WO2015106567A1 - 一种光耦合器件和光耦合单元 - Google Patents

一种光耦合器件和光耦合单元 Download PDF

Info

Publication number
WO2015106567A1
WO2015106567A1 PCT/CN2014/084811 CN2014084811W WO2015106567A1 WO 2015106567 A1 WO2015106567 A1 WO 2015106567A1 CN 2014084811 W CN2014084811 W CN 2014084811W WO 2015106567 A1 WO2015106567 A1 WO 2015106567A1
Authority
WO
WIPO (PCT)
Prior art keywords
optical
prism
angle
optical fiber
coupling device
Prior art date
Application number
PCT/CN2014/084811
Other languages
English (en)
French (fr)
Inventor
庞拂飞
王廷云
夏倩
陈石琼
张仁武
顾鑫
赵丽
刘哲
王玉
Original Assignee
中兴通讯股份有限公司
上海大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中兴通讯股份有限公司, 上海大学 filed Critical 中兴通讯股份有限公司
Priority to EP14878417.6A priority Critical patent/EP3096164A4/en
Priority to JP2016564364A priority patent/JP6463780B2/ja
Priority to KR1020167022222A priority patent/KR20160135707A/ko
Priority to US15/112,336 priority patent/US20160356969A1/en
Publication of WO2015106567A1 publication Critical patent/WO2015106567A1/zh

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/42Coupling light guides with opto-electronic elements
    • G02B6/4201Packages, e.g. shape, construction, internal or external details
    • G02B6/4204Packages, e.g. shape, construction, internal or external details the coupling comprising intermediate optical elements, e.g. lenses, holograms
    • G02B6/4214Packages, e.g. shape, construction, internal or external details the coupling comprising intermediate optical elements, e.g. lenses, holograms the intermediate optical element having redirecting reflective means, e.g. mirrors, prisms for deflecting the radiation from horizontal to down- or upward direction toward a device
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/26Optical coupling means
    • G02B6/34Optical coupling means utilising prism or grating
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/42Coupling light guides with opto-electronic elements
    • G02B6/4201Packages, e.g. shape, construction, internal or external details
    • G02B6/4219Mechanical fixtures for holding or positioning the elements relative to each other in the couplings; Alignment methods for the elements, e.g. measuring or observing methods especially used therefor
    • G02B6/4228Passive alignment, i.e. without a detection of the degree of coupling or the position of the elements
    • G02B6/423Passive alignment, i.e. without a detection of the degree of coupling or the position of the elements using guiding surfaces for the alignment
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/42Coupling light guides with opto-electronic elements
    • G02B6/4201Packages, e.g. shape, construction, internal or external details
    • G02B6/4219Mechanical fixtures for holding or positioning the elements relative to each other in the couplings; Alignment methods for the elements, e.g. measuring or observing methods especially used therefor
    • G02B6/4236Fixing or mounting methods of the aligned elements
    • G02B6/4244Mounting of the optical elements
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/42Coupling light guides with opto-electronic elements
    • G02B6/4201Packages, e.g. shape, construction, internal or external details
    • G02B6/4249Packages, e.g. shape, construction, internal or external details comprising arrays of active devices and fibres
    • G02B6/425Optical features
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/25Arrangements specific to fibre transmission

Definitions

  • the present invention relates to the field of optical communications, and in particular, to an optical coupling device and an optical coupling unit. Background technique
  • the optical waveguide-based optical interconnection method has the advantages of high bandwidth, high density, fast transmission speed, low transmission power consumption, low loss, substantially no crosstalk and electromagnetic compatibility, and therefore, the optical printed backplane based on the optical waveguide is replaced.
  • the electro-printed backplane has become the trend of high-speed and broadband interconnection development, and is the core technology to solve the broadband bandwidth problem of broadband communication networks, supercomputers and big data centers in the future.
  • the optical coupling related device plays an important role in the interconnection optical waveguide system, and is determined. An important part of interconnecting system performance.
  • embodiments of the present invention provide an optical coupling device and an optical coupling unit.
  • An embodiment of the present invention provides an optical coupling device, where the optical coupling device includes: a right-angle reflecting prism and a fiber optic movable connector; a reflective surface of the right-angle reflecting prism is disposed on the reflecting surface to converge the light propagating through the optical fiber
  • the fiber optic movable connector is fixed to the right angle reflecting prism such that light propagating through the optical fiber is incident on the curved reflecting surface of the right angle reflecting prism.
  • the fiber optic connector is provided with a fiber coupling tube, and a central position and a pitch of the curved reflecting surface are the same as a center position and a spacing of the fiber coupling tube.
  • the curvature of the curved reflecting surface is designed according to the numerical aperture parameter of the fiber coupling tube, so that the light of the maximum angle incident from the optical fiber to the curved reflecting surface is concentrated and then parallelized by the curved reflecting surface.
  • the types of the right-angle reflecting prisms of the optical coupling device are: a single-path reflecting prism, a two-way reflecting prism, a single-row multi-path reflecting prism, and a double-column multi-path reflecting prism
  • the fixing of the right angle is used.
  • the types of fiber optic connectors of the reflective prism are: single-row fiber optic connector, dual fiber optic connector, single-row multi-fiber active connector, and dual-row multi-fiber active connector.
  • the diameter and position of the positioning pin hole of the right-angle reflecting prism correspond to the diameter and position of the positioning pin hole of the optical fiber movable connector.
  • the optical fiber movable connector and the right-angle reflective prism are connected by a positioning guide pin respectively connected to the right-angle reflection prism and the positioning guide pin hole on the optical fiber movable connector; the right-angle reflection prism uses the ultraviolet glue Fixed to the surface of the fiber optic connector, the UV glue is applied to the connection of the positioning pin to the right-angle reflector and the fiber optic connector, or to the edge of the right-angle reflector that is connected to the fiber optic connector.
  • Embodiments of the present invention provide an optical coupling unit that includes an optical waveguide and the optical coupling device, and the optical coupling device is vertically inserted into the optical waveguide to be optically coupled.
  • the optical coupling device is vertically inserted into the optical waveguide, and includes: a groove is disposed at a position above the planar optical waveguide substrate in the optical waveguide, and a right-angle reflective prism in the optical coupling device is vertically inserted into the concave In the groove, the size of the groove is greater than or equal to the size of the right angle reflecting prism.
  • the optical waveguide when the types of the right-angle reflecting prisms in the optical coupling device are: a single-path reflecting prism, a two-way reflecting prism, a single-column multi-path reflecting prism, and a double-column multi-path reflecting prism, the optical waveguide
  • the types are: single optical waveguide, two-way optical waveguide, single-column multi-path optical waveguide and dual-column multi-path optical waveguide.
  • the curvature of the curved reflecting surface of the right-angle reflecting prism in the optical coupling device is designed according to the numerical aperture parameter of the fiber coupling tube and the optical waveguide, so that the maximum angle of the light incident from the optical fiber to the curved reflecting surface passes through the curved reflecting surface. After convergence, the angle of the outgoing light is smaller than the numerical aperture of the optical waveguide.
  • a curved reflecting surface is disposed on a reflecting surface of the right-angle reflecting prism of the optical coupling device, and the optical fiber movable connector in the optical coupling device is fixed to the right-angle reflecting prism.
  • the light propagating through the optical fiber is incident on the curved surface of the curved surface, and the light propagating through the optical fiber is concentrated and then reflected out; thus, the loss during light propagation can be reduced, and the optical coupling efficiency can be improved; and the present invention is implemented.
  • the optical coupling device and the optical coupling unit provided by the example have a simple structure, and the manufacturing method thereof is simple and easy.
  • FIG. 1 is a cross-sectional view of a prior art right angle reflecting prism
  • FIG. 2 is a cross-sectional view of an optical coupling device according to at least one embodiment of the present invention
  • 3 is a cross-sectional view of a fiber optic movable connector according to at least one embodiment of the present invention
  • FIG. 4 is a perspective structural view of a right angle reflecting prism according to at least one embodiment of the present invention
  • FIG. 5 is a double view of at least one embodiment of the present invention.
  • FIG. 6 is a perspective structural view of a single-row multi-path reflective prism according to at least one embodiment of the present invention
  • FIG. 7 is a perspective structural view of a multi-row multi-path reflective prism according to at least one embodiment of the present invention
  • FIG. 8 is a flow chart of a method of fabricating an optical coupling device according to at least one embodiment of the present invention;
  • FIG. 8 is a flow chart of a method of fabricating an optical coupling device according to at least one embodiment of the present invention.
  • FIG. 9 is a cross-sectional view of an optical coupling unit according to at least one embodiment of the present invention.
  • FIG. 10 is a flow chart of a method for fabricating an optical coupling unit according to at least one embodiment of the present invention. detailed description
  • an optical coupling device including a fiber optic movable connector and a right angle reflecting prism
  • a curved reflecting surface is disposed on a reflecting surface of the right angle reflecting prism
  • the optical fiber movable connector is The right-angle reflecting prism is fixed, so that light propagating through the optical fiber is incident on the curved reflecting surface, and then the light propagating through the optical fiber is concentrated and then reflected, thereby reducing loss during light propagation and improving optical coupling efficiency.
  • Fig. 1 is a schematic cross-sectional view of a right-angle reflecting prism.
  • two right-angled sides AB and AC represent two mutually perpendicular sides on a right-angle reflecting prism
  • BC represents a reflecting surface on a right-angle reflecting prism.
  • FIG. 2 is a cross-sectional view of an optical coupling device according to an embodiment of the present invention.
  • the optical coupling device comprises a fiber optic movable connector 21 and a right-angle reflecting prism 23 is disposed on the reflecting surface of the right-angle reflecting prism 23, and a curved reflecting surface 24 is disposed on the reflecting surface 24 for collecting and reflecting the light incident thereon;
  • the optical fiber movable connector 21 is fixed to the right angle reflecting prism 23;
  • the fiber optic movable connector 21 includes a fiber coupling tube 22 for fixing and aligning the optical fibers such that light propagating through the optical fibers is incident on the curved reflecting surface 24 of the right angle reflecting prism 23.
  • the curved reflecting surface 24 is plated with a high reflectivity optical film, and the optical film on the curved reflecting surface 24 may be coated with a metal film such as gold or silver, or may be coated with other dielectric films;
  • the curved surface 24 of the rear surface can achieve higher reflectivity and achieve total reflection of incident light.
  • the optical fiber is fixed in the fiber coupling tube 22 of the optical fiber movable connector 21, the incident light transmitted through the optical fiber is incident on the right angle reflecting prism. After the curved reflecting surface 24, the incident light is reflected off through the curved reflecting surface 24 coated with the high reflectivity optical film.
  • the optical fiber movable connector 21 there is no special requirement for the type and structure of the optical fiber movable connector 21.
  • the types of the optical fiber movable connector 21 include but are not limited to: MT-RJ or MPO (Multi-fiber Push)
  • MPO Multi-fiber Push
  • FIG. 3 is a cross-sectional view of the fiber optic movable connector 21, in which the portion A filled with the horizontal line is the cross section of the fiber coupling tube 22, and the B and C filled with the oblique line show the two positioning pin holes;
  • a perspective view of a right angle reflecting prism 23 provided by at least one embodiment of the present invention the reference numeral 41 indicates the position where the curved reflecting surface is located, and the reference numeral 42 indicates the position of a positioning guide pin hole; in practical applications,
  • the number and position of the positioning pin holes on the fiber movable connector 21 and the right-angle reflecting prism 23 can be designed as needed, and are not limited to the structure provided by the embodiment of the present invention.
  • center position and spacing of the curved reflecting surface 24 of the right angle reflecting prism 23 should be the same as the center position and spacing of the fiber coupling tube 22 in the selected fiber optic connector 21.
  • the diameter and position of the positioning pin hole on the right-angle reflecting prism 23 should match the diameter and position of the positioning pin hole on the selected fiber movable connector 21, thereby better connecting the fiber activity by positioning the pin.
  • the connector 21 and the right-angle reflecting prism 23 should match the diameter and position of the positioning pin hole on the selected fiber movable connector 21, thereby better connecting the fiber activity by positioning the pin.
  • the right-angle reflecting prism 23 is fixed on the surface of the optical fiber movable connector 21, so that the light transmitted through the optical fiber is incident on the curved reflecting surface 24 of the right-angle reflecting prism 23, And reflected out through the curved reflecting surface 24.
  • the fiber optic movable connector 21 is fixed to the right angle reflecting prism 23, and includes: a right angle reflecting prism 23 is connected to the fiber optic movable connector 21 by a positioning pin, and the positioning pin is respectively connected to the right angle reflecting prism 23 And a positioning pin hole on the fiber optic movable connector 21; in addition, the right angle reflecting prism 23 is fixed to the surface of the fiber optic movable connector 21 by using ultraviolet glue, and the ultraviolet glue can be applied to the positioning pin and the right angle reflecting prism 23 and the optical fiber movable connection. At the junction of the device 21, an area where the edge of the right-angle reflecting prism 23 is connected to the fiber movable connector 21 can also be applied.
  • the curvature of the curved reflecting surface 24 of the right-angle reflecting prism 23 can be designed according to the numerical aperture parameter of the optical fiber.
  • the curved reflecting surface 24 has a converging effect on the light beam, and therefore, the curved surface of the rectangular reflecting prism 23
  • the curvature of the reflecting surface 24 is designed to ensure that the light rays incident from the optical fiber to the maximum angle of the right-angle reflecting prism 23 can be concentrated by the curved reflecting surface 24, and are emitted in parallel; the selection of the reflecting surface type includes, but not limited to, a circular arc surface and a paraboloid surface. Wait.
  • the incident light ray 210 transmitted through the optical fiber passes through the total reflection of the right-angle reflection prism curved surface 24, the parallel outgoing light 211 will be obtained due to the convergence, thereby reducing the divergence caused by the light when the general reflective prism is used.
  • the optical loss thereby increasing the efficiency of optical coupling.
  • the right-angle reflecting prism may also be a two-way reflecting prism, that is, two curved reflecting surfaces are disposed on the reflecting surface of the right-angle reflecting prism, as shown in FIG. 5, wherein the label 52 indicates It is a positioning guide pin hole, and the surface 51 indicates a curved reflecting surface; correspondingly, the fiber optic movable connector fixed with the two-way reflecting prism should be a two-channel optical fiber movable connector, that is, including two fiber coupling tubes. Fiber optic connector, so that the reflection of two rays can be achieved at the same time.
  • the right angle reflecting prism in at least one embodiment of the present invention may also be a single-column multi-path reflecting prism, that is, a plurality of curved reflecting surfaces of a single row are prepared on the inclined surface of the prism, as shown in FIG. No. 62 indicates a positioning guide pin hole, and reference numeral 61 indicates a curved reflecting surface.
  • the fiber optic movable connector fixed to the single-column multi-way reflecting prism will be a single-row multi-fiber active connector, that is, A fiber optic active connector including a column and a plurality of fiber coupling tubes, so that the reflection of a single column of multiple rays can be simultaneously achieved.
  • the right-angle reflecting prism may further be a multi-column multi-path reflecting prism, that is, a plurality of columns of curved reflecting surfaces are prepared on the prism inclined surface, and the curved reflecting surfaces on each column are plural, as shown in FIG.
  • the reference numeral 72 indicates a positioning guide pin hole
  • the reference numeral 71 indicates a curved reflecting surface
  • the fiber optic movable connector fixed to the multi-column multi-path reflecting prism will be a multi-row multi-fiber active connector. That is, a fiber optic movable connector including a plurality of columns and each column including a plurality of fiber coupling tubes, so that reflection of multiple columns of multiple rays can be simultaneously realized.
  • At least one embodiment of the present invention provides a method of fabricating an optical coupling device.
  • the flowchart of the manufacturing method is as shown in FIG. 8.
  • the manufacturing method includes the following steps:
  • Step 801 A curved reflecting surface is disposed on the reflecting surface of the right-angle reflecting prism.
  • the right-angle reflecting prism can be made by an optical grinding and polishing technique, and the center position and spacing of the right-angle reflecting prism should be the same as the center position and spacing of the fiber coupling tube in the fiber-optic movable connector to be fixed, and the right-angle reflection
  • the diameter and position of the positioning pin hole on the prism should match the diameter and position of the positioning pin hole on the fiber optic connector to be fixed, so that the fiber optic movable connector and the right-angle reflecting prism can be better connected by the positioning pin. .
  • the center position and the pitch of the curved reflecting surface are the same as the center position and the spacing of the fiber coupling tube in the fiber optic movable connector to be fixed; the curvature of the curved reflecting surface can be determined according to the numerical aperture parameter of the optical fiber.
  • the curved reflection has a converging effect on the beam. Therefore, the curvature of the curved surface of the rectangular reflector must be designed to ensure that the maximum angle of light incident from the fiber to the curved surface can be concentrated by the curved surface.
  • the parallel surface is emitted;
  • the selection of the reflective surface type includes, but not limited to, a circular arc surface, a paraboloid surface, etc.; according to the designed curved surface structure, using ultraviolet laser ablation, carbon dioxide laser hot melting, mechanical grinding or ultrasonic grinding,
  • the reflecting surface is machined on a right angle reflecting prism.
  • the curved surface of the curved surface can be vacuum-coated to obtain a total reflection curved surface; specifically, the coating film can be selected from a metal film such as gold or silver, or another dielectric film can be selected.
  • Step 802 Fix the right-angle reflecting prism to the surface of the fiber optic movable connector, so that the light propagating through the optical fiber is exactly incident on the curved reflecting surface of the right-angle curved reflecting prism.
  • the right-angle reflective prism manufactured in step 801 and the positioning guide pin hole in the optical fiber movable connector are respectively connected through the positioning guide pin, and the right-angle reflective prism is fixed on the surface of the optical fiber movable connector by using ultraviolet glue.
  • the ultraviolet glue may be applied to the connection of the positioning guide pin to the reflective prism and the fiber optic movable connector, or to the area where the edge of the prism is connected to the fiber optic movable connector.
  • At least one embodiment of the present invention provides an optical coupling unit, as shown in FIG. 9, including the above-described optical coupling device and optical waveguide 91, and vertically inserting the optical coupling device into the optical waveguide 91, as shown in FIG.
  • the optical waveguide 91 is composed of a planar optical waveguide substrate 95, an optical waveguide lower cladding material 94, an optical waveguide core layer material 93, and an optical waveguide upper cladding material 92.
  • the optical coupling device is vertically inserted into the optical waveguide 91 as:
  • the planar optical waveguide substrate 95 in the optical waveguide 91 is slotted at a position above, so that the right-angle reflective prism 23 in the optical coupling device is vertically inserted into the slot, and the requirement for the slot size is: larger than the size of the right-angle reflective prism, That is, the entire right angle reflection prism 23 can be placed.
  • the length of the optical waveguide can be selected according to actual circuit requirements; the type of the optical waveguide can be selected according to the type of the right-angle reflective prism in the optical coupling device, specifically, when the right-angle reflective prism is a two-way When the prism is reflected, the optical waveguide should be selected as a two-way optical waveguide, so that when the optical coupling device is vertically inserted into the optical waveguide, the two optical fibers can be aligned with the two optical waveguides, thereby realizing the two-channel optical fiber and the optical waveguide.
  • the optical waveguide should be selected as a single-column multi-path optical waveguide, thus, When the optical coupling device is vertically inserted into the optical waveguide, the single-row multiplexed optical fiber can be aligned with the single-row multiple optical waveguide, thereby realizing vertical optical coupling between the single-column multiplexed optical fiber and the optical waveguide; when the right-angle reflective prism is double-column When the reflective prism is used, the optical waveguide should be selected as a double-column multiplexed optical waveguide, so that when the optical coupling device is vertically inserted into the optical waveguide, the double-row multiplexed optical fiber can be aligned with the double-row multiplexed optical waveguide. Thereby, the vertical optical coupling of the double-column multiplex fiber and the optical waveguide is realized.
  • the curvature of the curved reflecting surface 24 of the right-angle reflecting prism 23 in the optical coupling device can be designed according to the numerical aperture parameters of the optical fiber and the optical waveguide.
  • the curved surface has a convergence effect on the light beam.
  • the curvature of the reflecting surface of the right-angle reflecting prism 23 is designed to ensure that the maximum angle of light incident from the optical fiber to the curved reflecting surface 24 is concentrated by the curved reflecting surface 24, and the angle of the outgoing light is smaller than the numerical aperture parameter of the optical waveguide, that is, there is no light energy.
  • the loss of the surface of the curved surface includes, but is not limited to, a circular arc surface, a paraboloid surface, and the like.
  • the parallel outgoing light 911 will be obtained due to the convergence.
  • the parallel exiting light 911 is injected into the optical waveguide and propagates through the optical waveguide, so that the optical loss can be greatly reduced, and a more efficient vertical optical coupling between the optical fiber and the optical waveguide is realized;
  • a method of fabricating an optical coupling unit includes the following steps:
  • a curved reflecting surface is provided on the reflecting surface of the right-angle reflecting prism.
  • the right-angle reflecting prism can be made by using an optical grinding and polishing technique, and a positioning pin hole is prepared on the right-angle reflecting prism, so that the diameter and position of the positioning pin hole should be aligned with the positioning pin on the optical fiber movable connector.
  • the diameter and position of the holes match.
  • a curved reflecting surface is disposed on the reflecting surface of the right-angle reflecting prism such that a center position and a pitch of the disposed curved reflecting surface correspond to a center position and a pitch of the fiber coupling tube in the optical fiber movable connector to be fixed.
  • the curvature of the curved surface of the curved surface can be designed according to the numerical aperture parameter of the optical fiber movable connector and the optical waveguide; specifically, according to the principle of light reflection, the curved surface has a convergence effect on the light beam, and therefore, the reflecting surface of the right angle reflecting prism
  • the curvature design must ensure that the light incident from the fiber to the maximum angle of the right-angle reflecting prism is concentrated by the curved reflecting surface, and the angle of reflection into the optical waveguide is smaller than the numerical aperture of the optical waveguide, that is, there is no loss of light energy; Choices include, but are not limited to, arc faces, parabolas, and the like.
  • the reflecting surface is processed on the right angle reflecting prism by ultraviolet laser ablation, carbon dioxide laser hot melting or mechanical, ultrasonic grinding or the like.
  • the curved surface of the curved surface can be vacuum-coated to obtain a total reflection curved surface; specifically, a metal film such as gold plating or silver plating can be applied to the curved reflecting surface, and other dielectric films can also be plated.
  • Step 1002 Fix the right-angle reflecting prism on the surface of the fiber movable connector, so that the light propagating through the optical fiber is exactly incident on the curved reflecting surface of the right-angle reflecting prism to form an optical coupling device.
  • the positioning pin holes matching the right-angle reflecting prism and the optical fiber movable connector are respectively connected by the positioning guide pins, and further, the right-angle reflecting prism is fixed on the surface of the optical fiber movable connector by using ultraviolet glue, specifically
  • the ultraviolet glue may be applied to the connection of the guide pin to the reflective prism and the fiber optic movable connector, or may be applied to the area where the edge of the prism is connected to the fiber optic movable connector.
  • Step 1003 providing a groove on the optical waveguide
  • the disposing the groove on the optical waveguide comprises: forming a groove by using an ultraviolet laser in a position above the planar optical waveguide substrate in the optical waveguide, wherein the size of the groove is greater than or equal to a rectangular reflector The size, ie, can be placed into the entire right-angle reflecting prism.
  • Step 1004 Insert the optical coupling device formed in step 1002 into the recess provided in step 1003 and fix it.
  • the fixing can be carried out in various ways, including but not limited to, using ultraviolet glue to fix and fix; by inserting the optical coupling device into the groove of the optical waveguide and fixing, vertical coupling of light can be realized. Hehe.

Abstract

一种光耦合器件以及包括所述光耦合器件的光耦合单元,所述光耦合器件包括:直角反射棱镜(23)和光纤活动连接器(21);所述直角反射棱镜(23)的反射面上设置有曲面反射面(24),使经由光纤传播的光线汇聚后反射出去;所述光纤活动连接器(21)与所述直角反射棱镜(23)固定,使经由光纤传播的光线入射到所述直角反射棱镜(23)的曲面反射面(24)上。

Description

一种光耦合器件和光耦合单元 技术领域
本发明涉及光通信领域, 尤其涉及一种光耦合器件和光耦合单元。 背景技术
随着宽带通信网、 超级计算机及大数据中心等应用领域对印刷电路板 间、 芯片间互连带宽需求的不断提升, 基于印刷电路板的电互连技术逐渐 显现出其在传输速率上的瓶颈, 尤其对于中短距离 (0.3m~lm ), 电互连大 多只能实现 lOGbps速率的传输, 对于 25Gbps、 40Gbps等高速互连已经遇 到传输速率的瓶颈。于是,业界提出利用光波导取代用于连接电路的铜线, 现数据的高速传输。 这种基于光波导的光互连方法具有带宽高、 密度高、 传输速度快、 传输功耗低、 损耗小、 基本不存在串扰和电磁兼容等优点, 因此, 基于光波导的光印刷背板取代电印刷背板已是高速、 宽带互连发展 的大势所趋, 是未来解决宽带通信网、 超级计算机及大数据中心互连带宽 难题的核心技术。
在互连光波导系统中, 存在大量的光路转接环节, 如光源与光波导、 光纤与光波导、 光波导与光波导等之间的光路转接, 这其中, 光的耦合效 率是最被关注的因素, 因为耦合效率的高低将直接影响光互连链路的插入 损耗, 进而导致互连距离的下降, 因此, 光耦合相关器件在互连光波导系 统中充当着重要的角色, 是决定互连系统性能的重要环节。
到目前为止, 实现光耦合相关器件的方法有多种, 然而还没有一种标 准化的互连光波导垂直光耦合的解决方案。 发明内容
为解决现有存在的技术问题, 本发明实施例提供一种光耦合器件和光 耦合单元。
本发明实施例提供了一种光耦合器件, 所述光耦合器件包括: 直角反 射棱镜和光纤活动连接器; 所述直角反射棱镜的反射面上设置有曲面反射 面, 使经由光纤传播的光线汇聚后反射出去; 所述光纤活动连接器与所述 直角反射棱镜固定, 使经由光纤传播的光线入射到所述直角反射棱镜的曲 面反射面上。
上述方案中, 所述光纤活动连接器中设置有光纤耦合管, 所述曲面反 射面的中心位置和间距与所述光纤耦合管的中心位置和间距相同。
上述方案中, 所述曲面反射面的曲率根据光纤耦合管的数值孔径参数 设计, 使从光纤入射到所述曲面反射面的最大角度的光线经曲面反射面汇 聚后平行出射。
上述方案中, 当所述光耦合器件的直角反射棱镜的类型依次为: 单路 反射棱镜、 双路反射棱镜、 单列多路反射棱镜和双列多路反射棱镜时, 则 用于固定所述直角反射棱镜的光纤活动连接器的类型依次为: 单列光纤活 动连接器、 双路光纤活动连接器、 单列多路光纤活动连接器和双列多路光 纤活动连接器。
上述方案中, 所述直角反射棱镜的定位导针孔的直径和位置与所述光 纤活动连接器的定位导针孔的直径和位置相对应。
上述方案中, 所述光纤活动连接器和直角反射棱镜通过定位导针相连, 所述定位导针分别连接直角反射棱镜和光纤活动连接器上的定位导针孔; 所述直角反射棱镜利用紫外胶水固定于光纤活动连接器的表面, 紫外胶水 施加于定位导针与直角反射棱镜和光纤活动连接器的连接处, 或者施加于 直角反射棱镜的边缘与光纤活动连接器相连接的区域。 本发明实施例提供了一种光耦合单元, 所述光耦合单元包括光波导和 上述光耦合器件, 所述光耦合器件垂直插入于所述光波导中, 使经由光耦 播。
上述方案中, 所述光耦合器件垂直插入于所述光波导, 包括: 光波导 中平面光波导基底以上位置上设置有凹槽, 所述光耦合器件中的直角反射 棱镜垂直插入于所述凹槽内, 所述凹槽的尺寸大于或等于所述直角反射棱 镜的尺寸。
上述方案中, 当所述光耦合器件中的直角反射棱镜的类型依次为: 单 路反射棱镜、 双路反射棱镜、 单列多路反射棱镜和双列多路反射棱镜时, 则所述光波导的类型依次为: 单路光波导、 双路光波导、 单列多路光波导 和双列多路光波导。
上述方案中, 所述光耦合器件中直角反射棱镜的曲面反射面的曲率根 据光纤耦合管和光波导的数值孔径参数设计, 使从光纤入射到所述曲面反 射面的最大角度的光线经曲面反射面汇聚后, 出射光线的角度小于光波导 的数值孔径。
本发明实施例所提供的光耦合器件和光耦合单元, 在光耦合器件的直 角反射棱镜的反射面上设置曲面反射面, 并将光耦合器件中的光纤活动连 接器与所述直角反射棱镜固定, 使经由光纤传播的光线入射到所述曲面反 射面上, 进而使所述经由光纤传播的光线汇聚后再反射出去; 如此, 能够 减少光传播时的损耗、 提高光耦合效率; 并且, 本发明实施例所提供的光 耦合器件及光耦合单元结构简单, 其制造方法简单易行。 附图说明
图 1为现有技术中直角反射棱镜的横截面图;
图 2为本发明至少一个实施例提供的一种光耦合器件的截面图; 图 3为本发明至少一个实施例提供光纤活动连接器的横截面图; 图 4为本发明至少一个实施例提供的直角反射棱镜的立体结构图; 图 5为本发明至少一个实施例提供的双路反射棱镜的立体结构图; 图 6为本发明至少一个实施例提供的单列多路反射棱镜的立体结构图; 图 7为本发明至少一个实施例提供的多列多路反射棱镜的立体结构图; 图 8 为本发明至少一个实施例提供的一种光耦合器件的制造方法流程 图;
图 9为本发明至少一个实施例提供的一种光耦合单元的截面图; 图 10为本发明至少一个实施例提供的一种光耦合单元的制造方法流程 图。 具体实施方式
在本发明的至少一个实施例中, 提供了包括光纤活动连接器和直角反 射棱镜的光耦合器件, 在所述直角反射棱镜的反射面上设置曲面反射面, 并将所述光纤活动连接器与所述直角反射棱镜固定, 使经由光纤传播的光 线入射到所述曲面反射面上, 进而使所述经由光纤传播的光线汇聚后再反 射出去, 以减少光传播时的损耗, 提高光耦合效率。
下面通过附图及具体实施例对本发明 #丈进一步的详细说明。
图 1为直角反射棱镜的横截面示意图,图 1中两个直角边 AB和 AC表 示直角反射棱镜上两个互相垂直的侧面,而 BC表示直角反射棱镜上的反射 面。
本发明至少一个实施例提供了一种光耦合器件, 图 2 为本发明实施例 中一种光耦合器件的截面图, 如图 2 所示, 所述光耦合器件由一个光纤活 动连接器 21和一个直角反射棱镜 23构成, 在所述直角反射棱镜 23的反射 面上设置曲面反射面 24,所述曲面反射面 24用于使入射到其上的光线汇聚 后反射出去; 所述光纤活动连接器 21与所述直角反射棱镜 23 固定; 所述 光纤活动连接器 21 包括光纤耦合管 22, 所述光纤耦合管 22, 用于固定和 对准光纤, 使经由光纤传播的光线入射到所述直角反射棱镜 23的曲面反射 面 24上。
较佳的, 所述曲面反射面 24上镀有高反射率光学薄膜, 所述曲面反射 面 24上的光学薄膜可以釆用金、银等金属薄膜,也可以釆用其他介质薄膜; 经过镀膜处理后的曲面反射面 24可以达到更高的反射率, 实现对入射光线 的全反射; 当光纤活动连接器 21 中光纤耦合管 22中固定有光纤时, 经由 光纤传输的入射光线入射到直角反射棱镜的曲面反射面 24上后, 所述入射 光线将经由镀有高反射率光学薄膜的曲面反射面 24反射出去。
在本发明至少一个实施例中, 对所述光纤活动连接器 21的类型、 结构 并无特殊要求, 所述光纤活动连接器 21 的类型包括但不限于: MT-RJ或 MPO ( Multi-fiber Push On )等等, 这使得本发明实施例提供的所述光耦合 器件结构简单、 易于实现。
图 3为光纤活动连接器 21的横截面图,其中以横线填充的 A部分为光 纤耦合管 22的横截面, 以斜线填充的 B和 C示出了两个定位导针孔; 图 4 为本发明至少一个实施例提供的一种直角反射棱镜 23的立体结构图, 标号 41标示出了曲面反射面所在的位置,标号 42示出了一个定位导针孔的位置; 在实际应用中, 光纤活动连接器 21和直角反射棱镜 23上的定位导针孔的 个数和位置均可以根据需要进行设计, 不限于本发明实施例提供的结构。
在实际应用中, 直角反射棱镜 23的曲面反射面 24的中心位置和间距 应与所选择的光纤活动连接器 21中光纤耦合管 22的中心位置和间距相同。
所述直角反射棱镜 23上的定位导针孔的直径和位置应与所选择的光纤 活动连接器 21上的定位导针孔的直径和位置相匹配, 从而通过定位导针更 好的连接光纤活动连接器 21和直角反射棱镜 23。
如图 2所示, 所述直角反射棱镜 23 固定于光纤活动连接器 21表面, 使经由光纤传输的光线刚好入射到直角反射棱镜 23的曲面反射面 24上, 并经由所述曲面反射面 24反射出去。
较佳地,所述光纤活动连接器 21与所述直角反射棱镜 23固定,包括: 通过定位导针将直角反射棱镜 23与光纤活动连接器 21相连, 所述定位导 针分别连接直角反射棱镜 23和光纤活动连接器 21上的定位导针孔;此外, 利用紫外胶水将直角反射棱镜 23 固定于光纤活动连接器 21的表面, 紫外 胶水可以施加在定位导针与直角反射棱镜 23和光纤活动连接器 21的连接 处上, 也可以施加在直角反射棱镜 23的边缘与光纤活动连接器 21相连接 的区域。
在实际应用中, 上述直角反射棱镜 23的曲面反射面 24的曲率可以根 据光纤的数值孔径参数进行设计, 根据光反射原理, 曲面反射面 24对光束 具有汇聚作用, 因此, 直角反射棱镜 23的曲面反射面 24的曲率设计须确 保从光纤入射到直角反射棱镜 23 的最大角度的光线能够经曲面反射面 24 汇聚后, 平行出射; 所述反射面面型的选择包括但不限于圓弧面、 抛物面 等。
参见图 2,经由光纤传输的入射光线 210经过直角反射棱镜曲面反射面 24 的全反射之后, 由于汇聚作用, 将获得平行出射光 211, 这样, 可以减 少釆用一般反射棱镜时由于光线发散而导致的光损耗, 从而提高光耦合的 效率。
本发明至少一个实施例中所述直角反射棱镜还可以是双路反射棱镜, 即,在直角反射棱镜的反射面上设置两个曲面反射面,如图 5所示,其中, 标号 52所标示的是定位导针孔,标号 51所标示的是曲面反射面;相应的, 与所述双路反射棱镜固定的光纤活动连接器应为双通道光纤活动连接器, 即, 包括两个光纤耦合管的光纤活动连接器, 这样, 可以同时实现两路光 线的反射。
本发明至少一个实施例中所述直角反射棱镜, 还可以是单列多路反射 棱镜, 即在棱镜斜面上制备单列多个曲面反射面, 如图 6所示, 其中, 标 号 62所标示的是定位导针孔, 标号 61所标示的是曲面反射面, 相应的, 与所述单列多路反射棱镜相固定的光纤活动连接器将为单列多路光纤活动 连接器, 即, 包括一列、 多个光纤耦合管的光纤活动连接器, 这样, 可以 同时实现单列多路光线的反射。
本发明至少一个实施例中所述直角反射棱镜还可以是多列多路反射棱 镜,即在棱镜斜面上制备多列曲面反射面,每一列上的曲面反射面为多个, 如图 7所示, 其中, 标号 72所标示的是定位导针孔, 标号 71所标示的是 曲面反射面, 与所述多列多路反射棱镜相固定的光纤活动连接器将为多列 多路光纤活动连接器, 即, 包括多列、 每一列包含多个光纤耦合管的光纤 活动连接器, 这样, 可以同时实现多列多路光线的反射。
本发明至少一个实施例提供了一种光耦合器件的制造方法, 所述制造 方法的流程图如图 8所示, 所述制造方法包括以下步骤:
步骤 801 : 在直角反射棱镜的反射面上设置曲面反射面。
这里, 所述直角反射棱镜可釆用光学磨抛技术制成, 直角反射棱镜的 中心位置和间距应与其所要固定的光纤活动连接器中光纤耦合管的中心位 置和间距相同, 且所述直角反射棱镜上的定位导针孔的直径和位置应与其 所要固定的光纤活动连接器上的定位导针孔的直径和位置相匹配, 从而通 过定位导针更好的连接光纤活动连接器和直角反射棱镜。
较佳地, 所述设置的曲面反射面的中心位置和间距与其所要固定的光 纤活动连接器中光纤耦合管的中心位置和间距相同; 所述曲面反射面的曲 率可以根据光纤的数值孔径参数进行设计, 根据光反射原理, 曲面反射面 对光束具有汇聚作用, 因此, 直角反射棱镜的曲面反射面的曲率在设计时 须确保从光纤入射到曲面反射面的最大角度的光线能够经曲面反射面汇聚 后, 平行出射; 所述反射面面型的选择包括但不限于圓弧面、 抛物面等; 根据所设计的曲面结构, 釆用紫外激光消融、 二氧化碳激光热熔、 机械研 磨或超声波研磨等工艺, 在直角反射棱镜上加工反射面。 其中, 对曲面反射面可进行真空镀膜, 获得全反射曲面; 具体的, 所 述镀膜可以选择金、 银等金属薄膜, 也可以选择其他介质薄膜。
步骤 802: 将所述直角反射棱镜固定于光纤活动连接器的表面, 使经由 光纤传播的光线正好全部入射到直角曲面反射棱镜的曲面反射面上。
较佳地, 将步骤 801 中制造好的直角反射棱镜与光纤活动连接器中的 定位导针孔分别通过定位导针相连, 此外, 利用紫外胶水将直角反射棱镜 固定于光纤活动连接器表面, 具体的, 紫外胶水可以施加在定位导针与反 射棱镜和光纤活动连接器的连接处上, 也可以施加在棱镜的边缘与光纤活 动连接器相连接的区域。
需要说明的是, 以上步骤的序号仅用于区分不同的步骤, 并不用于限 定步骤的先后顺序, 所有的步骤在执行时并没有严格意义上的先后顺序。
本发明至少一个实施例提供了一种光耦合单元, 如图 9 所示, 包括上 述光耦合器件以及光波导 91, 将所述光耦合器件垂直插入光波导 91中, 使 如图 9所示, 所述光波导 91由平面光波导基底 95、 光波导下包层材料 94、 光波导芯层材料 93和光波导上包层材料 92组成, 所述将光耦合器件 垂直插入光波导 91,为:在光波导 91中平面光波导基底 95以上位置开槽, 使所述光耦合器件中的直角反射棱镜 23垂直插入所述槽内, 对所述开槽尺 寸的要求是: 大于直角反射棱镜的尺寸, 即, 可以放入整个直角反射棱镜 23。
较佳地, 所述光波导的长度可以根据实际电路需要进行选择; 所述光 波导的类型可以根据光耦合器件中直角反射棱镜的类型进行选择, 具体的, 当所述直角反射棱镜为双路反射棱镜时, 光波导应选择为双路光波导, 这 样, 将所述光耦合器件垂直插入光波导时, 能够将两路光纤与两路光波导 对准, 从而实现双通道光纤与光波导的垂直光耦合; 当所述直角反射棱镜 为单列多路反射棱镜时, 所述光波导应选择为单列多路光波导, 这样, 将 所述光耦合器件垂直插入光波导时, 能够将单列多路光纤与单列多路光波 导对准, 从而实现单列多路光纤与光波导的垂直光耦合; 当所述直角反射 棱镜为双列多路反射棱镜时,所述光波导应选择为双列多路光波导,这样, 将所述光耦合器件垂直插入光波导时, 能够将双列多路光纤与双列多路光 波导对准, 从而实现双列多路光纤与光波导的垂直光耦合。
较佳地, 所述光耦合器件中的直角反射棱镜 23的曲面反射面 24的曲 率可以根据光纤及光波导的数值孔径参数进行设计, 根据光反射原理, 曲 面对光束具有汇聚作用, 因此, 直角反射棱镜 23的反射面的曲率设计须确 保从光纤入射到曲面反射面 24的最大角度的光线经曲面反射面 24汇聚后, 出射光线的角度小于光波导的数值孔径参数, 即, 没有光能量的损失; 所 述曲面反射面面型的选择包括但不限于圓弧面、 抛物面等。
参见图 9, 在本发明至少一个实施例所提供的光耦合单元中, 经由光纤 传输的入射光线 910经过直角反射棱镜曲面反射面 24的全反射之后, 由于 汇聚作用, 将获得平行出射光 911, 所述平行出射光 911注入光波导并通过 光波导进行传播, 这样, 可以大大降低光损耗, 实现光纤与光波导之间更 加高效的垂直光耦合;
本发明至少一个实施例中提供了一种光耦合单元的制造方法, 如图 10 所示, 所述方法包括以下步骤:
1001 : 在直角反射棱镜的反射面上设置曲面反射面。
较佳地, 所述直角反射棱镜可釆用光学磨抛技术制成, 在直角反射棱 镜上制备定位导针孔, 使定位导针孔的直径和位置应与光纤活动连接器上 的定位导针孔的直径和位置相匹配。
在所述直角反射棱镜的反射面上设置曲面反射面, 使所述设置的曲面 反射面的中心位置和间距与其所要固定的光纤活动连接器中光纤耦合管的 中心位置和间距相对应。
确定曲面反射面的曲率和面型, 以确定曲面反射面结构。 较佳地, 可以根据光纤活动连接器和光波导的数值孔径参数设计所述 曲面反射面的曲率; 具体的,根据光反射原理, 曲面对光束具有汇聚作用, 因此, 直角反射棱镜的反射面的曲率设计须确保从光纤入射到直角反射棱 镜的最大角度的光线经曲面反射面汇聚后, 反射入光波导的角度小于光波 导的数值孔径, 即没有光能量的损失; 所述曲面反射面面型的选择包括但 不限于圓弧面、 抛物面等。
根据所确定的曲面结构, 釆用紫外激光消融、 二氧化碳激光热熔或机 械、 超声研磨等工艺, 在直角反射棱镜上加工反射面。
其中, 对曲面反射面可进行真空镀膜, 获得全反射曲面; 具体的, 可 以对曲面反射面镀金、 镀银等金属薄膜, 也可以镀其他介质薄膜。
步骤 1002: 将所述直角反射棱镜固定于光纤活动连接器的表面, 使经 由光纤传播的光线正好全部入射到直角反射棱镜的曲面反射面上, 形成光 耦合器件。
较佳地, 将所述直角反射棱镜与所述光纤活动连接器相匹配的定位导 针孔分别通过定位导针相连, 此外, 利用紫外胶水将直角反射棱镜固定于 光纤活动连接器表面, 具体的, 紫外胶水可以施加在导针与反射棱镜和光 纤活动连接器的连接处上, 也可以施加在棱镜的边缘与光纤活动连接器相 连接的区域。
步骤 1003: 在光波导上设置凹槽;
较佳地, 所述在光波导上设置凹槽包括: 在光波导中平面光波导基底 以上位置基于激光消融技术, 利用紫外激光设置凹槽, 所述凹槽的尺寸大 于或等于直角反射棱镜的尺寸, 即, 可以放入整个直角反射棱镜。
步骤 1004: 将步骤 1002中形成的光耦合器件插入步骤 1003所设置的 凹槽中并固定。
所述进行固定可以釆用多种方式, 包括但不限于釆用紫外胶水粘贴固 定; 通过将光耦合器件插入光波导的凹槽中并固定, 即可实现光的垂直耦 合。
需要说明的是, 以上步骤的序号仅用于区分不同的步骤, 并不用于限 定步骤的先后顺序, 所有的步骤在执行时并没有严格意义上的先后顺序。
以上所述, 仅为本发明的较佳实施例而已, 并非用于限定本发明的保 护范围。

Claims

权利要求书
1、 一种光耦合器件, 包括: 直角反射棱镜和光纤活动连接器; 所述直角反射棱镜的反射面上设置有曲面反射面, 使经由光纤传播 的光线汇聚后反射出去;
所述光纤活动连接器与所述直角反射棱镜固定, 使经由光纤传播的 光线入射到所述直角反射棱镜的曲面反射面上。
2、 根据权利要求 1所述的光耦合器件, 其中, 所述光纤活动连接器 中设置有光纤耦合管, 所述曲面反射面的中心位置和间距与所述光纤耦 合管的中心位置和间距相同。
3、 根据权利要求 2所述的光耦合器件, 其中, 所述曲面反射面的曲 率根据光纤耦合管的数值孔径参数设计, 使从光纤入射到所述曲面反射 面的最大角度的光线经曲面反射面汇聚后平行出射。
4、 根据权利要求 3所述的光耦合器件, 其中, 当所述光耦合器件的 直角反射棱镜的类型依次为: 单路反射棱镜、 双路反射棱镜、 单列多路 反射棱镜和双列多路反射棱镜时, 则用于固定所述直角反射棱镜的光纤 活动连接器的类型依次为:单列光纤活动连接器、双路光纤活动连接器、 单列多路光纤活动连接器和双列多路光纤活动连接器。
5、 根据权利要求 1所述的光耦合器件, 其中, 所述直角反射棱镜的 定位导针孔的直径和位置与所述光纤活动连接器的定位导针孔的直径和 位置相对应。
6、 根据权利要求 5所述的光耦合器件, 其中, 所述光纤活动连接器 和直角反射棱镜通过定位导针相连, 所述定位导针分别连接直角反射棱 镜和光纤活动连接器上的定位导针孔;
所述直角反射棱镜利用紫外胶水固定于光纤活动连接器的表面, 紫 外胶水施加于定位导针与直角反射棱镜和光纤活动连接器的连接处, 或 者施加于直角反射棱镜的边缘与光纤活动连接器相连接的区域。
7、 一种光耦合单元, 包括光波导和权利要求 1至 6任一项所述的光 耦合器件, 所述光耦合器件垂直插入于所述光波导中, 使经由光耦合器
8、 根据权利要求 7所述的光耦合单元, 其中, 所述光耦合器件垂直 插入于所述光波导, 包括: 光波导中平面光波导基底以上位置上设置有 凹槽, 所述光耦合器件中的直角反射棱镜垂直插入于所述凹槽内, 所述 凹槽的尺寸大于或等于所述直角反射棱镜的尺寸。
9、 根据权利要求 8所述的光耦合单元, 其中, 当所述光耦合器件中 的直角反射棱镜的类型依次为: 单路反射棱镜、 双路反射棱镜、 单列多 路反射棱镜和双列多路反射棱镜时, 则所述光波导的类型依次为: 单路 光波导、 双路光波导、 单列多路光波导和双列多路光波导。
10、 根据权利要求 7至 9任一项所述的光耦合单元, 其中, 所述光 耦合器件中直角反射棱镜的曲面反射面的曲率根据光纤耦合管和光波导 的数值孔径参数设计, 使从光纤入射到所述曲面反射面的最大角度的光 线经曲面反射面汇聚后, 出射光线的角度小于光波导的数值孔径。
PCT/CN2014/084811 2014-01-16 2014-08-20 一种光耦合器件和光耦合单元 WO2015106567A1 (zh)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP14878417.6A EP3096164A4 (en) 2014-01-16 2014-08-20 Optical coupling device and optical coupling unit
JP2016564364A JP6463780B2 (ja) 2014-01-16 2014-08-20 光結合素子及び光結合ユニット
KR1020167022222A KR20160135707A (ko) 2014-01-16 2014-08-20 광결합 소자 및 광결합 유닛
US15/112,336 US20160356969A1 (en) 2014-01-16 2014-08-20 Optical Coupling Device and Optical Coupling Unit

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201420027992.2 2014-01-16
CN201420027992.2U CN204009138U (zh) 2014-01-16 2014-01-16 一种光耦合器件和光耦合单元

Publications (1)

Publication Number Publication Date
WO2015106567A1 true WO2015106567A1 (zh) 2015-07-23

Family

ID=52049116

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2014/084811 WO2015106567A1 (zh) 2014-01-16 2014-08-20 一种光耦合器件和光耦合单元

Country Status (6)

Country Link
US (1) US20160356969A1 (zh)
EP (1) EP3096164A4 (zh)
JP (1) JP6463780B2 (zh)
KR (1) KR20160135707A (zh)
CN (1) CN204009138U (zh)
WO (1) WO2015106567A1 (zh)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104865653B (zh) * 2015-06-12 2016-06-08 烽火通信科技股份有限公司 用于与光电收发阵列垂直耦合的光学组件及制作方法
US10168494B2 (en) * 2016-11-30 2019-01-01 International Business Machines Corporation Off-axis micro-mirror arrays for optical coupling in polymer waveguides
US10197737B2 (en) * 2017-06-19 2019-02-05 Intel Corporation Low back reflection echelle grating
CN108303767B (zh) * 2018-02-09 2019-12-31 苏州德睿电力科技有限公司 一种在光波导上制备凹面镜的方法
CN112433643A (zh) * 2019-08-24 2021-03-02 深圳市凯健奥达科技有限公司 声表面波曲线反射条纹及应用该曲线反射条纹的触摸屏
CN112698448A (zh) * 2019-10-22 2021-04-23 上海信及光子集成技术有限公司 一种基于棱镜的反射式垂直光耦合结构
CN113835165B (zh) * 2020-06-24 2022-11-25 华为技术有限公司 一种光发射组件、芯片、光模块及光通信设备
CN116840977A (zh) * 2022-03-24 2023-10-03 华为技术有限公司 光纤阵列、光模块及通信设备

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2312527A (en) * 1996-04-23 1997-10-29 Bosch Gmbh Robert Arrangement for coupling a transmitting or receiving element to an optical waveguide
CN1735826A (zh) * 2002-03-14 2006-02-15 新科实业有限公司 用于半导体器件与光纤的无源光学对准的集成平台
CN1751256A (zh) * 2003-02-19 2006-03-22 浜松光子学株式会社 光模块
CN102436038A (zh) * 2011-12-27 2012-05-02 华为技术有限公司 光路耦合器件、光路耦合装置及光路耦合方法

Family Cites Families (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1991009330A1 (en) * 1989-12-18 1991-06-27 E.I. Du Pont De Nemours And Company Fiber optic switch having a curved reflector
JPH0488308A (ja) * 1990-08-01 1992-03-23 Sumitomo Electric Ind Ltd 受光デバイス
US5369529A (en) * 1993-07-19 1994-11-29 Motorola, Inc. Reflective optoelectronic interface device and method of making
JP2907203B1 (ja) * 1998-02-20 1999-06-21 住友電気工業株式会社 光モジュール
US6421472B1 (en) * 2000-04-14 2002-07-16 Corning Incorporated Athermalized polymer overclad integrated planar optical waveguide device and method
DE10043996A1 (de) * 2000-09-05 2002-03-14 Cube Optics Ag Koppelvorrichtung und Verfahren zur Herstellung hierfür
WO2002057821A1 (en) * 2001-01-19 2002-07-25 Primarion, Inc. Optical interconnect with integral reflective surface and lens, system including the interconnect and method of forming the same
US6704479B2 (en) * 2001-07-24 2004-03-09 The United States Of America As Represented By The Secretary Of The Navy Method for coupling light into cladding-pumped fiber sources using an embedded mirror
US6697550B2 (en) * 2001-10-24 2004-02-24 Renka Corporation Fast 1×N fiber-optic switch
FR2836236B1 (fr) * 2002-02-21 2004-09-17 Framatome Connectors Int Dispositif de couplage optoelectronique perfectionne
JP4348604B2 (ja) * 2003-07-10 2009-10-21 オムロン株式会社 光路変換型光結合素子
FR2871244A1 (fr) * 2004-06-07 2005-12-09 Fci Sa Dispositif de couplage optique
US7239385B2 (en) * 2004-11-30 2007-07-03 Hutchinson Technology Incorporated Method and apparatus for monitoring output signal instability in a light source
WO2007076888A1 (en) * 2005-12-30 2007-07-12 Fci Optical coupling device
US20100098374A1 (en) * 2008-10-20 2010-04-22 Avago Technologies Fiber Ip (Signgapore) Pte. Ltd. Optoelectronic component based on premold technology
JP5564344B2 (ja) * 2010-06-29 2014-07-30 株式会社フジクラ 光ファイバ付きフェルール
US9429717B2 (en) * 2010-06-29 2016-08-30 Fujikura Ltd. Ferrule and ferrule with optical fiber
FR2963113B1 (fr) * 2010-07-23 2013-03-29 Commissariat Energie Atomique Guide d'onde planaire nanophotonique comportant une structure de couplage optique avec une fibre optique
JP2013235243A (ja) * 2012-04-09 2013-11-21 Fujikura Ltd 光路変更部材
US20150146211A1 (en) * 2013-11-27 2015-05-28 Corning Incorporated Optical coherence tomography probe

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2312527A (en) * 1996-04-23 1997-10-29 Bosch Gmbh Robert Arrangement for coupling a transmitting or receiving element to an optical waveguide
CN1735826A (zh) * 2002-03-14 2006-02-15 新科实业有限公司 用于半导体器件与光纤的无源光学对准的集成平台
CN1751256A (zh) * 2003-02-19 2006-03-22 浜松光子学株式会社 光模块
CN102436038A (zh) * 2011-12-27 2012-05-02 华为技术有限公司 光路耦合器件、光路耦合装置及光路耦合方法

Also Published As

Publication number Publication date
EP3096164A4 (en) 2017-01-25
JP6463780B2 (ja) 2019-02-06
KR20160135707A (ko) 2016-11-28
EP3096164A1 (en) 2016-11-23
JP2017503221A (ja) 2017-01-26
US20160356969A1 (en) 2016-12-08
CN204009138U (zh) 2014-12-10

Similar Documents

Publication Publication Date Title
WO2015106567A1 (zh) 一种光耦合器件和光耦合单元
US10365439B2 (en) Optical interconnect
US9897763B2 (en) Transceiver interface having staggered cleave positions
JP6441804B2 (ja) 光コネクター
US7366380B1 (en) PLC for connecting optical fibers to optical or optoelectronic devices
US10222563B2 (en) Multimode optical connector
US7991248B2 (en) Optical waveguide substrate and substrate mounting photoelectric hybrid circuit
WO2019184100A1 (zh) 一种光模块
US11105981B2 (en) Optical connectors and detachable optical connector assemblies for optical chips
US20140294339A1 (en) Compact optical fiber splitters
JP2015537257A (ja) カップリングレンズを備えたマルチチャネル光コネクタ
TWI546579B (zh) 光學架構、光學分配矩陣及製造光學結構之方法
JP2016529549A (ja) マルチコアファイバ用光カプラ
WO2022057621A1 (zh) 一种光模块
US20160238789A1 (en) Compact optical fiber splitters
WO2016155381A1 (zh) 用于并行光收发模块的集成多路光学透镜阵列组件
WO2022083041A1 (zh) 一种光模块
US8540434B2 (en) Optical edge connector
JP2000329962A (ja) 光分岐装置及びこれを用いた光バス回路
KR20110107808A (ko) 광학 모듈 및 컴퓨팅 시스템
WO2015033450A1 (ja) 光路変換コネクタ
JP3752967B2 (ja) 光分岐装置
Hiramatsu et al. Optical path redirected multichannel waveguide connectors for surface mount technologies
CA1277164C (en) Optical conductors
JP4792422B2 (ja) 平面光波回路

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14878417

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2016564364

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 15112336

Country of ref document: US

REEP Request for entry into the european phase

Ref document number: 2014878417

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2014878417

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 20167022222

Country of ref document: KR

Kind code of ref document: A