WO2015105190A1 - 子宮体がんのリンパ節転移能の評価方法 - Google Patents

子宮体がんのリンパ節転移能の評価方法 Download PDF

Info

Publication number
WO2015105190A1
WO2015105190A1 PCT/JP2015/050551 JP2015050551W WO2015105190A1 WO 2015105190 A1 WO2015105190 A1 WO 2015105190A1 JP 2015050551 W JP2015050551 W JP 2015050551W WO 2015105190 A1 WO2015105190 A1 WO 2015105190A1
Authority
WO
WIPO (PCT)
Prior art keywords
seq
lymph node
dna
endometrial cancer
base
Prior art date
Application number
PCT/JP2015/050551
Other languages
English (en)
French (fr)
Inventor
泰久 寺尾
省 竹田
林崎 良英
昌可 伊藤
英哉 川路
寛子 大宮
久盛 加藤
洋平 宮城
敬 大津
Original Assignee
学校法人順天堂
国立研究開発法人理化学研究所
地方独立行政法人神奈川県立病院機構
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 学校法人順天堂, 国立研究開発法人理化学研究所, 地方独立行政法人神奈川県立病院機構 filed Critical 学校法人順天堂
Priority to JP2015556853A priority Critical patent/JP6711968B2/ja
Priority to EP15735080.2A priority patent/EP3093343B1/en
Publication of WO2015105190A1 publication Critical patent/WO2015105190A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/68Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
    • C12Q1/6876Nucleic acid products used in the analysis of nucleic acids, e.g. primers or probes
    • C12Q1/6883Nucleic acid products used in the analysis of nucleic acids, e.g. primers or probes for diseases caused by alterations of genetic material
    • C12Q1/6886Nucleic acid products used in the analysis of nucleic acids, e.g. primers or probes for diseases caused by alterations of genetic material for cancer
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q2600/00Oligonucleotides characterized by their use
    • C12Q2600/118Prognosis of disease development
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q2600/00Oligonucleotides characterized by their use
    • C12Q2600/158Expression markers

Definitions

  • the present invention relates to a technique for discriminating between endometrial cancer and lymph node metastatic and non-metastatic at the molecular level.
  • lymph node metastasis-positive cases may occur in spite of early cancer without muscle layer invasion.
  • the cancer is negative for lymph node metastasis even if muscle layer infiltration is observed, and unnecessarily lymph node dissection is being performed.
  • lymph node metastasis in endometrial cancer can be examined only by performing lymph node dissection and confirming pathologically whether there are cancerous tissues that have metastasized to the removed lymph nodes.
  • no means for determining whether or not a lymph node metastatic uterine cancer has been obtained without lymph node dissection has been known.
  • RNA-seq Non-Patent Document 1
  • CAGE Cap Analysis Gene Expression: Non-Patent Document 2
  • the CAGE method is characterized in that the activity of the transcription start site can be comprehensively quantified by selecting a long capped RNA such as mRNA and sequencing the 5 'end randomly and in large quantities.
  • the present invention relates to providing a technique for discriminating between endometrial cancer and lymph node metastasis and non-metastasis at the molecular level.
  • the present inventors extract RNA from cancer tissue with lymph node metastasis and cancer tissue without lymph node metastasis collected from endometrial cancer patients, and use transcription analysis region (Transcript Start) using CAGE analysis method.
  • transcription analysis region Transcript Start
  • TSS Site
  • the expression level of DNA containing a specific transcription initiation region is significantly different between the two, and using this as an index, the lymph node metastatic uterus It was found that body cancer and non-metastatic endometrial cancer can be distinguished.
  • the present invention relates to the following 1) to 4).
  • 1) Endometrial cancer comprising a step of measuring the expression level of one or more expression products of DNA including a transcription initiation region for a biological sample derived from cancer tissue isolated from a patient with endometrial cancer
  • a method for evaluating lymph node metastasis or lymph node metastasis ability of the DNA wherein the DNA is a base sequence represented by SEQ ID NOs: 1 to 277 and a base at an arbitrary position in the transcription initiation region and one or more bases downstream thereof DNA consisting of The evaluation method, wherein the transcription start region is a region whose both ends are defined by the first base of the base sequence represented by SEQ ID NOs: 1 to 277 and the 101st base from the 3 ′ end.
  • Lymph node metastasis or lymph node metastasis capacity of endometrial cancer used in the method of 1) above, which contains an oligonucleotide that specifically hybridizes with the transcription product of DNA or an antibody that recognizes the translation product of DNA. Test kit for assessing.
  • lymph node metastasis or lymph node metastasis ability of endometrial cancer classification of the same level or higher, without depending on the subjectivity of experts such as trained clinical technologists Can be performed objectively, and can be suitably used for tests (POCT: Point of Care Testing) performed by a medical worker alongside a patient from collection to analysis of a patient sample.
  • POCT Point of Care Testing
  • endometrial cancer means cancer that occurs in the uterine body part among uterine cancers. Endometrial cancer occurs in the endometrium, an epithelial tissue on the uterine cavity side, and is synonymous with endometrial cancer. Endometrial cancer is classified into stages I to IV according to the clinical stage classification of maternal women (2011) based on the size, spread, invasion and metastasis of cancer. In the present invention, the endometrial cancer to be evaluated is not particularly limited by the advanced stage, but is preferably a well-differentiated adenocarcinoma of endometrioid adenocarcinoma.
  • lymph node metastasis in endometrial cancer means that endometrial cancer grows in lymph nodes such as in the pelvis and around the aorta.
  • the evaluation of lymph node metastasis means evaluating or measuring the presence or absence of metastasis of endometrial cancer to the lymph node, and the evaluation of lymph node metastasis ability (lymph node metastasis) is the uterine body. It means to evaluate or measure whether cancer has the ability to metastasize to lymph nodes and proliferate.
  • the biological sample used in the present invention is a pre-operative or intra-uterine endometrial cancer tissue separated from an endometrial cancer patient to be evaluated.
  • the biological sample is appropriately prepared and processed for use in measurement.
  • an RNA extract is prepared, and when the sample is subjected to measurement at the protein level, a protein extract is prepared.
  • Any known method can be used as a method for extracting RNA from a biological sample. Specific examples include Ambion RiboPure kit manufactured by Life Technologies, miRNeasy manufactured by Qiagen, and RNeasy manufactured by Qiagen. Among these, the miRNeasy kit manufactured by Qiagen is preferably used.
  • nucleic acid or “polynucleotide” means DNA or RNA.
  • DNA includes not only double-stranded DNA but also single-stranded DNAs comprising a sense strand and an antisense strand constituting the DNA. Accordingly, the DNA includes double-stranded genomic DNA, single-stranded cDNA, single-stranded DNA having a sequence complementary to the DNA, and the like.
  • RNA includes any of total RNA, mRNA, rRNA, and synthetic RNA.
  • a transcription product of DNA consisting of the nucleotide sequence shown in SEQ ID NOs: 1 to 277 is an endometrial cancer as shown in the Examples.
  • CAGE Cap Analysis Gene Expression
  • RNA transcriptional activity a differential analysis between a clinical specimen-derived profile group obtained from “with lymph node metastasis” and a clinical specimen-derived profile group obtained from “without lymph node metastasis”
  • the bioconductor edgeR package Bioinformatics. 2010 Jan 1; 26 (1): 139-40
  • FDR false discovery rate
  • the expression product (referred to as “the expression product of the present invention”) (referred to as “the expression product of the present invention”) (referred to as “DNA containing the transcription start point”) It can be a biomarker for distinguishing cancer.
  • the DNA expression product containing the transcription start point in SEQ ID NOs: 1 to 275 is a marker that increases the expression level when there is lymph node metastasis
  • the DNA expression product containing the transcription start point in SEQ ID NOs: 276 to 277 is It is a marker that decreases the expression level when there is lymph node metastasis.
  • the “transfer start region” refers to a region including a transfer start point.
  • the transcription start point from a specific promoter is not limited to a single base, and may be a base present at a plurality of positions downstream of the promoter on the genome.
  • a region including a plurality of these transfer start points is referred to as a transfer start region in this specification. More specifically, the transfer start area is an area between the transfer start point located on the most 5 ′ side and the transfer start point located on the most 3 ′ side among the plurality of transfer start points.
  • each of the base sequences shown in SEQ ID NOs: 1 to 277 has a 5 ′ end corresponding to a region defined at both ends by the base at position 1 (5 ′ end) and the 101st base from the 3 ′ end. This is a base region to be formed.
  • each of the base sequences represented by SEQ ID NOs: 1 to 277 shows a transcription start region and 100 bases following the transcription start point located on the most 3 ′ side in the transcription start region.
  • such a transcription start region is also referred to as “a transcription start region shown in SEQ ID NOs: 1 to 277”.
  • the positions of the transcription start regions shown in SEQ ID NOs: 1 to 277 on the genome and the gene information related thereto are as shown in Tables 1-1 to 1-12 described later.
  • the DNA whose expression product expression level is measured is a base sequence at any position (transcription start point) in the transcription start region in the base sequence represented by SEQ ID NOs: 1 to 277 and 1 downstream thereof. It is DNA consisting of a base sequence of bases or more.
  • the number of bases in the downstream base sequence may be any number that can identify the expression product. Examples of the number of bases include 1 base or more, 5 bases or more, 10 bases or more, 15 bases or more, 20 bases or more, 25 bases or more, 30 bases or more, 40 bases or more, 50 bases or more.
  • the said base number 10 bases or less, 15 bases or less, 20 bases or less, 25 bases or less, 30 bases or less, 40 bases or less, 50 bases or less, 100 bases or less are mentioned, for example.
  • the downstream base is not particularly necessary in the case of measurement by the CAGE method, but in the case of measurement by hybridization or PCR, any part up to about 100 bases downstream is targeted in order to ensure the accuracy.
  • the DNA has a length of at least 20 bases out of DNA consisting of the transcription start region and 100 bases downstream from it, there is a high probability that it can be identified even in an experimental system for the entire genome.
  • the DNA has substantially the same base sequence as the DNA as long as the expression product can be a biomarker for distinguishing lymph node metastatic endometrial cancer from non-metastatic endometrial cancer.
  • DNA having the nucleotide sequence of is also included.
  • Such expression products of the present invention can be distinguished from lymph node metastatic endometrial cancer and non-metastatic endometrial cancer by grasping the expression level by combining one or more kinds.
  • classification can be made with specificity 100% and sensitivity 100%. That is, these can be surely discriminated only by one expression level.
  • the number and the content of the combination can be selected as appropriate, but suitable combinations (434 sets) when using at least two DNA expression products are described in the table below. It was shown in 3.
  • Such a combination is a logistic regression model for estimating the presence or absence of lymph node metastasis in the transcription start region extraction sample with the expression level of all the two combinations selected from the 277 transcription start regions as explanatory variables.
  • both the transcription start region extraction sample and the verification sample are extracted from those that can be classified with a specificity of 100% and a sensitivity of 100%. For the purpose of further improving the accuracy, these can be used in combination of two sets or three sets or more as appropriate.
  • DNA expression products in addition to the combinations of the two DNA expression products, among DNAs containing the transcription start sites in SEQ ID NOS: 1 to 277, DNA expression products other than those shown in Tables 3-1 to 3-6 In addition, DNA expression products consisting of any other base sequences may be combined within a range that can contribute to the evaluation of the present invention.
  • the expression product of the present invention includes a transcription product and a translation product expressed from the DNA.
  • the transcription product include RNA generated by transcription from the DNA, preferably mRNA.
  • Specific examples of the translation product include a protein encoded by the RNA.
  • the protein expressed from the DNA containing the transcription start point in SEQ ID NO: 264 is “TACC2” (Transforming, Acidic Coiled-Coil Containing Protein 2; UniProtKB / Swiss-Prot: TACC2_HUMAN, O95359).
  • the target of the measurement or detection of the expression product is cDNA artificially synthesized from the RNA, DNA encoding the RNA, protein encoded by the RNA, molecule interacting with the protein, and interaction with the RNA. Also included are molecules that act or molecules that interact with the DNA.
  • molecules that interact with RNA, DNA or protein DNA, RNA, protein, polysaccharide, oligosaccharide, monosaccharide, lipid, fatty acid, and their phosphates, alkylated products, sugar adducts, and the like, and Any of the above-mentioned complexes can be mentioned.
  • the expression level comprehensively means the expression level and activity of the expression product.
  • RNA, cDNA or DNA is targeted as a method for measuring the expression level, nucleic acid amplification represented by PCR method, real-time RT-PCR method, SmartAmp method, LAMP method, etc. using DNA hybridizing to these primers Methods, hybridization methods using nucleic acids that hybridize to these as probes (DNA chips, DNA microarrays, dot blot hybridizations, slot blot hybridizations, northern blot hybridizations, etc.), methods for determining base sequences, or combinations thereof You can choose from different methods.
  • the probe or primer used for the measurement that is, the primer for specifically recognizing and amplifying the expression product (transcription product) of the present invention or the nucleic acid derived therefrom, or the RNA or the nucleic acid derived therefrom is specific.
  • “specifically recognize” means that, for example, in the Northern blot method, substantially only the expression product (transcription product) of the present invention or a nucleic acid derived therefrom can be detected. This means that the detected product or product can be determined to be the transcript or the nucleic acid derived therefrom so that only the nucleic acid is produced.
  • an oligonucleotide containing a certain number of nucleotides complementary to DNA consisting of the base sequence represented by SEQ ID NOs: 1 to 277 or its complementary strand can be used.
  • the “complementary strand” refers to the other strand with respect to one strand of double-stranded DNA comprising A: T (U in the case of RNA) and G: C base pairs.
  • “complementary” is not limited to the case where the certain number of consecutive nucleotide regions are completely complementary sequences, preferably 80% or more, more preferably 90% or more, and still more preferably 95% or more. What is necessary is just to have the identity on arrangement
  • the identity of the base sequence can be determined by the algorithm such as BLAST.
  • BLAST a nucleotide sequence
  • it only needs to be capable of specific annealing and chain extension, and is usually 10 bases or more, preferably 15 bases or more, more preferably 20 bases or more, and for example 100 bases or less.
  • Those having a chain length of preferably 50 bases or less, more preferably 35 bases or less are mentioned.
  • oligonucleotide when used as a probe, it only needs to be capable of specific hybridization, and has at least a part or all of the sequence of DNA consisting of the base sequence represented by SEQ ID NOs: 1 to 277 (or its complementary strand), for example, A chain length of 10 bases or more, preferably 15 bases or more and, for example, 100 bases or less, preferably 50 bases or less, more preferably 25 bases or less is used.
  • the “oligonucleotide” may be DNA or RNA, and may be synthesized or natural.
  • the probe used for hybridization is usually labeled.
  • the probe DNA is first labeled with a radioisotope, a fluorescent substance, etc., and then the obtained labeled DNA is transferred to a nylon membrane or the like according to a conventional method. Hybridize with RNA. Thereafter, a method of detecting and measuring a signal derived from the labeled product of the formed duplex of labeled DNA and RNA can be used.
  • cDNA is prepared from RNA derived from a biological sample according to a conventional method so that the target expression product of the present invention (in this case, transcription product) can be amplified.
  • a pair of prepared primers (a normal strand that binds to the cDNA ( ⁇ strand) and a reverse strand that binds to the + strand) are hybridized therewith.
  • PCR is performed according to a conventional method, and the obtained amplified double-stranded DNA is detected.
  • detection of the amplified double-stranded DNA use a method of detecting the labeled double-stranded DNA produced by performing the above PCR using a primer previously labeled with RI, a fluorescent substance, etc. Can do.
  • nucleic acid derived from the expression product of the present invention (in this case, a transcription product) is immobilized on a support.
  • a nucleic acid derived from the expression product of the present invention (in this case, a transcription product) is immobilized on a support.
  • labeled cDNA or cRNA prepared from mRNA is bound on the microarray, and the label on the microarray is detected, whereby the mRNA expression level can be measured.
  • the nucleic acid immobilized on the array may be any nucleic acid that hybridizes specifically (ie, substantially only to the target nucleic acid) under stringent conditions.
  • the expression product of the present invention transcription
  • the product may be a nucleic acid having the entire sequence or a partial sequence.
  • the “partial sequence” includes a nucleic acid consisting of at least 15 to 25 bases.
  • stringent conditions can usually include washing conditions of about “1 ⁇ SSC, 0.1% SDS, 37 ° C.”, and more stringent hybridization conditions include “0.5 ⁇ SSC, 0.1%.
  • a more stringent hybridization condition a condition of “0.1 ⁇ SSC, 0.1% SDS, 65 ° C.” can be mentioned.
  • Hybridization conditions are described in J. Sambrook et al., Molecular Cloning: A Laboratory Manual, Thrd Edition, Cold Spring Harbor Laboratory Press (2001) and the like.
  • Examples of the method for determining the base sequence include the CAGE method, the TSS-seq method, the RNA-seq method, the DGE method, and the SAGE method, and the CAGE method is preferable.
  • the expression level is measured using the CAGE method, it can be carried out in accordance with the method described in Examples below.
  • an antibody against the expression product of the present invention in this case, a translation product
  • a biological sample an antibody against the expression product of the present invention
  • the polypeptide in the sample bound to the antibody is detected, and the level is detected.
  • This is done by measuring.
  • an antibody that binds to a primary antibody labeled with a radioisotope, a fluorescent substance, an enzyme, or the like as a secondary antibody is used. Labeling is performed, and signals derived from these labeling substances are measured with a radiation measuring instrument, a fluorescence detector, or the like.
  • the antibody against the translation product may be a polyclonal antibody or a monoclonal antibody. These antibodies can be produced according to a known method. Specifically, the polyclonal antibody is used to immunize non-human animals such as rabbits by using a protein expressed and purified in E. coli or the like according to a conventional method, or by synthesizing a partial polypeptide of the protein according to a conventional method, It can be obtained from the serum of the immunized animal according to a conventional method.
  • a monoclonal antibody is obtained by immunizing a non-human animal such as a mouse with a protein expressed and purified in Escherichia coli according to a conventional method or a partial polypeptide of the protein, and fusing the obtained spleen cells with myeloma cells. It can be obtained from the prepared hybridoma cells. Monoclonal antibodies may also be prepared using phage display (Griffiths, AD; Duncan, AR, Current Opinion in Biotechnology, Volume 9, Number 1, February 1998, pp. 102-108 (7)).
  • a biological sample isolated from a patient is fixed in formalin by a conventional method, embedded in paraffin, sliced into tissue pieces, and pasted on a slide glass. It is preferably used as a section sample.
  • an enzyme-labeled antibody such as alkaline phosphatase or peroxidase can be used, but highly sensitive detection is performed using a three-step method such as ABC method or LSAB method, or the DAVision EnVision detection system. Is preferred.
  • the expression level of the expression product of the present invention in a biological sample derived from cancer tissue isolated from a patient with endometrial cancer is measured, and based on the expression level, lymph node metastasis or lymph node metastasis ability is measured. Presence or absence is evaluated. Specifically, the expression level of the detected expression product of the present invention is evaluated by comparing it with a control level.
  • control level means, for example, expression of the expression product in endometrial cancer tissue isolated from endometrial cancer patients without lymph node metastasis or normal tissue isolated from endometrial cancer patients Level, or the expression level of the expression product in a group of healthy individuals who do not develop endometrial cancer.
  • the expression level of the expression product in the cancer tissue of the target patient is the expression level in an endometrial cancer tissue, normal tissue, or tissue derived from a healthy person isolated from a patient with endometrial cancer that does not have lymph node metastasis. Close, within the range of the expression level, or significantly higher (or lower) than the expression level, the patient's endometrial cancer can be evaluated as having no lymph node metastasis or low lymph node metastasis .
  • the lymph node metastasis or lymph node metastasis ability of endometrial cancer in the present invention can also be evaluated by increasing / decreasing the expression level of the expression product of the present invention.
  • a control level for example, based on the expression level of the expression product derived from normal tissue, endometrial cancer tissue isolated from endometrial cancer patients without lymph node metastasis or healthy tissue, This can be done by setting a value (threshold level) and comparing the expression level of the expression product in a patient-derived biological sample with a standard value (for example, the range of ⁇ 2SD is allowed).
  • the endometrial cancer of the patient can be evaluated as having no lymph node metastasis or having a low lymph node metastasis ability.
  • the possibility of lymph node metastasis or the ability of lymph node metastasis is determined based on the information provided in combination with other methods (CT, MRI, PET-CT, etc.) as necessary.
  • CT computed tomography
  • MRI magnetic resonance imaging
  • PET-CT magnetic resonance imaging
  • the criteria for performing lymph node biopsy and lymph node dissection are left to the judgment of the doctor, but if it is determined that there is a possibility of lymph node metastasis or high lymph node metastasis capacity, for example, lymph node dissection is performed. be able to. On the other hand, if it is determined that there is no possibility of lymph node metastasis or lymph node metastasis ability is low, it is considered unnecessary to perform lymph node dissection.
  • the test kit for evaluating lymph node metastasis or lymph node metastasis ability of endometrial cancer of the present invention contains a test reagent for measuring the expression level of the expression product of the present invention in a biological sample separated from a patient.
  • a test reagent for nucleic acid amplification or hybridization containing an oligonucleotide that specifically binds (hybridizes) to the expression product (transcription product) or the like of the present invention, or the expression product (translation product) of the present invention.
  • Oligonucleotides, antibodies and the like included in the kit can be obtained by known methods as described above.
  • the test kit can contain a labeling reagent, a buffer solution, a chromogenic substrate, a secondary antibody, a blocking agent, instruments and controls necessary for the test, and the like.
  • Example 1 Extraction and verification of transcription initiation region that enables discrimination between lymph node metastatic endometrial cancer and non-metastatic endometrial cancer (1) Obtaining specimen samples Patients who received comprehensive consent before surgery 5 mm each of endometrial cancer portions of endometrial cancer (well-differentiated adenocarcinoma) with a myometrial invasion of 1/2 or less were collected. The samples used were 10 specimens for extracting the transcription start region (including 3 specimens with lymph node metastasis and 7 specimens without lymph node metastasis), and 5 specimens (of which 2 specimens with lymph node metastasis). 3 specimens without lymph node metastasis).
  • tissue pieces were appropriately frozen and stored at -80 ° C.
  • the preserved tissue piece is placed in a 2 mL microtube so that the tissue piece is 50 mg or less, QIAzol manufactured by Qiagen is added, and one zirconia bead is sealed and crushed by osmosis treatment using TissueLyser manufactured by Qiagen. did.
  • RNA was prepared for RNA according to the attached protocol using miRNeasy mini kit manufactured by Qiagen.
  • the prepared RNA was measured for ultraviolet absorption (230, 260, 280 nm) with a spectrophotometer to calculate 260/230, 260/280 ratios, and the quality of the RNA was tested.
  • electrophoresis was performed using BioAnalyzer RNA nano chip manufactured by Agilent, and the RIN value indicating the degree of RNA degradation was calculated to test the degree of RNA degradation.
  • CAGE library preparation 5 ⁇ g of purified RNA was prepared, and unamplified untagged CAGE method (“Cell Engineering, separate volume, Advanced Method for Next-Generation Sequencer Purpose”, Juno Kanno, Satoshi Suzuki, Gakken Medical Shujunsha, 2012 (Published on September 19), CAGE library was prepared by Chapter 3 3, “Exhaustive promoter analysis (non-amplified CAGE method using Illumina sequencer)”).
  • CAGE library was prepared by Chapter 3 3, “Exhaustive promoter analysis (non-amplified CAGE method using Illumina sequencer)”.
  • the purified RNA was subjected to reverse transcription reaction and purified, and then aldehyde was formed by participation of a ribose diol with sodium periodate, and biotin hydrazide was added to add biotin to the aldehyde group.
  • RNA / cDNA double strand biotinylated with avidin magnetic beads was bound to the bead surface, and the cDNA was released and recovered by RNase H digestion and heat treatment.
  • sequencing was performed using HiSeq 2500 manufactured by Illumina.
  • the standard conditions of AMPure XP (manufactured by Beckman Coulter) used for purification, buffer replacement, etc. in this step are conditions for recovering nucleic acids having a length of 100 bases or more in the case of double strands.
  • the CAGE library produced by this process using this is composed of double-stranded DNA having a chain length of 100 bases or more.
  • a model was constructed, and samples that can be classified with 100% specificity and 100% sensitivity were selected for both the transcription start region extraction sample and the verification sample (Tables 3-1 to 3-6).
  • a logistic regression model which is one of the simplest machine learning devices, is adopted.
  • Example 2 Using 23 surgically-extracted specimens (9 specimens with lymph node metastasis, 14 specimens without lymph node metastasis) different from the specimens used in Example 1, a CAGE library was prepared and lymph nodes were prepared in the same manner as in Example 1. Transcription initiation regions with different activities were extracted in the group with node metastasis and the group without lymph node metastasis. As a result, the transcriptional activity level of the transcription initiation region represented by SEQ ID NOs: 35, 36, 63, 73, 140, 161, 189, 193, 205 and 219 is significantly different between the groups with and without metastasis. It was confirmed (Table 4).
  • Example 3 Discrimination between lymph node metastatic endometrial cancer and non-metastatic endometrial cancer using TACC2 as a marker
  • (1) specimen Surgical excision specimen of a patient who received comprehensive consent before surgery (myometrium) Samples that were diagnosed as having lymph node metastasis or no lymph node metastasis were collected in 5 mm each of endometrial cancer sections of endometrial cancer (well-differentiated adenocarcinoma) with invasion of 1/2 or less. .
  • TACC2 The expression level of the TACC2 gene was corrected with the housekeeping gene, SUDS4, and calculated as a relative change amount with respect to the control. The results are shown in FIG. From FIG. 2, in the real-time PCR performed using this primer, the expression level of TACC2 is different between with and without lymph node metastasis, and it can be considered that TACC2 can be used as a marker.
  • the present invention it is possible to objectively determine the presence or absence of lymph node metastasis of endometrial cancer and the prediction of its occurrence by examining the primary endometrial lesions collected before or during surgery. Thereby, unnecessary lymph node dissection can be avoided, and complications such as postoperative lymphedema can be reduced.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Organic Chemistry (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Engineering & Computer Science (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Analytical Chemistry (AREA)
  • Zoology (AREA)
  • Genetics & Genomics (AREA)
  • Wood Science & Technology (AREA)
  • Physics & Mathematics (AREA)
  • Biotechnology (AREA)
  • Microbiology (AREA)
  • Molecular Biology (AREA)
  • Hospice & Palliative Care (AREA)
  • Biophysics (AREA)
  • Oncology (AREA)
  • Biochemistry (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • General Engineering & Computer Science (AREA)
  • General Health & Medical Sciences (AREA)
  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)

Abstract

 子宮体がんであってリンパ節転移性のものと非転移のものとを、分子レベルで判別する手法の提供。 子宮体がん患者から分離されたがん組織由来の生体試料について、転写開始領域を含むDNAの1種又は2種以上の発現産物の発現レベルを測定する工程を含む、子宮体がんのリンパ節転移又はリンパ節転移能を評価する方法であって、該DNAが配列番号1~277で示される塩基配列における、転写開始領域の任意の位置の塩基とその下流に連続する少なくとも1塩基以上からなるDNAであり、 該転写開始領域が、配列番号1~277で示される塩基配列の1番目の塩基と3'末端から101番目の塩基によって両端が規定される領域である、前記評価方法。

Description

子宮体がんのリンパ節転移能の評価方法
(関連出願及び参照による援用)
 本出願は、2014年1月10日に出願した日本国特願2014-003191の優先権を主張するものであり、その全内容は本明細書において参照として援用される。
 また、本明細書に引用される全ての文献は、あらゆる目的から全体として参照により援用される。いずれの文献の引用も、それが本発明に関する先行技術であることを認めるものと解釈されてはならない。
 本発明は、子宮体がんであってリンパ節転移性のものと非転移性のものとを分子レベルで判別する手法に関する。
 早期子宮体がん(高分化型腺がん)症例において、リンパ節転移の有無の違いは、原発巣のがんにおける転写の異常によってもたらされていると考えられる。子宮体がんtype1の高分化型腺がんにおいて、筋層浸潤が無い早期がんであるにも関わらず、リンパ節転移陽性症例が散見することがあるが、ほとんどの子宮体部高分化型腺がんは筋層浸潤を認めてもリンパ節転移陰性で、にもかかわらず不要なリンパ節郭清が行われているのが現状である。
 従来、子宮体がんにおけるリンパ節転移能を調べるには、実際にリンパ節郭清を行い、摘出したリンパ節に転移したがん組織があるかどうかを病理学的に確認することによりのみ行われており、リンパ節郭清を行わずにリンパ節転移性の子宮体がんであるか否かを判別する手段はこれまでに全く知られていない。
 一方、近年、遺伝子の発現状態の比較によって、ある状態にある細胞で発現している遺伝子を網羅的に解析し、その種類や発現レベルを細胞間で比較する、遺伝子の発現解析(expression analysis)のための手法が開発されている。例えば、転写開始部位の遺伝子の発現状態をシーケンス情報として網羅的に解析するRNA-seq(非特許文献1)やCAGE(Cap Analysis Gene Expression:非特許文献2)等が知られている。このうち、CAGE法は、mRNA等の長いキャップ付RNAを選択し、その5’末端を無作為かつ大量に配列決定することで転写開始点の活性を網羅的に定量化できるという特徴を有する。
 しかしながら、ヒトゲノムにおける転写開始領域の発現レベルと特定の疾患との関係についてはこれまでに全く報告されていない。
Nature Reviews Genetics 10 (1): 57-63 Genome Res. 2011 Jul;21(7):1150-9
 本発明は、子宮体がんであってリンパ節転移性のものと非転移性のものとを、分子レベルで判別する手法を提供することに関する。
 本発明者らは、子宮体がん患者から採取した、リンパ節転移があるがん組織とリンパ節転移がないがん組織からRNAを抽出し、CAGE解析法を用いて転写開始領域(Transcript Start Site;TSS)付近の発現状態をシーケンス情報として網羅的に解析した結果、特定の転写開始領域を含むDNAの発現レベルが両者の間で有意に異なり、これを指標として、リンパ節転移性の子宮体がんと非転移の子宮体がんを判別できることを見出した。
 すなわち、本発明は、以下の1)~4)に係るものである。
 1)子宮体がん患者から分離されたがん組織由来の生体試料について、転写開始領域を含むDNAの1種又は2種以上の発現産物の発現レベルを測定する工程を含む、子宮体がんのリンパ節転移又はリンパ節転移能を評価する方法であって、該DNAが配列番号1~277で示される塩基配列における、転写開始領域の任意の位置の塩基とその下流に連続する1塩基以上からなるDNAであり、
 該転写開始領域が、配列番号1~277で示される塩基配列の1番目の塩基と3’末端から101番目の塩基によって両端が規定される領域である、前記評価方法。
 2)前記DNAの転写産物と特異的にハイブリダイズするオリゴヌクレオチド、又は前記DNAの翻訳産物を認識する抗体を含有する上記1)の方法に用いる子宮体がんのリンパ節転移又はリンパ節転移能を評価するための検査用キット。
 3)転写開始領域を含むDNAの1種又は2種以上の発現産物の、子宮体がんのリンパ節転移又はリンパ節転移能を評価するためのマーカーとしての使用であって、該DNAが配列番号1~277で示される塩基配列における、転写開始領域の任意の位置の塩基とその下流に連続する1塩基以上からなるDNAであり、
 該転写開始領域が、配列番号1~277で示される塩基配列の1番目の塩基と3’末端から101番目の塩基によって両端が規定される領域である、前記発現産物の使用。
 4)子宮体がん患者から分離されたがん組織由来の生体試料について、TACC2のRNA又はタンパク質の発現レベルを測定する工程を含む、子宮体がんのリンパ節転移又はリンパ節転移能を評価する方法。
 本発明によれば、リンパ節転移の可能性が皆無である子宮体がん検体を選択でき、これによって、不要なリンパ節郭清の回避を含めた手術方式に関する方針の示唆が得られる。リンパ節郭清を回避できれば、手術時間の短縮、手術侵襲の軽減、術後のリンパ浮腫などを防ぐことができる。また、本発明を用いることで、子宮体がんのリンパ節転移又はリンパ節転移能、トレーニングを積んだ臨床検査技師のような専門家の主観によらなくても、同程度あるいはそれ以上の分類を客観的に行うことが可能になり、患者検体の採取から解析まで患者の傍らで医療従事者が行う検査(POCT:Point of Care Testing)にも好適に利用できる。
免疫組織化学像。(左図)転移あり、濃い茶色:TACC2発現細胞、倍率:400倍、(右図)転移なし、倍率:400倍 TACC2のRNA発現量を示すグラフ。
 本発明において、子宮体がんとは、子宮癌のうち子宮体部に発生する癌を意味する。子宮体がんは子宮腔側の上皮組織である子宮内膜に発生し、子宮内膜がんと同義である。子宮体がんは、がんの大きさ、広がり、浸潤や転移の状況から、日産婦臨床進行期分類(2011年)によれば進行期がI~IVに分類されている。本発明において、評価の対象となる子宮体がんとしては、進行期によって特に制限されるものではないが、類内膜腺がんの高分化型腺がんであるのが好ましい。
 本発明において、子宮体がんにおけるリンパ節転移とは、子宮体がんが、骨盤内や大動脈周囲等のリンパ節において増殖することを意味する。
 本発明においてリンパ節転移の評価とは、子宮体がんのリンパ節への転移の有無を評価又は測定することを意味し、リンパ節転移能(リンパ節転移性)の評価とは、子宮体がんがリンパ節へ転移して増殖する能力を有するか否かを評価又は測定することを意味する。
 本発明において用いられる生体試料は、評価対象となる子宮体がん患者から分離された術前或いは術中の子宮体がん組織である。当該生体試料は、測定に供するために適宜調製・処理される。例えば試料を核酸レベルでの測定に供する場合はRNA抽出液が調製され、試料をタンパク質レベルでの測定に供する場合はタンパク質抽出液が調製される。
 生体試料からRNAを抽出する方法は、公知の任意の方法を用いることができる。具体的には、ライフテクノロジーズ社製Ambion RiboPureキット、キアゲン社製miRNeasy、同社製RNeasyが例示できるが、これらのうちキアゲン社製miRNeasyキットが好適に用いられる。
 本明細書において、「核酸」又は「ポリヌクレオチド」と云う用語は、DNA又はRNAを意味する。また、「DNA」とは、2本鎖DNAのみならず、それを構成するセンス鎖及びアンチセンス鎖という各1本鎖DNAを包含する。従って、DNAには、2本鎖のゲノムDNA、1本鎖のcDNAや該DNAと相補的な配列を有する1本鎖DNA等が包含される。また、「RNA」には、total RNA、mRNA、rRNA及び合成のRNAのいずれもが含まれる。
 本発明において、配列番号1~277で示される塩基配列からなるDNA(転写開始領域とその下流に連続する100塩基からなるヒトゲノムDNA)の転写産物は、実施例で示すとおり、子宮体がんのうちリンパ節転移がない検体とリンパ節転移がある検体について、CAGE(Cap Analysis Gene Expression)解析法を用いて、ゲノム上の転写開始領域を含む下流100ベース以上のDNAの発現状態を網羅的に解析した結果、リンパ節転移性の子宮体がんと非転移の子宮体がんで、その発現レベル(転写活性)に有意な差異が認められたものである。具体的には、RNAの転写活性について、「リンパ節転移あり」から得られた臨床検体由来プロファイル群、「リンパ節転移なし」から得られた臨床検体由来プロファイル群の間における差分解析をR/Bioconductor edgeRパッケージ(Bioinformatics. 2010 Jan 1;26(1):139-40)を用い、閾値としてFDR(false discovery rate)5%を設定し、抽出されたものである。
 したがって、配列番号1~277で示される塩基配列における、転写開始領域の任意の位置(転写開始点)の塩基とその下流に連続する1塩基以上からなるDNA(以下、「配列番号1~277における転写開始点を含むDNA」と称する)の(又はそれによってコードされる)発現産物(「本発明の発現産物」と云う)は、リンパ節転移性の子宮体がんと非転移性の子宮体がんを判別するためのバイオマーカーとなり得る。尚、配列番号1~275における転写開始点を含むDNAの発現産物は、リンパ節転移がある場合に発現レベルが上がるマーカーであり、配列番号276~277における転写開始点を含むDNAの発現産物はリンパ節転移がある場合に発現レベルが下がるマーカーである。
 本発明において、「転写開始領域」は、転写開始点を含む領域をいう。特定のプロモーターからの転写開始点は単一の塩基に限定されず、ゲノム上のプロモーターの下流の複数の位置に存在する塩基であり得る。これらの複数の転写開始点を含む領域を本明細書において転写開始領域と称する。より詳細には、転写開始領域は、複数の転写開始点のうち最も5’側に位置する転写開始点と最も3’側に位置する転写開始点との間の領域である。配列番号1~277で示される塩基配列の各々において転写開始領域は1位(5’末端)の塩基と3’末端から101番目の塩基とによって両端が規定される領域に相当する5’末端を形成する塩基領域である。換言すると、配列番号1~277で示される塩基配列の各々には、転写開始領域と、転写開始領域中の最も3’側に位置する転写開始点に続く100個の塩基が示されている。本明細書においては、斯かる転写開始領域を「配列番号1~277において示される転写開始領域」とも称する。
 配列番号1~277において示される転写開始領域のゲノム上の位置、及びそれに関連する遺伝子情報等は後記表1-1~表1-12に示すとおりである。
 本発明において、発現産物の発現レベルが測定されるDNAは、配列番号1~277で示される塩基配列における、上記転写開始領域中の任意の位置(転写開始点)の塩基とその下流に続く1塩基以上の塩基配列からなるDNAである。
 ここで、下流に続く塩基配列の塩基数は、発現産物を特定できる数であればよい。当該塩基数としては、例えば1塩基以上、5塩基以上、10塩基以上、15塩基以上、20塩基以上、25塩基以上、30塩基以上、40塩基以上、50塩基以上が挙げられる。また、当該塩基数としては、例えば10塩基以下、15塩基以下、20塩基以下、25塩基以下、30塩基以下、40塩基以下、50塩基以下、100塩基以下が挙げられる。
 下流側の塩基は、CAGE法による測定の場合には特に必要ないが、ハイブリダイゼーションやPCRによる測定の際にはその精度を担保するために下流100塩基程度までの何れかの部分を対象とすることができ、転写開始領域とその下流100塩基からなるDNAのうち、少なくとも20塩基以上の長さのものであればゲノム全体を対象にした実験系であっても特定できる確率が高い。
 また、当該DNAには、その発現産物がリンパ節転移性の子宮体がんと非転移性の子宮体がんを判別するためのバイオマーカーとなり得る限り、当該DNAの塩基配列と実質的に同一の塩基配列を有するDNAも包含される。ここで、実質的に同一の塩基配列とは、例えば、相同性計算アルゴリズムNCBI BLASTを用い、期待値=10;ギャップを許す;フィルタリング=ON;マッチスコア=1;ミスマッチスコア=-3の条件にて検索をした場合、配列番号1~227に示される塩基配列と90%以上、好ましくは95%以上、さらにより好ましくは98%以上の同一性があることを意味する。
 斯かる本発明の発現産物は、1種又は2種以上を組み合わせてその発現レベルを把握することにより、リンパ節転移性の子宮体がんと非転移性の子宮体がんの判別が可能であるが、このうち、配列番号208、配列番号264、配列番号237、配列番号270、配列番号57、配列番号274、配列番号108、配列番号182における転写開始点を含むDNAの発現産物は、表2に示す閾値を設定した場合に、特異度100%・感度100%で分類できるものである。すなわち、これらは、其々一つの発現レベルのみを以って確実な判別が可能なものである。
 また、複数の発現産物を組み合わせてその発現レベルを確認する場合、その数、組み合わせの内容は適宜選択できるが、少なくとも2つのDNAの発現産物を用いる場合の好適な組み合わせ(434組)を後記表3に示した。斯かる組み合わせは、上記277個の転写開始領域から選択した2個のすべての組み合わせについて、これらの発現レベルを説明変数とし、転写開始領域抽出用サンプルに関するリンパ節転移の有無を推定するロジスティック回帰モデルの構築を行い、転写開始領域抽出用サンプル、検証用サンプル共に特異度100%・感度100%で分類できるものを抽出したものである。尚、更なる精度向上を目的として、これらを適宜2セット若しくは3セット以上を組み合わせて用いることができる。また、斯かる2つのDNAの発現産物の組み合わせに加えて、配列番号1~277における転写開始点を含むDNAのうち、表3-1~表3-6に示された以外のDNAの発現産物と組み合わせてもよく、更には本発明の評価に寄与し得る範囲でそれ以外の任意の塩基配列からなるDNAの発現産物を組み合わせてもよい。
 本発明の発現産物としては、当該DNAから発現される転写産物及び翻訳産物が挙げられる。転写産物としては、具体的には、当該DNAから転写されて生じるRNA、好ましくはmRNAが挙げられる。また、翻訳産物としては、具体的には、当該RNAによってコードされるタンパク質が挙げられる。例えば、表2で示した転写開始点を含むDNAの発現産物のうち、配列番号264における転写開始点を含むDNAから発現されるタンパク質は、「TACC2」(Transforming, Acidic Coiled-Coil Containing Protein 2;UniProtKB/Swiss-Prot: TACC2_HUMAN, O95359)として同定されている。
 発現産物の測定又は検出の対象には、そのRNAから人工的に合成されたcDNA、そのRNAをエンコードするDNA、そのRNAにコードされるタンパク質、該タンパク質と相互作用をする分子、そのRNAと相互作用する分子、又はそのDNAと相互作用する分子等も包含される。ここで、RNA、DNA又はタンパク質と相互作用する分子としては、DNA、RNA、タンパク質、多糖、オリゴ糖、単糖、脂質、脂肪酸、及びこれらのリン酸化物、アルキル化物、糖付加物等、及び上記いずれかの複合体が挙げられる。
 また、発現レベルとは、当該発現産物の発現量や活性を包括的に意味する。
 発現レベルを測定する方法は、RNA、cDNA又はDNAを対象とする場合、これらにハイブリダイズするDNAをプライマーとしたPCR法、リアルタイムRT-PCR法、SmartAmp法、LAMP法等に代表される核酸増幅法、これらにハイブリダイズする核酸をプローブとしたハイブリダイゼーション法(DNAチップ、DNAマイクロアレイ、ドットブロットハイブリダイゼーション、スロットブロットハイブリダイゼーション、ノーザンブロットハイブリダイゼーション等)、塩基配列を決定する方法、又はこれらを組み合わせた方法から選ぶことができる。
 ここで、測定に用いられるプローブ又はプライマー、すなわち、本発明の発現産物(転写産物)又はそれに由来する核酸を特異的に認識し増幅するためのプライマー、又は該RNA又はそれに由来する核酸を特異的に検出するためのプローブがこれに該当するが、これらは、配列番号1~277で示される塩基配列に基づいて設計することができる。ここで「特異的に認識する」とは、例えばノーザンブロット法において、実質的に本発明の発現産物(転写産物)又はそれに由来する核酸のみを検出できること、また例えばRT-PCR法において、実質的に当該核酸のみが生成される如く、当該検出物又は生成物が当該転写産物又はそれに由来する核酸であると判断できることを意味する。
 具体的には、配列番号1~277で示される塩基配列からなるDNA又はその相補鎖に相補的な一定数のヌクレオチドを含むオリゴヌクレオチドを利用することができる。ここで「相補鎖」とは、A:T(RNAの場合はU)、G:Cの塩基対からなる2本鎖DNAの一方の鎖に対する他方の鎖を指す。また、「相補的」とは、当該一定数の連続したヌクレオチド領域で完全に相補配列である場合に限られず、好ましくは80%以上、より好ましくは90%以上、さらに好ましくは95%以上の塩基配列上の同一性を有すればよい。塩基配列の同一性は、前記BLAST等のアルゴリズムにより決定することができる。
 斯かるオリゴヌクレオチドは、プライマーとして用いる場合には、特異的なアニーリング及び鎖伸長ができればよく、通常、例えば10塩基以上、好ましくは15塩基以上、より好ましくは20塩基以上、かつ例えば100塩基以下、好ましくは50塩基以下、より好ましくは35塩基以下の鎖長を有するものが挙げられる。また、プローブとして用いる場合には、特異的なハイブリダイゼーションができればよく、配列番号1~277で示される塩基配列からなるDNA(又はその相補鎖)の少なくとも一部若しくは全部の配列を有し、例えば10塩基以上、好ましくは15塩基以上、かつ例えば100塩基以下、好ましくは50塩基以下、より好ましくは25塩基以下の鎖長のものが用いられる。
 なお、ここで、「オリゴヌクレオチド」は、DNAあるいはRNAであることができ、合成されたものでも天然のものでもよい。また、ハイブリダイゼーションに用いるプローブは、通常標識したものが用いられる。
 例えば、ノーザンブロットハイブリダイゼーション法を利用する場合は、まずプローブDNAを放射性同位元素、蛍光物質等で標識し、次いで、得られた標識DNAを、常法に従ってナイロンメンブレン等にトランスファーした生体試料由来のRNAとハイブリダイズさせる。その後、形成された標識DNAとRNAとの二重鎖を、標識物に由来するシグナルを検出、測定する方法を用いることができる。
 また、RT-PCR法を利用する場合は、まず生体試料由来のRNAから常法に従ってcDNAを調製し、これを鋳型として標的の本発明の発現産物(この場合、転写産物)が増幅できるように調製した一対のプライマー(上記cDNA(-鎖)に結合する正鎖、+鎖に結合する逆鎖)をこれとハイブリダイズさせる。その後、常法に従ってPCR法を行い、得られた増幅二本鎖DNAを検出する。増幅された二本鎖DNAの検出には、予めRI、蛍光物質等で標識しておいたプライマーを用いて上記PCRを行うことによって産生される標識二本鎖DNAを検出する方法等を用いることができる。
 また、DNAマイクロアレイを用いて検体中のmRNAの発現量を測定する場合は、支持体に本発明の発現産物(この場合、転写産物)由来の核酸(cDNA又はDNA)の少なくとも1種を固定化したアレイを用い、mRNAから調製した標識化cDNA又はcRNAをマイクロアレイ上に結合させ、マイクロアレイ上の標識を検出することによって、mRNA発現量を測定することができる。
 前記アレイに固定化される核酸としては、ストリンジェントな条件下に特異的(すなわち、実質的に目的の核酸のみに)にハイブリダイズする核酸であればよく、例えば、本発明の発現産物(転写産物)の全配列を有する核酸であってもよく、部分配列からなる核酸であってもよい。ここで、「部分配列」とは、少なくとも15~25塩基からなる核酸が挙げられる。
 ここでストリンジェントな条件は、通常「1×SSC、0.1%SDS、37℃」程度の洗浄条件を挙げることができ、より厳しいハイブリダイズ条件としては「0.5×SSC、0.1%SDS、42℃」程度、さらに厳しいハイブリダイズ条件としては「0.1×SSC、0.1%SDS、65℃」程度の条件を挙げることができる。ハイブリダイズ条件は、J. Sambrook et al., Molecular Cloning: A Laboratory Manual, Thrd Edition, Cold Spring Harbor Laboratory Press (2001)などに記載されている。
 また、塩基配列を決定する方法としては、CAGE法、TSS-seq法、RNA-seq法、DGE法、SAGE法等が挙げられるが、CAGE法が好適である。
 CAGE法を用いて、発現レベルを測定する場合、後記実施例に記載した方法に準じて実施することができる。
 また、配列番号1~277における転写開始点を含むDNAからコードされるタンパク質(翻訳産物)、当該タンパク質と相互作用する分子、RNAと相互作用する分子、又はDNAと相互作用する分子を測定する場合は、プロテインチップ解析、免疫測定法(例えば、ELISA等)、1-ハイブリッド法(PNAS 100, 12271-12276(2003))や2-ハイブリッド法(Biol. Reprod. 58, 302-311 (1998))のような方法を用いることができ、対象に応じて適宜選択できる。
 例えば、測定対象としてタンパク質が用いられる場合は、本発明の発現産物(この場合、翻訳産物)に対する抗体を生体試料と接触させ、当該抗体に結合した試料中のポリペプチドを検出し、そのレベルを測定することによって実施される。例えば、ウェスタンブロット法によれば、一次抗体として上記の抗体を用いた後、二次抗体として放射性同位元素、蛍光物質又は酵素等で標識した一次抗体に結合する抗体を用いて、その一次抗体を標識し、これら標識物質由来のシグナルを放射線測定器、蛍光検出器等で測定することが行われる。
 尚、上記翻訳産物に対する抗体は、ポリクローナル抗体であっても、モノクローナル抗体であってもよい。これらの抗体は、公知の方法に従って製造することができる。具体的には、ポリクローナル抗体は、常法に従って大腸菌等で発現し精製したタンパク質を用いて、あるいは常法に従って当該タンパク質の部分ポリペプチドを合成して、家兎等の非ヒト動物に免疫し、該免疫動物の血清から常法に従って得ることが可能である。
 一方、モノクローナル抗体は、常法に従って大腸菌等で発現し精製したタンパク質又は該タンパク質の部分ポリペプチドをマウス等の非ヒト動物に免疫し、得られた脾臓細胞と骨髄腫細胞とを細胞融合させて調製したハイブリドーマ細胞から得ることができる。また、モノクローナル抗体は、ファージディスプレイを用いて作製してもよい(Griffiths, A.D.; Duncan, A.R., Current Opinion in Biotechnology, Volume 9, Number 1, February 1998 , pp. 102-108(7))。
 また、免疫組織化学分析法を行う場合には、患者から分離した生体試料を常法によりホルマリン固定をした後、パラフィンに包埋して組織片に薄切し、スライドガラスに貼り付けたものを切片試料として使用するのが好ましい。二次抗体としては、アルカリホスファターゼやペルオキシダーゼ等の酵素標識抗体を用いることができるが、ABC法やLSAB法等の三段階法、またDAKO社のEnVision検出システム等を用いて高感度な検出を行うのが好ましい。
 斯くして、子宮体がん患者から分離されたがん組織由来の生体試料中の本発明の発現産物の発現レベルが測定され、当該発現レベルに基づいて、リンパ節転移又はリンパ節転移能の有無が評価される。具体的には、検出された本発明の発現産物の発現レベルを対照レベルと比較することによって評価される。
 ここで、「対照レベル」とは、例えば、リンパ節転移がない子宮体がん患者から分離された子宮内膜がん組織若しくは子宮体がん患者から分離された正常組織における当該発現産物の発現レベル、又は子宮体がんを発症していない健常人群における当該発現産物の発現レベルが挙げられる。
 例えば、対象患者のがん組織の当該発現産物の発現レベルが、リンパ節転移がない子宮体がん患者から分離された子宮内膜がん組織、正常組織或いは健常人由来の組織における発現レベルに近い、当該発現レベルの範囲内に属する、或いは当該発現レベルより有意に高い(又は低い)場合には、当該患者の子宮体がんはリンパ節転移がない又はリンパ節転移能が低いと評価できる。
 また、本発明における子宮体がんのリンパ節転移又はリンパ節転移能の評価は、本発明の発現産物の発現レベルの上昇/減少により行うこともできる。この場合は、対照レベルとして、例えば正常組織、リンパ節転移がない子宮体がん患者から分離された子宮内膜がん組織或いは健常人の組織由来の当該発現産物の発現レベルに基いて、標準値(閾値レベル)を設定し、患者由来の生体試料における当該発現産物の発現レベルを標準値と比較する(例えば±2S.D.の範囲を許容範囲とする)ことにより行うことができる。例えば、患者由来の生体試料における当該発現産物の発現レベルが閾値レベルより高い又は低い場合に、当該患者の子宮体がんはリンパ節転移がない又はリンパ節転移能が低いと評価できる。
 本発明の方法に従い、必要に応じて他の方法(CT,MRIやPET-CTなど)との組み合わせで、提供された情報に基づいて、リンパ節転移の可能性又はリンパ節転移能が判断される。リンパ節生検やリンパ節郭清を行う基準は医師の判断に委ねられるが、リンパ節転移の可能性がある又はリンパ節転移能が高いと判断された場合には、例えばリンパ節郭清を行うことができる。一方、リンパ節転移の可能性がない又はリンパ節転移能が低いと判断された場合には、リンパ節郭清を行う必要はないと考えられる。
 本発明の子宮体がんのリンパ節転移又はリンパ節転移能を評価するための検査用キットは、患者から分離した生体試料における本発明の発現産物の発現レベルを測定するための検査試薬を含有するものである。具体的には、本発明の発現産物(転写産物)等と特異的に結合(ハイブリダイズ)するオリゴヌクレオチドを含む、核酸増幅、ハイブリダイゼーションのための試薬、或いは、本発明の発現産物(翻訳産物)を認識する抗体を含む免疫学的測定のための試薬等が挙げられる。当該キットに包含されるオリゴヌクレオチド、抗体等は、上述したとおり公知の方法により得ることができる。
 また、当該検査用キットには、上記抗体や核酸の他、標識試薬、緩衝液、発色基質、二次抗体、ブロッキング剤や、試験に必要な器具やコントロール等を含むことができる。
実施例1 リンパ節転移性の子宮体がんと非転移の子宮体がんの判別を可能にする転写開始領域の抽出と検証
(1)検体試料の入手
 術前に包括的同意を頂いた患者の手術摘出検体で、子宮筋層浸潤が1/2以下の子宮体がん(高分化型腺癌)の子宮内膜癌部を5mm各採取した。使用したサンプルは、転写開始領域抽出用サンプルとして10検体(うち、リンパ節転移ありが3検体、リンパ節転移なしが7検体)、検証用サンプルとして5検体(うち、リンパ節転移ありが2検体、リンパ節転移なしが3検体)である。
(2)試料の保存・調製
 摘出された組織片は、適宜冷凍処理されて-80℃で保存した。保存組織片は、2mLマイクロチューブに組織片を50mg以下になるように入れてキアゲン社製QIAzolを添加して、ジルコニアビーズを1個入れて密閉し、キアゲン社製TissueLyserを用いて浸透処理により破砕した。
(3)RNAの調製
 破砕・抽出処理を行った試料は、キアゲン社製miRNeasy mini kitにより、添付されたプロトコルに従ってRNA調製を行った。調製後のRNAは、分光高度計による紫外吸収(230、260、280nm)を測定して、260/230、260/280比を算出し、そのRNAの質を検定した。また、アジレント社製BioAnalyzer RNA nano chipにより電気泳動を行い、RNA分解度を示すRIN値を算出して、RNAの分解度合いを検定した。
(4)CAGEライブラリー調製
 精製RNAを5μg用意し、非増幅非タグ化CAGE法(「細胞工学別冊 次世代シークエンサー目的別アドバンストメソッド」、菅野純夫、鈴木穣監修、学研メディカル秀潤社、2012年09月19日発行)内、第3章3、“網羅的プロモーター解析(イルミナシーケンサーを用いた非増幅CAGE法)”参照)により、CAGEライブラリーを調製した。具体的には、精製RNAを逆転写反応に供して精製後、過ヨウ素酸ナトリウムによりリボースのジオールを参加してアルデヒド化し、ビオチンヒドラジドを添加してアルデヒド基にビオチンを付加した。RNaseIにより一本鎖RNA部分を消化・精製後、アビジン磁気ビーズによりビオチン化されたRNA/cDNA二本鎖のみをビーズ表面に結合させ、RNaseH消化及び熱処理によりcDNAを遊離させて回収した。回収したcDNAの両端にシーケンスに必要なアダプターを連結させた後、イルミナ社製HiSeq2500によりシーケンスを行った。なお、本工程において精製・緩衝液置換等に用いるAMPure XP(ベックマン・コールター社製)の標準的な条件では、二本鎖の場合で100塩基以上の長さの核酸が回収される条件であり、これを採用した本工程により生産されるCAGEライブラリーは100塩基以上の鎖長をもつ二本鎖DNAからなる。
(5)RNA発現解析
 i)リファレンス転写開始領域の準備
 ヒトの初代培養細胞や細胞株、さらに組織等を含め合計約1000ものヒトサンプルについて転写開始点の活性がゲノムワイドに測定されたプロファイルするプロジェクトである「FANTOM5」(論文投稿中)において同定された転写開始領域のうち、ヒトリファレンスゲノムhg19上に定義された約18万の転写開始領域をリファレンス転写開始領域とした。
 ii)転写活性の定量
 シーケンシングにより得られたリードとヒトのリファレンスゲノム(hg19)のアラインメントをbwa(Bioinformatics. 2009 Jul 15;25(14):1754-60)を用いて行った。マッピングクオリティが20以上、かつアラインメントの開始位置が、リファレンス転写開始領域内に位置するようなアラインメントだけを選択し、各転写開始領域ごとのリード数を数え上げた。各ライブラリーの総リード数と、RLE(Genome Biol. 2010;11(10):R106)法により推定されたライブラリサイズを用いて、カウントを100万あたりのリード数(counts per million)に変換する。
(6)結果
(A)活性の異なる転写開始領域の抽出
 上記で定量された、転写開始領域抽出用各サンプルでの転写活性について、「リンパ節転移あり」から得られた臨床検体由来プロファイル群、「リンパ節転移なし」から得られた臨床検体由来プロファイル群の間における差分解析をR/Bioconductor edgeRパッケージ(Bioinformatics. 2010 Jan 1;26(1):139-40)を用いて行った。すなわち、二群間で発現量の平均が異なるかどうか(発現量の平均が等しいことを帰無仮説とし、この帰無仮説が真であることを仮定した場合、測定結果が偶然に起きる確率を計算する)を統計的に検定するものである。閾値としてFDR(false discovery rate)5%を設定したところ、これよりも小さな転写開始領域を含むDNAを277個同定した(表1-1~表1-12)。この基準は、該当する閾値により抽出される候補のうち95%は真に発現差があると統計的に推定されたものであり、通常広く使われるP値(発現差が無いことを仮定した場合に偶然起きる確率)を5%とする場合よりも厳しい基準である。
Figure JPOXMLDOC01-appb-T000007
Figure JPOXMLDOC01-appb-T000008
Figure JPOXMLDOC01-appb-T000009
Figure JPOXMLDOC01-appb-T000010
Figure JPOXMLDOC01-appb-T000011
Figure JPOXMLDOC01-appb-T000012
Figure JPOXMLDOC01-appb-T000013
Figure JPOXMLDOC01-appb-T000014
Figure JPOXMLDOC01-appb-T000015
Figure JPOXMLDOC01-appb-T000016
Figure JPOXMLDOC01-appb-T000017
Figure JPOXMLDOC01-appb-T000018
(B)高精度の予測を行う転写開始領域の選択(1)
 上記(A)で同定された転写開始領域のうち、一つの発現レベルのみを用いてリンパ節転移の有無を分類できるかどうかを考える。それぞれについて、何らかの閾値を設定することで、転写開始領域抽出用サンプル、検証用サンプル共に特異度100%・感度100%で分類できることを確認した。表2に、その閾値の例を示す(ある群における最大値の方が、その他の群における最小値よりも小さい場合、これらの平均を表2に示している)。
Figure JPOXMLDOC01-appb-T000019
(C)高精度の予測を行う転写開始領域の選択(2)
 上記で同定された277個の転写開始領域の発現レベルのうち、複数を用いてリンパ節転移の有無を分類できるかどうかを考える。例としてここでは、一般化線形モデルの一種であるロジスティック回帰モデルを構成することを考える。これは、リンパ節転移の有無を示す従属変数(Y)を、転写開始領域の発現レベルである説明変数(Xi、上記counts per millionの対数をとったもの)で確率的に予測することを考える場合、最もシンプルなモデルの一つである。
 上記277個の転写開始領域から選択した二個のすべての組み合わせ(38,226組)について、これらの発現レベルを説明変数とし、転写開始領域抽出用サンプルに関するリンパ節転移の有無を推定するロジスティック回帰モデルの構築を行い、転写開始領域抽出用サンプル、検証用サンプル共に特異度100%・感度100%で分類できるものを選択した(表3-1~表3-6)。
 ここでは、機械学習器の中でも最も単純なものの一つであるロジスティック回帰モデルを採用しているが、当該TSSの発現を測定する方法や、他の遺伝子等の発現レベルや遺伝子型との組み合わせ等によって、他の数理モデルを適切に利用することで、より頑健な予測が可能になる。
Figure JPOXMLDOC01-appb-T000020
Figure JPOXMLDOC01-appb-T000021
Figure JPOXMLDOC01-appb-T000022
Figure JPOXMLDOC01-appb-T000023
Figure JPOXMLDOC01-appb-T000024
Figure JPOXMLDOC01-appb-T000025
 実施例2
 実施例1で用いた検体とは別の手術摘出検体23検体(リンパ節転移あり9検体、リンパ節転移なし14検体)を用いて、実施例1と同様に、CAGEライブラリーを調製してリンパ節転移ありの群とリンパ節転移なしの群で活性の異なる転写開始領域を抽出した。その結果、配列番号35、36、63、73、140、161、189、193、205及び219で示される転写開始領域の転写活性レベルが、転移あり/なしの群の間で優位に異なることが確認された(表4)。
Figure JPOXMLDOC01-appb-T000026
実施例3 TACC2をマーカーとして用いたリンパ節転移性の子宮体がんと非転移の子宮体がんの判別
(1)検体
 術前に包括的同意を頂いた患者の手術摘出検体(子宮筋層浸潤が1/2以下の子宮体がん(高分化型腺癌)の子宮内膜癌部を5mm各採取)で、リンパ節転移あり又はリンパ節転移なしと診断がなされている検体を使用した。
(2)免疫化学染色によるタンパク質の検出
 患者から分離した生体試料を常法によりホルマリン固定をした後、パラフィンに包埋して組織片に薄切し、スライドガラスに貼り付けたものを切片試料とした。次いで切片試料を、熱処理(121℃、10分)して抗原を賦活化した。次いで、抗TACC2抗体(EMD Millipore社、「Polyclonal Rabbit anti-TACC2 antibody」)(一次抗体、濃度0.5μg/mL)を一晩(4℃)反応させた。緩衝液にて十分に洗浄後、二次抗体としてAnti-Rabbit Immunoglobulins (DAKO #E432)を用い、30分間(20℃)反応させた。緩衝液にて十分に洗浄後、標識試薬Peroxidase-conjugated streptavidin (DAKO #P0397)を用い、30分間(20℃)反応させた(ABC法)。緩衝液にて十分に洗浄後、DABを用いて発色させた。その標本を光学顕微鏡下で陽性・陰性を観察した。その一例を図1に示す。
 その結果、リンパ節転移あり/なしの間で染色パターンが異なり、TACC2をマーカーとして両者を区別可能であることが確認された。
(3)qRT-PCR法を用いたRNA量の測定
 検体組織からRNA抽出キット(QIAGEN、RAase Plus Mini Kit (#74134))を用いて全RNA抽出した。RNAからcDNAへの逆転写反応は、TAKARA、PrimeScriptII 1st strand cDNA Synthesis Kit(#6210A)により行った。リアルタイムPCRは、ABI、Fast SYBR Green Master Mix (#4385612)を用い、以下に示すプライマーを用いて、ABI 7500 Fast Real Time PCR Systemで実施した。
 Primer F: CCAgTTgCTgAAgggCAgAA(配列番号278)
 Primer R: gCggACCTTggAgTCTgAg(配列番号279)
 尚、TACC2遺伝子の発現レベルは、ハウスキーピング遺伝子、SUDS4で補正し、対照に対する相対変化量として算出した。結果を図2に示す。
 図2より、このプライマーを用いて行ったリアルタイムPCRでは、リンパ節転移あり/なしの間ではTACC2の発現レベルが異なり、TACC2をマーカーとして両者を区別することは可能であると考えられる。
 本発明によれば、術前又は術中に採取した子宮内膜の原発巣を調べることで、子宮体がんのリンパ節転移有無の判断や発生の予測を、客観的に行うことができる。これにより、不要なリンパ節郭清の回避でき、術後リンパ浮腫などの合併症を減らすことが可能となる。

Claims (9)

  1.  子宮体がん患者から分離されたがん組織由来の生体試料について、転写開始領域を含むDNAの1種又は2種以上の発現産物の発現レベルを測定する工程を含む、子宮体がんのリンパ節転移又はリンパ節転移能を評価する方法であって、該DNAが配列番号1~277で示される塩基配列における、転写開始領域の任意の位置の塩基とその下流に連続する少なくとも1塩基以上からなるDNAであり、
     該転写開始領域が、配列番号1~277で示される塩基配列の1番目の塩基と3’末端から101番目の塩基によって両端が規定される領域である、前記評価方法。
  2.  配列番号1~277で示される塩基配列が、配列番号208、配列番号264、配列番号237、配列番号270、配列番号57、配列番号274、配列番号108及び配列番号182で示される塩基配列である、請求項1記載の方法。
  3.  配列番号1~277で示される塩基配列が、下記1)~434)の配列番号で示される塩基配列の組み合わせである、請求項1記載の方法。
    Figure JPOXMLDOC01-appb-T000001
    Figure JPOXMLDOC01-appb-T000002
    Figure JPOXMLDOC01-appb-T000003
    Figure JPOXMLDOC01-appb-T000004
    Figure JPOXMLDOC01-appb-T000005
    Figure JPOXMLDOC01-appb-T000006
  4.  さらに、前記DNAの発現産物の発現レベルを対照レベルと比較する工程を含む、請求項1~3のいずれか1項記載の方法。
  5.  さらに、前記DNAの発現産物の発現レベルを閾値レベルと比較する工程を含む、請求項1~3のいずれか1項記載の方法。
  6.  発現産物の発現レベルの測定が、転写産物の量又は翻訳産物の量を測定することによって行われる、請求項1~5のいずれか1項記載の方法。
  7.  前記DNAの転写産物と特異的にハイブリダイズするオリゴヌクレオチド、又は前記DNAの翻訳産物を認識する抗体を含有する請求項1~6のいずれか1項記載の方法に用いる子宮体がんのリンパ節転移又はリンパ節転移能を評価するための検査用キット。
  8.  転写開始領域を含むDNAの1種又は2種以上の発現産物の、子宮体がんのリンパ節転移又はリンパ節転移能を評価するためのマーカーとしての使用であって、該DNAが配列番号1~277で示される塩基配列における、転写開始領域の任意の位置の塩基とその下流に連続する1塩基以上からなるDNAであり、
     該転写開始領域が、配列番号1~277で示される塩基配列の1番目の塩基と3’末端から101番目の塩基によって両端が規定される領域である、前記発現産物の使用。
  9.  子宮体がん患者から分離されたがん組織由来の生体試料について、TACC2のRNA又はタンパク質の発現レベルを測定する工程を含む、子宮体がんのリンパ節転移又はリンパ節転移能を評価する方法。
     
PCT/JP2015/050551 2014-01-10 2015-01-09 子宮体がんのリンパ節転移能の評価方法 WO2015105190A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2015556853A JP6711968B2 (ja) 2014-01-10 2015-01-09 子宮体がんのリンパ節転移能の評価方法
EP15735080.2A EP3093343B1 (en) 2014-01-10 2015-01-09 Method for assessing lymph node metastatic potential of endometrial cancer

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014-003191 2014-01-10
JP2014003191 2014-01-10

Publications (1)

Publication Number Publication Date
WO2015105190A1 true WO2015105190A1 (ja) 2015-07-16

Family

ID=53524012

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/050551 WO2015105190A1 (ja) 2014-01-10 2015-01-09 子宮体がんのリンパ節転移能の評価方法

Country Status (3)

Country Link
EP (1) EP3093343B1 (ja)
JP (1) JP6711968B2 (ja)
WO (1) WO2015105190A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017007031A1 (ja) * 2015-07-09 2017-01-12 学校法人順天堂 子宮体がんのリンパ節転移能の評価方法
CN113456631A (zh) * 2021-08-06 2021-10-01 徐州医科大学 一种靶向acsl1的小分子药物及其在治疗子宫内膜癌中的应用
WO2022196750A1 (ja) 2021-03-19 2022-09-22 学校法人順天堂 子宮体がんのリンパ節転移能の評価方法のためのコンパニオンマーカー

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003029273A2 (en) * 2001-09-28 2003-04-10 Whitehead Institute For Biomedical Research Classification of lung carcinomas using gene expression analysis
DE10260928A1 (de) * 2002-12-20 2004-07-08 Henkel Kgaa Verfahren zur Bestimmung von Markern humaner Gesichtshaut
EP1664336A2 (en) * 2003-09-11 2006-06-07 University College Cork-National University of Ireland, Cork A detection method for autism and related disorders
AU2004303448A1 (en) * 2003-12-23 2005-07-07 Mount Sinai Hospital Methods for detecting markers associated with endometrial disease or phase
US20050221398A1 (en) * 2004-01-16 2005-10-06 Ipsogen, Sas, A Corporation Of France Protein expression profiling and breast cancer prognosis
MX2007001640A (es) * 2004-08-10 2007-07-25 Univ Cardiff Metodos y kit para el pronostico de cancer de mama.
WO2011039734A2 (en) * 2009-10-02 2011-04-07 Enzo Medico Use of genes involved in anchorage independence for the optimization of diagnosis and treatment of human cancer
JP2013099253A (ja) * 2010-03-11 2013-05-23 Intec Systems Institute Inc 肺癌または子宮頸癌の診断マーカー
WO2012019300A1 (en) * 2010-08-10 2012-02-16 Siu K W Michael Endometrial cancer biomarkers and methods of identifying and using same

Non-Patent Citations (16)

* Cited by examiner, † Cited by third party
Title
BIOINFORMATICS, vol. 25, no. 14, 15 July 2009 (2009-07-15), pages 1754 - 60
BIOINFORMATICS, vol. 26, no. 1, 1 January 2010 (2010-01-01), pages 139 - 140
BIOINFORMATICS, vol. 26, no. 1, 1 January 2010 (2010-01-01), pages 139 - 40
BIOL. REPROD., vol. 58, 1998, pages 302 - 311
FISHMAN A. ET AL.: "Detection of micrometastasis by cytokeratin-20 (reverse transcription polymerase chain reaction) in lymph nodes of patients with endometrial cancer.", GYNECOL.ONCOL., vol. 77, no. 3, 2000, pages 399 - 404, XP055356963 *
GENOME BIOL., vol. 11, no. 10, 2010, pages R106
GENOME RES., vol. 21, no. 7, July 2011 (2011-07-01), pages 1150 - 9
GRIFFITHS, A.D.; DUNCAN, A.R., CURRENT OPINION IN BIOTECHNOLOGY, vol. 9, no. 1, February 1998 (1998-02-01), pages 102 - 108
J. SAMBROOK ET AL.: "Molecular Cloning: A Laboratory Manual, 3rd ed.", 2001, COLD SPRING HARBOR LABORATORY PRESS
NATURE REVIEWS GENETICS, vol. 10, no. 1, pages 57 - 63
PNAS, vol. 100, 2003, pages 12271 - 12276
SATOKO SUDO ET AL.: "Shikyu Taigan Lymph Setsu Ten'i Biomarker no Tansaku", ACTA OBSTETRICA ET GYNAECOLOGIA JAPONICA, vol. 63, no. 2, 2011, pages 793, XP008184118 *
SATOKO SUDO ET AL.: "Shikyu Taigan Lymph Setsu Ten'i Biomarker no Tansaku", THE JOURNAL OF THE JAPAN SOCIETY OF GYNECOLOGIC ONCOLOGY, vol. 27, no. 3, 2009, pages 313 , P 5 - 8, XP008184277 *
SATOKO SUDO ET AL.: "Shikyu Taigan Lymph Setsu Ten'i Biomarker no Tansaku", THE JOURNAL OF THE JAPAN SOCIETY OF GYNECOLOGIC ONCOLOGY, vol. 29, no. 3, 2011, pages 500, XP008184278 *
SUMIO SUGANO AND YUTAKA SUZUKI: "Cell Technology, suppl. Purpose-specific advanced methods of next-generation sequencers", 19 September 2012, GAKKEN MEDICAL SHUJUNSHA CO., LTD.
TROVIK J. ET AL.: "Stathmin overexpression identifies high-risk patients and lymph node metastasis in endometrial cancer.", CLIN. CANCER RES., vol. 17, no. 10, 2011, pages 3368 - 3377, XP055020515 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017007031A1 (ja) * 2015-07-09 2017-01-12 学校法人順天堂 子宮体がんのリンパ節転移能の評価方法
WO2022196750A1 (ja) 2021-03-19 2022-09-22 学校法人順天堂 子宮体がんのリンパ節転移能の評価方法のためのコンパニオンマーカー
CN113456631A (zh) * 2021-08-06 2021-10-01 徐州医科大学 一种靶向acsl1的小分子药物及其在治疗子宫内膜癌中的应用

Also Published As

Publication number Publication date
EP3093343A4 (en) 2017-12-27
JPWO2015105190A1 (ja) 2017-03-23
EP3093343B1 (en) 2020-01-01
JP6711968B2 (ja) 2020-06-17
EP3093343A1 (en) 2016-11-16

Similar Documents

Publication Publication Date Title
JP2016505247A (ja) 甲状腺腫瘍を診断するための組成物および方法
EP2971177B1 (en) Compositions and methods for detecting and determining a prognosis for prostate cancer
JP2008508895A (ja) 乳癌の予後診断方法およびキット
US20110318742A1 (en) Micro rna markers for colorectal cancer
DK3141617T3 (en) PROCEDURE FOR PREVENTING THE CANCER OF A CANCER ON A PATIENT BY ANALYZING GENEPRESSION
JP2011517937A (ja) 体細胞性及び卵巣癌の診断のためのインビトロ診断方法
CN110229899B (zh) 用于结直肠癌早期诊断或预后预测的血浆标记物组合
US20180172689A1 (en) Methods for diagnosis of bladder cancer
JP6711968B2 (ja) 子宮体がんのリンパ節転移能の評価方法
KR102096498B1 (ko) 대장암 진단 또는 재발 예측을 위한 마이크로RNA-4732-5p 및 이의 용도
CN112626207B (zh) 一种用于区分非侵袭性和侵袭性无功能垂体腺瘤的基因组合
JP6949315B2 (ja) 肺扁平上皮癌と肺腺癌の鑑別評価方法
CN109504773B (zh) 一种与口腔鳞癌分化等级相关的生物标志物
WO2015115544A1 (ja) 大腸がんの転移又は再発リスクの評価方法
KR102384992B1 (ko) 대장암 환자의 연령 특이적 바이오마커 및 이의 용도
AU2018244758A1 (en) Method and kit for diagnosing early stage pancreatic cancer
KR102096499B1 (ko) 대장암 진단 또는 재발 예측을 위한 마이크로rna-3960 및 이의 용도
JP6820014B2 (ja) 子宮体がんのリンパ節転移能の評価方法
EP2138589A1 (en) Molecular signature of liver tumor grade and use to evaluate prognosis and therapeutic regimen
WO2022196750A1 (ja) 子宮体がんのリンパ節転移能の評価方法のためのコンパニオンマーカー
KR101346955B1 (ko) 뇌종양의 재발 가능성 및 생존 예후 예측용 조성물 및 이를 포함하는 키트
WO2015105191A1 (ja) リンパ節腫脹病変の評価方法
WO2015115545A1 (ja) 乳がんの転移又は再発リスクの評価方法
JP2021500921A (ja) Fimh遮断剤の治療効率を評価するための新規ツール
KR102341302B1 (ko) TMEM57 또는 NudC 유전자를 이용한 백혈병 진단용 조성물

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15735080

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2015556853

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

REEP Request for entry into the european phase

Ref document number: 2015735080

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2015735080

Country of ref document: EP