges of the steel plate 16 in the bridge axis direction, the newly installed cross beams 22 are installed at predetermined intervals in the bridge axis direction.
The main girder 18 is a steel having an I-shaped cross section having flanges at the upper and lower edges, and ribs 19 for main girder for attaching new horizontal girder 22 at predetermined intervals in the bridge axis direction on both sides thereof. Is fixed by welding or the like.

縦補強部材4は、下端縁にフランジを有する逆T字形断面形状の形鋼であり、隣接する縦リブ14間に配設されるように、下面のフランジが鋼板16の上面に溶接等にて固着され、橋軸方向に延設される。本実施形態においては、縦補強部材4として、例えば、Tバーを用い、各縦リブ14の両側にそれぞれ1個ずつ、つまり、隣接する縦リブ14間には2個ずつ設置し、橋軸直交方向の両側端部の縦リブ14の外方にはそれぞれ1個ずつ設置する。ただし、これに限定されるものではなく、例えば、隣接する縦リブ14間に1個ずつ設置してもよい。
そして、縦補強部材4が取付けられた鋼板16を、隣接する主桁18間と隣接する横桁17間との間の縦リブ14の下方に配設し、仮受けする。
The vertical reinforcing member 4 is a steel having an inverted T-shaped cross section having a flange at the lower end edge, and the lower flange is welded to the upper surface of the steel plate 16 so as to be disposed between the adjacent vertical ribs 14. Fixed and extended in the direction of the bridge axis. In the present embodiment, for example, a T bar is used as the vertical reinforcing member 4, one on each side of each vertical rib 14, that is, two between adjacent vertical ribs 14, and orthogonal to the bridge axis. One piece is installed outside each of the vertical ribs 14 at both ends in the direction. However, it is not limited to this, For example, you may install one each between the adjacent vertical ribs 14. FIG.
Then, the steel plate 16 to which the vertical reinforcing member 4 is attached is disposed below the vertical ribs 14 between the adjacent main girders 18 and the adjacent horizontal girders 17 and temporarily received.

新設の横桁22は、上下端縁にそれぞれフランジを有するコ形断面形状の溝型鋼(以下、チャンネルという)であり、上側のフランジが鋼板16の下面に当接するように配設されるとともに、主桁用リブ19にボルト等の結合手段25で取付けられて、主桁18間に架設される。そして、新設の横桁22の上側のフランジを鋼板16に溶接等にて固着し、仮受けを撤去する。本実施形態においては、新設の横桁22として、チャンネルを用いる方法について説明したが、これに限定されるものではなく、例えば、H形等の型鋼を用いてもよい。   The newly installed girder 22 is a groove-shaped steel (hereinafter referred to as a channel) having a U-shaped cross section having flanges at the upper and lower end edges, and is arranged so that the upper flange contacts the lower surface of the steel plate 16. The main girder rib 19 is attached by a coupling means 25 such as a bolt, and is laid between the main girder 18. Then, the upper flange of the newly installed cross beam 22 is fixed to the steel plate 16 by welding or the like, and the temporary support is removed. In this embodiment, although the method using a channel was demonstrated as the newly installed cross beam 22, it is not limited to this, For example, you may use shape steel, such as an H shape.

さらに、デッキプレート12及び縦リブ14の下面と鋼板16との間の空間には充填材32が充填される。本実施形態においては、充填材32として、例えば、非圧縮性の無収縮モルタルを用いる。また、縦リブ14の下面と鋼板16の上面との間に、橋軸方向に所定の間隔でスペーサー24を設置し、これらの面同士の当接を防止する。鋼板16の各端部には、例えば、スポンジ等の変形性能の良い材料を用いて妻型枠が設けられて(図示しない)充填材32が漏れないにようにシールされ、充填材32は鋼板16に設けた注入孔(図示しない)から注入される。   Further, the space between the bottom surface of the deck plate 12 and the vertical rib 14 and the steel plate 16 is filled with a filler 32. In the present embodiment, as the filler 32, for example, an incompressible non-shrink mortar is used. In addition, spacers 24 are installed at a predetermined interval in the bridge axis direction between the lower surface of the vertical ribs 14 and the upper surface of the steel plate 16 to prevent contact between these surfaces. Each end portion of the steel plate 16 is provided with a wife form frame (not shown) using a material having good deformability such as sponge, for example, and the filler 32 is sealed so as not to leak. 16 is injected from an injection hole (not shown) provided in 16.

上述した鋼板16、新設の横桁22等の補強部材の設置作業及び充填材32の充填作業は、高架道路2の走行路を利用することなく、すべて鋼床版10の下から高所作業車等を利用して行われる。   The above-described installation work of the reinforcing members such as the steel plate 16 and the newly installed cross beam 22 and the filling work of the filler 32 are all performed from below the steel deck 10 without using the traveling path of the elevated road 2. Etc. are performed.

以上説明した本実施形態の鋼床版10の補強構造によれば、鋼板16及び新設の横桁22を設け、デッキプレート12及び縦リブ14の下面と鋼板16との間に充填材32を充填することにより、デッキプレート12に作用する載荷荷重を充填材32を介して鋼板16及び新設の横桁22に伝達することが可能である。したがって、デッキプレート12に作用する載荷荷重を既設の鋼床版10に負担させることなく、新たに設置した鋼板16及び新設の横桁22にて支持するために、耐力及び耐久性の高い構造とすることが可能となる。   According to the reinforcing structure of the steel deck 10 of the present embodiment described above, the steel plate 16 and the newly installed cross beam 22 are provided, and the filler 32 is filled between the bottom surface of the deck plate 12 and the vertical rib 14 and the steel plate 16. By doing so, it is possible to transmit the loaded load acting on the deck plate 12 to the steel plate 16 and the newly installed cross beam 22 via the filler 32. Therefore, in order to support the deck plate 12 with the newly installed steel plate 16 and the newly installed horizontal girder 22 without causing the existing steel floor slab 10 to bear the load applied to the deck plate 12, It becomes possible to do.

また、デッキプレート12及び縦リブ14の下面と鋼板16との間に充填された充填材32により、鋼床版10の橋軸直交方向の変形が抑制されるために、剛性が向上し、デッキプレート12と縦リブ14との溶接接合部に作用する応力が低減される。さらに、橋軸方向にも充填材32が充填されているために、橋軸方向の剛性も向上し、鋼床版10全体の剛性が向上する。   Further, since the deformation of the steel deck 10 in the direction perpendicular to the bridge axis is suppressed by the filler 32 filled between the lower surface of the deck plate 12 and the longitudinal rib 14 and the steel plate 16, the rigidity is improved and the deck is improved. The stress acting on the welded joint between the plate 12 and the longitudinal rib 14 is reduced. Furthermore, since the filler 32 is filled also in the bridge axis direction, the rigidity in the bridge axis direction is also improved, and the rigidity of the entire steel deck 10 is improved.

そして、本実施形態の逆T字形の断面形状を有する縦補強部材4によれば、縦補強部材が橋軸方向に伸びているために、橋軸方向の剛性を向上させることが可能となる。また、縦補強部材4として市販されているTバー等の形鋼を用いることが可能であり、入手性が容易である。さらに、水平なフランジ部分を有するために鋼板16に固着することが容易であり、取付け作業性に優れる。   And according to the vertical reinforcing member 4 having an inverted T-shaped cross section of the present embodiment, since the vertical reinforcing member extends in the bridge axis direction, the rigidity in the bridge axis direction can be improved. Moreover, it is possible to use shape steels, such as T bar, marketed as the vertical reinforcement member 4, and availability is easy. Furthermore, since it has a horizontal flange part, it is easy to adhere to the steel plate 16, and it is excellent in attachment workability.

また、本実施形態ではスペーサー24が、縦リブ14の下面と鋼板16の上面との間に設置されることで、両者間の隙間を確保できるために、この隙間に確実に充填材32を充填することが可能となる。そして、この充填材32として無収縮モルタルを用いることにより、デッキプレート12に輪荷重が作用しても充填材32は収縮しないために、鋼床版10の変形が抑制される。したがって、鋼床版10の剛性が向上し、デッキプレート12と縦リブ14との溶接接合部に作用する応力が低減される。さらに、充填材32が隙間無く充填されるために、デッキプレート12に作用した荷重を確実に鋼板16及び新設の横桁22に伝達することが可能となる。   Further, in the present embodiment, the spacer 24 is installed between the lower surface of the vertical rib 14 and the upper surface of the steel plate 16 so that a gap between the two can be secured. Therefore, the filler 32 is reliably filled in the gap. It becomes possible to do. By using a non-shrink mortar as the filler 32, the filler 32 does not shrink even if a wheel load is applied to the deck plate 12, so that deformation of the steel deck 10 is suppressed. Therefore, the rigidity of the steel deck 10 is improved, and the stress acting on the welded joint between the deck plate 12 and the longitudinal rib 14 is reduced. Furthermore, since the filler 32 is filled without a gap, it is possible to reliably transmit the load acting on the deck plate 12 to the steel plate 16 and the newly installed cross beam 22.

なお、本実施形態において、充填材32として無収縮モルタルを用いる方法について説明したが、これに限定されるものではなく、間隙無く充填され、かつ、充填されたデッキプレート12及び縦リブ14の下面と鋼板16との間の空間の変形を抑制するとともに、デッキプレート12に作用する載荷荷重を鋼板16に伝達可能な強度を有するものであればよい。   In the present embodiment, the method using the non-shrink mortar as the filler 32 has been described. However, the present invention is not limited to this, and the bottom surfaces of the deck plate 12 and the vertical ribs 14 filled without gaps are filled. As long as the deformation of the space between the steel plate 16 and the steel plate 16 is suppressed, the load applied to the deck plate 12 can be transmitted to the steel plate 16.

次に、本発明の第二の実施形態について説明する。下記に示す説明において、第一実施形態と同様の構成を用いたものと対応する部分には同一の符号を付して説明を省略し、主に相違点について説明する。   Next, a second embodiment of the present invention will be described. In the following description, parts corresponding to those using the same configuration as in the first embodiment are denoted by the same reference numerals, description thereof is omitted, and differences are mainly described.

図3は、本発明の第二実施形態に係る鋼床版36の補強構造を適用した高架道路34の横断面図、図4は、B−B’矢視図である。図3及び図4に示すように、高架道路34は、第一実施形態にて説明した逆T字形断面形状の縦補強部材4の替わりに略逆U字形断面形状(後述する)の縦補強部材6を備えたものである。   FIG. 3 is a cross-sectional view of the elevated road 34 to which the reinforcing structure of the steel deck slab 36 according to the second embodiment of the present invention is applied, and FIG. 4 is a B-B ′ arrow view. As shown in FIGS. 3 and 4, the elevated road 34 is a vertical reinforcing member having a substantially inverted U-shaped cross-sectional shape (described later) instead of the vertical reinforcing member 4 having the inverted T-shaped cross-sectional shape described in the first embodiment. 6 is provided.

縦補強部材6は、略逆U字形断面形状を有する形鋼であり、この両端部が鋼板16の上面に溶接にて固着され、橋軸方向に延設される。また、縦補強部材6は、橋軸直交方向に複数個設置される。そして、鋼板16の上面と縦補強部材6とで形成される閉断面空間内に横補強部材8が設置される。   The longitudinal reinforcing member 6 is a section steel having a substantially inverted U-shaped cross section, and both ends thereof are fixed to the upper surface of the steel plate 16 by welding and extend in the bridge axis direction. A plurality of longitudinal reinforcing members 6 are installed in the direction perpendicular to the bridge axis. The lateral reinforcing member 8 is installed in a closed cross-sectional space formed by the upper surface of the steel plate 16 and the vertical reinforcing member 6.

横補強部材8は、上縁及び両縁が縦補強部材6の内面に溶接等にて固着され、橋軸方向に所定の間隔Lで配置される。本実施形態において、この所定の間隔Lは、例えば、縦リブ14の設置間隔aの2倍の長さとする。なお、本実施形態においては、所定の間隔を縦リブ14の設置間隔aの2倍の長さとしたが、これに限定されるものではなく、設計された長さに基づいて適宜変更することが可能である。   The horizontal reinforcing member 8 has an upper edge and both edges fixed to the inner surface of the vertical reinforcing member 6 by welding or the like, and is arranged at a predetermined interval L in the bridge axis direction. In the present embodiment, the predetermined interval L is, for example, twice as long as the installation interval a of the vertical ribs 14. In the present embodiment, the predetermined interval is twice as long as the installation interval “a” of the vertical ribs 14. However, the present invention is not limited to this, and may be appropriately changed based on the designed length. Is possible.

なお、本実施形態においては、縦補強部材6の内側に横補強部材8を設置する方法について説明したが、これに限定されるものではなく、横補強部材8を設置しなくてもよく、さらに充填材32を充填してもよい。   In the present embodiment, the method of installing the horizontal reinforcing member 8 inside the vertical reinforcing member 6 has been described. However, the present invention is not limited to this, and the horizontal reinforcing member 8 may not be installed. The filler 32 may be filled.

デッキプレート12及び縦リブ14の下面と鋼板16及び縦補強部材6の上面との間の空間には充填材32として無収縮モルタルが充填されている。縦リブ14の下面と鋼板16の上面との間、及びデッキプレート12の下面と縦補強部材6の上面との間に、橋軸方向に所定間隔でスペーサー24を設置し、これらの面同士の当接を防止する。   The space between the lower surface of the deck plate 12 and the vertical rib 14 and the upper surface of the steel plate 16 and the vertical reinforcing member 6 is filled with non-shrink mortar as a filler 32. Spacers 24 are installed at predetermined intervals in the bridge axis direction between the lower surface of the vertical rib 14 and the upper surface of the steel plate 16 and between the lower surface of the deck plate 12 and the upper surface of the vertical reinforcing member 6. Prevent contact.

上述した鋼板16、新設の横桁22等の補強部材の設置作業及び充填材32の充填作業は、第一実施形態と同様に、高架道路34の走行路を利用することなく、すべて鋼床版36の下から高所作業車等を利用して行われる。   The above-described installation work of the reinforcing members such as the steel plate 16 and the newly installed cross beam 22 and the filling work of the filler 32 are all steel floor slabs without using the traveling road of the elevated road 34 as in the first embodiment. It is performed from under 36 using an aerial work vehicle.

以上説明した本実施形態の鋼床版36の補強構造によれば、上記の第一実施形態と同様に、デッキプレート12及び縦リブ14の下面と鋼板16との間に充填材32を充填することにより、デッキプレート12に作用する載荷荷重を充填材32を介して鋼板16及び新設の横桁22に伝達することができ、これにより耐力及び耐久性の高い構造とすることが可能となる。また、充填材32を充填することにより鋼床版36の橋軸直交方向の変形が抑制されるために、剛性が向上し、デッキプレート12と縦リブ14と、及び鋼板16と縦補強部材6との溶接接合部に作用する応力が低減される。さらに、橋軸方向にも充填材32が充填されているために、橋軸方向の剛性も向上し、鋼床版36全体の剛性が向上する。   According to the reinforcement structure of the steel deck slab 36 of the present embodiment described above, the filler 32 is filled between the bottom surface of the deck plate 12 and the vertical ribs 14 and the steel plate 16 as in the first embodiment. As a result, the loading load acting on the deck plate 12 can be transmitted to the steel plate 16 and the newly installed cross beam 22 via the filler 32, thereby making it possible to achieve a structure with high yield strength and durability. Moreover, since the deformation in the direction orthogonal to the bridge axis of the steel deck 36 is suppressed by filling the filler 32, the rigidity is improved, and the deck plate 12, the vertical rib 14, the steel plate 16, and the vertical reinforcing member 6 are improved. The stress acting on the welded joint is reduced. Furthermore, since the filler 32 is filled also in the bridge axis direction, the rigidity in the bridge axis direction is also improved, and the rigidity of the entire steel deck 36 is improved.

また、本実施形態によれば、略逆U字形断面形状を有する縦補強部材6が橋軸方向に延設されているために、橋軸方向の剛性を向上させることが可能となる。また、この縦補強部材6を取付けることにより鋼床版36の剛性が向上するために、縦補強部材6と鋼板16との間に形成される閉断面空間内への充填材32の充填を省くことが可能となる。したがって、デッキプレート12及び縦リブ14の下方と鋼板16との間のすべての空間内に充填材32を充填する方法よりも死荷重を減少させることが可能となる。   Moreover, according to this embodiment, since the vertical reinforcing member 6 having a substantially inverted U-shaped cross-sectional shape extends in the bridge axis direction, it is possible to improve the rigidity in the bridge axis direction. In addition, since the rigidity of the steel deck 36 is improved by attaching the longitudinal reinforcing member 6, filling of the filler 32 into the closed cross-sectional space formed between the longitudinal reinforcing member 6 and the steel plate 16 is omitted. It becomes possible. Therefore, the dead load can be reduced as compared with the method in which the filler 32 is filled in all the spaces between the deck plate 12 and the longitudinal ribs 14 and the steel plate 16.

さらに、横補強部材8が橋軸直交方向に延設されているために、橋軸直交方向の剛性を向上させることが可能となる。   Furthermore, since the lateral reinforcing member 8 is extended in the direction perpendicular to the bridge axis, the rigidity in the direction perpendicular to the bridge axis can be improved.

また、デッキプレート12の下面と縦補強部材6の上面との間、及び縦リブ14の下面と鋼板16の上面との間にスペーサー24が設置されることで、それぞれの両者間の隙間を確保できるために、これらの隙間に確実に充填材32を充填することが可能となる。そして、この充填材32として無収縮モルタルを用いることにより、鋼床版36の変形が抑制される。したがって、鋼床版36の剛性が向上し、デッキプレート12と縦リブ14との溶接接合部に作用する応力が低減される。さらに、充填材32が隙間無く充填されるために、デッキプレート12に作用した荷重を確実に鋼板16及び新設の横桁22に伝達することが可能となる。   Further, spacers 24 are provided between the lower surface of the deck plate 12 and the upper surface of the vertical reinforcing member 6 and between the lower surface of the vertical rib 14 and the upper surface of the steel plate 16, thereby ensuring a gap between the two. Therefore, it is possible to reliably fill the filler 32 in these gaps. Then, by using a non-shrink mortar as the filler 32, deformation of the steel deck slab 36 is suppressed. Therefore, the rigidity of the steel deck 36 is improved, and the stress acting on the welded joint between the deck plate 12 and the longitudinal rib 14 is reduced. Furthermore, since the filler 32 is filled without a gap, it is possible to reliably transmit the load acting on the deck plate 12 to the steel plate 16 and the newly installed cross beam 22.

なお、本実施形態において、充填材32として無収縮モルタルを用いる方法について説明したが、これに限定されるものではなく、間隙無く充填され、かつ、充填されたデッキプレート12及び縦リブ14の下面と鋼板16及び縦補強部材6との間の空間の変形を抑制するとともに、デッキプレート12に作用する載荷荷重を鋼板16に伝達可能な強度を有するものであればよい。   In the present embodiment, the method using the non-shrink mortar as the filler 32 has been described. However, the present invention is not limited to this, and the bottom surfaces of the deck plate 12 and the vertical ribs 14 filled without gaps are filled. As long as the deformation of the space between the steel plate 16 and the vertical reinforcing member 6 is suppressed, the load applied to the deck plate 12 can be transmitted to the steel plate 16.

なお、上述したすべての実施形態において、鋼床版36の下方全体を補強する方法について説明したが、これに限定されるものではなく、補強の必要な箇所等の部分的な補強でもよい。   In all the embodiments described above, the method of reinforcing the entire lower part of the steel deck 36 has been described. However, the present invention is not limited to this, and partial reinforcement such as a portion requiring reinforcement may be used.

また、上述したすべての実施形態において、鋼床版36を支持する主桁18が2本の場合について説明したが、これに限定されるものではなく、主桁18が3本以上であってもよい。   Moreover, in all the above-mentioned embodiments, although the case where there are two main girders 18 supporting the steel deck 36 is not limited to this, even if there are three or more main girders 18 Good.

本発明の第一実施形態に係る鋼床版の補強構造を適用した高架道路の横断面図である。It is a cross-sectional view of an elevated road to which a reinforcing structure of a steel deck according to the first embodiment of the present invention is applied. 図1のA−A’矢視図である。It is an A-A 'arrow line view of FIG. 本発明の第二実施形態に係る鋼床版の補強構造を適用した高架道路の横断面図である。It is a cross-sectional view of an elevated road to which a steel slab reinforcement structure according to a second embodiment of the present invention is applied. 図3のB−B’矢視図である。FIG. 4 is a view taken in the direction of arrows B-B ′ of FIG.

符号の説明Explanation of symbols

2、34 高架道路
4、6 縦補強部材
8 横補強部材
10、36 鋼床版
12 デッキプレート
14 縦リブ
16 鋼板
17 横桁
18 主桁
19 主桁用リブ
20 舗装
22 新設の横桁
24 スペーサー
25 結合手段
32 充填材
L 横補強部材を設置する所定の間隔
2, 34 Elevated road 4, 6 Longitudinal reinforcement member 8 Lateral reinforcement member 10, 36 Steel plate 12 Decking plate 14 Vertical rib 16 Steel plate 17 Cross girder 18 Main girder 19 Main girder rib 20 Pavement 22 New cross girder 24 Spacer 25 Coupling means 32 Filler L Predetermined interval for installing the lateral reinforcing member

Claims (9)

デッキプレートを橋軸と直交する方向に並ぶように複数配設された主桁と、隣接する該主桁同士を結合するとともに、橋軸方向に所定の間隔で配設された横桁とで支持し、該デッキプレートの下面に橋軸方向に延設された縦リブを橋軸と直交する方向に複数個設置して構成された鋼床版であって、
隣接する前記主桁間と隣接する前記横桁間との間の前記縦リブの下方に配設された鋼板と、
前記鋼板を支持するために、隣接する主桁間に架設された新設の横桁とを備え、
前記デッキプレート及び前記縦リブの下面と前記鋼板との間に充填材を充填してなることを特徴とする鋼床版の補強構造。
A plurality of main girders arranged so that the deck plates are arranged in a direction perpendicular to the bridge axis, and the adjacent main girders are coupled to each other and supported by horizontal girders arranged at predetermined intervals in the bridge axis direction. A steel floor slab configured by installing a plurality of vertical ribs extending in the bridge axis direction on the lower surface of the deck plate in a direction perpendicular to the bridge axis,
A steel plate disposed below the vertical rib between the adjacent main beams and between the adjacent horizontal beams;
In order to support the steel plate, it comprises a new cross beam constructed between adjacent main beams,
A reinforcing structure for a steel slab, wherein a filler is filled between the bottom surface of the deck plate and the vertical rib and the steel plate.
前記縦リブの両側に、下縁が前記鋼板の上面に接合されて橋軸方向に延設された縦補強部材により構成されてなることを特徴とする請求項1に記載の鋼床版の補強構造。   The reinforcement of the steel slab according to claim 1, characterized in that it is constituted by vertical reinforcing members whose lower edges are joined to the upper surface of the steel plate and extend in the bridge axis direction on both sides of the vertical rib. Construction. 前記縦補強部材は、逆T字形の断面形状を有することを特徴とする請求項2に記載の鋼床版の補強構造。   The reinforcing structure for a steel slab according to claim 2, wherein the longitudinal reinforcing member has an inverted T-shaped cross-sectional shape. 前記縦補強部材は、略逆U字形の断面形状を有することを特徴とする請求項2に記載の鋼床版の補強構造。   The reinforcing structure for a steel slab according to claim 2, wherein the longitudinal reinforcing member has a substantially inverted U-shaped cross-sectional shape. 前記鋼板の上面と前記略逆U字形の断面形状を有する縦補強部材とで形成される閉断面空間内に、橋軸と直交する方向に横補強部材が設置されてなることを特徴とする請求項2又は4に記載の鋼床版の補強構造。   A lateral reinforcing member is installed in a direction perpendicular to the bridge axis in a closed cross-sectional space formed by the upper surface of the steel plate and the vertical reinforcing member having the substantially inverted U-shaped cross section. Item 5. A steel slab reinforcement structure according to Item 2 or 4. 前記縦リブの下面と前記鋼板の上面との隙間にスペーサーを設けたことを特徴とする請求項1に記載の鋼床版の補強構造。   The reinforcing structure of a steel slab according to claim 1, wherein a spacer is provided in a gap between the lower surface of the vertical rib and the upper surface of the steel plate. 前記デッキプレートの下面と前記縦補強部材の上面との隙間にスペーサーを設けたことを特徴とする請求項4又は5に記載の鋼床版の補強構造。   The reinforcing structure of a steel deck according to claim 4 or 5, wherein a spacer is provided in a gap between the lower surface of the deck plate and the upper surface of the vertical reinforcing member. 前記充填材として無収縮モルタルを用いることを特徴とする請求項1に記載の鋼床版の補強構造。   The steel floor slab reinforcement structure according to claim 1, wherein a non-shrink mortar is used as the filler. デッキプレートを橋軸と直交する方向に並ぶように複数配設された主桁と、隣接する該主桁同士を結合するとともに、橋軸方向に所定の間隔で配設された横桁とで支持し、該デッキプレートの下面に橋軸方向に延設された縦リブを橋軸と直交する方向に複数個設置して構成された鋼床版を補強する既設鋼床版の補強方法において、
橋軸方向に延設される縦補強部材が隣接する前記縦リブ間に配設されるように鋼板の上面に該縦補強部材を接合する工程と、
隣接する前記主桁間と隣接する前記横桁間との間の前記縦リブの下方に前記鋼板を設置する工程と、
前記鋼板を支持するための新設の横桁を隣接する主桁間に架設する工程と、
前記デッキプレート及び前記縦リブの下面と前記鋼板との間に充填材を充填する工程とを備えることを特徴とする既設鋼床版の補強方法。
A plurality of main girders arranged so that the deck plates are arranged in a direction perpendicular to the bridge axis, and the adjacent main girders are coupled to each other and supported by horizontal girders arranged at predetermined intervals in the bridge axis direction. And, in the reinforcing method of the existing steel deck, which reinforces the steel deck formed by installing a plurality of vertical ribs extending in the bridge axis direction on the lower surface of the deck plate in the direction orthogonal to the bridge axis,
Joining the longitudinal reinforcing member to the upper surface of the steel sheet so that the longitudinal reinforcing member extending in the bridge axis direction is disposed between the adjacent longitudinal ribs;
Installing the steel plate below the longitudinal rib between the adjacent main beams and between the adjacent cross beams;
A step of constructing a newly installed cross beam for supporting the steel plate between adjacent main beams;
A method of reinforcing an existing steel slab comprising a step of filling a filler between the deck plate and the lower surface of the vertical rib and the steel plate.
JP2005369220A 2005-12-22 2005-12-22 Steel slab reinforcement structure and existing steel slab reinforcement method Expired - Fee Related JP4650255B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005369220A JP4650255B2 (en) 2005-12-22 2005-12-22 Steel slab reinforcement structure and existing steel slab reinforcement method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005369220A JP4650255B2 (en) 2005-12-22 2005-12-22 Steel slab reinforcement structure and existing steel slab reinforcement method

Publications (2)

Publication Number Publication Date
JP2007170044A JP2007170044A (en) 2007-07-05
JP4650255B2 true JP4650255B2 (en) 2011-03-16

Family

ID=38296949

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005369220A Expired - Fee Related JP4650255B2 (en) 2005-12-22 2005-12-22 Steel slab reinforcement structure and existing steel slab reinforcement method

Country Status (1)

Country Link
JP (1) JP4650255B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4891665B2 (en) * 2006-06-21 2012-03-07 大成建設株式会社 Floor slab structure and method for reinforcing steel slab
CN102505641B (en) * 2011-09-30 2014-06-04 宁波天意钢桥面铺装技术有限公司 Repair reinforcing structure of steel bridge deck and repair reinforcing method of repair reinforcing structure
CN103088753B (en) * 2013-03-01 2014-11-05 天津市市政工程设计研究院 Bracing construction and method at steel bridge deck slab web plate position
JP7217375B1 (en) 2022-04-26 2023-02-02 三井住友建設鉄構エンジニアリング株式会社 Floor slab replacement method
JP7162155B1 (en) * 2022-04-27 2022-10-27 三井住友建設鉄構エンジニアリング株式会社 Floor slab replacement method

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5697066A (en) * 1979-12-29 1981-08-05 Toho Tennen Gas Kk Method of reinforcing construction of steel plate of concrete structure
JPH08170311A (en) * 1994-12-16 1996-07-02 Nippon Steel Corp Floor slab with ct type steel
JPH08326017A (en) * 1995-05-31 1996-12-10 Kawaju Koji Kk Reinforcing execution method of concrete floor slab of bridge made of steel
JP2001040782A (en) * 1999-07-30 2001-02-13 Hitachi Zosen Corp Reinforcing member joining structure
JP2002173911A (en) * 2000-12-07 2002-06-21 Ishikawajima Harima Heavy Ind Co Ltd Re-covering execution method for steel floorslab and concrete floorslab
JP2002173912A (en) * 2000-12-07 2002-06-21 Ishikawajima Harima Heavy Ind Co Ltd Steel floorslab reinforcing structure in steel road bridge
JP2003306986A (en) * 2002-04-16 2003-10-31 Nippon Steel Corp Sandwiched floor slab composed of corrugated plate and upper and lower surface plates
JP2004270270A (en) * 2003-03-07 2004-09-30 Yokogawa Bridge Corp Steel concrete composite floor slab bridge
JP2005002637A (en) * 2003-06-11 2005-01-06 Kawada Industries Inc Composite rib floor slab
JP2005240537A (en) * 2004-01-30 2005-09-08 Mitsubishi Heavy Ind Ltd Steel plate deck and method for its reinforceing method

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5697066A (en) * 1979-12-29 1981-08-05 Toho Tennen Gas Kk Method of reinforcing construction of steel plate of concrete structure
JPH08170311A (en) * 1994-12-16 1996-07-02 Nippon Steel Corp Floor slab with ct type steel
JPH08326017A (en) * 1995-05-31 1996-12-10 Kawaju Koji Kk Reinforcing execution method of concrete floor slab of bridge made of steel
JP2001040782A (en) * 1999-07-30 2001-02-13 Hitachi Zosen Corp Reinforcing member joining structure
JP2002173911A (en) * 2000-12-07 2002-06-21 Ishikawajima Harima Heavy Ind Co Ltd Re-covering execution method for steel floorslab and concrete floorslab
JP2002173912A (en) * 2000-12-07 2002-06-21 Ishikawajima Harima Heavy Ind Co Ltd Steel floorslab reinforcing structure in steel road bridge
JP2003306986A (en) * 2002-04-16 2003-10-31 Nippon Steel Corp Sandwiched floor slab composed of corrugated plate and upper and lower surface plates
JP2004270270A (en) * 2003-03-07 2004-09-30 Yokogawa Bridge Corp Steel concrete composite floor slab bridge
JP2005002637A (en) * 2003-06-11 2005-01-06 Kawada Industries Inc Composite rib floor slab
JP2005240537A (en) * 2004-01-30 2005-09-08 Mitsubishi Heavy Ind Ltd Steel plate deck and method for its reinforceing method

Also Published As

Publication number Publication date
JP2007170044A (en) 2007-07-05

Similar Documents

Publication Publication Date Title
WO2010047096A1 (en) Structure for rigidly joining pier and concrete beam together
JP5055028B2 (en) Precast slab joint structure
JP6180376B2 (en) Main girder provision method in composite girder floor slab replacement method, composite girder floor slab replacement method, and main girder provision structure in composite girder floor slab replacement method
JP5274927B2 (en) Box girder joining structure and box girder joining method
KR101762148B1 (en) Bridge using precast psc deck type girder and construction method therefor
JP4650255B2 (en) Steel slab reinforcement structure and existing steel slab reinforcement method
KR100839439B1 (en) Moment connection structure combining a superstructure with substructure in the prefabricated rahmen bridge and method constructing rahmen bridge with the structure
JP4897643B2 (en) Reinforced concrete composite steel slab girder bridge
JP4682839B2 (en) Steel slab reinforcement structure and steel slab reinforcement method
KR102054709B1 (en) Extension sidewalk
JP5217428B2 (en) Composite hollow structure of bridge column head or girder end
JP4347158B2 (en) Steel bridge, steel bridge reinforcement method and repair method
JP6042622B2 (en) Floor slab structure using sandwich type composite slab panel
JP4838232B2 (en) Widening girder joining structure and method
KR100936824B1 (en) Truss structure of a temporary bridge
JP4680556B2 (en) Steel slab reinforcement method
KR20200072986A (en) Pseudo jointless bridge construction made of steel plate girder with overhanged end widen and extended flange composed of concrete block
JP2008156934A (en) Lining plate
JP5721687B2 (en) Steel deck and bridge
JP2008088634A (en) Composite steel-concrete floor slab
KR200416824Y1 (en) Deck plate for reinforcement of structure
JP2008231688A (en) Bridge structure using composite floor slab, its construction method, and form for composite floor slab
JP2020133184A (en) Installation method of rebar assembly for secondary tunnel lining
JP2006214269A (en) Erected girder
KR100622008B1 (en) Composition structure of integral abutment bridge

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20081120

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100802

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20101116

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20101129

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131224

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees