WO2015107643A1 - Hoist for elevator - Google Patents

Hoist for elevator Download PDF

Info

Publication number
WO2015107643A1
WO2015107643A1 PCT/JP2014/050640 JP2014050640W WO2015107643A1 WO 2015107643 A1 WO2015107643 A1 WO 2015107643A1 JP 2014050640 W JP2014050640 W JP 2014050640W WO 2015107643 A1 WO2015107643 A1 WO 2015107643A1
Authority
WO
WIPO (PCT)
Prior art keywords
stator
support portion
damping member
hoisting machine
vibration
Prior art date
Application number
PCT/JP2014/050640
Other languages
French (fr)
Japanese (ja)
Inventor
山本 幸弘
木村 康樹
橋本 昭
諭 山代
順一 多田
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to CN201480073333.5A priority Critical patent/CN105916794B/en
Priority to PCT/JP2014/050640 priority patent/WO2015107643A1/en
Priority to JP2015557628A priority patent/JP6223475B2/en
Publication of WO2015107643A1 publication Critical patent/WO2015107643A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B66HOISTING; LIFTING; HAULING
    • B66BELEVATORS; ESCALATORS OR MOVING WALKWAYS
    • B66B11/00Main component parts of lifts in, or associated with, buildings or other structures
    • B66B11/04Driving gear ; Details thereof, e.g. seals
    • B66B11/043Driving gear ; Details thereof, e.g. seals actuated by rotating motor; Details, e.g. ventilation
    • B66B11/0438Driving gear ; Details thereof, e.g. seals actuated by rotating motor; Details, e.g. ventilation with a gearless driving, e.g. integrated sheave, drum or winch in the stator or rotor of the cage motor

Definitions

  • This invention relates to an elevator hoist that generates a driving force for moving a car.
  • the present invention has been made to solve the above-described problems, and an object thereof is to obtain an elevator hoisting machine capable of reducing noise more reliably.
  • the elevator hoisting machine includes a support base having a first support portion and a second support portion horizontally separated from the first support portion, a first support portion, and a second support portion.
  • a rotating shaft supported rotatably, a drive sheave fixed between the first supporting portion and the second supporting portion, fixed to the rotating shaft, and a cylindrical stator fixed to the first supporting portion And a rotor fixed to the rotating shaft inside the stator and rotated with respect to the stator, and provided on the stator and the motor disposed on the side opposite to the drive sheave side as viewed from the first support portion.
  • a deformation suppressing body that includes a damping member and suppresses elastic deformation of the stator in which the radial dimension of the stator changes is provided.
  • the elastic deformation of the stator itself can be suppressed by the deformation suppressing body, and the vibration due to the elastic deformation of the stator itself can be effectively suppressed. Therefore, the noise of the hoisting machine can be reduced more reliably.
  • FIG. 3 It is a block diagram which shows the elevator by Embodiment 1 of this invention. It is a longitudinal cross-sectional view which shows the winding machine of FIG. FIG. 3 is a cross-sectional view taken along line III-III in FIG. It is a schematic diagram which shows the state of the elastic deformation of the stator of FIG. 3 which vibrates in an elliptical mode. It is a schematic diagram which shows the state of the elastic deformation of the stator of FIG. 3 which vibrates in an elliptical mode. It is a schematic diagram which shows the state of the elastic deformation of the stator of FIG. 3 which vibrates in a triangle mode. It is a schematic diagram which shows the state of the elastic deformation of the stator of FIG.
  • FIG. 3 which vibrates in a triangle mode. It is a longitudinal cross-sectional view which shows the winding machine by Embodiment 2 of this invention.
  • FIG. 9 is a cross-sectional view taken along line IX-IX in FIG. 8. It is a longitudinal cross-sectional view which shows the winding machine by Embodiment 3 of this invention.
  • FIG. 11 is a sectional view taken along line XI-XI in FIG. 10. It is a longitudinal cross-sectional view which shows the winding machine by Embodiment 4 of this invention.
  • FIG. 13 is a cross-sectional view taken along line XIII-XIII in FIG. It is a longitudinal cross-sectional view which shows the winding machine by Embodiment 5 of this invention.
  • FIG. 15 is a cross-sectional view taken along line XV-XV in FIG. 14. It is a figure which shows a stator when it sees along the arrow XVI of FIG. It is an enlarged view which shows the principal part of the stator of FIG. It is a longitudinal cross-sectional view which shows the winding machine by Embodiment 6 of this invention. It is a figure which shows a stator when it sees along the arrow XIX of FIG. It is a perspective view which shows the damping member of FIG. It is a longitudinal cross-sectional view which shows the winding machine by Embodiment 7 of this invention. It is a figure which shows a stator when it sees along the arrow XXII of FIG. It is a perspective view which shows the damping member of FIG.
  • FIG. 1 is a block diagram showing an elevator according to Embodiment 1 of the present invention.
  • a car 2 and a counterweight 3 are provided in the hoistway 1 so as to be able to move up and down.
  • a machine room 4 is provided in the upper part of the hoistway 1.
  • the machine room 4 is provided with a hoisting machine (elevator hoisting machine) 5 that generates a driving force for raising and lowering the car 2 and the counterweight 3 in the hoistway 1, and a baffle 6.
  • the hoisting machine 5 includes a hoisting machine main body 7, a driving sheave 8 that is rotated by the driving force of the hoisting machine main body 7, and a support that is fixed in the machine room 4 and supports the hoisting machine main body 7 and the driving sheave 8. It has a table 9.
  • the baffle wheel 6 is arranged away from the drive sheave 8.
  • the car 2 and the counterweight 3 are suspended in the hoistway 1 by a plurality of cord-like bodies (suspended bodies) 10 wound around the drive sheave 8 and the deflecting wheel 6. For example, a rope or a belt is used as the cord-like body 10.
  • the car 2 and the counterweight 3 are moved up and down in the hoistway 1 by the rotation of the drive sheave 8.
  • FIG. 2 is a longitudinal sectional view showing the hoist 5 of FIG.
  • FIG. 3 is a sectional view taken along line III-III in FIG.
  • the hoisting machine 5 is arranged with its axis line horizontal.
  • the support base 9 includes a first base portion 12 and a first support portion 12 which are disposed apart from each other in the axial direction of the hoisting machine 5 (that is, the horizontal direction) and fixed to the upper surface of the base 11. And a second support portion 13.
  • the hoisting machine main body 7 is provided on the rotating shaft 21 arranged along the axial direction of the hoisting machine 5, the motor 22 that generates a driving force for rotating the rotating shaft 21, and the noise of the motor 22.
  • the rotary shaft 21 is rotatably supported on each of the first support portion 12 and the second support portion 13 via a bearing (not shown).
  • the rotating shaft 21 passes through the first support portion 12 and the second support portion 13.
  • the drive sheave 8 is fixed to the rotating shaft 21 in a state of being disposed in a space between the first support portion 12 and the second support portion 13. As a result, the drive sheave 8 is rotated integrally with the rotary shaft 21.
  • the motor 22 is provided on the side opposite to the drive sheave 8 side in the axial direction of the hoisting machine 5 when viewed from the first support portion 12.
  • the motor 22 includes a cylindrical stator 25 that surrounds the rotating shaft 21, and a rotor 26 that is disposed inside the stator 25 via a predetermined gap and is fixed to the rotating shaft 21.
  • the stator 25 is arranged coaxially with the rotary shaft 21 in a state where one end of the stator 25 in the axial direction is fixed to the first support portion 12.
  • the stator 25 has a cylindrical stator core 27 surrounding the rotor 26, a plurality of stator coils 28 provided on the stator core 27, and a metal stator fixing member 29 fixed to the outer peripheral portion of the stator core 27.
  • the stator core 27 is a laminated body configured by laminating a plurality of steel plates. Each stator coil 28 is provided on the stator core 27 in a state in which a part thereof protrudes from the stator core 27 in the axial direction of the rotating shaft 21.
  • the stator fixing member 29 is a cylindrical first member fixed to the outer peripheral portion of one end portion in the axial direction of the stator core 27 (the end portion on the side closer to the first support portion 12 of both axial end portions of the stator core 27).
  • the outer peripheral ring 30 and the second outer peripheral ring 31 fixed to the outer peripheral portion of the other end in the axial direction of the stator core 27 (the end on the side farther from the first support portion 12 among the both ends in the axial direction of the stator core 27).
  • a plurality of connecting members 32 that connect the first and second outer peripheral rings 30 and 31 and are spaced apart from each other in the circumferential direction of the stator 25.
  • Each of the first outer ring 30, the second outer ring 31, and each connecting member 32 is fixed to the stator core 27 by, for example, welding.
  • a first outer peripheral ring 30 is fixed by a plurality of bolts 33 to the side surface of the first support portion 12 on the motor 22 side (that is, the side surface opposite to the drive sheave 8 side of the first support portion 12). Yes.
  • the stator 25 is supported by the first support portion 12 in a state where the first outer peripheral ring 30 is fixed to the first support portion 12.
  • a base 11 is disposed below the stator 25.
  • the rotor 26 is arranged coaxially with the stator 25.
  • the rotor 26 includes a rotor core 34 fixed to the rotating shaft 21 and a plurality of permanent magnets 35 provided on the rotor core 34 and arranged in the circumferential direction of the rotor core 34.
  • the rotor core 34 is made of a casting or the like.
  • the stator 25 generates a rotating magnetic field by energizing the stator coil 28.
  • the rotor 26 and the rotating shaft 21 are rotated with respect to the stator 25 by a rotating magnetic field generated by the stator 25.
  • the drive sheave 8 is rotated by the rotation of the rotating shaft 21 and the rotor 26.
  • stator 25 When the rotor 26 is rotated by energizing the stator coil 28, the stator 25 receives the exciting force in the radial direction of the motor 22 by the electromagnetic force generated between the stator core 27 and the permanent magnet 35.
  • stator 25 receives an excitation force, elastic deformation in which the radial dimension of the stator 25 changes easily occurs in the stator 25, and vibration due to elastic deformation of the stator 25 is likely to occur in the stator 25.
  • the deformation suppressing body 23 is connected between the stator 25 and the base 11 through an opening provided at the bottom of the cover 24. Further, the deformation suppressing body 23 is fixed to the base 11 while the vibration damping member 41 is fixed to the second outer peripheral ring 31 located at the other axial end of the stator 25, and the vibration damping member 41 is fixed. And a receiving plate (receiving member) 42.
  • the damping member 41 and the receiving plate 42 are castings, and are metal rigid bodies that are not elastically deformed.
  • the width direction dimensions of the damping member 41 and the receiving plate 42 when the stator 25 and the deformation suppressing body 23 are viewed along the axis of the stator 25 are substantially the same as the outer diameter of the stator 25 as shown in FIG. It has become.
  • the shape of the upper surface of the vibration damping member 41 is an arc shape along the second outer peripheral ring 31.
  • the upper part of the damping member 41 is fixed to the side surface of the second outer ring 31 with a plurality of bolts 43 with the upper surface of the damping member 41 aligned with the circumferential direction of the second outer ring 31.
  • the bolts 43 are provided at intervals in the circumferential direction of the second outer peripheral ring 31.
  • the receiving plate 42 is horizontally fixed to the base 11 with a plurality of bolts 44.
  • the lower end portion of the damping member 41 is fixed to the upper surface of the receiving plate 42 by a plurality of bolts 45. Thereby, the vibration of the stator 25 with respect to the base 11 is suppressed.
  • the cover 24 is attached to the first support portion 12 with bolts or the like.
  • the stator 25 When the rotor 26 is rotated with respect to the stator 25, the stator 25 receives an exciting force in the radial direction of the motor 22 by an electromagnetic force generated between the stator 25 and the rotor 26. At this time, as the rotational speed of the rotor 26 increases, the excitation frequency due to the electromagnetic force between the stator 25 and the rotor 26 also increases.
  • the stator 25 and the first The support portion 12 is easily elastically deformed.
  • the stator 25 vibrates while being elastically deformed in a low-order vibration mode (for example, an elliptical mode (secondary vibration mode) or a triangular mode (third-order vibration mode)
  • the deformation amount of the stator 25 increases.
  • the noise of vibration due to the elastic deformation of the stator 25 tends to increase.
  • the vibration due to the elastic deformation of the stator 25 is larger at the other axial end portion of the stator 25 away from the first support portion 12 than at one axial end portion of the stator 25 near the first support portion 12.
  • FIGS. 4 and 5 are schematic views showing the state of elastic deformation of the stator 25 of FIG. 3 that vibrates in the elliptical mode
  • FIGS. 6 and 7 are schematic views showing the state of elastic deformation of the stator 25 of FIG. 3 that vibrates in the triangular mode.
  • FIG. As shown in FIGS. 4 to 7, when the stator 25 vibrates while receiving the exciting force in the radial direction of the motor 22, the elastic deformation in which the radial dimension of the stator 25 changes (FIGS. 4 to 5). 7 is generated in the stator 25. Further, the position of the antinode of vibration (that is, the position of the portion of the stator 25 that is most elastically deformed radially outward of the stator 25 by the vibration of the stator 25) is determined for each next vibration mode.
  • the damping member 41 changes from the damping member 41 to the stator 25 so that the normal shape (cylindrical shape) of the stator 25 is maintained. A force is applied, and an increase in elastic deformation of the stator 25 is suppressed. Further, the vibration of the stator 25 with respect to the base 11 is also suppressed by receiving the damping member 41 by the receiving plate 42 fixed to the base 11.
  • the deformation suppressing body 23 is connected between the base 11 and the stator 25, not only vibration due to elastic deformation of the stator 25 itself but also vibration of the stator 25 relative to the base 11 can be suppressed. Thereby, noise due to vibration of the motor 22 can be further reliably reduced.
  • the damping member 41 is fixed to the base 11 via the receiving plate 42, but the receiving plate 42 is eliminated and the damping member 41 is bolted to the base 11 without the receiving plate 42. It may be fixed directly with, for example.
  • FIG. FIG. 8 is a longitudinal sectional view showing a hoisting machine 5 according to Embodiment 2 of the present invention.
  • FIG. 9 is a sectional view taken along line IX-IX in FIG.
  • the deformation suppression body 23 is connected between the stator 25 and the base 11 through an opening provided at the bottom of the cover 24 as in the first embodiment. Further, the deformation suppressing body 23 includes a plurality of (two in this example) damping members 51 fixed to the second outer peripheral ring 31 positioned at the other axial end of the stator 25, and each damping member 51. And a common receiving plate (receiving member) 52 fixed to the base 11 with a plurality of bolts 44. The configuration of the receiving plate 52 is the same as the configuration of the receiving plate 42 of the first embodiment.
  • the vibration damping members 51 are arranged apart from each other in the circumferential direction of the stator 25.
  • the vibration damping members 51 are arranged apart from each other in the horizontal direction on a plane perpendicular to the axial direction of the stator 25.
  • each damping member 51 is arranged on the left and right with respect to the axis of the stator 25 when the stator 25 is viewed along the axis of the stator 25.
  • the upper end portions of the vibration damping members 51 are individually fixed to the outer peripheral surface of the second outer peripheral ring 31 with bolts 53.
  • the lower end portions of the vibration damping members 51 are individually fixed to the upper surface of the receiving plate 52 with bolts 54.
  • each damping member 51 includes an upper connection plate (connection member) 511 fixed to the second outer peripheral ring 31, and a lower connection plate (connection member) 512 fixed to the receiving plate 52. And viscoelastic body 513 having viscosity and elasticity and sandwiched between upper connection plate 511 and lower connection plate 512.
  • the upper connection plate 511 and the lower connection plate 512 are arranged in a state where the lower part of the upper connection plate 511 and the upper part of the lower connection plate 512 are opposed to each other in the axial direction of the rotary shaft 21.
  • the viscoelastic body 513 is sandwiched between the lower part of the upper connection plate 511 and the upper part of the lower connection plate 512 in the axial direction of the rotary shaft 21.
  • the upper connection plate 511 and the lower connection plate 512 are connected to each other via a viscoelastic body 513.
  • the viscoelastic body 513 is fixed to the upper connection plate 511 and the lower connection plate 512 with an adhesive.
  • Examples of the material constituting the viscoelastic body 513 include rubber or resin.
  • the elastic deformation of the stator 25 in which the radial dimension of the stator 25 changes is mainly suppressed by the viscoelastic deformation of the viscoelastic body 513.
  • Other configurations are the same as those in
  • the deformation suppressing body 23 is coupled between the second outer peripheral ring 31 and the base 11, and the damping member 51 included in the deformation suppressing body 23 includes an upper connection plate 511 and a lower connection plate. 512, and the viscoelastic body 513 sandwiched between the upper connection plate 511 and the lower connection plate 512, the vibration due to the elastic deformation of the stator 25 is absorbed by the viscoelastic deformation of the viscoelastic body 513.
  • the elastic deformation of the stator 25 in which the radial dimension of the stator 25 changes can be effectively suppressed with a simple configuration.
  • the number of damping members 51 is two, but the number of damping members 51 may be one, or may be three or more.
  • FIG. 10 is a longitudinal sectional view showing a hoisting machine 5 according to Embodiment 3 of the present invention.
  • FIG. 11 is a cross-sectional view taken along line XI-XI in FIG.
  • the deformation suppressing body 23 has a plurality of (in this example, two) metal damping members 61 connected between the stator 25 and the base 11.
  • one and the other damping members 61 are disposed on both the left and right sides with respect to the axial line of the stator 25.
  • each damping member 61 includes a base-side fixing portion 61a fixed to the upper surface of the base 11 with a bolt 44, and a stator extending in the circumferential direction of the second outer peripheral ring 31 from the base-side fixing portion 61a. Side fixing part 61b. Each stator side fixing portion 61 b is in contact with the outer peripheral surface of the second outer peripheral ring 31. In this example, as shown in FIG. 10, each damping member 61 is disposed over the entire axial range of the stator 25.
  • each damping member 61 is in a state where the stator side fixing portion 61b is in contact with not only the outer peripheral surface of the second outer peripheral ring 31 but also the outer peripheral surface of the first outer peripheral ring 30. And the base 11.
  • Each stator side fixing portion 61 b is fixed to the second outer peripheral ring 31 with a bolt 62.
  • Other configurations are the same as those in the first embodiment.
  • the damping member 61 can suppress elastic deformation of the stator 25 in which the radial dimension of the stator 25 changes.
  • vibration due to elastic deformation of the stator 25 itself can be effectively suppressed.
  • stator side fixing portion 61b of each damping member 61 is in contact with each of the first outer peripheral ring 30 and the second outer peripheral ring 31, but the outer peripheral surface of the second outer peripheral ring 31. Only the stator-side fixing portion 61b of each damping member 61 may be brought into contact with each other.
  • the number of damping members 61 is two. However, the number of damping members 61 may be one, or may be three or more.
  • FIG. 12 is a longitudinal sectional view showing a hoisting machine 5 according to Embodiment 4 of the present invention.
  • FIG. 13 is a cross-sectional view taken along line XIII-XIII in FIG.
  • the deformation suppressing body 23 includes a plurality of (in this example, two) oil dampers (vibration control members) 65 fixed to the second outer peripheral ring 31 positioned at the other axial end of the stator 25, and each oil damper. 65 and a common receiving plate (receiving member) 66 fixed to the base 11 with a plurality of bolts 44.
  • the configuration of the receiving plate 66 is the same as the configuration of the receiving plate 42 of the first embodiment.
  • one and the other oil dampers 65 are disposed on both the left and right sides with respect to the axis of the stator 25. Further, in this example, as shown in FIG. 13, the oil dampers 65 are arranged so that the axial direction of the oil dampers 65 is the radial direction of the stator 25.
  • each oil damper 65 is fixed to the outer peripheral surface of the second outer peripheral ring 31, and the lower end portion of each oil damper 65 is fixed to the upper surface of the receiving plate 66.
  • Each oil damper 65 is expanded and contracted while receiving the resistance force of the oil in the oil damper 65.
  • each oil damper 65 is connected to a damper control unit 67 that controls the damping force of each oil damper 65.
  • the second outer peripheral ring 31 is provided with a vibration sensor 68 that detects the vibration of the stator 25. Information from the vibration sensor 68 is sent to the damper controller 67.
  • the damper control unit 67 controls the damping force of each oil damper 65 in a direction to suppress the vibration detected by the vibration sensor 68 based on information from the vibration sensor 68.
  • Other configurations are the same as those in the first embodiment.
  • the deformation suppressing body 23 is connected between the second outer peripheral ring 31 and the base 11, and the vibration damping member included in the deformation suppressing body 23 is the oil damper 65.
  • the vibration due to the deformation can be attenuated by the resistance force of the oil damper 65, and the elastic deformation of the stator 25 in which the radial dimension of the stator 25 changes can be effectively suppressed with a simple configuration.
  • the vibration sensor 68 is provided on the second outer peripheral ring 31 and the damper control unit 67 controls the damping force of the oil damper 65 in a direction to suppress the vibration detected by the vibration sensor 68, the elastic deformation of the stator 25 is performed. The vibration due to can be further reliably suppressed.
  • the damping force of the oil damper 65 is controlled by the damper control unit 67 based on information from the vibration sensor 68.
  • the damping force of the stator 25 can be controlled without controlling the damping force of the oil damper 65. Since elastic deformation can be suppressed, the vibration sensor 68 and the damper control unit 67 may not be provided.
  • the number of oil dampers 65 is two, but the number of oil dampers 65 may be one, or may be three or more.
  • FIG. 14 is a longitudinal sectional view showing a hoisting machine 5 according to Embodiment 5 of the present invention.
  • 15 is a cross-sectional view taken along the line XV-XV in FIG. 14, and
  • FIG. 16 is a view showing the stator 25 when viewed along the arrow XVI in FIG.
  • FIG. 17 is an enlarged view showing a main part of the stator 25 of FIG.
  • the deformation suppressing body 23 includes a first damping member 71 that surrounds the outer peripheral portion of the first outer peripheral ring 30, and a second second member that surrounds the outer peripheral portion of the second outer peripheral ring 31.
  • a vibration damping member 72 is an enlarged view showing a main part of the stator 25 of FIG.
  • the deformation suppressing body 23 includes a first damping member 71 that surrounds the outer peripheral portion of the first outer peripheral ring 30, and a second second member that surrounds the outer peripheral portion of the second outer peripheral ring 31.
  • a vibration damping member 72 is
  • the vibration damping structural members 701 are fastened together by bolts 73 by fastening the overlapping portions of the vibration damping structural members 701 adjacent to each other. It is fixed to.
  • the vibration damping component members 701 are fastened together with the bolts 73 by fastening the overlapping portions of the vibration damping component members 701 adjacent to each other so that each vibration damping component member 701 is in the second outer ring 31. It is fixed to.
  • Each vibration damping component 701 has a first connection plate (connection member) 702 made of metal, a second connection plate (connection member) 703 made of metal, and viscosity and elasticity, and the first connection plate And viscoelastic body 704 sandwiched between 702 and second connection plate 703.
  • the first and second connection plates 702 and 703 are arranged along the circumferential direction of the stator 25.
  • the circumferential end portions of the first and second connection plates 702 and 703 are opposed to each other in the radial direction of the stator 25.
  • the viscoelastic body 704 is sandwiched between the circumferential end of the first connection plate 702 and the circumferential end of the second connection plate 703 in the radial direction of the stator 25.
  • the first connection plate 702 and the second connection plate 703 are connected to each other via a viscoelastic body 704.
  • the viscoelastic body 704 is fixed to the first connection plate 702 and the second connection plate 703 with an adhesive.
  • Examples of the material constituting the viscoelastic body 704 include rubber or resin.
  • first vibration damping member 71 the other circumferential ends of the first and second connection plates 702 and 703 are fixed to the first outer ring 30 with bolts 73.
  • second damping member 72 the other circumferential ends of the first and second connection plates 702 and 703 are fixed to the second outer ring 31 with bolts 73.
  • the elastic deformation of the stator 25 in which the radial dimension of the stator 25 changes is suppressed mainly by the viscoelastic deformation of the viscoelastic body 704 in each of the first and second damping members 71 and 72.
  • Other configurations are the same as those in the first embodiment.
  • each of the first and second damping members 71 and 72 is provided in the stator 25.
  • only one of the first and second damping members 71 and 72 is provided in the stator 25. May be provided.
  • FIG. FIG. 18 is a longitudinal sectional view showing a hoisting machine 5 according to Embodiment 6 of the present invention.
  • FIG. 19 is a diagram showing the stator 25 when viewed along the arrow XIX in FIG.
  • the deformation suppressing body 23 includes a plurality of vibration damping members 81 provided on the outer peripheral portion of the stator 25.
  • the damping members 81 are arranged at intervals from each other in the circumferential direction of the stator 25. Further, each damping member 81 is disposed along the axial direction of the stator 25.
  • each damping member 81 in the axial direction is fixed to the outer peripheral surface of the first outer ring 30 with a bolt 82, and the other end in the axial direction of each damping member 81 is the second outer periphery. It is fixed to the outer peripheral surface of the ring 31 with a bolt 83. Thereby, each damping member 81 connects both ends of the stator 25 in the axial direction.
  • FIG. 20 is a perspective view showing the vibration damping member 81 of FIG.
  • the damping member 81 has a first connection plate (connection member) 801 and a second connection plate (connection member) 802 made of metal, which face each other in the radial direction of the stator 25, and have viscosity and elasticity.
  • the second connection plate 802 is located on the radially outer side of the stator 25 than the first connection plate 801.
  • the viscoelastic body 803 overlaps the entire surface of the first connection plate 801, and the second connection plate 802 overlaps the entire surface of the viscoelastic body 803.
  • the first and second connection plates 801 and 802 are connected to each other via a viscoelastic body 803.
  • the viscoelastic body 803 is fixed to the first connection plate 801 and the second connection plate 802 with an adhesive.
  • Examples of the material constituting the viscoelastic body 803 include rubber or resin. Other configurations are the same as those in the first embodiment.
  • each damping member 81 connects both ends in the axial direction of the stator 25, so that the end fixed to the first support portion 12 among the both ends in the axial direction of the stator 25.
  • elastic deformation of the stator 25 in which the radial dimension of the stator 25 changes can be suppressed not only at the end portion away from the first support portion 12.
  • each damping member 81 connected to the end of the stator 25 that is not easily elastically deformed by the first support 12 can press the end of the stator 25 away from the first support 12.
  • the elastic deformation of the stator 25 can be suppressed even at the end of the stator 25 away from the support portion 12. Thereby, the noise of the hoisting machine 5 can be reduced more reliably.
  • the viscoelastic body 803 overlaps the entire surface of the first connection plate 801, but the viscoelastic body 803 may be overlapped only on a part of the first connection plate 801.
  • FIG. 21 is a longitudinal sectional view showing the hoist 5 according to Embodiment 7 of the present invention.
  • 22 is a diagram showing the stator 25 when viewed along the arrow XXII in FIG.
  • the deformation suppressing body 23 has a plurality of vibration damping members 91 provided on the outer peripheral portion of the stator 25.
  • the vibration damping members 91 are arranged at intervals from each other in the circumferential direction of the stator 25.
  • each damping member 91 is fixed to the outer peripheral surface of the first outer ring 30 with a bolt 92, and the other end of each damping member 91 is the outer periphery of the second outer ring 31.
  • the surface is fixed with bolts 93.
  • each damping member 91 connects both ends of the stator 25 in the axial direction.
  • each damping member 91 includes a first axial portion 91 a fixed to the first outer peripheral ring 30, a second axial portion 91 b fixed to the second outer peripheral ring 31, It has the connection part 91c which connects each edge part of 2nd axial direction part 91a, 91b.
  • Each of the first and second axial portions 91 a and 91 b is disposed along the axial direction of the stator 25, and the connecting portion 91 c is disposed along the circumferential direction of the stator 25.
  • FIG. 23 is a perspective view showing the vibration damping member 91 of FIG.
  • the vibration damping member 91 has a first connection plate (connection member) 901 and a second connection plate (connection member) 902 made of metal, which are opposed to each other in the radial direction of the stator 25, and have viscosity and elasticity.
  • the second connection plate 902 is located on the radially outer side of the stator 25 than the first connection plate 901.
  • the viscoelastic body 903 overlaps the entire surface of the first connection plate 901, and the second connection plate 902 overlaps the entire surface of the viscoelastic body 903.
  • the first axial direction portion 91a, the second axial direction portion 91b, and the connecting portion 91c are respectively configured by a part of the first connection plate 901, the second connection plate 902, and the viscoelastic body 903. ing.
  • the first and second connection plates 901 and 902 are connected to each other via a viscoelastic body 903.
  • the viscoelastic body 903 is fixed to the first connection plate 901 and the second connection plate 902 with an adhesive.
  • Examples of the material constituting the viscoelastic body 903 include rubber or resin. Other configurations are the same as those in the first embodiment.
  • the position of one end portion of the damping member 91 that connects both axial ends of the stator 25 is shifted in the circumferential direction of the stator 25 with respect to the position of the other end portion of the damping member 91. Therefore, as in the sixth embodiment, the end of the stator 25 separated from the first support portion 12 by each damping member 91 connected to the end portion of the stator 25 that is not easily elastically deformed by the first support portion 12. You can hold the part. Further, the elastic deformation of the stator 25 can also be suppressed by the vibration damping members 91 in the circumferential direction of the stator 25. Thereby, the elastic deformation of the stator 25 in which the radial dimension of the stator 25 changes can be further reliably suppressed, and the noise of the hoisting machine 5 can be further reliably reduced.
  • the connecting portions 91c of the vibration damping members 91 are arranged along the circumferential direction of the stator 25.
  • the connecting portions 91c may be arranged so as to be inclined with respect to the circumferential direction of the stator 25. Good.
  • the connection part of each of the 1st and 2nd axial direction parts 91a and 91b and the connection part 91c may be bent gently.
  • the band-shaped damping member 91 along the straight line may be disposed along the outer peripheral portion of the stator 25 while being inclined with respect to the axial direction of the stator 25.
  • the viscoelastic body 903 overlaps the entire surface of the first connection plate 901.
  • the viscoelastic body 903 may be overlapped only on a part of the first connection plate 901.
  • the damping member may be made of a damping alloy that easily absorbs vibration. If it does in this way, a damping member can be manufactured with the same material, and the composition of a damping member can be further simplified.

Landscapes

  • Engineering & Computer Science (AREA)
  • Civil Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Structural Engineering (AREA)
  • Cage And Drive Apparatuses For Elevators (AREA)
  • Motor Or Generator Frames (AREA)
  • Vibration Prevention Devices (AREA)
  • Connection Of Motors, Electrical Generators, Mechanical Devices, And The Like (AREA)

Abstract

A hoist for an elevator is configured in such a manner that a drive sheave (8) affixed to a rotating shaft (21) is disposed between a first support section (12) and a second support section (13), the first support section (12) and the second support section (13) being located at a distance from each other in the horizontal direction. A motor has a cylindrical stator (25) which is affixed to the first support section and a rotor (26) which is affixed to the rotating shaft within the stator and which is rotated relative to the stator. The motor is disposed on the opposite side of the first support section (12) from the drive sheave (8). A deformation suppression body (23) for suppressing the elastic deformation of the stator, the radial dimension of which changes, has a vibration damping member (41) provided to the stator.

Description

エレベータ用巻上機Elevator hoisting machine
 この発明は、かごを移動させる駆動力を発生するエレベータ用巻上機に関するものである。 This invention relates to an elevator hoist that generates a driving force for moving a car.
 従来、モータからの騒音を低減するために、樹脂又はゴムで構成された制振部材をステータとハウジングとの間に介在させてモータの振動を低減させるようにした構造が知られている(特許文献1参照)。 Conventionally, in order to reduce noise from a motor, a structure is known in which a vibration damping member made of resin or rubber is interposed between a stator and a housing to reduce motor vibration (patent) Reference 1).
特開2006-166554号公報JP 2006-166554 A
 しかし、従来のモータでは、モータの電磁加振力によって生じるステータ自体の弾性変形を抑制することができず、モータの振動による騒音をさらに低減することができない。 However, in a conventional motor, the elastic deformation of the stator itself caused by the electromagnetic excitation force of the motor cannot be suppressed, and noise due to motor vibration cannot be further reduced.
 この発明は、上記のような課題を解決するためになされたものであり、騒音をより確実に低減することができるエレベータ用巻上機を得ることを目的とする。 The present invention has been made to solve the above-described problems, and an object thereof is to obtain an elevator hoisting machine capable of reducing noise more reliably.
 この発明によるエレベータ用巻上機は、第1の支持部と、第1の支持部から水平方向へ離れた第2の支持部とを有する支持台、第1の支持部及び第2の支持部に回転自在に支持された回転軸、第1の支持部と第2の支持部との間に配置され、回転軸に固定された駆動シーブ、第1の支持部に固定された筒状のステータと、ステータの内側で回転軸に固定され、ステータに対して回転されるロータとを有し、第1の支持部からみて駆動シーブ側と反対側に配置されたモータ、及びステータに設けられた制振部材を有し、ステータの径方向の寸法が変化するステータの弾性変形を抑制する変形抑制体を備えている。 The elevator hoisting machine according to the present invention includes a support base having a first support portion and a second support portion horizontally separated from the first support portion, a first support portion, and a second support portion. A rotating shaft supported rotatably, a drive sheave fixed between the first supporting portion and the second supporting portion, fixed to the rotating shaft, and a cylindrical stator fixed to the first supporting portion And a rotor fixed to the rotating shaft inside the stator and rotated with respect to the stator, and provided on the stator and the motor disposed on the side opposite to the drive sheave side as viewed from the first support portion. A deformation suppressing body that includes a damping member and suppresses elastic deformation of the stator in which the radial dimension of the stator changes is provided.
 この発明によるエレベータ用巻上機によれば、ステータ自体の弾性変形を変形抑制体によって抑制することができ、ステータ自体の弾性変形による振動を効果的に抑制することができる。従って、巻上機の騒音をより確実に低減することができる。 According to the elevator hoist according to the present invention, the elastic deformation of the stator itself can be suppressed by the deformation suppressing body, and the vibration due to the elastic deformation of the stator itself can be effectively suppressed. Therefore, the noise of the hoisting machine can be reduced more reliably.
この発明の実施の形態1によるエレベータを示す構成図である。It is a block diagram which shows the elevator by Embodiment 1 of this invention. 図1の巻上機を示す縦断面図である。It is a longitudinal cross-sectional view which shows the winding machine of FIG. 図2のIII-III線に沿った断面図である。FIG. 3 is a cross-sectional view taken along line III-III in FIG. 楕円モードで振動する図3のステータの弾性変形の状態を示す模式図である。It is a schematic diagram which shows the state of the elastic deformation of the stator of FIG. 3 which vibrates in an elliptical mode. 楕円モードで振動する図3のステータの弾性変形の状態を示す模式図である。It is a schematic diagram which shows the state of the elastic deformation of the stator of FIG. 3 which vibrates in an elliptical mode. 三角形モードで振動する図3のステータの弾性変形の状態を示す模式図である。It is a schematic diagram which shows the state of the elastic deformation of the stator of FIG. 3 which vibrates in a triangle mode. 三角形モードで振動する図3のステータの弾性変形の状態を示す模式図である。It is a schematic diagram which shows the state of the elastic deformation of the stator of FIG. 3 which vibrates in a triangle mode. この発明の実施の形態2による巻上機を示す縦断面図である。It is a longitudinal cross-sectional view which shows the winding machine by Embodiment 2 of this invention. 図8のIX-IX線に沿った断面図である。FIG. 9 is a cross-sectional view taken along line IX-IX in FIG. 8. この発明の実施の形態3による巻上機を示す縦断面図である。It is a longitudinal cross-sectional view which shows the winding machine by Embodiment 3 of this invention. 図10のXI-XI線に沿った断面図である。FIG. 11 is a sectional view taken along line XI-XI in FIG. 10. この発明の実施の形態4による巻上機を示す縦断面図である。It is a longitudinal cross-sectional view which shows the winding machine by Embodiment 4 of this invention. 図12のXIII-XIII線に沿った断面図である。FIG. 13 is a cross-sectional view taken along line XIII-XIII in FIG. この発明の実施の形態5による巻上機を示す縦断面図である。It is a longitudinal cross-sectional view which shows the winding machine by Embodiment 5 of this invention. 図14のXV-XV線に沿った断面図である。FIG. 15 is a cross-sectional view taken along line XV-XV in FIG. 14. 図14の矢印XVIに沿って見たときのステータを示す図である。It is a figure which shows a stator when it sees along the arrow XVI of FIG. 図15のステータの要部を示す拡大図である。It is an enlarged view which shows the principal part of the stator of FIG. この発明の実施の形態6による巻上機を示す縦断面図である。It is a longitudinal cross-sectional view which shows the winding machine by Embodiment 6 of this invention. 図18の矢印XIXに沿って見たときのステータを示す図である。It is a figure which shows a stator when it sees along the arrow XIX of FIG. 図19の制振部材を示す斜視図である。It is a perspective view which shows the damping member of FIG. この発明の実施の形態7による巻上機を示す縦断面図である。It is a longitudinal cross-sectional view which shows the winding machine by Embodiment 7 of this invention. 図21の矢印XXIIに沿って見たときのステータを示す図である。It is a figure which shows a stator when it sees along the arrow XXII of FIG. 図22の制振部材を示す斜視図である。It is a perspective view which shows the damping member of FIG.
 以下、この発明の好適な実施の形態について図面を参照して説明する。
 実施の形態1.
 図1は、この発明の実施の形態1によるエレベータを示す構成図である。図において、昇降路1内には、かご2及び釣合おもり3が昇降可能に設けられている。昇降路1の上部には、機械室4が設けられている。機械室4には、かご2及び釣合おもり3を昇降路1内で昇降させる駆動力を発生する巻上機(エレベータ用巻上機)5と、そらせ車6とが設けられている。
Preferred embodiments of the present invention will be described below with reference to the drawings.
Embodiment 1 FIG.
1 is a block diagram showing an elevator according to Embodiment 1 of the present invention. In the figure, a car 2 and a counterweight 3 are provided in the hoistway 1 so as to be able to move up and down. A machine room 4 is provided in the upper part of the hoistway 1. The machine room 4 is provided with a hoisting machine (elevator hoisting machine) 5 that generates a driving force for raising and lowering the car 2 and the counterweight 3 in the hoistway 1, and a baffle 6.
 巻上機5は、巻上機本体7と、巻上機本体7の駆動力により回転される駆動シーブ8と、機械室4内に固定され巻上機本体7及び駆動シーブ8を支持する支持台9とを有している。そらせ車6は、駆動シーブ8から離して配置されている。かご2及び釣合おもり3は、駆動シーブ8及びそらせ車6に巻き掛けられた複数の索状体(吊体)10により昇降路1内に吊り下げられている。索状体10としては、例えばロープやベルト等が用いられている。かご2及び釣合おもり3は、駆動シーブ8の回転により昇降路1内を昇降される。 The hoisting machine 5 includes a hoisting machine main body 7, a driving sheave 8 that is rotated by the driving force of the hoisting machine main body 7, and a support that is fixed in the machine room 4 and supports the hoisting machine main body 7 and the driving sheave 8. It has a table 9. The baffle wheel 6 is arranged away from the drive sheave 8. The car 2 and the counterweight 3 are suspended in the hoistway 1 by a plurality of cord-like bodies (suspended bodies) 10 wound around the drive sheave 8 and the deflecting wheel 6. For example, a rope or a belt is used as the cord-like body 10. The car 2 and the counterweight 3 are moved up and down in the hoistway 1 by the rotation of the drive sheave 8.
 図2は、図1の巻上機5を示す縦断面図である。また、図3は、図2のIII-III線に沿った断面図である。図において、巻上機5は、その軸線を水平にして配置されている。支持台9は、水平に配置されたベース11と、巻上機5の軸線方向(即ち、水平方向)へ互いに離して配置され、ベース11の上面にそれぞれ固定された第1の支持部12及び第2の支持部13とを有している。 FIG. 2 is a longitudinal sectional view showing the hoist 5 of FIG. FIG. 3 is a sectional view taken along line III-III in FIG. In the figure, the hoisting machine 5 is arranged with its axis line horizontal. The support base 9 includes a first base portion 12 and a first support portion 12 which are disposed apart from each other in the axial direction of the hoisting machine 5 (that is, the horizontal direction) and fixed to the upper surface of the base 11. And a second support portion 13.
 巻上機本体7は、巻上機5の軸線方向に沿って配置された回転軸21と、回転軸21を回転させる駆動力を発生するモータ22と、モータ22に設けられ、モータ22の騒音を抑制するための変形抑制体23と、モータ22を覆うカバー24とを有している。 The hoisting machine main body 7 is provided on the rotating shaft 21 arranged along the axial direction of the hoisting machine 5, the motor 22 that generates a driving force for rotating the rotating shaft 21, and the noise of the motor 22. A deformation suppression body 23 for suppressing the motor 22 and a cover 24 covering the motor 22.
 回転軸21は、第1の支持部12及び第2の支持部13のそれぞれに軸受(図示せず)を介して回転自在に支持されている。また、回転軸21は、第1の支持部12及び第2の支持部13を貫通している。駆動シーブ8は、第1の支持部12と第2の支持部13との間の空間に配置された状態で回転軸21に固定されている。これにより、駆動シーブ8は、回転軸21と一体に回転される。 The rotary shaft 21 is rotatably supported on each of the first support portion 12 and the second support portion 13 via a bearing (not shown). The rotating shaft 21 passes through the first support portion 12 and the second support portion 13. The drive sheave 8 is fixed to the rotating shaft 21 in a state of being disposed in a space between the first support portion 12 and the second support portion 13. As a result, the drive sheave 8 is rotated integrally with the rotary shaft 21.
 モータ22は、巻上機5の軸線方向について、第1の支持部12からみて駆動シーブ8側と反対側に設けられている。また、モータ22は、回転軸21を囲む円筒状のステータ25と、ステータ25の内側に所定の隙間を介して配置され、回転軸21に固定されたロータ26とを有している。 The motor 22 is provided on the side opposite to the drive sheave 8 side in the axial direction of the hoisting machine 5 when viewed from the first support portion 12. The motor 22 includes a cylindrical stator 25 that surrounds the rotating shaft 21, and a rotor 26 that is disposed inside the stator 25 via a predetermined gap and is fixed to the rotating shaft 21.
 ステータ25は、ステータ25の軸線方向一端部が第1の支持部12に固定された状態で、回転軸21と同軸に配置されている。また、ステータ25は、ロータ26を囲む円筒状のステータコア27と、ステータコア27に設けられた複数のステータコイル28と、ステータコア27の外周部に固定された金属製のステータ固定部材29とを有している。ステータコア27は、複数枚の鋼板を積層して構成された積層体である。各ステータコイル28は、回転軸21の軸線方向へ一部をステータコア27から突出させた状態でステータコア27に設けられている。 The stator 25 is arranged coaxially with the rotary shaft 21 in a state where one end of the stator 25 in the axial direction is fixed to the first support portion 12. The stator 25 has a cylindrical stator core 27 surrounding the rotor 26, a plurality of stator coils 28 provided on the stator core 27, and a metal stator fixing member 29 fixed to the outer peripheral portion of the stator core 27. ing. The stator core 27 is a laminated body configured by laminating a plurality of steel plates. Each stator coil 28 is provided on the stator core 27 in a state in which a part thereof protrudes from the stator core 27 in the axial direction of the rotating shaft 21.
 ステータ固定部材29は、ステータコア27の軸線方向一端部(ステータコア27の軸線方向両端部のうち、第1の支持部12に近い側の端部)における外周部に固定された円筒状の第1の外周リング30と、ステータコア27の軸線方向他端部(ステータコア27の軸線方向両端部のうち、第1の支持部12から遠い側の端部)における外周部に固定された第2の外周リング31と、第1及び第2の外周リング30,31間を繋ぎ、ステータ25の周方向へ互いに間隔を置いて配置された複数の繋ぎ部材32とを有している。第1の外周リング30、第2の外周リング31及び各繋ぎ部材32のそれぞれは、ステータコア27に例えば溶接等により固定されている。 The stator fixing member 29 is a cylindrical first member fixed to the outer peripheral portion of one end portion in the axial direction of the stator core 27 (the end portion on the side closer to the first support portion 12 of both axial end portions of the stator core 27). The outer peripheral ring 30 and the second outer peripheral ring 31 fixed to the outer peripheral portion of the other end in the axial direction of the stator core 27 (the end on the side farther from the first support portion 12 among the both ends in the axial direction of the stator core 27). And a plurality of connecting members 32 that connect the first and second outer peripheral rings 30 and 31 and are spaced apart from each other in the circumferential direction of the stator 25. Each of the first outer ring 30, the second outer ring 31, and each connecting member 32 is fixed to the stator core 27 by, for example, welding.
 第1の支持部12のモータ22側の側面(即ち、第1の支持部12の駆動シーブ8側と反対側の側面)には、第1の外周リング30が複数のボルト33により固定されている。ステータ25は、第1の外周リング30が第1の支持部12に固定された状態で第1の支持部12に支持されている。ステータ25の下方には、ベース11が配置されている。 A first outer peripheral ring 30 is fixed by a plurality of bolts 33 to the side surface of the first support portion 12 on the motor 22 side (that is, the side surface opposite to the drive sheave 8 side of the first support portion 12). Yes. The stator 25 is supported by the first support portion 12 in a state where the first outer peripheral ring 30 is fixed to the first support portion 12. A base 11 is disposed below the stator 25.
 ロータ26は、ステータ25と同軸に配置されている。また、ロータ26は、回転軸21に固定されたロータコア34と、ロータコア34に設けられ、ロータコア34の周方向へ並べられた複数の永久磁石35とを有している。ロータコア34は、鋳物等で構成されている。 The rotor 26 is arranged coaxially with the stator 25. The rotor 26 includes a rotor core 34 fixed to the rotating shaft 21 and a plurality of permanent magnets 35 provided on the rotor core 34 and arranged in the circumferential direction of the rotor core 34. The rotor core 34 is made of a casting or the like.
 ステータ25は、ステータコイル28への通電により回転磁界を発生する。ロータ26及び回転軸21は、ステータ25が発生する回転磁界によってステータ25に対して回転する。駆動シーブ8は、回転軸21及びロータ26の回転によって回転される。 The stator 25 generates a rotating magnetic field by energizing the stator coil 28. The rotor 26 and the rotating shaft 21 are rotated with respect to the stator 25 by a rotating magnetic field generated by the stator 25. The drive sheave 8 is rotated by the rotation of the rotating shaft 21 and the rotor 26.
 ステータコイル28への通電によってロータ26が回転するときには、ステータコア27と永久磁石35との間に発生する電磁力によって、モータ22の径方向への加振力をステータ25が受ける。ステータ25が加振力を受けると、ステータ25の径方向の寸法が変化する弾性変形がステータ25に生じやすくなり、ステータ25の弾性変形による振動がステータ25に発生しやすくなる。 When the rotor 26 is rotated by energizing the stator coil 28, the stator 25 receives the exciting force in the radial direction of the motor 22 by the electromagnetic force generated between the stator core 27 and the permanent magnet 35. When the stator 25 receives an excitation force, elastic deformation in which the radial dimension of the stator 25 changes easily occurs in the stator 25, and vibration due to elastic deformation of the stator 25 is likely to occur in the stator 25.
 変形抑制体23は、カバー24の底部に設けられた開口部を通してステータ25及びベース11間に連結されている。また、変形抑制体23は、ステータ25の軸線方向他端部に位置する第2の外周リング31に固定された制振部材41と、制振部材41が固定されているとともに、ベース11に固定された受け板(受け部材)42とを有している。この例では、制振部材41及び受け板42が鋳物であり、弾性変形しない金属製の剛体となっている。 The deformation suppressing body 23 is connected between the stator 25 and the base 11 through an opening provided at the bottom of the cover 24. Further, the deformation suppressing body 23 is fixed to the base 11 while the vibration damping member 41 is fixed to the second outer peripheral ring 31 located at the other axial end of the stator 25, and the vibration damping member 41 is fixed. And a receiving plate (receiving member) 42. In this example, the damping member 41 and the receiving plate 42 are castings, and are metal rigid bodies that are not elastically deformed.
 ステータ25の軸線に沿ってステータ25及び変形抑制体23を見たときの制振部材41及び受け板42の幅方向寸法は、図3に示すように、ステータ25の外径寸法とほぼ同じになっている。また、制振部材41の上面の形状は、第2の外周リング31に沿った円弧状になっている。制振部材41の上部は、制振部材41の上面を第2の外周リング31の周方向に合わせて第2の外周リング31の側面に複数のボルト43で固定されている。各ボルト43は、第2の外周リング31の周方向へ互いに間隔を置いて設けられている。これにより、ステータ25の径方向の寸法が変化するステータ25の弾性変形が抑制される。 The width direction dimensions of the damping member 41 and the receiving plate 42 when the stator 25 and the deformation suppressing body 23 are viewed along the axis of the stator 25 are substantially the same as the outer diameter of the stator 25 as shown in FIG. It has become. The shape of the upper surface of the vibration damping member 41 is an arc shape along the second outer peripheral ring 31. The upper part of the damping member 41 is fixed to the side surface of the second outer ring 31 with a plurality of bolts 43 with the upper surface of the damping member 41 aligned with the circumferential direction of the second outer ring 31. The bolts 43 are provided at intervals in the circumferential direction of the second outer peripheral ring 31. Thereby, the elastic deformation of the stator 25 in which the radial dimension of the stator 25 changes is suppressed.
 受け板42は、複数のボルト44によってベース11に水平に固定されている。制振部材41の下端部は、複数のボルト45によって受け板42の上面に固定されている。これにより、ベース11に対するステータ25の振動が抑制される。カバー24は、第1の支持部12にボルト等で取り付けられている。 The receiving plate 42 is horizontally fixed to the base 11 with a plurality of bolts 44. The lower end portion of the damping member 41 is fixed to the upper surface of the receiving plate 42 by a plurality of bolts 45. Thereby, the vibration of the stator 25 with respect to the base 11 is suppressed. The cover 24 is attached to the first support portion 12 with bolts or the like.
 次に、動作について説明する。ステータコイル28への通電によりステータ25が回転磁界を発生すると、ロータ26がステータ25に対して回転する。これにより、駆動シーブ8が回転し、かご2及び釣合おもり3が昇降路1内を昇降される。 Next, the operation will be described. When the stator 25 generates a rotating magnetic field by energizing the stator coil 28, the rotor 26 rotates with respect to the stator 25. As a result, the drive sheave 8 rotates and the car 2 and the counterweight 3 are raised and lowered in the hoistway 1.
 ロータ26がステータ25に対して回転されるときには、ステータ25とロータ26との間に発生する電磁力により、モータ22の径方向への加振力をステータ25が受ける。このとき、ロータ26の回転速度が高くなるに従って、ステータ25とロータ26との間の電磁力による加振周波数も高くなる。 When the rotor 26 is rotated with respect to the stator 25, the stator 25 receives an exciting force in the radial direction of the motor 22 by an electromagnetic force generated between the stator 25 and the rotor 26. At this time, as the rotational speed of the rotor 26 increases, the excitation frequency due to the electromagnetic force between the stator 25 and the rotor 26 also increases.
 加振周波数が高くなって巻上機5及び支持台9のそれぞれの構成要素(例えばステータ25や第1の支持部12等)の共振周波数に加振周波数が近くなると、ステータ25及び第1の支持部12が弾性変形しやすくなる。特に、低次の振動モード(例えば、楕円モード(二次の振動モード)又は三角形モード(三次の振動モード)等)でステータ25が弾性変形しながら振動すると、ステータ25の変形量が大きくなって、ステータ25の弾性変形による振動の騒音が大きくなりやすくなる。また、ステータ25の弾性変形による振動は、第1の支持部12に近いステータ25の軸線方向一端部よりも、第1の支持部12から離れたステータ25の軸線方向他端部のほうが大きくなりやすい。 When the excitation frequency becomes high and the excitation frequency becomes close to the resonance frequency of each component of the hoisting machine 5 and the support base 9 (for example, the stator 25 and the first support portion 12), the stator 25 and the first The support portion 12 is easily elastically deformed. In particular, when the stator 25 vibrates while being elastically deformed in a low-order vibration mode (for example, an elliptical mode (secondary vibration mode) or a triangular mode (third-order vibration mode)), the deformation amount of the stator 25 increases. The noise of vibration due to the elastic deformation of the stator 25 tends to increase. Further, the vibration due to the elastic deformation of the stator 25 is larger at the other axial end portion of the stator 25 away from the first support portion 12 than at one axial end portion of the stator 25 near the first support portion 12. Cheap.
 図4及び図5は楕円モードで振動する図3のステータ25の弾性変形の状態を示す模式図、図6及び図7は三角形モードで振動する図3のステータ25の弾性変形の状態を示す模式図である。図4~図7に示すように、モータ22の径方向への加振力を受けながらステータ25が振動している状態では、ステータ25の径方向の寸法が変化する弾性変形(図4~図7の実線で示す形状)がステータ25に生じる。また、振動の腹の位置(即ち、ステータ25の振動によってステータ25の径方向外側へ最も大きく弾性変形しているステータ25の部分の位置)は、各次の振動モードごとに決まっている。 4 and 5 are schematic views showing the state of elastic deformation of the stator 25 of FIG. 3 that vibrates in the elliptical mode, and FIGS. 6 and 7 are schematic views showing the state of elastic deformation of the stator 25 of FIG. 3 that vibrates in the triangular mode. FIG. As shown in FIGS. 4 to 7, when the stator 25 vibrates while receiving the exciting force in the radial direction of the motor 22, the elastic deformation in which the radial dimension of the stator 25 changes (FIGS. 4 to 5). 7 is generated in the stator 25. Further, the position of the antinode of vibration (that is, the position of the portion of the stator 25 that is most elastically deformed radially outward of the stator 25 by the vibration of the stator 25) is determined for each next vibration mode.
 ステータ25が振動して、ステータ25の径方向の寸法が変化する弾性変形がステータ25に生じると、ステータ25の通常の形状(円筒状)が維持されるように制振部材41からステータ25に力が加わり、ステータ25の弾性変形の増大が抑制される。また、ベース11に固定された受け板42で制振部材41を受けることにより、ベース11に対するステータ25の振動も抑制される。 When the stator 25 vibrates and elastic deformation in which the radial dimension of the stator 25 changes occurs in the stator 25, the damping member 41 changes from the damping member 41 to the stator 25 so that the normal shape (cylindrical shape) of the stator 25 is maintained. A force is applied, and an increase in elastic deformation of the stator 25 is suppressed. Further, the vibration of the stator 25 with respect to the base 11 is also suppressed by receiving the damping member 41 by the receiving plate 42 fixed to the base 11.
 このような巻上機5では、ステータ25に設けられた制振部材41を有する変形抑制体23によって、ステータ25の径方向の寸法が変化するステータ25の弾性変形が抑制されるので、ステータ25自体の弾性変形による振動を効果的に抑制することができる。これにより、モータ22の振動による騒音をより確実に低減することができる。 In such a hoisting machine 5, since the deformation suppressing body 23 having the damping member 41 provided on the stator 25 suppresses elastic deformation of the stator 25 in which the radial dimension of the stator 25 changes, the stator 25 Vibration due to its own elastic deformation can be effectively suppressed. Thereby, the noise by the vibration of the motor 22 can be reduced more reliably.
 また、変形抑制体23は、ベース11及びステータ25間に連結されているので、ステータ25自体の弾性変形による振動だけでなく、ベース11に対するステータ25の振動も抑制することができる。これにより、モータ22の振動による騒音をさらに確実に低減することができる。 Further, since the deformation suppressing body 23 is connected between the base 11 and the stator 25, not only vibration due to elastic deformation of the stator 25 itself but also vibration of the stator 25 relative to the base 11 can be suppressed. Thereby, noise due to vibration of the motor 22 can be further reliably reduced.
 なお、上記の例では、制振部材41が受け板42を介してベース11に固定されているが、受け板42をなくして、受け板42を介さずに制振部材41をベース11にボルト等で直接固定してもよい。 In the above example, the damping member 41 is fixed to the base 11 via the receiving plate 42, but the receiving plate 42 is eliminated and the damping member 41 is bolted to the base 11 without the receiving plate 42. It may be fixed directly with, for example.
 実施の形態2.
 図8は、この発明の実施の形態2による巻上機5を示す縦断面図である。また、図9は、図8のIX-IX線に沿った断面図である。変形抑制体23は、実施の形態1と同様に、カバー24の底部に設けられた開口部を通してステータ25及びベース11間に連結されている。また、変形抑制体23は、ステータ25の軸線方向他端部に位置する第2の外周リング31に固定された複数(この例では、2つ)の制振部材51と、各制振部材51が固定されているとともに、複数のボルト44でベース11に固定された共通の受け板(受け部材)52とを有している。受け板52の構成は、実施の形態1の受け板42の構成と同様である。
Embodiment 2. FIG.
FIG. 8 is a longitudinal sectional view showing a hoisting machine 5 according to Embodiment 2 of the present invention. FIG. 9 is a sectional view taken along line IX-IX in FIG. The deformation suppression body 23 is connected between the stator 25 and the base 11 through an opening provided at the bottom of the cover 24 as in the first embodiment. Further, the deformation suppressing body 23 includes a plurality of (two in this example) damping members 51 fixed to the second outer peripheral ring 31 positioned at the other axial end of the stator 25, and each damping member 51. And a common receiving plate (receiving member) 52 fixed to the base 11 with a plurality of bolts 44. The configuration of the receiving plate 52 is the same as the configuration of the receiving plate 42 of the first embodiment.
 各制振部材51は、ステータ25の周方向について互いに離して配置されている。この例では、各制振部材51が、ステータ25の軸線方向に対して垂直な平面上で水平方向へ互いに離して配置されている。また、各制振部材51は、ステータ25の軸線方向に沿ってステータ25を見たとき、ステータ25の軸線に対して左右に配置されている。各制振部材51の上端部は、第2の外周リング31の外周面にボルト53で個別に固定されている。各制振部材51の下端部は、受け板52の上面にボルト54で個別に固定されている。 The vibration damping members 51 are arranged apart from each other in the circumferential direction of the stator 25. In this example, the vibration damping members 51 are arranged apart from each other in the horizontal direction on a plane perpendicular to the axial direction of the stator 25. Further, each damping member 51 is arranged on the left and right with respect to the axis of the stator 25 when the stator 25 is viewed along the axis of the stator 25. The upper end portions of the vibration damping members 51 are individually fixed to the outer peripheral surface of the second outer peripheral ring 31 with bolts 53. The lower end portions of the vibration damping members 51 are individually fixed to the upper surface of the receiving plate 52 with bolts 54.
 各制振部材51は、図8に示すように、第2の外周リング31に固定された上部接続プレート(接続部材)511と、受け板52に固定された下部接続プレート(接続部材)512と、粘性及び弾性を持ち、上部接続プレート511と下部接続プレート512との間に挟まれた粘弾性体513とを有している。 As shown in FIG. 8, each damping member 51 includes an upper connection plate (connection member) 511 fixed to the second outer peripheral ring 31, and a lower connection plate (connection member) 512 fixed to the receiving plate 52. And viscoelastic body 513 having viscosity and elasticity and sandwiched between upper connection plate 511 and lower connection plate 512.
 上部接続プレート511及び下部接続プレート512は、上部接続プレート511の下部と下部接続プレート512の上部とを回転軸21の軸線方向について対向させた状態で配置されている。粘弾性体513は、上部接続プレート511の下部と下部接続プレート512の上部との間に回転軸21の軸線方向について挟まれている。上部接続プレート511及び下部接続プレート512は、粘弾性体513を介して互いに接続されている。この例では、粘弾性体513は、上部接続プレート511及び下部接続プレート512に接着剤で固定されている。粘弾性体513を構成する材料としては、例えばゴム又は樹脂等が挙げられる。ステータ25の径方向の寸法が変化するステータ25の弾性変形は、主に粘弾性体513の粘弾性変形によって抑制される。他の構成は、実施の形態1と同様である。 The upper connection plate 511 and the lower connection plate 512 are arranged in a state where the lower part of the upper connection plate 511 and the upper part of the lower connection plate 512 are opposed to each other in the axial direction of the rotary shaft 21. The viscoelastic body 513 is sandwiched between the lower part of the upper connection plate 511 and the upper part of the lower connection plate 512 in the axial direction of the rotary shaft 21. The upper connection plate 511 and the lower connection plate 512 are connected to each other via a viscoelastic body 513. In this example, the viscoelastic body 513 is fixed to the upper connection plate 511 and the lower connection plate 512 with an adhesive. Examples of the material constituting the viscoelastic body 513 include rubber or resin. The elastic deformation of the stator 25 in which the radial dimension of the stator 25 changes is mainly suppressed by the viscoelastic deformation of the viscoelastic body 513. Other configurations are the same as those in the first embodiment.
 このような巻上機5では、第2の外周リング31及びベース11間に変形抑制体23が連結され、変形抑制体23に含まれる制振部材51が、上部接続プレート511と、下部接続プレート512と、上部接続プレート511と下部接続プレート512との間に挟まれた粘弾性体513とを有しているので、ステータ25の弾性変形による振動を粘弾性体513の粘弾性変形によって吸収させることができ、ステータ25の径方向の寸法が変化するステータ25の弾性変形を簡単な構成でかつ効果的に抑制することができる。 In such a hoisting machine 5, the deformation suppressing body 23 is coupled between the second outer peripheral ring 31 and the base 11, and the damping member 51 included in the deformation suppressing body 23 includes an upper connection plate 511 and a lower connection plate. 512, and the viscoelastic body 513 sandwiched between the upper connection plate 511 and the lower connection plate 512, the vibration due to the elastic deformation of the stator 25 is absorbed by the viscoelastic deformation of the viscoelastic body 513. In addition, the elastic deformation of the stator 25 in which the radial dimension of the stator 25 changes can be effectively suppressed with a simple configuration.
 なお、上記の例では、制振部材51の数が2つであるが、制振部材51の数を、1つとしてもよいし、3つ以上としてもよい。 In the above example, the number of damping members 51 is two, but the number of damping members 51 may be one, or may be three or more.
 実施の形態3.
 図10は、この発明の実施の形態3による巻上機5を示す縦断面図である。また、図11は、図10のXI-XI線に沿った断面図である。変形抑制体23は、ステータ25及びベース11間に連結された複数(この例では、2つ)の金属製の制振部材61を有している。この例では、ステータ25の軸線方向に沿ってステータ25を見たとき、一方及び他方の制振部材61がステータ25の軸線に対して左右両側に配置されている。
Embodiment 3 FIG.
FIG. 10 is a longitudinal sectional view showing a hoisting machine 5 according to Embodiment 3 of the present invention. FIG. 11 is a cross-sectional view taken along line XI-XI in FIG. The deformation suppressing body 23 has a plurality of (in this example, two) metal damping members 61 connected between the stator 25 and the base 11. In this example, when the stator 25 is viewed along the axial direction of the stator 25, one and the other damping members 61 are disposed on both the left and right sides with respect to the axial line of the stator 25.
 各制振部材61は、図11に示すように、ベース11の上面にボルト44で固定されたベース側固定部61aと、ベース側固定部61aから第2の外周リング31の周方向へ延びるステータ側固定部61bとを有している。各ステータ側固定部61bは、第2の外周リング31の外周面に接触している。この例では、図10に示すように、各制振部材61がステータ25の軸線方向の範囲全体にわたって配置されている。従って、この例では、各制振部材61が、第2の外周リング31の外周面だけでなく第1の外周リング30の外周面にもステータ側固定部61bを接触させた状態で、ステータ25とベース11との間に配置されている。各ステータ側固定部61bは、第2の外周リング31にボルト62で固定されている。他の構成は、実施の形態1と同様である。 As shown in FIG. 11, each damping member 61 includes a base-side fixing portion 61a fixed to the upper surface of the base 11 with a bolt 44, and a stator extending in the circumferential direction of the second outer peripheral ring 31 from the base-side fixing portion 61a. Side fixing part 61b. Each stator side fixing portion 61 b is in contact with the outer peripheral surface of the second outer peripheral ring 31. In this example, as shown in FIG. 10, each damping member 61 is disposed over the entire axial range of the stator 25. Therefore, in this example, each damping member 61 is in a state where the stator side fixing portion 61b is in contact with not only the outer peripheral surface of the second outer peripheral ring 31 but also the outer peripheral surface of the first outer peripheral ring 30. And the base 11. Each stator side fixing portion 61 b is fixed to the second outer peripheral ring 31 with a bolt 62. Other configurations are the same as those in the first embodiment.
 このように、制振部材61がステータ25及びベース11のそれぞれに直接固定されていても、ステータ25の径方向の寸法が変化するステータ25の弾性変形を制振部材61によって抑制することができ、ステータ25自体の弾性変形による振動を効果的に抑制することができる。 Thus, even if the damping member 61 is directly fixed to each of the stator 25 and the base 11, the damping member 61 can suppress elastic deformation of the stator 25 in which the radial dimension of the stator 25 changes. In addition, vibration due to elastic deformation of the stator 25 itself can be effectively suppressed.
 なお、上記の例では、各制振部材61のステータ側固定部61bが第1の外周リング30及び第2の外周リング31のそれぞれに接触しているが、第2の外周リング31の外周面にのみ各制振部材61のステータ側固定部61bを接触させてもよい。 In the above example, the stator side fixing portion 61b of each damping member 61 is in contact with each of the first outer peripheral ring 30 and the second outer peripheral ring 31, but the outer peripheral surface of the second outer peripheral ring 31. Only the stator-side fixing portion 61b of each damping member 61 may be brought into contact with each other.
 また、上記の例では、制振部材61の数が2つであるが、制振部材61の数を、1つとしてもよいし、3つ以上としてもよい。 In the above example, the number of damping members 61 is two. However, the number of damping members 61 may be one, or may be three or more.
 実施の形態4.
 図12は、この発明の実施の形態4による巻上機5を示す縦断面図である。また、図13は、図12のXIII-XIII線に沿った断面図である。変形抑制体23は、ステータ25の軸線方向他端部に位置する第2の外周リング31に固定された複数(この例では、2つ)のオイルダンパ(制振部材)65と、各オイルダンパ65が固定されているとともに、複数のボルト44でベース11に固定された共通の受け板(受け部材)66とを有している。受け板66の構成は、実施の形態1の受け板42の構成と同様である。また、この例では、ステータ25の軸線方向に沿ってステータ25を見たとき、一方及び他方のオイルダンパ65がステータ25の軸線に対して左右両側に配置されている。さらに、この例では、図13に示すように、各オイルダンパ65の軸線方向がステータ25の径方向となるように各オイルダンパ65が配置されている。
Embodiment 4 FIG.
FIG. 12 is a longitudinal sectional view showing a hoisting machine 5 according to Embodiment 4 of the present invention. FIG. 13 is a cross-sectional view taken along line XIII-XIII in FIG. The deformation suppressing body 23 includes a plurality of (in this example, two) oil dampers (vibration control members) 65 fixed to the second outer peripheral ring 31 positioned at the other axial end of the stator 25, and each oil damper. 65 and a common receiving plate (receiving member) 66 fixed to the base 11 with a plurality of bolts 44. The configuration of the receiving plate 66 is the same as the configuration of the receiving plate 42 of the first embodiment. Further, in this example, when the stator 25 is viewed along the axial direction of the stator 25, one and the other oil dampers 65 are disposed on both the left and right sides with respect to the axis of the stator 25. Further, in this example, as shown in FIG. 13, the oil dampers 65 are arranged so that the axial direction of the oil dampers 65 is the radial direction of the stator 25.
 変形抑制体23では、各オイルダンパ65の上端部が第2の外周リング31の外周面に固定され、各オイルダンパ65の下端部が受け板66の上面に固定されている。各オイルダンパ65は、オイルダンパ65内のオイルの抵抗力を受けながら伸縮される。各オイルダンパ65には、図12に示すように、各オイルダンパ65の減衰力を制御するダンパ制御部67が接続されている。第2の外周リング31には、ステータ25の振動を検出する振動センサ68が設けられている。振動センサ68からの情報は、ダンパ制御部67へ送られる。ダンパ制御部67は、振動センサ68からの情報に基づいて、振動センサ68で検出した振動を抑制する方向へ各オイルダンパ65の減衰力を制御する。他の構成は、実施の形態1と同様である。 In the deformation suppressing body 23, the upper end portion of each oil damper 65 is fixed to the outer peripheral surface of the second outer peripheral ring 31, and the lower end portion of each oil damper 65 is fixed to the upper surface of the receiving plate 66. Each oil damper 65 is expanded and contracted while receiving the resistance force of the oil in the oil damper 65. As shown in FIG. 12, each oil damper 65 is connected to a damper control unit 67 that controls the damping force of each oil damper 65. The second outer peripheral ring 31 is provided with a vibration sensor 68 that detects the vibration of the stator 25. Information from the vibration sensor 68 is sent to the damper controller 67. The damper control unit 67 controls the damping force of each oil damper 65 in a direction to suppress the vibration detected by the vibration sensor 68 based on information from the vibration sensor 68. Other configurations are the same as those in the first embodiment.
 このような巻上機5では、第2の外周リング31及びベース11間に変形抑制体23が連結され、変形抑制体23に含まれる制振部材がオイルダンパ65であるので、ステータ25の弾性変形による振動をオイルダンパ65の抵抗力によって減衰させることができ、ステータ25の径方向の寸法が変化するステータ25の弾性変形を簡単な構成でかつ効果的に抑制することができる。 In such a hoisting machine 5, the deformation suppressing body 23 is connected between the second outer peripheral ring 31 and the base 11, and the vibration damping member included in the deformation suppressing body 23 is the oil damper 65. The vibration due to the deformation can be attenuated by the resistance force of the oil damper 65, and the elastic deformation of the stator 25 in which the radial dimension of the stator 25 changes can be effectively suppressed with a simple configuration.
 また、振動センサ68が第2の外周リング31に設けられ、ダンパ制御部67が、振動センサ68で検出した振動を抑制する方向へオイルダンパ65の減衰力を制御するので、ステータ25の弾性変形による振動をさらに確実に抑制することができる。 Further, since the vibration sensor 68 is provided on the second outer peripheral ring 31 and the damper control unit 67 controls the damping force of the oil damper 65 in a direction to suppress the vibration detected by the vibration sensor 68, the elastic deformation of the stator 25 is performed. The vibration due to can be further reliably suppressed.
 なお、上記の例では、オイルダンパ65の減衰力が、振動センサ68からの情報に基づいてダンパ制御部67によって制御されているが、オイルダンパ65の減衰力を制御しなくてもステータ25の弾性変形を抑制することができるので、振動センサ68及びダンパ制御部67はなくてもよい。 In the above example, the damping force of the oil damper 65 is controlled by the damper control unit 67 based on information from the vibration sensor 68. However, the damping force of the stator 25 can be controlled without controlling the damping force of the oil damper 65. Since elastic deformation can be suppressed, the vibration sensor 68 and the damper control unit 67 may not be provided.
 また、上記の例では、オイルダンパ65の数が2つであるが、オイルダンパ65の数を、1つとしてもよいし、3つ以上としてもよい。 In the above example, the number of oil dampers 65 is two, but the number of oil dampers 65 may be one, or may be three or more.
 実施の形態5.
 図14は、この発明の実施の形態5による巻上機5を示す縦断面図である。また、図15は図14のXV-XV線に沿った断面図、図16は図14の矢印XVIに沿って見たときのステータ25を示す図である。さらに、図17は、図15のステータ25の要部を示す拡大図である。変形抑制体23は、図14及び図16に示すように、第1の外周リング30の外周部を囲む第1の制振部材71と、第2の外周リング31の外周部を囲む第2の制振部材72とを有している。第1及び第2の制振部材71,72のそれぞれは、図15及び図17に示すように、ステータ25の周方向へ並ぶ複数の制振用構成部材701を有している。
Embodiment 5 FIG.
FIG. 14 is a longitudinal sectional view showing a hoisting machine 5 according to Embodiment 5 of the present invention. 15 is a cross-sectional view taken along the line XV-XV in FIG. 14, and FIG. 16 is a view showing the stator 25 when viewed along the arrow XVI in FIG. Further, FIG. 17 is an enlarged view showing a main part of the stator 25 of FIG. As shown in FIGS. 14 and 16, the deformation suppressing body 23 includes a first damping member 71 that surrounds the outer peripheral portion of the first outer peripheral ring 30, and a second second member that surrounds the outer peripheral portion of the second outer peripheral ring 31. And a vibration damping member 72. Each of the first and second vibration damping members 71 and 72 includes a plurality of vibration damping component members 701 arranged in the circumferential direction of the stator 25 as shown in FIGS. 15 and 17.
 第1の制振部材71では、互いに隣り合う2つの制振用構成部材701の一部同士がステータ25の径方向について重なっている。また、第1の制振部材71では、互いに隣り合う制振用構成部材701同士の重なった部分をボルト73でまとめて締結することにより、各制振用構成部材701が第1の外周リング30に固定されている。 In the first vibration damping member 71, a part of two adjacent vibration damping structural members 701 overlap each other in the radial direction of the stator 25. Further, in the first vibration damping member 71, the vibration damping structural members 701 are fastened together by bolts 73 by fastening the overlapping portions of the vibration damping structural members 701 adjacent to each other. It is fixed to.
 第2の制振部材72では、互いに隣り合う2つの制振用構成部材701の一部同士がステータ25の径方向について重なっている。また、第2の制振部材72では、互いに隣り合う制振用構成部材701同士の重なった部分をボルト73でまとめて締結することにより、各制振用構成部材701が第2の外周リング31に固定されている。 In the second vibration damping member 72, a part of two adjacent vibration damping structural members 701 overlap each other in the radial direction of the stator 25. Further, in the second vibration damping member 72, the vibration damping component members 701 are fastened together with the bolts 73 by fastening the overlapping portions of the vibration damping component members 701 adjacent to each other so that each vibration damping component member 701 is in the second outer ring 31. It is fixed to.
 各制振用構成部材701は、金属製の第1の接続プレート(接続部材)702と、金属製の第2の接続プレート(接続部材)703と、粘性及び弾性を持ち、第1の接続プレート702と第2の接続プレート703との間に挟まれた粘弾性体704とを有している。 Each vibration damping component 701 has a first connection plate (connection member) 702 made of metal, a second connection plate (connection member) 703 made of metal, and viscosity and elasticity, and the first connection plate And viscoelastic body 704 sandwiched between 702 and second connection plate 703.
 第1及び第2の接続プレート702,703は、ステータ25の周方向に沿って配置されている。第1及び第2の接続プレート702,703のそれぞれの周方向一端部同士は、ステータ25の径方向について互いに対向している。 The first and second connection plates 702 and 703 are arranged along the circumferential direction of the stator 25. The circumferential end portions of the first and second connection plates 702 and 703 are opposed to each other in the radial direction of the stator 25.
 粘弾性体704は、第1の接続プレート702の周方向一端部と第2の接続プレート703の周方向一端部との間にステータ25の径方向について挟まれている。第1の接続プレート702及び第2の接続プレート703は、粘弾性体704を介して互いに接続されている。この例では、粘弾性体704は、第1の接続プレート702及び第2の接続プレート703に接着剤で固定されている。粘弾性体704を構成する材料としては、例えばゴム又は樹脂等が挙げられる。 The viscoelastic body 704 is sandwiched between the circumferential end of the first connection plate 702 and the circumferential end of the second connection plate 703 in the radial direction of the stator 25. The first connection plate 702 and the second connection plate 703 are connected to each other via a viscoelastic body 704. In this example, the viscoelastic body 704 is fixed to the first connection plate 702 and the second connection plate 703 with an adhesive. Examples of the material constituting the viscoelastic body 704 include rubber or resin.
 第1の制振部材71では、第1及び第2の接続プレート702,703のそれぞれの周方向他端部が第1の外周リング30にボルト73で固定されている。第2の制振部材72では、第1及び第2の接続プレート702,703のそれぞれの周方向他端部が第2の外周リング31にボルト73で固定されている。ステータ25の径方向の寸法が変化するステータ25の弾性変形は、第1及び第2の制振部材71,72のそれぞれにおける主に粘弾性体704の粘弾性変形によって抑制される。他の構成は、実施の形態1と同様である。 In the first vibration damping member 71, the other circumferential ends of the first and second connection plates 702 and 703 are fixed to the first outer ring 30 with bolts 73. In the second damping member 72, the other circumferential ends of the first and second connection plates 702 and 703 are fixed to the second outer ring 31 with bolts 73. The elastic deformation of the stator 25 in which the radial dimension of the stator 25 changes is suppressed mainly by the viscoelastic deformation of the viscoelastic body 704 in each of the first and second damping members 71 and 72. Other configurations are the same as those in the first embodiment.
 このような巻上機5では、第1及び第2の制振部材71,72がステータ25の外周部を囲んでいるので、ステータ25の径方向の寸法が変化するステータ25の弾性変形を部分的に相殺させながら、ステータ25の弾性変形による振動を効果的に抑制することができる。これにより、巻上機5の騒音をより確実に低減することができる。 In such a hoisting machine 5, since the first and second damping members 71 and 72 surround the outer periphery of the stator 25, the elastic deformation of the stator 25 in which the radial dimension of the stator 25 changes is partially Therefore, the vibration caused by the elastic deformation of the stator 25 can be effectively suppressed. Thereby, the noise of the hoisting machine 5 can be reduced more reliably.
 なお、上記の例では、第1及び第2の制振部材71,72のそれぞれがステータ25に設けられているが、第1及び第2の制振部材71,72のいずれかのみをステータ25に設けてもよい。 In the above example, each of the first and second damping members 71 and 72 is provided in the stator 25. However, only one of the first and second damping members 71 and 72 is provided in the stator 25. May be provided.
 実施の形態6.
 図18は、この発明の実施の形態6による巻上機5を示す縦断面図である。また、図19は、図18の矢印XIXに沿って見たときのステータ25を示す図である。変形抑制体23は、ステータ25の外周部に設けられた複数の制振部材81を有している。各制振部材81は、ステータ25の周方向について互いに間隔を置いて配置されている。また、各制振部材81は、ステータ25の軸線方向に沿って配置されている。
Embodiment 6 FIG.
FIG. 18 is a longitudinal sectional view showing a hoisting machine 5 according to Embodiment 6 of the present invention. FIG. 19 is a diagram showing the stator 25 when viewed along the arrow XIX in FIG. The deformation suppressing body 23 includes a plurality of vibration damping members 81 provided on the outer peripheral portion of the stator 25. The damping members 81 are arranged at intervals from each other in the circumferential direction of the stator 25. Further, each damping member 81 is disposed along the axial direction of the stator 25.
 各制振部材81の軸線方向一端部は図19に示すように、第1の外周リング30の外周面にボルト82で固定され、各制振部材81の軸線方向他端部は第2の外周リング31の外周面にボルト83で固定されている。これにより、各制振部材81は、ステータ25の軸線方向両端部を結んでいる。 As shown in FIG. 19, one end of each damping member 81 in the axial direction is fixed to the outer peripheral surface of the first outer ring 30 with a bolt 82, and the other end in the axial direction of each damping member 81 is the second outer periphery. It is fixed to the outer peripheral surface of the ring 31 with a bolt 83. Thereby, each damping member 81 connects both ends of the stator 25 in the axial direction.
 図20は、図19の制振部材81を示す斜視図である。制振部材81は、ステータ25の径方向について互いに対向するそれぞれ金属製の第1の接続プレート(接続部材)801及び第2の接続プレート(接続部材)802と、粘性及び弾性を持ち、第1の接続プレート801と第2の接続プレート802との間に挟まれた粘弾性体803とを有している。この例では、第2の接続プレート802が第1の接続プレート801よりもステータ25の径方向外側に位置している。また、この例では、第1の接続プレート801の全面に粘弾性体803が重なり、粘弾性体803の全面に第2の接続プレート802が重なっている。第1及び第2の接続プレート801,802は、粘弾性体803を介して互いに接続されている。この例では、粘弾性体803は、第1の接続プレート801及び第2の接続プレート802に接着剤で固定されている。粘弾性体803を構成する材料としては、例えばゴム又は樹脂等が挙げられる。他の構成は、実施の形態1と同様である。 FIG. 20 is a perspective view showing the vibration damping member 81 of FIG. The damping member 81 has a first connection plate (connection member) 801 and a second connection plate (connection member) 802 made of metal, which face each other in the radial direction of the stator 25, and have viscosity and elasticity. A viscoelastic body 803 sandwiched between the connection plate 801 and the second connection plate 802. In this example, the second connection plate 802 is located on the radially outer side of the stator 25 than the first connection plate 801. In this example, the viscoelastic body 803 overlaps the entire surface of the first connection plate 801, and the second connection plate 802 overlaps the entire surface of the viscoelastic body 803. The first and second connection plates 801 and 802 are connected to each other via a viscoelastic body 803. In this example, the viscoelastic body 803 is fixed to the first connection plate 801 and the second connection plate 802 with an adhesive. Examples of the material constituting the viscoelastic body 803 include rubber or resin. Other configurations are the same as those in the first embodiment.
 このような巻上機5では、各制振部材81がステータ25の軸線方向両端部を結んでいるので、ステータ25の軸線方向両端部のうち、第1の支持部12に固定された端部だけでなく、第1の支持部12から離れた端部においても、ステータ25の径方向の寸法が変化するステータ25の弾性変形を抑制することができる。 In such a hoisting machine 5, each damping member 81 connects both ends in the axial direction of the stator 25, so that the end fixed to the first support portion 12 among the both ends in the axial direction of the stator 25. In addition, elastic deformation of the stator 25 in which the radial dimension of the stator 25 changes can be suppressed not only at the end portion away from the first support portion 12.
 即ち、第1の支持部12に固定されたステータ25の端部では、第1の支持部12によりステータ25の形状が維持されやすい。従って、第1の支持部12で弾性変形しにくいステータ25の端部に繋がった各制振部材81によって、第1の支持部12から離れたステータ25の端部を押さえることができ、第1の支持部12から離れたステータ25の端部でもステータ25の弾性変形を抑制することができる。これにより、巻上機5の騒音をより確実に低減することができる。 That is, at the end portion of the stator 25 fixed to the first support portion 12, the shape of the stator 25 is easily maintained by the first support portion 12. Therefore, each damping member 81 connected to the end of the stator 25 that is not easily elastically deformed by the first support 12 can press the end of the stator 25 away from the first support 12. The elastic deformation of the stator 25 can be suppressed even at the end of the stator 25 away from the support portion 12. Thereby, the noise of the hoisting machine 5 can be reduced more reliably.
 なお、上記の例では、第1の接続プレート801の全面に粘弾性体803が重なっているが、第1の接続プレート801の一部にのみ粘弾性体803を重ねてもよい。 In the above example, the viscoelastic body 803 overlaps the entire surface of the first connection plate 801, but the viscoelastic body 803 may be overlapped only on a part of the first connection plate 801.
 実施の形態7.
 図21は、この発明の実施の形態7による巻上機5を示す縦断面図である。また、図22は、図21の矢印XXIIに沿って見たときのステータ25を示す図である。変形抑制体23は、ステータ25の外周部に設けられた複数の制振部材91を有している。各制振部材91は、ステータ25の周方向について互いに間隔を置いて配置されている。
Embodiment 7 FIG.
FIG. 21 is a longitudinal sectional view showing the hoist 5 according to Embodiment 7 of the present invention. 22 is a diagram showing the stator 25 when viewed along the arrow XXII in FIG. The deformation suppressing body 23 has a plurality of vibration damping members 91 provided on the outer peripheral portion of the stator 25. The vibration damping members 91 are arranged at intervals from each other in the circumferential direction of the stator 25.
 各制振部材91の一端部は図22に示すように、第1の外周リング30の外周面にボルト92で固定され、各制振部材91の他端部は第2の外周リング31の外周面にボルト93で固定されている。これにより、各制振部材91は、ステータ25の軸線方向両端部を結んでいる。 As shown in FIG. 22, one end of each damping member 91 is fixed to the outer peripheral surface of the first outer ring 30 with a bolt 92, and the other end of each damping member 91 is the outer periphery of the second outer ring 31. The surface is fixed with bolts 93. Thus, each damping member 91 connects both ends of the stator 25 in the axial direction.
 各制振部材91の一端部の位置は、制振部材91の他端部の位置に対してステータ25の周方向についてずれている。また、各制振部材91は、第1の外周リング30に固定された第1の軸方向部91aと、第2の外周リング31に固定された第2の軸方向部91bと、第1及び第2の軸方向部91a,91bのそれぞれの端部を繋ぐ繋ぎ部91cとを有している。第1及び第2の軸方向部91a,91bのそれぞれはステータ25の軸線方向に沿って配置され、繋ぎ部91cはステータ25の周方向に沿って配置されている。 The position of one end portion of each damping member 91 is shifted in the circumferential direction of the stator 25 with respect to the position of the other end portion of the damping member 91. Each damping member 91 includes a first axial portion 91 a fixed to the first outer peripheral ring 30, a second axial portion 91 b fixed to the second outer peripheral ring 31, It has the connection part 91c which connects each edge part of 2nd axial direction part 91a, 91b. Each of the first and second axial portions 91 a and 91 b is disposed along the axial direction of the stator 25, and the connecting portion 91 c is disposed along the circumferential direction of the stator 25.
 図23は、図22の制振部材91を示す斜視図である。制振部材91は、ステータ25の径方向について互いに対向するそれぞれ金属製の第1の接続プレート(接続部材)901及び第2の接続プレート(接続部材)902と、粘性及び弾性を持ち、第1の接続プレート901と第2の接続プレート902との間に挟まれた粘弾性体903とを有している。この例では、第2の接続プレート902が第1の接続プレート901よりもステータ25の径方向外側に位置している。また、この例では、第1の接続プレート901の全面に粘弾性体903が重なり、粘弾性体903の全面に第2の接続プレート902が重なっている。従って、第1の軸方向部91a、第2の軸方向部91b及び繋ぎ部91cが、第1の接続プレート901、第2の接続プレート902及び粘弾性体903のそれぞれの一部によりそれぞれ構成されている。第1及び第2の接続プレート901,902は、粘弾性体903を介して互いに接続されている。この例では、粘弾性体903は、第1の接続プレート901及び第2の接続プレート902に接着剤で固定されている。粘弾性体903を構成する材料としては、例えばゴム又は樹脂等が挙げられる。他の構成は、実施の形態1と同様である。 FIG. 23 is a perspective view showing the vibration damping member 91 of FIG. The vibration damping member 91 has a first connection plate (connection member) 901 and a second connection plate (connection member) 902 made of metal, which are opposed to each other in the radial direction of the stator 25, and have viscosity and elasticity. A viscoelastic body 903 sandwiched between the connection plate 901 and the second connection plate 902. In this example, the second connection plate 902 is located on the radially outer side of the stator 25 than the first connection plate 901. In this example, the viscoelastic body 903 overlaps the entire surface of the first connection plate 901, and the second connection plate 902 overlaps the entire surface of the viscoelastic body 903. Accordingly, the first axial direction portion 91a, the second axial direction portion 91b, and the connecting portion 91c are respectively configured by a part of the first connection plate 901, the second connection plate 902, and the viscoelastic body 903. ing. The first and second connection plates 901 and 902 are connected to each other via a viscoelastic body 903. In this example, the viscoelastic body 903 is fixed to the first connection plate 901 and the second connection plate 902 with an adhesive. Examples of the material constituting the viscoelastic body 903 include rubber or resin. Other configurations are the same as those in the first embodiment.
 このような巻上機5では、ステータ25の軸線方向両端部を結ぶ制振部材91の一端部の位置が、制振部材91の他端部の位置に対してステータ25の周方向についてずれているので、実施の形態6のように、第1の支持部12で弾性変形しにくいステータ25の端部に繋がった各制振部材91によって、第1の支持部12から離れたステータ25の端部を押さえることができる。また、ステータ25の周方向についてもステータ25の弾性変形を各制振部材91によって抑制することができる。これにより、ステータ25の径方向の寸法が変化するステータ25の弾性変形をさらに確実に抑制することができ、巻上機5の騒音をさらに確実に低減することができる。 In such a hoisting machine 5, the position of one end portion of the damping member 91 that connects both axial ends of the stator 25 is shifted in the circumferential direction of the stator 25 with respect to the position of the other end portion of the damping member 91. Therefore, as in the sixth embodiment, the end of the stator 25 separated from the first support portion 12 by each damping member 91 connected to the end portion of the stator 25 that is not easily elastically deformed by the first support portion 12. You can hold the part. Further, the elastic deformation of the stator 25 can also be suppressed by the vibration damping members 91 in the circumferential direction of the stator 25. Thereby, the elastic deformation of the stator 25 in which the radial dimension of the stator 25 changes can be further reliably suppressed, and the noise of the hoisting machine 5 can be further reliably reduced.
 なお、上記の例では、各制振部材91の繋ぎ部91cがステータ25の周方向に沿って配置されているが、ステータ25の周方向に対して傾斜させて繋ぎ部91cを配置してもよい。また、第1及び第2の軸方向部91a,91bのそれぞれと繋ぎ部91cとの接続部分が緩やかに曲がっていてもよい。さらに、直線に沿った帯状の制振部材91をステータ25の軸線方向に対して傾斜させながらステータ25の外周部に沿わせて配置していてもよい。 In the above example, the connecting portions 91c of the vibration damping members 91 are arranged along the circumferential direction of the stator 25. However, the connecting portions 91c may be arranged so as to be inclined with respect to the circumferential direction of the stator 25. Good. Moreover, the connection part of each of the 1st and 2nd axial direction parts 91a and 91b and the connection part 91c may be bent gently. Further, the band-shaped damping member 91 along the straight line may be disposed along the outer peripheral portion of the stator 25 while being inclined with respect to the axial direction of the stator 25.
 また、上記の例では、第1の接続プレート901の全面に粘弾性体903が重なっているが、第1の接続プレート901の一部にのみ粘弾性体903を重ねてもよい。 In the above example, the viscoelastic body 903 overlaps the entire surface of the first connection plate 901. However, the viscoelastic body 903 may be overlapped only on a part of the first connection plate 901.
 また、実施の形態2及び5~7では、振動を吸収しやすい制振合金によって制振部材を構成してもよい。このようにすれば、同一の材料で制振部材を製造することができ、制振部材の構成をさらに簡単にすることができる。 In the second and fifth to seventh embodiments, the damping member may be made of a damping alloy that easily absorbs vibration. If it does in this way, a damping member can be manufactured with the same material, and the composition of a damping member can be further simplified.
 また、各上記実施の形態のうち、2以上の実施の形態での変形抑制体23を組み合わせてもよい。 Moreover, you may combine the deformation | transformation suppression body 23 in two or more embodiment among each said embodiment.

Claims (8)

  1.  第1の支持部と、上記第1の支持部から水平方向へ離れた第2の支持部とを有する支持台、
     上記第1の支持部及び上記第2の支持部に回転自在に支持された回転軸、
     上記第1の支持部と上記第2の支持部との間に配置され、上記回転軸に固定された駆動シーブ、
     上記第1の支持部に固定された筒状のステータと、上記ステータの内側で上記回転軸に固定され、上記ステータに対して回転されるロータとを有し、上記第1の支持部からみて上記駆動シーブ側と反対側に配置されたモータ、及び
     上記ステータに設けられた制振部材を有し、上記ステータの径方向の寸法が変化する上記ステータの弾性変形を抑制する変形抑制体
     を備えているエレベータ用巻上機。
    A support base having a first support portion and a second support portion horizontally separated from the first support portion;
    A rotating shaft rotatably supported by the first supporting portion and the second supporting portion;
    A drive sheave disposed between the first support portion and the second support portion and fixed to the rotating shaft;
    A cylindrical stator fixed to the first support portion; and a rotor fixed to the rotating shaft inside the stator and rotated with respect to the stator; and viewed from the first support portion. A motor disposed on a side opposite to the drive sheave side; and a vibration suppressing member provided on the stator, and a deformation suppressing body that suppresses elastic deformation of the stator in which a radial dimension of the stator changes. Elevator hoisting machine.
  2.  上記支持台は、上記モータの下方に配置されて上記第1の支持部及び上記第2の支持部が固定されたベースをさらに有し、
     上記変形抑制体は、上記ステータ及び上記ベース間に連結されている請求項1に記載のエレベータ用巻上機。
    The support base further includes a base disposed below the motor and to which the first support portion and the second support portion are fixed.
    The elevator hoist according to claim 1, wherein the deformation suppressing body is connected between the stator and the base.
  3.  上記制振部材は、上記ステータの外周部を囲んでいる請求項1に記載のエレベータ用巻上機。 The elevator hoisting machine according to claim 1, wherein the damping member surrounds an outer peripheral portion of the stator.
  4.  上記制振部材は、上記ステータの外周部に設けられて上記ステータの軸線方向両端部を結んでいる請求項1に記載のエレベータ用巻上機。 The elevator hoisting machine according to claim 1, wherein the damping member is provided on an outer peripheral portion of the stator and connects both ends of the stator in the axial direction.
  5.  上記制振部材の一端部の位置は、上記制振部材の他端部の位置に対して上記ステータの周方向についてずれている請求項4に記載のエレベータ用巻上機。 The elevator hoisting machine according to claim 4, wherein the position of one end portion of the damping member is shifted in the circumferential direction of the stator with respect to the position of the other end portion of the damping member.
  6.  上記制振部材は、複数の接続部材と、各上記接続部材間に挟まれた粘弾性体とを有している請求項1~請求項5のいずれか一項に記載のエレベータ用巻上機。 The elevator hoisting machine according to any one of claims 1 to 5, wherein the damping member includes a plurality of connecting members and a viscoelastic body sandwiched between the connecting members. .
  7.  上記制振部材は、オイルダンパである請求項2に記載のエレベータ用巻上機。 The elevator hoisting machine according to claim 2, wherein the vibration damping member is an oil damper.
  8.  上記ステータに設けられた振動センサ、及び
     上記振動センサで検出した振動を抑制する方向へ上記オイルダンパの減衰力を制御するダンパ制御部
     を備えている請求項7に記載のエレベータ用巻上機。
    The elevator hoisting machine according to claim 7, further comprising: a vibration sensor provided in the stator; and a damper control unit that controls a damping force of the oil damper in a direction to suppress vibration detected by the vibration sensor.
PCT/JP2014/050640 2014-01-16 2014-01-16 Hoist for elevator WO2015107643A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201480073333.5A CN105916794B (en) 2014-01-16 2014-01-16 Elevator hoist
PCT/JP2014/050640 WO2015107643A1 (en) 2014-01-16 2014-01-16 Hoist for elevator
JP2015557628A JP6223475B2 (en) 2014-01-16 2014-01-16 Elevator hoisting machine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2014/050640 WO2015107643A1 (en) 2014-01-16 2014-01-16 Hoist for elevator

Publications (1)

Publication Number Publication Date
WO2015107643A1 true WO2015107643A1 (en) 2015-07-23

Family

ID=53542564

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/050640 WO2015107643A1 (en) 2014-01-16 2014-01-16 Hoist for elevator

Country Status (3)

Country Link
JP (1) JP6223475B2 (en)
CN (1) CN105916794B (en)
WO (1) WO2015107643A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6670863B2 (en) * 2018-01-25 2020-03-25 本田技研工業株式会社 Rotating electric machine

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06298474A (en) * 1993-04-20 1994-10-25 Mitsubishi Electric Corp Device for fixing hoist vibration-proofing unit
JPH11165970A (en) * 1997-12-02 1999-06-22 Toshiba Corp Winding machine of elevator
FR2918361A1 (en) * 2007-07-03 2009-01-09 Leroy Somer Moteurs Lift's cable driving electrical machine for building, has brakes arranged on side of rolling bearings opposite to stator or rotor assembly and fixed on one of two flanges, and plate-shaped crossheads fixed near lower edge of flanges

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4732577B2 (en) * 2000-11-24 2011-07-27 東芝エレベータ株式会社 Elevator car rescue device
JP2010127314A (en) * 2008-11-25 2010-06-10 Sinfonia Technology Co Ltd Torque transmission device
JP5955563B2 (en) * 2012-01-05 2016-07-20 株式会社東芝 Hoisting machine and rotating electric machine equipped with the same

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06298474A (en) * 1993-04-20 1994-10-25 Mitsubishi Electric Corp Device for fixing hoist vibration-proofing unit
JPH11165970A (en) * 1997-12-02 1999-06-22 Toshiba Corp Winding machine of elevator
FR2918361A1 (en) * 2007-07-03 2009-01-09 Leroy Somer Moteurs Lift's cable driving electrical machine for building, has brakes arranged on side of rolling bearings opposite to stator or rotor assembly and fixed on one of two flanges, and plate-shaped crossheads fixed near lower edge of flanges

Also Published As

Publication number Publication date
CN105916794A (en) 2016-08-31
CN105916794B (en) 2018-04-10
JP6223475B2 (en) 2017-11-01
JPWO2015107643A1 (en) 2017-03-23

Similar Documents

Publication Publication Date Title
JP6313443B2 (en) Parallel hybrid power transmission mechanism
JP2015157668A (en) hoist assembly
JP6223475B2 (en) Elevator hoisting machine
JP5776163B2 (en) Hoisting machine
JP5048802B2 (en) Thin hoisting machine for elevator and elevator device
JP5889420B2 (en) Elevator hoisting machine
KR20140095063A (en) Drive device
WO2014064752A1 (en) Elevator pulley device
JP6972816B2 (en) motor
WO2015132850A1 (en) Hoist for elevator
JP2020018068A (en) Vehicle drive device
JP2004115141A (en) Winding machine for elevator
JP6552731B2 (en) Bearing device for elevator hoisting machine
JP6097233B2 (en) Concentrated winding permanent magnet motor, elevator hoisting machine using the same, and elevator
US8912703B2 (en) Stator core and spindle motor including the same
JPWO2006021996A1 (en) Elevator equipment
EP4074571B1 (en) Electric vehicle
JP4475017B2 (en) Elevator hoisting machine
JP2008074590A (en) Hoist for elevator
JP2019011140A (en) Hoist and elevator
JP7047290B2 (en) motor
JP4455151B2 (en) Elevator hoisting machine
KR102207695B1 (en) A wind power generating device
WO2017022097A1 (en) Inner-rotor type hoist
JP2008131852A (en) Current feeding mechanism

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14878757

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2015557628

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14878757

Country of ref document: EP

Kind code of ref document: A1