WO2015106385A1 - 一种应用在hvac系统中的ecm电机的恒风量控制方法 - Google Patents

一种应用在hvac系统中的ecm电机的恒风量控制方法 Download PDF

Info

Publication number
WO2015106385A1
WO2015106385A1 PCT/CN2014/070588 CN2014070588W WO2015106385A1 WO 2015106385 A1 WO2015106385 A1 WO 2015106385A1 CN 2014070588 W CN2014070588 W CN 2014070588W WO 2015106385 A1 WO2015106385 A1 WO 2015106385A1
Authority
WO
WIPO (PCT)
Prior art keywords
air volume
motor
speed
bus current
tad
Prior art date
Application number
PCT/CN2014/070588
Other languages
English (en)
French (fr)
Inventor
胡戈
Original Assignee
中山大洋电机股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中山大洋电机股份有限公司 filed Critical 中山大洋电机股份有限公司
Priority to CN201480000031.5A priority Critical patent/CN105378390B/zh
Priority to PCT/CN2014/070588 priority patent/WO2015106385A1/zh
Publication of WO2015106385A1 publication Critical patent/WO2015106385A1/zh
Priority to US14/987,694 priority patent/US9835350B2/en

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/30Control or safety arrangements for purposes related to the operation of the system, e.g. for safety or monitoring
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/62Control or safety arrangements characterised by the type of control or by internal processing, e.g. using fuzzy logic, adaptive control or estimation of values
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/62Control or safety arrangements characterised by the type of control or by internal processing, e.g. using fuzzy logic, adaptive control or estimation of values
    • F24F11/63Electronic processing
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/70Control systems characterised by their outputs; Constructional details thereof
    • F24F11/72Control systems characterised by their outputs; Constructional details thereof for controlling the supply of treated air, e.g. its pressure
    • F24F11/74Control systems characterised by their outputs; Constructional details thereof for controlling the supply of treated air, e.g. its pressure for controlling air flow rate or air velocity
    • F24F11/75Control systems characterised by their outputs; Constructional details thereof for controlling the supply of treated air, e.g. its pressure for controlling air flow rate or air velocity for maintaining constant air flow rate or air velocity
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/70Control systems characterised by their outputs; Constructional details thereof
    • F24F11/72Control systems characterised by their outputs; Constructional details thereof for controlling the supply of treated air, e.g. its pressure
    • F24F11/74Control systems characterised by their outputs; Constructional details thereof for controlling the supply of treated air, e.g. its pressure for controlling air flow rate or air velocity
    • F24F11/77Control systems characterised by their outputs; Constructional details thereof for controlling the supply of treated air, e.g. its pressure for controlling air flow rate or air velocity by controlling the speed of ventilators
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/88Electrical aspects, e.g. circuits
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F3/00Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems
    • F24F3/044Systems in which all treatment is given in the central station, i.e. all-air systems
    • F24F3/048Systems in which all treatment is given in the central station, i.e. all-air systems with temperature control at constant rate of air-flow
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B15/00Systems controlled by a computer
    • G05B15/02Systems controlled by a computer electric
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B30/00Energy efficient heating, ventilation or air conditioning [HVAC]
    • Y02B30/70Efficient control or regulation technologies, e.g. for control of refrigerant flow, motor or heating

Definitions

  • the present invention relates to a constant air volume control method for an ECM motor applied in an HVAC system.
  • ECM motor cylinder electronic commutation motor, also known as DC brushless permanent magnet synchronous motor, because ECM motor uses different environments, ECM motor control modes are generally: constant speed control, constant torque control and constant air volume control, etc. Constant air volume control is a more common mode.
  • Static pressure tends to change over time, for example, due to fouling of the pipeline or clogging of the filter. Static pressure is also often higher than the standard static pressure of the manufacturer's laboratory's nominal system due to the different installation of the pipe. Constant air volume control provides constant airflow to the user under these conditions, maintaining comfortable ventilation, cooling or heating under a wide range of static pressure conditions.
  • a constant air volume control method is to directly install the air flow meter, which not only increases the cost, but also brings potential control failure due to the failure of the air flow meter.
  • the air conditioner manufacturer usually adopts a constant air volume control method without a wind meter, and some monitor static pressure. The change is to adjust the speed, and some calculation formulas are designed to logarithmic calculation or high-order polynomial, which requires the MCU of the motor controller to have a relatively large calculation capacity, further increasing the cost.
  • U.S. Patent No. 4,068,833 discloses the use of external static pressure to vary the motor speed to achieve a constant air volume.
  • the change of external static pressure is calculated by the change of the speed of the motor's own tachometer.
  • the air volume calculation is controlled by the function of torque and speed. Compared with the constant air volume control, this paper does not calculate the torque of the motor, but The relationship between the DC bus current and the rotational speed is used to control the air volume, eliminating the torque calculation link and reducing the error caused by the torque calculation. And in some loads, it is necessary to realize the control of low air volume (such as 150 SCFM), and the air volume control is the control of the torque or the rotational speed of the motor.
  • low air volume such as 150 SCFM
  • the torque control of the motor cannot achieve such a low air volume because of the limitation of the minimum torque. In other words, even with the minimum torque output, the actual air volume exceeds the target air volume, so it is not perfect. By controlling the speed to adjust the air volume without controlling the torque, low air volume control can be achieved.
  • vector control is also available. The vector control mathematical model is complicated, the calculation is cumbersome, and the CPU with strong computing power is required, and the manufacturing cost is high.
  • the object of the present invention is to provide a constant air volume control method for an ECM motor applied in an HVAC system.
  • the mathematical model is simple, the algorithm is clean, the CPU operation is not high, the cost is low, the control precision is high, and at the same time, Achieve control of low air volume by controlling the rotational speed.
  • a constant air volume control method for an ECM motor applied in an HVAC system the ECM motor driving a wind wheel and having a stator assembly, a rotor assembly, and a motor controller
  • the motor controller includes a power circuit, a microprocessor,
  • the inverter circuit, the rotor position measuring circuit and the bus current detecting circuit the power circuit supplies power to each part of the circuit
  • the rotor position measuring circuit detects the rotor position signal and inputs it to the microprocessor
  • the microprocessor calculates the real-time speed of the motor according to the rotor position signal.
  • the bus current detecting circuit inputs the bus current to the microprocessor, and the microprocessor controls the inverter circuit, and the inverter circuit controls the turn-off and power-off of each phase winding of the stator assembly, and the following features:
  • Step C) The microprocessor compares the calculated bus current calculation value I tad with the real-time bus current 1 ⁇ according to the detected real-time bus current I bus , and if the bus current calculation value I tad is greater than the real-time bus current I bus , the motor is increased.
  • Speed n if the bus current calculated value I tad is smaller than the real-time bus current I bus , reduce the motor speed n, if the bus current calculated value 1 ⁇ is equal to the real-time bus current I bus , stop adjusting the n value of the motor speed, the ECM motor enters the work The state, then return to step B) to continue the constant air volume control state.
  • step c before the motor is adjusted, it may be determined whether the next speed value is within the range of n max . If the range is exceeded, the critical speed is used as the next speed and steps 8 and ( .
  • the above-mentioned bus current calculation value I tad is equal to the real-time bus current I bus , which means that the error of the real-time bus current Ibus deviates from the bus current calculation value Itad within a certain range, and the error within a certain range means that the deviation can be ⁇ 3%.
  • Equation I tad F (n).
  • the step A) described above obtains the external input target air volume value Q srt . If the motor is in the stop state, the initial motor speed n selects an intermediate value within the normal speed range of the motor.
  • Each of the target air volume values Q srt of the external input described above is a duty ratio corresponding to a range of external input P medical signals, a relay signal, a digital communication signal, or a type similar to a 0-10 VAC analog signal.
  • Increasing the rotational speed n of the motor or reducing the rotational speed n of the motor as described above is achieved by increasing or decreasing the duty ratio of the P medical signal input from the microprocessor to the inverter circuit.
  • i tad f (n)
  • target air volumes Q1, Q2 , Q3, Q4 corresponds to low air volume control, medium and low air volume control, stroke volume control and high air volume control, and the external input target air volume value Q set is the P medical signal, and the external input P medical signal duty ratio is between 1% and 25%.
  • the signal of value Q srt is one that can select four target air volumes by using the output voltage of four relays, or one of four target air volumes can be selected by digital communication protocol, or can be selected by using Q-10VDC analog signal. select between [0, 2 .5) V air volume Q1, between [2 .5,5) V is selected flow rate Q 2, Q3 is selected between air volume [5, 7.5) V, the [7.5, 10] The air volume Q4 is selected between V.
  • Figure 1 is a schematic structural view of a conventional air conditioning fan system
  • FIG. 2 is a perspective view of the ECM motor of the present invention
  • FIG. 3 is a perspective view of the motor controller of the ECM motor of the present invention.
  • FIG. 4 is a cross-sectional view of the ECM motor of the present invention.
  • Figure 5 is a circuit block diagram of a motor controller of the ECM motor of the present invention
  • Figure 6 is a circuit diagram corresponding to Figure 5;
  • Figure 7 is a control flow chart of the constant air volume control method of the present invention.
  • Fig. 8 is a graph showing a constant air volume fitting curve obtained by experimental data according to the present invention.
  • FIG. 1 The present invention is shown in Fig. 1.
  • an air blowing system such as a gas stove or an air handler
  • the figure is replaced by "motor + wind wheel", and there is air in the duct.
  • Filter the blast starts when the motor starts. Since the number of air outlets and air inlets is related to the number of rooms, there is no uniform standard for the design of the pipeline. At the same time, the filter may have different pressure drops, resulting in the traditional single-phase communication.
  • Motor 1 - The blast system of the PSC motor is in different pipes and the actual air volume will vary.
  • the ECM motor is generally composed of a motor controller 2 and a motor unit 1, and the motor unit 1 includes a stator assembly 12, a rotor assembly 13 and a casing assembly 11, and a stator assembly.
  • the motor controller 2 includes a control box 22 and mounting
  • the control circuit board 21 generally includes a power supply circuit, a microprocessor, a bus current detecting circuit, an inverter circuit, and a rotor position measuring circuit 14 (ie, a Hall sensor), and the power circuit is each Part of the circuit is powered
  • the rotor position measuring circuit detects the rotor position signal and inputs it to the microprocessor
  • the bus current detecting circuit inputs the detected bus circuit to the microprocessor
  • the microprocessor controls the inverter circuit
  • the inverter circuit controls the stator assembly 12 The turn-off and power-off of the windings of each phase line.
  • the ECM motor is a 3-phase brushless DC permanent magnet synchronous motor
  • the rotor position measuring circuit 14 generally adopts three Hall sensors, and three Hall sensors respectively detect a 360-degree electrical angular period.
  • the rotor position changes the energization of each phase winding of the stator assembly 12 every 120 degrees of electrical angle to form a 3-phase 6-step control mode.
  • AC INPUT After the full-wave rectification circuit consisting of diodes D7, D8, D9, and D10, DC bus voltage Vbus is output at one end of capacitor C1.
  • the inverter circuit is composed of electronic switch tubes Ql, Q2, Q3, Q4, Q5, Q6, and the electronic
  • the control terminals of the switch tubes Ql, Q2, Q3, Q4, Q5, and Q6 are respectively controlled by the 6-channel P medical signals (Pl, P2, P3, P4, P5, P6) output by the microprocessor, and the inverter circuit is also connected to the resistor Rl.
  • the bus current detecting circuit converts the detected bus current Ibus of the resistor R1 and transmits it to the microprocessor.
  • a constant air volume control method for an ECM motor applied in an HVAC system the ECM motor drives a wind wheel and has a stator assembly, a rotor assembly, and a motor controller, wherein the motor controller includes a power supply a circuit, a microprocessor, an inverter circuit, a rotor position measuring circuit, and a bus current detecting circuit.
  • the power circuit supplies power to each part of the circuit, and the rotor position measuring circuit detects the rotor position signal and inputs it to the microprocessor, and the microprocessor according to the rotor position signal
  • the real-time speed n of the motor is calculated, the bus current detecting circuit inputs the bus current to the microprocessor, the microprocessor controls the inverter circuit, and the inverter circuit controls the on-off and power-off of the phase windings of the stator components, and is characterized by: It includes the following steps:
  • Step C) The microprocessor compares the calculated bus current calculation value I tad with the real-time bus current 1 ⁇ according to the detected real-time bus current I bus , and if the bus current calculation value I tad is greater than the real-time bus current I bus , the motor is increased. Speed n, if the bus current calculated value I tad is smaller than the real-time bus current I bus , reduce the motor speed n, if the bus current calculated value 1 ⁇ is equal to the real-time bus current I bus , stop adjusting the n value of the motor speed, the ECM motor enters the work The state, then return to step B) to continue the constant air volume control state.
  • step C before the motor is adjusted, it can be determined whether the next speed value is Within the range of n max , if the range is exceeded, the critical speed is used as the next speed and steps B and C are repeated, as shown in Fig. 8, that is, when the motor is ready to increase the speed to the ni speed, it is judged whether ni is greater than n.
  • Calcd bus current I tad bus current I bus and the real-time refers to the real-time bus current is equal to I bus departing from the bus current I tad calculated value within a certain range of error, the error is within a certain range in the above-described the deviation ⁇ 3%
  • the motor speed n of the ECM motor is controlled to the first speed, such as 300 RPM.
  • the air volume Q1 is maintained at 15 0 SCFM, and the data to be collected at this time is read, including the motor.
  • the coefficients of the polynomial can be obtained by the least squares method.
  • I t ad C 1 + C 2 xn + C 3 xn 2 +... + Cmxn'"- 1 , and actually choose the binomial to satisfy the general needs.
  • the 3 coefficients are as follows in Table 1: Table 1
  • Step A) Obtain the external input target air volume value If the motor is in the stop state, the initial motor speed n ranges from 400 RPM to 1300 RPM.
  • Each target air volume value input externally ( ⁇ corresponds to a duty ratio corresponding to a range of external input P medical signals, a relay signal, a digital communication signal, or an analog signal similar to 0-10VAC.
  • Increasing the speed of the motor n or reducing the speed of the motor n is achieved by increasing or decreasing the duty cycle of the PWM signal that the microprocessor inputs to the inverter circuit.
  • the external input target air volume value ( ⁇ can also be selected by the output voltage of 4 relays.
  • One of the four target air volumes you can also use the digital communication protocol to select one of the four target air volumes, or you can Select 0-lOVDC analog signal to select, select air volume Q1 between [0,2.5)V, select air volume Q2 between [2.5,5)V, select air volume Q3 between [5, 7.5)V, [ 7.5, 10] Select the air volume Q4 between V.
  • Experimental preparation phase Firstly control the motor speed n of the ECM motor to 300 RPM. Maintain the air volume Q1 to 150 SCFM by adjusting the back pressure fan speed of the air duct or adjusting the opening of the damper.
  • the static pressure P ranges from 0.1 inch water column to 0.9 inch water column. Range, read the data that needs to be collected at this time, including motor speed n, motor DC bus current I tad , external static pressure P of the load, etc.
  • the data includes motor speed n, motor DC bus current I tad , external static pressure P of the load, etc.
  • the data includes motor speed n, motor DC bus current I tad , external static pressure P of the load, etc.
  • the principle of selecting the effective speed range is to cover the static pressure range of the application, because at 150 SCFM air volume, the load only needs to work under 0.1 to 0.9" water column static pressure, so 350-1200 RPM is selected as the effective speed range according to the original data.
  • next speed value is within the range of n min to n maX . If the range is exceeded, the critical speed is used as the calculation basis. For example, if I tad - I bus >0, the motor accelerates, but if the next speed is greater than 1200 RPM, only the motor speed is added to 1200 RPM. After reaching the steady state, repeat step 3.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Signal Processing (AREA)
  • Fluid Mechanics (AREA)
  • Mathematical Physics (AREA)
  • Fuzzy Systems (AREA)
  • General Physics & Mathematics (AREA)
  • Automation & Control Theory (AREA)
  • Control Of Motors That Do Not Use Commutators (AREA)
  • Control Of Multiple Motors (AREA)
  • Control Of Electric Motors In General (AREA)
  • Control Of Ac Motors In General (AREA)

Abstract

一种应用在HVAC系统中的ECM电机的恒风量控制方法,它包括如下步骤:步骤A)获取外部输入目标风量值Qset,若电机处于停机状态,运行电机,微处理器取得初始的电机转速n,若电机处于运转状态,微处理器获取当前的电机转速n;步骤B)微处理器根据目标风量值Qset和电机转速n利用函数Itad=f(n)换算成对应的母线电流计算值Itad,检测实时母线电流Ibus,其中Itad是母线电流,n是电机转速;步骤C)微处理器根据检测到的实时母线电流Ibus,比较母线电流计算值Itad与实时母线电流Ibus进行闭环控制,该恒风量控制方法数学模型简单,算法简洁,对CPU运算要求不高,成本较低,控制精度较高。

Description

一种应用在 HVAC系统中的 ECM电机的恒风量控制方法 技术领域 :
本发明涉及一种应用在 HVAC系统中的 ECM电机的恒风量控制方法。
背景技术 :
ECM电机, 筒称电子换相电机, 也可以称作直流无刷永磁同步电机, 因 ECM 电机使用环境不同, ECM电机的控制模式一般有: 恒转速控制、 恒力矩控制和恒 风量控制等, 恒风量控制是较为常用的模式。
在家用空调的室内通风管道里, 静压往往随着时间的流逝而变化, 比如因为 管道积灰或者过滤器堵塞。 静压也因为管道的安装不同而往往高于厂商实验室 的标称系统时的标准静压。 恒风量控制可以在这些情况下给用户带来恒定的风 量, 从而在广泛的静压条件下维持舒适的通风, 制冷或制热的效果。
一种恒风量控制方法是直接安装风量计, 不仅提高成本, 还带来潜在的因 为风量计失效导致控制失败, 当前空调厂商也通常采用无风量计的恒风量控制 方法, 有的要监视静压的变化来调速, 有的计算公式设计到对数计算或者高阶 多项式, 这需要电机控制器的 MCU具有较强大的计算能力, 进一步提高了成本。
美国专利 US4806833公开了针对外部静压来改变电机转速,来获得恒风量。 外部静压的变化是由电机自带的转速计感应的转速变化来计算的, 风量计算通 过力矩与转速的函数来控制, 跟该恒风量控制相比, 本文不通过计算电机的力 矩, 而是通过直流母线电流与转速的关系来控制风量, 消除了力矩计算的环节, 减少了因为力矩计算带来的误差。并且在某些负载需要实现低风量(如 150 SCFM ) 的控制, 而风量控制就是对电机的力矩或者转速的控制, 有时候电机的力矩控 制因为受到最小力矩的限制无法实现这么低的风量, 换句话说, 即使以最小力 矩输出, 实际的风量也超过了目标风量, 因此还不完善。 利用控制转速来调节 风量, 而不控制力矩, 可以实现低风量的控制。 目前也有用矢量控制方式, 矢量控制数学模型复杂, 计算繁瑣, 需要运算 能力较强的 CPU, 制造成本较高。
发明内容 :
本发明的目的是提供一种应用在 HVAC系统中的 ECM电机的恒风量控制方 法, 它数学模型筒单, 算法筒洁, 对 CPU运算要求不高, 成本较低, 控制精度 较高, 同时能实现通过控制转速实现低风量的控制目的。
本发明的目的是通过下述技术方案予以实现的。
一种应用在 HVAC系统中的 ECM电机的恒风量控制方法, 所述的 ECM电机驱 动风轮并具有定子组件、 转子组件以及电机控制器, 所述的电机控制器包括电 源电路、 微处理器、 逆变电路、 转子位置测量电路和母线电流检测电路, 电源 电路为各部分电路供电, 转子位置测量电路检测转子位置信号并输入到微处理 器,微处理器根据转子位置信号计算出电机的实时转速 n, 母线电流检测电路将 母线电流输入到微处理器, 微处理器控制逆变电路, 逆变电路控制定子组件的 各相线圏绕组的通断电, 其特征在于: 它包括如下步骤:
步骤 A )获取外部输入目标风量值 Qsrt , 微处理器根据输入的目标风量值 Qsrt 确定对应的函数 Itad= f (n) ,其中 Itad是母线电流, n是电机转速, nmin <n<nmax, ,η^ 是对应输入目标风量的函数 Itad =F (n)的最低临界转速, nmax是对应输入目标风量 的函数 Itad = f (n)的最高临界转速, 若电机处于停机状态, 运行电机, 微处理器 取得初始的电机转速 n,若电机处于运转状态,微处理器获取当前的电机转速 n; 步骤 B )根据电机转速 n利用函数 ltad = f (n)换算成对应的母线电流计算值 Itad , 检测实时母线电流 Ibus ;
步骤 C )微处理器根据检测到的实时母线电流 Ibus ,比较母线电流计算值 Itad与 实时母线电流 1^进行闭环控制, 若母线电流计算值 Itad大于实时母线电流 Ibus , 增 加电机的转速 n, 若母线电流计算值 Itad小于实时母线电流 Ibus , 减少电机的转速 n, 若母线电流计算值 1^与实时母线电流 Ibus相等, 停止调整电机转速的 n值, ECM电机进入工况状态, 然后回到步骤 B )继续进行恒风量控制状态。 上述所述的步骤 c中在给电机调速之前, 可以先判断下一个转速值是否在 至 nmax的区间范围内, 若超出该区间范围, 以临界转速作为下一个转速并重 复步骤 8和(。
上述所述的母线电流计算值 Itad与实时母线电流 Ibus相等是指实时母线电流 Ibus偏离母线电流计算值 Itad的误差在一定范围内, 所述的误差在一定范围内是指 偏差可以在 ±3%。
上述所述的函数 Itad= f (n)是这样获得的: 先采集原始数据, 针对每一个目 标风量, 从低静压一直调节到高静压, 这个静压要能涵盖应用的实际静压范围, 在调节静压的过程中, 让电机处于恒转速控制, 并通过调节风道的背压风扇转 速或者调节风门的开口来保持风量为目标风量, 并记录此时的电机稳态转速 n 和直流母线电流 Itad, 这样, 针对每一个目标风量, 都产生了一组转速 n和直流 母线电流值 Itad, 然后通过曲线拟合的方法产生每一个目标风量对应一个函数 Itad = f in) .
上述所述的函数关系式 Itad = f (n)是一个多项式函数: Itad =ς +C2xn+...+CmXni"-1 , 其中 c2,…, 0„是系数, n是电机转速值, 每一个目标风量对应一组
C1? C2,…, Cm系数并储存起来, 微处理器根据输入的目标风量值 Qsrt通过查表 法获得对应的一组 C1 C2,…, Cm系数, 从而得到函数关系式 Itad=F (n)。
上述所述的步骤 A )获取外部输入目标风量值 Qsrt , 若电机处于停机状态, 初始的电机转速 n在该电机的正常转速范围之内选择一个中间值。
上述所述的外部输入的每一个目标风量值 Qsrt是对应一定范围的外部输入 P醫信号的占空比, 继电器信号, 数字通讯信号, 或者类似于 0-10VAC模拟信号 的一种。
上述所述的增加电机的转速 n或者减少电机的转速 n通过增加或者减少微 处理器输入到逆变电路的 P醫信号的占空比来实现。
上述所述的微处理器存储有多个等级的目标风量对应的函数, 比如 4个等级 的风量 Ql、 Q2、 Q3、 Q4对应的 4个函数 itad= f (n) , 目标风量 Ql、 Q2、 Q3、 Q4 分别对应低风量控制、 中低风量控制、 中风量控制和高风量控制, 且外部输入 目标风量值 Qset的信号是 P醫信号,外部输入 P醫信号占空比在 1% -25%之间选 中风量 Ql, P醫信号占空比在 26%-50%之间选中风量 Q2, 51%_75%之间选择风 量 Q3, 76%-99%之间选择风量 Q4, 类似的, 外部输入目标风量值 Qsrt的信号是可 以采用 4个继电器的输出电压来选择 4个目标风量的一个, 也可以用数字通讯 协议来选择 4个目标风量之一, 也可以规定采用 Q-10VDC模拟信号来选择, 在 [ 0,2.5)V之间选中风量 Q1, 在 [2.5,5)V之间选中风量 Q2, 在 [ 5, 7.5)V之间 选中风量 Q3, 在 [7.5, 10] V之间选中风量 Q4。
本发明与现有技术相比, 具有如下效果: 1 )利用实验手段得到每一个目标 风量 Qsrt电机转速与直流母线电流的函数关系式 Itad = f (η) , 微处理器根据目标风 量值 Qsrt利用函数 Itad = f (n)换算成母线电流计算值 Itad;微处理器根据检测到的实 时母线电流 Ibus, 比较母线电流计算值 1^与实时母线电流 1^进行闭环控制, 若母 线电流计算值 Itad大于实时母线电流 Ibus, 增加微处理器输入到逆变电路的 P醫信 号的占空比提高转速, 若母线电流计算值 Itad小于实时母线电流 Ibus, 减少微处理 器输入到逆变电路的 P醫信号的占空比降低转速, 当母线电流计算值 Itad与实时 母线电流 Ibus相等, 停止调节微处理器输入到逆变电路的 P醫信号的占空比; 2) 它控制变量数目少, 数学模型筒单, 无需计算实时力矩, 可以采用运算能力不 高的 CPU或者 MCU等微处理器, 从而大大降低产品成本; 3)同时, 闭环控制以 及实验手段的充分测量, 有效保障控制的精度,可以实现绕开最小力矩的限制实 现低风量控制。
附图说明:
图 1 是传统的空调风机系统的结构示意图;
图 2 是本发明 ECM电机的立体图;
图 3 是本发明 ECM电机的电机控制器的立体图;
图 4 是本发明 ECM电机的剖视图;
图 5 是本发明 ECM电机的电机控制器的电路方框图; 图 6 是图 5对应的电路图;
图 7 是本发明的恒风量控制方法的控制流程图;
图 8是本发明通过实验数据得到恒风量拟合曲线。
具体实施方式:
下面通过具体实施例并结合附图对本发明作进一步详细的描述。
本发明是如图 1所示, 在一个典型的空调通风管道里, 安装了一个鼓风系 统(如燃气炉或空气处理机), 图中以 "电机 +风轮" 代替, 管道里还有空气过 滤器, 电机启动时开始鼓风, 由于出风口和入风口的数量与房间数有关, 管道 的设计也没有统一的标准, 同时过滤器也可能有不同的压降, 导致搭载传统的 单相交流电机一- PSC电机的鼓风系统在不同的管道里, 实际的风量会不同。
如图 2、 图 3、 图 4所示, ECM电机通常由电机控制器 2和电机单体 1, 所 述的电机单体 1包括定子组件 12、 转子组件 1 3和机壳组件 11 , 定子组件 1 3安 装在机壳组件 11上, 电机单体 1安装有检测转子位置的霍尔传感器 14 , 转子组 件 1 3套装在定子组件 12的内侧或者外侧组成, 电机控制器 2包括控制盒 22和 安装在控制盒 22里面的控制线路板 21 , 控制线路板 21—般包括电源电路、 微 处理器、母线电流检测电路、逆变电路和转子位置测量电路 14 (即霍尔传感器), 电源电路为各部分电路供电, 转子位置测量电路检测转子位置信号并输入到微 处理器, 母线电流检测电路将检测的母线电路输入到微处理器, 微处理器控制 逆变电路, 逆变电路控制定子组件 12的各相线圏绕组的通断电。
如图 5、 图 6所示, 假设 ECM电机是 3相无刷直流永磁同步电机, 转子位置 测量电路 14一般采用 3个霍尔传感器, 3个霍尔传感器分别检测一个 360度电 角度周期的转子位置, 每转过 120度电角度改变一次定子组件 12的各相线圏绕 组的通电, 形成 3相 6步控制模式。 交流输入(AC INPUT ) 经过由二级管 D7、 D8、 D9、 D10组成的全波整流电路后,在电容 C1的一端输出直流母线电压 Vbus, 直流母线电压 Vbus与输入交流电压有关, 交流输入(AC INPUT )的电压确定后, 母线电压 Vbus是恒定的, 3相绕组的线电压 P是 PWM斩波输出电压, P=Vbus *w, w是微处理器输入到逆变电路的 PWM信号的占空比,改变线电压 P可以改变直流 母线电流 Ibus,逆变电路由电子开关管 Ql、 Q2、 Q3、 Q4、 Q5、 Q6组成, 电子开 关管 Ql、 Q2、 Q3、 Q4、 Q5、 Q6的控制端分别由微处理器输出的 6路 P醫信号(Pl、 P2、 P3、 P4、 P5、 P6)控制, 逆变电路还连接电阻 Rl用于检测母线电流 Ibus , 母线电流检测电路将电阻 R1的检测母线电流 Ibus转换后传送到微处理器。
如图 7所示, 一种应用在 HVAC系统中的 ECM电机的恒风量控制方法, 所 述的 ECM电机驱动风轮并具有定子组件、 转子组件以及电机控制器, 所述的电 机控制器包括电源电路、 微处理器、 逆变电路、 转子位置测量电路和母线电流 检测电路, 电源电路为各部分电路供电, 转子位置测量电路检测转子位置信号 并输入到微处理器, 微处理器根据转子位置信号计算出电机的实时转速 n , 母线 电流检测电路将母线电流输入到微处理器, 微处理器控制逆变电路, 逆变电路 控制定子组件的各相线圏绕组的通断电, 其特征在于: 它包括如下步骤:
步骤 A )获取外部输入目标风量值 Qsrt , 微处理器根据输入的目标风量值 Qsrt 确定对应的函数 Itad = f (η) , 其中 Itad是母线电流, n是电机转速, n^ iKn^ , 是对应输入目标风量的函数 Itad =f (n)的最低临界转速, nmax是对应输入目标 风量的函数 Itad = f (n)的最高临界转速, 若电机处于停机状态, 运行电机, 微处 理器取得初始的电机转速 n , 若电机处于运转状态, 微处理器获取当前的电机转 速 n;
步骤 B )到达稳态, 根据电机转速 n利用函数 ltad = f (n)换算成对应的母线 电流计算值 Itad , 检测实时母线电流 Ibus ;
步骤 C )微处理器根据检测到的实时母线电流 Ibus ,比较母线电流计算值 Itad与 实时母线电流 1^进行闭环控制, 若母线电流计算值 Itad大于实时母线电流 Ibus , 增 加电机的转速 n , 若母线电流计算值 Itad小于实时母线电流 Ibus , 减少电机的转速 n , 若母线电流计算值 1^与实时母线电流 Ibus相等, 停止调整电机转速的 n值, ECM电机进入工况状态, 然后回到步骤 B )继续进行恒风量控制状态。
上述所述的步骤 C中在给电机调速之前, 可以先判断下一个转速值是否在 至 nmax的区间范围内, 若超出该区间范围, 以临界转速作为下一个转速并重 复步骤 B和 C,如图 8所示, 即当电机准备提升转速到 n i转速时, 判断 n i是否 大于 nmax,若大于最大临界转速 nmax时,令电机转速 n=n 若小于最大转速1 时,令电机转速 n=n i ;当电机准备降低转速到 ns转速时,判断 ns是否小于 , 若小于最低临界转速 nmin时, 令电机转速 n=nmin,, 若大于最低转速 nmin时, 令电 机转速 n=ns
母线电流计算值 Itad与实时母线电流 Ibus相等是指实时母线电流 Ibus偏离母线 电流计算值 Itad的误差在一定范围内,所述的误差在一定范围内是指偏差在 ± 3% 上述所述的函数 Itad = f (n)是这样获得的: 先采集原始数据, 针对每一个目 标风量, 从低静压一直调节到高静压, 这个静压要能涵盖应用的实际静压范围, 在调节静压的过程中, 让电机处于恒转速控制, 并通过调节风道的背压风扇转 速或者调节风门的开口来保持风量为目标风量, 并记录此时的电机稳态转速 n 和直流母线电流 Itad , 这样, 针对每一个目标风量, 都产生了一组转速 n和直流 母线电流值 Itad , 然后通过曲线拟合的方法产生每一个目标风量对应一个函数 Itad = f in) .
函数 Itad = f (n)是这样获得的: 假设 ECM电机的转速 n范围为 300RPM到 1400RPM, 我们需要控制多个目标风量 Qset : 假如目标风量 Q 1为 15 0SCFM, 需要 的静压范围为 0. 1到 0. 9"水柱、 目标风量 Q2为 200SCFM , 需要静压范围为 0. 1 到 0. 8"水柱、 目标风量 Q 3为 25 0SCFM , 需要静压范围为 0. 1到 0. 6"水柱
先把 ECM电机的电机转速 n控制在第一个转速如 300RPM, 通过调节风道的 背压风扇转速或者调节风门的开口来保持风量 Q1为 15 0SCFM, 读取此时需要采 集的数据, 包括电机转速 n, 电机直流母线电流 Itad, 负载的外部静压 P等, 使 得此时的外部静压 P小于等于应用所需的最小静压 0. 1"水柱;
再把 ECM电机的电机转速 n控制在下一个转速如 400RPM, 通过调节风道的 背压风扇转速或者调节风门的开口来保持风量为 Ql 150SCFM, 读取此时需要采 集的数据, 包括电机转速 n, 电机直流母线电流 Itad, 负载的外部静压 P等; 以某一个步长如 100RPM重复以上步骤, 直到电机转速 n足够大可以产生大 于等于应用所需的最大外部静压, 比如达到 1300 RPM时, 外部静压 P为 0.95" 水柱, 通过调节风道的背压风扇转速或者调节风门的开口来保持风量为 Q1 150SCFM,读取此时需要采集的数据,包括电机转速 n, 电机直流母线电流 Itad, 负 载的外部静压 P等。
以上就完成了对 150SCFM目标风量的数据采集。
对于目标风量 Q2为 200SCFM的数据采集采用类似的步骤, 只是需要在每个 转速下, 通过调节风道的背压风扇转速或者调节风门的开口来保持风量为 200 SCFM, 读取此时需要采集的数据, 包括电机转速 n, 电机直流母线电流 Idc, 负 载的外部静压 P等, 并注意第一个转速对应的 P小于等于 0.1"水柱, 最后一个 转速对应的 P大于等于 0.8"水柱即可。
对于目标风量 Q3为 250SCFM和目标风量 Q4、 目标风量 Q5等的数据采集都 采用类似的步骤, 然后通过曲线拟合的方法产生每一个目标风量 Qsrt对应一个函 数 Itad = f (n)。
如图 8所示, 这样, 针对每一个目标风量, 都产生了一组转速 n和直流母 线电流值 Itad, 然后通过曲线拟合的方法产生一个 Itad = f (n)的函数。 实时控制 中, 当电机接受到某个目标风量后, 选中对应的那个 Itad = f (n)函数, 并比较 实时母线电流 Ibus与通过函数计算出来的母线电流计算值 Itad之间的差异, 这个差 异通过比例和积分系数来对电机进行调速, 直到电机的转速 n与实时母线电流 Ibus落到该曲线上为止。 此时, 系统达到目标风量, 曲线拟合的过程是选择多项 式描述曲线, 多项式的系数可以通过最小二乘法求出。 理论上可以用 Itad = C1+C2xn + C3xn2+... + Cmxn'"-1, 实际上选择二项式就可以满足一般的需要。
函数关系式 Itad= f (n)是一个二阶函数:
Figure imgf000009_0001
+ CsXn2, 其中 、 C2 和。3是系数, n是电机转速值, 每一个目标风量对应一组 d、 。2和。3系数 并储存起来, 微处理器根据输入的目标风量值 (^通过查表法获得对应的一组 、 。2和。3系数, 从而得到函数关系式 Itad= f (n) , 在某负载中每一个目标风 量对应一组 、 。2和。3系数具体如下表 1所示: 表 1
Figure imgf000010_0001
步骤 A )获取外部输入目标风量值 若电机处于停机状态, 初始的电机转 速 n的范围在 400RPM至 1300RPM之间。
外部输入的每一个目标风量值 (^是对应是对应一定范围的外部输入 P醫信 号的占空比, 继电器信号, 数字通讯信号, 或者类似于 0-10VAC模拟信号的一 种。
增加电机的转速 n或者减少电机的转速 n通过增加或者减少微处理器输入 到逆变电路的 PWM信号的占空比来实现。
具体实施过程如下: 目前, 某商用空调的风量分别设置 4个等级: 低风量控 制、 中低风量控制、 中风量控制和高风量控制, 假设分别对应: Q1=150CFM、 Q2=300CFM、 Q3=450CFM和 Q4=900CFM, 外部输入目标风量值 Qset的信号是 PWM信 号, P醫信号占空比在 1% -25%之间选中风量 Ql, P醫信号占空比在 26%-50% 之间选中风量 Q2 , 51%-75%之间选择风量 Q3, 76%-99%之间选择风量 Q4 ,类似的, 外部输入目标风量值 (^的信号是也可以采用 4个继电器的输出电压来选择 4个 目标风量的一个, 也可以用数字通讯协议来选择 4个目标风量之一, 也可以规 定采用 0-lOVDC模拟信号来选择, 在 [ 0,2.5)V之间选中风量 Q1, 在 [ 2.5,5)V 之间选中风量 Q2, 在 [ 5, 7.5)V之间选中风量 Q3, 在 [ 7.5, 10] V之间选中风 量 Q4。
实验准备阶段: 先把 ECM电机的电机转速 n控制在 300RPM, 通过调节风道的 背压风扇转速或者调节风门的开口来保持风量 Q1为 150SCFM,静压 P范围为 0.1 英寸水柱到 0.9 英寸水柱的范围, 读取此时需要采集的数据, 包括电机转速 n, 电机直流母线电流 Itad, 负载的外部静压 P等;
设置目标风量 Q2为 300 SCFM,静压 P范围为 0. 1英寸水柱到 0.8 英寸水柱, 通过调节风道的背压风扇转速或者调节风门的开口来保持风量 Q2=300CFM,读取 此时需要采集的数据, 包括电机转速 n, 电机直流母线电流 Itad, 负载的外部静 压 P等;
设置目标风量 Q3为 450 SCFM,静压 P范围为 0. 1英寸水柱到 0.7 英寸水柱, 通过调节风道的背压风扇转速或者调节风门的开口来保持风量 Q3=450CFM,读取 此时需要采集的数据, 包括电机转速 n, 电机直流母线电流 Itad, 负载的外部静 压 P等;
设置目标风量 Q4为 900 SCFM, 静压 P范围为 0.1英寸水柱到 0.5 英寸水 柱, 通过调节风道的背压风扇转速或者调节风门的开口来保持风量 Q4=900CFM, 读取此时需要采集的数据, 包括电机转速 n, 电机直流母线电流 Itad, 负载的外 部静压 P等; 如下表 2所示的实验数据
测量风量 测量转速 母线电流测
SCFM PM 量值 Itad 外部静压测量 P("H20)
150.31 350 4 0.091
149.95 400 5 0.116
150.33 500 6 0.177
150.58 600 8 0.252 149.72 700 14 0.343
150.63 800 23 0.457
150.12 900 33 0.584
150.83 1000 46 0.722
150.11 1100 62 0.883
150.65 1200 80 1.074 测量风量 测量转速 母线电流测
SCFM PM 量值 Itad 外部静压测量 P ("H20)
300 500 0.1
300 600 18 0.227
300 700 27 0.31
300 800 40 0.418
300 900 53 0.537
300 1000 70 0.667
300 1100 88 0.819
304 1200 110 0.994 测量风量 测量转速 母线电流测
SCFM PM 量值 Itad 外部静压测量 P ("H20)
450 500 19 0.011
450 600 31 0.152
450 700 45 0.257
450 800 60 0.374
450 900 80 0.504
450 1000 102 0.609
450 1100 129 0.767
450 1200 157 0.927
Figure imgf000013_0001
Figure imgf000013_0002
曲线拟合:
1、第一条曲线, 目标风量0= 150 SCFM: Itad = 27.83 -10.89χη + 1.274 χη2;
2、 第二条曲线 目标风量 Q =300 SCFM: Itad = 38.6-12.7xn + 1.577xn2
3、 第三条曲线 目标风量 Q =450 SCFM: Itad = 12.17-6.023xn + 1.509xn2 4、 第四条曲线 目标风量 Q =900 SCFM: Itad = - 669.8 + 110xn- 2.16 xn2
为防止电机进入无效转速区间从而延长风量调节的时间甚至导致风量控 制不稳定,可根据原始数据限定好"有效转速区间"。以上述负载的原始数据为例, 可设定 当 Q1 = 150 SCFM时, 转速下限 nmm = 350, 转速上限 nmax = 1200; 当 Q2 = 900 SCFM时, 转速下限 nmm = 1020, 转速上限 nmax = 1200; 电机调速只能 在设定好的转速范围内进行, 一旦达到边界, 则停留在边界转速继续判定, 直 到达到目标风量为止。 选择有效转速区间的原则就是能够涵盖应用的静压范围, 因为在 150 SCFM风量下, 负载只需要在 0.1到 0.9"水柱静压下工作, 所以根据 原始数据选择 350- 1200 RPM作为有效转速范围。
1) 上电后以某个转速 (比如 n = 1000RPM) 启动电机。 这个启动转速要保 证电机能顺利达到稳态, 启动转速不能太低 (比如低于 400RPM), 也不能太高 (比如高于 1300RPM),可以从原始数据里面找到合适的启动转速,等待系统达 到稳态 1000RPM。
2) 假设外部输入的目标风量值 Qsrt=150CFM。
3) 微处理器开始查询对应 Qset=150CFM 的函数 Itad= f (η) , 母线电流计算值 Itad = 27.83-10.89xn + 1.274xn2: 这时检测实时母线电流 Ibus , 如果 Itad - Ibus > 0, 说明实际风量小于目标风量, 电机加速; 如果 itad - ibus <0, 说明实际风量大于 目标风量, 电机减速; itad - ibus = 0, 说明实际风量达到目标风量, 电机停止 调速。 在实际加速或减速前, 先判断下一个转速值是否在 nmin至 nmaX的区间范 围内, 若超出该区间范围, 以临界转速作为计算依据。 比如判定 Itad - Ibus >0, 电机加速, 但是如果下一个转速大于 1200RPM, 则只把电机的转速加到 1200RPM, 达到稳态后重复第 3步。
如果外部系统发生改变导致输出风量变化, 重复步骤 3即可。
本发明的原理是: 利用实验手段得到每一个目标风量 电机转速与直流母 线电流的函数关系式 Itad= f (n) , 微处理器根据目标风量值 (^利用函数 Itad= f (n) 换算成母线电流计算值 Itad, 微处理器根据检测到的实时母线电流 Ibus, 比较母线 电流计算值 1^与实时母线电流 1^进行闭环控制, 它控制变量数目少, 数学模型 筒单, 无需实时计算或者控制电机力矩, 可以采用运算能力不高的 CPU或者 MCU 等微处理器, 从而大大降低产品成本, 同时, 闭环控制以及实验手段的充分测 量, 有效保障控制的精度, 可以绕过最低力矩的限制状态实现低风量控制。

Claims

权利要求
1、 一种应用在 HVAC系统中的 ECM电机的恒风量控制方法, 所述的 ECM电 机驱动风轮并具有定子组件、 转子组件以及电机控制器, 所述的电机控制器包 括电源电路、 微处理器、 逆变电路、 转子位置测量电路和母线电流检测电路, 电源电路为各部分电路供电, 转子位置测量电路检测转子位置信号并输入到微 处理器, 微处理器根据转子位置信号计算出电机的实时转速 n, 母线电流检测电 路将母线电流输入到微处理器, 微处理器控制逆变电路, 逆变电路控制定子组 件的各相线圏绕组的通断电, 其特征在于: 它包括如下步骤:
步骤 A )获取外部输入目标风量值 Qsrt , 微处理器根据输入的目标风量值 Qsrt 确定对应的函数 Itad = f (η) , 其中 Itad是母线电流, n是电机转速,
Figure imgf000015_0001
是对应输入目标风量的函数 Itad = f (n)的最低临界转速, nmax是对应输入目 标风量的函数 Itad = f (n)的最高临界转速, 若电机处于停机状态, 运行电机, 微 处理器取得初始的电机转速 n , 若电机处于运转状态, 微处理器获取当前的电机 转速 n;
步骤 B )根据电机转速 n利用函数 ltad = f (n)换算成对应的母线电流计算值 Itad , 检测实时母线电流 Ibus ;
步骤 C )微处理器根据检测到的实时母线电流 Ibus ,比较母线电流计算值 Itad与 实时母线电流 1^进行闭环控制, 若母线电流计算值 Itad大于实时母线电流 Ibus , 增 加电机的转速 n, 若母线电流计算值 Itad小于实时母线电流 Ibus , 减少电机的转速 n, 若母线电流计算值 1^与实时母线电流 Ibus相等, 停止调整电机转速的 n值, ECM电机进入工况状态, 然后回到步骤 B )继续进行恒风量控制状态。
2、 ^据权利要求 1所述的一种应用在 HVAC系统中的 ECM电机的恒风量控 制方法, 其特征在于: 步骤 C中在给电机调速之前, 可以先判断下一个转速值 是否在 n匪至 n腿的区间范围内, 若超出该区间范围, 以临界转速作为下一个转 速并重复步骤 8和(。
3、 根据权利要求 1或 2所述的一种应用在 HVAC系统中的 ECM电机的恒风 量控制方法, 其特征在于: 母线电流计算值 1^与实时母线电流 Ibus相等是指实时 母线电流 Ibus偏离母线电流计算值 Itad的误差在一定范围内。
4、 根据权利要求 1或 2所述的一种应用在 HVAC系统中的 ECM电机的恒风 量控制方法, 其特征在于: 函数 Itad = f (n)是这样获得的: 先采集原始数据, 针 对每一个目标风量, 从低静压一直调节到高静压, 这个静压要能涵盖应用的实 际静压范围, 在调节静压的过程中, 让电机处于恒转速控制, 并通过调节风道 的背压风扇转速或者调节风门的开口来保持实际风量为目标风量, 并记录此时 的电机稳态转速 n和直流母线电流 ltad , 这样, 针对每一个目标风量, 都产生了 一组转速 n和直流母线电流值 Itad , 然后通过曲线拟合的方法产生每一个目标风 量对应一个函数 Itad = f (n)。
5、 根据权利要求 1或 2所述的一种应用在 HVAC系统中的 ECM电机的恒风 量控制方法, 其特征在于: 函数关系式 Itad= f (n)是一个多项式函数:
Itad =Q +Qxn+...+Cmxn'"-1 , 其中 , C2 ,…, 0„是系数, n是电机转速值, 每一个 目标风量对应一组 C1 C2 ,…, cm系数并储存起来, 微处理器根据输入的目标 风量值 (^通过查表法获得对应的一组 C1 C2 ,…, cm系数, 从而得到函数关系 式 Itad= "n)。
6、 根据权利要求 1或 2所述的一种应用在 HVAC系统中的 ECM电机的恒风 量控制方法, 其特征在于: 步骤 A )获取外部输入目标风量值 Qsrt , 若电机处于 停机状态, 初始的电机转速 n在该电机的正常转速范围之内选择一个中间值。
7、 根据权利要求 1或 2所述的一种应用在 HVAC系统中的 ECM电机的恒风 量控制方法, 其特征在于: 外部输入的每一个目标风量值 (^是对应一定范围的 外部输入 P應信号的占空比, 继电器信号, 数字通讯信号, 或者类似于 0-1 0VAC 模拟信号的一种。
8、 根据权利要求 1或 2所述的一种应用在 HVAC系统中的 ECM电机的恒风 量控制方法, 其特征在于: 增加电机的转速 n或者减少电机的转速 n通过增加 或者减少微处理器输入到逆变电路的 P應信号的占空比来实现。
9、 根据权利要求 7所述的一种应用在 HVAC系统中的 ECM电机的恒风量控制 方法, 其特征在于: 微处理器存储有 4个等级的风量 Ql、 Q2、 Q3、 Q4对应的 4 个函数 Itad= f (n) , 目标风量 Ql、 Q2、 Q3、 Q4分别对应低风量控制、 中低风量 控制、中风量控制和高风量控制,且外部输入目标风量值 (^的信号是 PVM信号, P醫信号占空比在 1% -25%之间选中风量 Q1, PWM信号占空比在 26%-50%之间 选中风量 Q2 , 51%_75%之间选择风量 Q3, 76%_99%之间选择风量 Q4。
10、 根据权利要求 3所述的一种应用在 HVAC系统中的 ECM电机的恒风量控 制方法, 其特征在于: 所示的误差在一定范围内是指偏差在 ± 3%。
PCT/CN2014/070588 2014-01-14 2014-01-14 一种应用在hvac系统中的ecm电机的恒风量控制方法 WO2015106385A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201480000031.5A CN105378390B (zh) 2014-01-14 2014-01-14 一种应用在hvac系统中的ecm电机的恒风量控制方法
PCT/CN2014/070588 WO2015106385A1 (zh) 2014-01-14 2014-01-14 一种应用在hvac系统中的ecm电机的恒风量控制方法
US14/987,694 US9835350B2 (en) 2014-01-14 2016-01-04 Method for controlling constant air volume of ECM motor in HVAC system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2014/070588 WO2015106385A1 (zh) 2014-01-14 2014-01-14 一种应用在hvac系统中的ecm电机的恒风量控制方法

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US14/987,694 Continuation-In-Part US9835350B2 (en) 2014-01-14 2016-01-04 Method for controlling constant air volume of ECM motor in HVAC system

Publications (1)

Publication Number Publication Date
WO2015106385A1 true WO2015106385A1 (zh) 2015-07-23

Family

ID=53542263

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2014/070588 WO2015106385A1 (zh) 2014-01-14 2014-01-14 一种应用在hvac系统中的ecm电机的恒风量控制方法

Country Status (3)

Country Link
US (1) US9835350B2 (zh)
CN (1) CN105378390B (zh)
WO (1) WO2015106385A1 (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106837837A (zh) * 2016-12-29 2017-06-13 威灵(芜湖)电机制造有限公司 直流风机的控制方法及控制系统
US20210372654A1 (en) * 2020-05-29 2021-12-02 Foshan Welling Washer Motor Manufacturing Co., Ltd. Ventilation device, and constant air volume control method therefor
US12018854B2 (en) * 2020-05-29 2024-06-25 Foshan Welling Washer Motor Manufacturing Co., Ltd. Ventilation device, and constant air volume control method therefor

Families Citing this family (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103853060B (zh) * 2012-11-30 2017-06-23 上海拜骋电器有限公司 电子开关的控制器及控制方法、电子开关及电子设备
US10158310B2 (en) 2014-06-23 2018-12-18 Shanghai Baicheng Electric Equipment Manufacture Co., Ltd. Electronic switch and electronic device
CA2964196A1 (en) * 2014-10-28 2016-05-06 Panasonic Intellectual Property Management Co., Ltd. Ventilation device
CN106958908B (zh) * 2017-02-24 2019-06-21 珀隆有限公司 新风系统及其风量控制方法及装置
CN107084440A (zh) * 2017-06-14 2017-08-22 珠海格力电器股份有限公司 可换向出风风管机及其控制方法以及空调装置
CN110056524B (zh) * 2018-01-17 2021-07-09 台达电子工业股份有限公司 风扇故障备援装置及其备援方法
CN108980071B (zh) * 2018-07-01 2021-02-26 江门市金羚排气扇制造有限公司 一种小功率换气扇
CN109124480B (zh) * 2018-07-02 2020-11-13 珠海格力电器股份有限公司 抽风设备及其控制方法、装置
CN109058120B (zh) * 2018-07-08 2021-02-19 汉宇集团股份有限公司 一种小功率离心泵
US10995968B2 (en) 2018-08-21 2021-05-04 Johnson Controls Technology Company Systems and methods for providing airflow in furnace systems
CN110260484B (zh) * 2019-06-17 2020-12-15 珠海格力电器股份有限公司 控制风机启动的方法、装置、计算机可读存储介质及空调
CN110895014A (zh) * 2019-11-12 2020-03-20 宁波奥克斯电气股份有限公司 一种风管机恒风量的控制方法及空调器
FR3105364B1 (fr) * 2019-12-19 2021-11-19 Seb Sa Appareil de purification d’air
CN114811906A (zh) * 2021-01-29 2022-07-29 日立江森自控空调有限公司 一种空调器风量调节方法及空调器
EP4123237A1 (en) * 2021-07-18 2023-01-25 Carrier Corporation Electronically commutated motor zero-watt standby power consumption
CN113834176B (zh) * 2021-08-18 2023-03-21 杭州洲钜电子科技有限公司 恒风量曲线的标定方法、设备的控制终端和可读存储介质
CN114593083A (zh) * 2022-03-30 2022-06-07 浙江亿利达风机股份有限公司 一种提高风机风量抗扰能力的升功率控制方法
CN114465529B (zh) * 2022-04-08 2022-07-15 中山大洋电机股份有限公司 一种应用于风机系统的ecm电机的恒力矩控制方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110146651A1 (en) * 2009-12-11 2011-06-23 Carrier Corporation Altitude Adjustment for Heating, Ventilating and Air Conditioning Systems
CN102315809A (zh) * 2010-07-08 2012-01-11 德昌电机(深圳)有限公司 风扇电机装置、空气流动性调节设备及风量控制方法
CN102748843A (zh) * 2012-07-24 2012-10-24 海信(山东)空调有限公司 风管式空调室内机恒风量控制系统及方法
CN202550949U (zh) * 2012-04-16 2012-11-21 杭州锐方科技有限公司 一种基于转矩补偿的直流无刷电机恒风量控制装置
CN202612226U (zh) * 2012-06-27 2012-12-19 卧龙电气集团股份有限公司 一种模糊恒出风控制的无叶风扇

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101849349B (zh) * 2007-10-23 2013-05-15 大金工业株式会社 电流检测装置、空气调节装置、修正常数计算系统及修正常数计算方法
CN103534929B (zh) * 2011-05-13 2017-03-29 株式会社日立制作所 同步电动机的驱动系统
CN103375419B (zh) * 2012-04-26 2015-10-28 中山大洋电机股份有限公司 一种电机及空调风机系统的恒风量控制方法
CN103452883B (zh) * 2012-05-31 2016-03-30 中山大洋电机股份有限公司 一种变速风机系统的控制方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110146651A1 (en) * 2009-12-11 2011-06-23 Carrier Corporation Altitude Adjustment for Heating, Ventilating and Air Conditioning Systems
CN102315809A (zh) * 2010-07-08 2012-01-11 德昌电机(深圳)有限公司 风扇电机装置、空气流动性调节设备及风量控制方法
CN202550949U (zh) * 2012-04-16 2012-11-21 杭州锐方科技有限公司 一种基于转矩补偿的直流无刷电机恒风量控制装置
CN202612226U (zh) * 2012-06-27 2012-12-19 卧龙电气集团股份有限公司 一种模糊恒出风控制的无叶风扇
CN102748843A (zh) * 2012-07-24 2012-10-24 海信(山东)空调有限公司 风管式空调室内机恒风量控制系统及方法

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106837837A (zh) * 2016-12-29 2017-06-13 威灵(芜湖)电机制造有限公司 直流风机的控制方法及控制系统
US20210372654A1 (en) * 2020-05-29 2021-12-02 Foshan Welling Washer Motor Manufacturing Co., Ltd. Ventilation device, and constant air volume control method therefor
US12018854B2 (en) * 2020-05-29 2024-06-25 Foshan Welling Washer Motor Manufacturing Co., Ltd. Ventilation device, and constant air volume control method therefor

Also Published As

Publication number Publication date
CN105378390A (zh) 2016-03-02
US9835350B2 (en) 2017-12-05
US20160116180A1 (en) 2016-04-28
CN105378390B (zh) 2017-11-10

Similar Documents

Publication Publication Date Title
WO2015106385A1 (zh) 一种应用在hvac系统中的ecm电机的恒风量控制方法
JP4687730B2 (ja) 送風装置およびそれを搭載した電気機器
KR102009450B1 (ko) Pm 모터의 직접 전력 제어에 의한 일정한 공기 볼륨 제어를 위한 방법 및 상기 방법을 적용하는 hvac 시스템
JP6254276B2 (ja) ファン・モータ風量の検出法
JP4444195B2 (ja) 送風装置およびそれを搭載した電気機器
WO2016065874A1 (zh) 一种具有抽风或者送风功能的电器设备的恒风量控制方法
WO2016029531A1 (zh) 一种带滤网堵塞检测功能的电器设备
CN104807152B (zh) Pm电机直接功率控制的恒风量控制方法及其应用的hvac系统
JP2017500470A5 (zh)
WO2014139201A1 (zh) 一种用来替换psc电机的ecm电机力矩自动校正的方法
CN106154871B (zh) 一种电器设备的通风管道堵塞程度实时显示控制方法
JP4409157B2 (ja) ファンモータおよびそれを搭載した電気機器
JP4888526B2 (ja) 送風装置およびそれを搭載した電気機器
JP5458921B2 (ja) 送風装置およびそれを搭載した電気機器
WO2013159461A1 (zh) 一种电机及空调风机系统的恒风量控制方法
JP4197101B2 (ja) ファンモータおよびそれを搭載した換気装置
WO2016011617A1 (zh) 一种送风设备的滤网堵塞检测方法及其应用的送风设备
JP4650484B2 (ja) 送風装置およびそれを搭載した電気機器
JP4888404B2 (ja) 送風装置およびそれを搭載した電気機器
WO2021147321A1 (zh) 一种恒风量引风机
JP2012149546A (ja) 送風装置およびそれを搭載した電気機器
Zhang et al. Design and implementation of constant air volume control system for fan motors based on sensorless
JP2012200115A (ja) 電動機およびそれを搭載した電気機器
JP2000166286A (ja) ファンモータおよびそれを用いた電気機器
JP2009293625A (ja) 送風装置およびそれを搭載した電気機器

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14878541

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14878541

Country of ref document: EP

Kind code of ref document: A1