WO2015104877A1 - 光学的測定方法 - Google Patents

光学的測定方法 Download PDF

Info

Publication number
WO2015104877A1
WO2015104877A1 PCT/JP2014/076882 JP2014076882W WO2015104877A1 WO 2015104877 A1 WO2015104877 A1 WO 2015104877A1 JP 2014076882 W JP2014076882 W JP 2014076882W WO 2015104877 A1 WO2015104877 A1 WO 2015104877A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
image
measurement
evaluation image
optical
Prior art date
Application number
PCT/JP2014/076882
Other languages
English (en)
French (fr)
Inventor
充遥 平野
Original Assignee
住友電気工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 住友電気工業株式会社 filed Critical 住友電気工業株式会社
Publication of WO2015104877A1 publication Critical patent/WO2015104877A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/47Scattering, i.e. diffuse reflection
    • G01N21/4795Scattering, i.e. diffuse reflection spatially resolved investigating of object in scattering medium
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/0059Measuring for diagnostic purposes; Identification of persons using light, e.g. diagnosis by transillumination, diascopy, fluorescence
    • A61B5/0062Arrangements for scanning
    • A61B5/0066Optical coherence imaging
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B9/00Measuring instruments characterised by the use of optical techniques
    • G01B9/02Interferometers
    • G01B9/02083Interferometers characterised by particular signal processing and presentation
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B9/00Measuring instruments characterised by the use of optical techniques
    • G01B9/02Interferometers
    • G01B9/0209Low-coherence interferometers
    • G01B9/02091Tomographic interferometers, e.g. based on optical coherence
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N2021/178Methods for obtaining spatial resolution of the property being measured
    • G01N2021/1785Three dimensional
    • G01N2021/1787Tomographic, i.e. computerised reconstruction from projective measurements

Definitions

  • the present invention relates to an optical measurement method.
  • optical measurement method based on optical coherence tomography (OCT) can measure the reflection amount distribution in the depth direction of an object using light interference.
  • OCT optical coherence tomography
  • OCT the light emitted from the light source is branched into the reference light and the measurement light, and when the reference light is applied to the reflector, the reflected light generated by the reflector and the measurement light are applied to the object.
  • the diffuse reflected light generated by the object interferes with each other, and an optical tomographic image of the object is obtained based on the interference.
  • OCT methods are roughly classified into TD-OCT (Time-Domain OCT, Time Domain OCT) and FD-OCT (Fourier-Domain OCT, Fourier Domain OCT).
  • the intensity of the interference light is obtained while scanning the optical path length difference between the reference light and the measurement light using low-coherent light, and the light of the object is obtained based on the interference light intensity at each optical path length difference.
  • reflected light and diffusely reflected light are interfered with each other using broadband light to obtain an interference light spectrum, and an optical tomogram of an object is obtained based on the result of Fourier transform of the interference light spectrum. Ask for an image.
  • FD-OCT is now mainstream because it can acquire optical tomographic images in a shorter time than TD-OCT.
  • the FD-OCT is divided into a configuration using a broadband light source and a spectroscope (Spectral-domain OCT) and a configuration using a wavelength sweep type light source and a single or a plurality of detectors (Swept-source OCT).
  • FD-OCT if the apparatus has dispersion, that is, the wavelength dependence of the refractive index, the optical path length difference between the measurement light and the reference light also has a wavelength dependence. is there. Therefore, an optical tomographic image is obtained by multiplying the interference light spectrum by a dispersion compensation function and then performing Fourier transform.
  • this dispersion compensation function When determining this dispersion compensation function, there is a method of changing the influence of dispersion by multiplying the interference light spectrum in advance by various functions and determining the function that makes the obtained optical tomographic image the clearest as the dispersion compensation function. It has been adopted.
  • Non-patent Document 1 As an index related to the clarity of optical tomographic images, for example, the number of data points that form reflection peaks (Wojtkowski, “Ultrahigh-resolution, high-speed, Fourier domain optical coherence tomography and methods for dispersion compensation”, OPTICS EXPRESS, 31 May 2004, Vol.12, No.11, pp2404-2422 (Non-patent Document 1)) and information entropy value (Yasuno, “In vivo high-contrast imagining of deep posterior eye by” It has been proposed to use 1- ⁇ m swept source optical coherence tomography and scattering optical coherence angiography, OPTICS EXPRESS, 14 May 2007, Vol. 15, No. 10, pp6121-6139 (Non-patent Document 2). However, a clear optical tomographic image may not be obtained depending on the dispersion compensation function determined as described above.
  • An object of the present invention is to provide an optical measurement method capable of obtaining a clear optical tomographic image.
  • the broadband light output from the broadband light source is bifurcated into reference light and measurement light.
  • An optical tomographic image is obtained by Fourier transforming the interference light spectrum obtained by multiplying the interference light spectrum by the dispersion compensation function.
  • the third step may include an operation of removing the DC component image and the multiple reflection image from the first evaluation image in addition to the operation of removing the folded image from the first evaluation image.
  • the broadband light output from the broadband light source is bifurcated into reference light and measurement light.
  • the folded image is calculated in the third step by adjusting the optical path length difference between the measuring beam and the reference beam based on the position in the evaluation image of the folded image formed by folding the corresponding image at the measurement origin by Fourier transform.
  • a fourth step for reducing the influence on the index value to be performed the first step is performed after adjusting the optical path length difference in the fourth step, and the trial function is set variously, and the second step and The third step is repeated a plurality of times to obtain the clearest evaluation image using the index value, and the trial function that can obtain the clearest evaluation image among the plurality of trial functions is determined as the dispersion compensation function, and the interference light
  • An optical tomographic image is obtained by Fourier-transforming the interference light spectrum obtained by multiplying the spectrum by the dispersion compensation function.
  • a clear optical tomographic image can be obtained.
  • FIG. 4 is an evaluation image measured by moving the measurement origin to the minus side relative to when the evaluation image of FIG. 3 is measured.
  • FIG. 8 is an optical tomographic image after dispersion compensation has been performed on the evaluation image of FIG.
  • FIG. 1 is a block diagram of the optical measuring apparatus 1.
  • the optical measurement apparatus 1 acquires an optical tomographic image of the object 2 by FD-OCT, and includes a light source unit (broadband light source) 10, an interference unit 20, a reference unit 30, a measurement unit 40, a detection unit 50, An analysis unit 60 and a display unit 70 are provided.
  • the light source unit 10 outputs broadband light.
  • OCT the spatial resolution in the depth direction of the object 2 is inversely proportional to the bandwidth of light and also depends on the spectral shape. Therefore, the light source unit 10 is preferably capable of outputting light having a broadband and a spectrum with high flatness.
  • the light source unit 10 preferably outputs broadband light having an intensity of ⁇ 30 dBm / nm or more in a continuous wavelength band having a bandwidth of 10 nm or more.
  • an ASE light source capable of outputting broadband spontaneous emission (ASE) light including glass added with rare earth elements as an optical amplifying medium, supercontinuum having a band expanded by a nonlinear optical phenomenon ( SC)
  • An SC light source capable of outputting light, a light source including a super luminescent diode (SLD), and the like are preferably used.
  • the light source unit 10 may have a total bandwidth of 10 nm by temporally sweeping the wavelength as in the case of a tunable laser light source, or each wavelength band output from each of a plurality of light sources. By using this light, the total bandwidth may be 10 nm.
  • the interference unit 20 divides the broadband light output from the light source unit 10 into the reference light L 1 and the measurement light L 2 to irradiate the reflector 31 with the reference light L 1, and the reflector 31 associated with the irradiation.
  • the reflected light L 3 is input, the measuring light L 2 is irradiated onto the object 2, and the diffuse reflected light L 4 from the object 2 accompanying the irradiation is input, and the reflected light L 3 and the diffuse reflected light L are input. 4 are caused to interfere with each other, and the interference light L 5 is output to the detection unit 50.
  • the reference unit 30 includes an optical system between the interference unit 20 and the reflector 31, guides the reference light L 1 from the interference unit 20 to the reflector 31, and transmits the reflected light L 3 from the reflector 31 to the interference unit 20. Lead to. Also, the position of the reflector 31 is moved in the direction and away from the direction approaching the interference portion 20, the moving unit 32 for changing the optical path length of the reference light L 1 is provided.
  • the measurement unit 40 includes an optical system between the interference unit 20 and the object 2, guides the measurement light L 2 from the interference unit 20 to the object 2, and transmits the diffuse reflected light L 4 from the object 2 to the interference unit. Lead to 20.
  • the scanning unit 41 for scanning an irradiation position of the measurement light L 2 to the object 2 is provided.
  • the detection unit 50 detects the spectrum of the interference light L 5 output from the interference unit 20.
  • the analysis unit 60 multiplies the interference light spectrum detected by the detection unit 50 by a function (trial function) that changes the influence of dispersion, and then performs a Fourier transform on the interference light spectrum multiplied by the function, and the result of the Fourier transform.
  • An evaluation image is acquired based on The evaluation image is a position on the optical path of the measurement light L 2 , and is the opposite side of the light source unit 10 (on the measurement origin) from the measurement origin that is a position corresponding to the position of the reflector 31 on the optical path of the reference light L 1 .
  • the measurement range is the plus side.
  • Analyzing unit 60, the scanning unit 41 by scanning the irradiation position of the measurement light L 2 to the object 2, and acquires the evaluation image at each irradiation position upon the scanning, the evaluation of two-dimensional or three-dimensional Images can be acquired.
  • the analysis unit 60 calculates an index value related to the sharpness of the evaluation image.
  • the index value for example, the number of data points of reflection peaks as disclosed in Non-Patent Document 1 or information entropy as disclosed in Non-Patent Document 2 can be used.
  • OCT is originally characterized by a high resolution of about 20 ⁇ m, and image blur due to dispersion of the apparatus cannot often be ignored. Therefore, the analysis unit 60 determines a dispersion compensation function based on the calculated index value, and acquires an optical tomographic image that has been subjected to dispersion compensation processing using this dispersion compensation function. The dispersion compensation process will be described later.
  • the display unit 70 displays the optical tomographic image acquired by the analysis unit 60.
  • FIG. 2 is a conceptual diagram of the measurement probe 42 used in the measurement unit.
  • the measurement probe 42 includes an optical fiber 43, a lens 44, a probe inner body 45, and a probe outer body 46.
  • the optical fiber 43 inputs the measurement light L 2 from the one end 43 a side and outputs the measurement light L 2 from the other end 43 b side fused with the lens 44.
  • Lens 44 has an input surface 44a to enter the other end 43b and the fused measurement light L 2, the inclined surface 44b inclined by 45 ° with respect to the traveling direction of the measuring light L 2 inputted, the progression of the measurement light L 2 And an output surface 44c parallel to the direction.
  • Lens 44 receives the measurement light L 2 from the input surface 44a, is reflected to the 90 ° direction by the inclined surface 44b, and outputs it to the object 2 from the output surface 44c.
  • the probe inner body 45 is provided so as to surround the lens 44.
  • the probe exterior body 46 is provided so as to entirely surround the optical fiber 43 and the lens 44.
  • an optical tomographic image of the object 2 can be acquired using the optical measurement device 1.
  • the optical measurement method of the first embodiment includes the following first to third steps.
  • the broadband light output from the light source unit 10 is branched into the reference light L 1 and the measurement light L 2, and the reflected light generated by the reflector when the reference light L 1 is applied to the reflector. and L 3, when the measurement light L 2 to the object to interfere with each other and the diffused reflected light L 4 generated in the object to, to obtain the interference light spectrum.
  • the first step is performed by the detection unit 50.
  • the interference light spectrum detected at this time is represented by the sum of the component I 0 and the interference component that are not involved in interference, the wave number is k, the distance in the depth direction of the object 2 from the measurement origin is z, and the object 2 If the term relating to the reflection intensity of light in the graph is C (z) and the delay due to dispersion is ⁇ (k), It is represented by In this expression, the second term in the first row is an interference term, and the second term in the second row is a component that appears as a normal optical tomographic image after Fourier transform.
  • the interference light spectrum is multiplied by a function exp ( ⁇ i ⁇ ′ (k)) that changes the influence of dispersion, and the interference light spectrum multiplied by the function is Fourier transformed.
  • An evaluation image (first evaluation image) is acquired based on the result of the Fourier transform.
  • the second step is performed by the analysis unit 60.
  • FIG. 3 is a first evaluation image obtained in the second step. This first evaluation image is measured with the X point on the inclined surface 44b of the lens 44 in the measurement probe 42 of FIG. 2 as the measurement origin and only the measurement probe 42 within the measurement range.
  • FIG. 3 shows folded images A and B and a normal image C.
  • the OCT optical tomographic image, the plus side of the measurement origin image corresponding to diffuse reflected light L 4 generated in position is folded in the measurement origin of the light source portion 10 side from the measurement origin (called the minus side of the measurement origin) It has the property of being formed as a folded image.
  • Folded image A, B is for an image that corresponds to the diffuse reflection light L 4 generated in the minus side of the measurement range of the measurement origin is formed by folding back the measurement origin by the Fourier transform, in the first embodiment, For example, it is an image of the fused surface between the optical fiber 43 and the lens 44.
  • the normal image C is an image corresponding to the diffusely reflected light L 4 generated within the measurement range. In the first embodiment, for example, the image C is an image of the probe inner body 45 and the probe outer body 46.
  • the folded images A and B are removed from the first evaluation image to obtain a second evaluation image, and an index value relating to the sharpness of the second evaluation image is calculated.
  • the above-described information entropy is used as the index value.
  • information entropy is a quantification of the state of the luminance distribution of an image. The information entropy increases when the luminance distribution is uniform, and decreases when the luminance distribution is biased. For example, if there is a protruding pixel with high brightness, the information entropy of the image is low.
  • the third step is performed by the analysis unit 60.
  • the optical measurement method of the first embodiment includes first to third steps, and variously sets the function exp ( ⁇ i ⁇ ′ (k)) and repeats the second step and the third step a plurality of times.
  • various functions exp (-i ⁇ ′ (k)) are set, ⁇ ′ (k) Assuming that the coefficient is changed, let ⁇ ′ (k).
  • the coefficients c 0 , c 1 , c 2 , c 3 , and c 4 of the lower order terms are determined in this order.
  • the coefficient c 0 of the 0th-order term of k rotates by the same phase of the entire interference fringe, the second evaluation image is not affected, and the coefficient c 1 of the first-order term of k is the depth of the second evaluation image. Since it is only translated in the direction, it is actually only necessary to determine the coefficients of the second and subsequent terms of k.
  • FIG. 4 is a graph showing changes in information entropy for each coefficient. As shown in this figure, each coefficient c 2 , c 3 , c 4 is sequentially changed from ⁇ 10 to 10 to determine the value of each coefficient c 2 , c 3 , c 4 that minimizes the information entropy. To do.
  • FIG. 5 is a graph showing the relationship between the compensation amount and the wave number. ⁇ (k) is determined by calculating up to the coefficient c 4 of the fourth-order term of k. The amount of ⁇ (k) is a compensation amount by dispersion compensation.
  • a function that maximizes information entropy among a plurality of functions exp ( ⁇ i ⁇ ′ (k)) is determined as a dispersion compensation function exp ( ⁇ i ⁇ (k)), and the second step is performed using the dispersion compensation function.
  • the acquired first evaluation image is an optical tomographic image.
  • the second step may be performed again using the dispersion compensation function to obtain an optical tomographic image, or the first step obtained when the second step is performed using the function determined as the dispersion compensation function.
  • the evaluation image is stored in a storage device such as a memory, it may be an optical tomographic image.
  • Such dispersion compensation processing is performed by the analysis unit 60.
  • the aliased images A and B which tend to be blurred and reduce the resolution when correctly compensated for dispersion, are removed from the first evaluation image by data processing and used as the second evaluation image.
  • the information entropy is calculated as an index value relating to the sharpness of the second evaluation image.
  • OCT apparatus is basically designed such that no reflection point causing diffuse reflection light L 4 to the negative side of the measurement origin.
  • the generation of the diffuse reflected light L 4 may be unavoidable due to a portion such as a fused surface between the optical fiber 43 and the lens 44.
  • the image corresponding to these diffusely reflected light L 4 was formed a folded image, because it is not on the negative side of the origin as to overlap with the image of the object 2, not care as optical tomography.
  • the sharpness of the evaluation image is quantified by removing the folded image by the optical measurement method of the first embodiment, thereby obtaining a clear optical tomography. An image can be obtained.
  • FIG. 6 is a first evaluation image having a DC component image and a multiple reflection image.
  • FIG. 6A is a first evaluation image in which the measurement origin is point X in FIG. 6 (b) is a mobile unit 32 is moved toward the position of the reflector 31 to the interference portion 20, by shortening the optical path length of the reference light L 1, the position of the negative side of the measurement origin from the point X That is, it is a first evaluation image measured by moving to a position closer to the interference unit 20 than the point X.
  • the conventional image C while moving, the image D and image E does not move.
  • the DC component image D appears near the origin of the evaluation image after Fourier transform if there is a DC component in the interference fringes.
  • the multiple reflection image E is mainly caused by the multiple reflection in the measuring apparatus, and appears at the same position in the evaluation image regardless of the position of the measurement origin. For example, these D and image E may also be removed from the index value calculation. Since these two images do not move with the movement of the measurement origin as described above, it is preferable to remove them by data processing.
  • the third step includes an operation of removing the DC component image D and the multiple reflection image E from the first evaluation image in addition to the operation of removing the folded images A and B from the first evaluation image. To do. Whether each image in the first evaluation image corresponds to the DC component image D and the multiple reflection image E depends on whether the position in the first evaluation image changes when the measurement origin is moved. Judgment can be made.
  • the same object 2 is used as the evaluation image data used when determining the dispersion compensation function.
  • the evaluation image data of the measurement probe 42 is used.
  • Evaluation image data may be used.
  • an evaluation image using only the measurement probe 42 may be used, and biological measurement may be performed after the dispersion compensation function is determined.
  • the optical measurement method of the second embodiment can acquire an optical tomographic image of the object 2 using the same optical measurement apparatus 1 as that of the first embodiment.
  • the optical measurement method of the second embodiment includes the following first to fourth steps.
  • the first step and the second step are the same as the first step and the second step of the first embodiment.
  • the third step an index value relating to the sharpness of the evaluation image is calculated.
  • the above-described information entropy is used as the index value.
  • the third step is different from the third step of the first embodiment in that it is not necessary to remove the folded images A and B from the evaluation image.
  • the third step is performed by the analysis unit 60.
  • the folded image A by adjusting the optical path length difference between the measurement light L 2 based on the position in the evaluation image B and the reference light L 1, folded image A, the effect of B gives the index value To reduce.
  • the moving part 32 is moved toward the position of the reflector 31 to the interference portion 20, by shortening the optical path length of the reference light L 1, the interference portion 20 of the measurement origin from the inclined surface 44b of the lens 44 Move to a close position, that is, the minus side.
  • the fourth step is performed by the analysis unit 60.
  • FIG. 7 is an evaluation image measured by moving the measurement origin to the minus side from when the evaluation image of FIG. 3 was measured.
  • the folded images A and B existing near the center in the z direction in the evaluation image in FIG. 3 become normal images A and B and move to the vicinity of the origin in the z direction. Yes.
  • the normal image C that exists near the origin in the z direction in the evaluation image of FIG. 3 has moved to a position that is farther from the origin in the z direction.
  • the optical measurement method includes the first to fourth steps as described above. After adjusting the optical path length difference in the fourth step, the first step is performed and the function exp ( ⁇ i ⁇ ′ ( k)) is set variously and the second and third steps are repeated. At this time, as in the first embodiment, ⁇ ′ (k) is assumed to be a polynomial, and the coefficients c 2 , c 3 , and c 4 are sequentially changed to set ⁇ ′ (k) in various ways. Then, the function that maximizes the information entropy among a plurality of functions exp ( ⁇ i ⁇ ′ (k)) is determined as the dispersion compensation function exp ( ⁇ i ⁇ (k)), and the second step is performed using the dispersion compensation function.
  • the evaluation image acquired by performing is set as an optical tomographic image.
  • the optical tomographic image may be obtained by performing the second step again using the dispersion compensation function, or the evaluation image obtained when the second step is performed using the function determined as the dispersion compensation function. May be stored in a storage device such as a memory as an optical tomographic image.
  • Such dispersion compensation processing is performed by the analysis unit 60.
  • FIG. 8 is an optical tomographic image after dispersion compensation is performed on the evaluation image of FIG.
  • the normal images A, B, and C each have a sharper luminance distribution in FIG. 8 than in FIG.
  • the folded images A and B that tend to be blurred when correctly compensated for dispersion are turned back by adjusting the optical path length difference between the measurement light L 2 and the reference light L 1.
  • information entropy is calculated as an index value relating to the sharpness of the evaluation image.
  • the method of the first embodiment in which the folded images A and B are removed from the evaluation image by data processing is simple and practical, but the folded images A and B overlap the normal image C of the object 2 to be measured. Is difficult to implement.
  • the method of the second embodiment for reducing the influence of the folded images A and B on the information entropy by adjusting the optical path length difference between the measurement light L 2 and the reference light L 1 has an advantage in such a case. .
  • the folded image A all B normal image A
  • adjusting the optical path length difference between the reference light L 1 and the measurement light L 2 until the B, limited to Absent For example, the influence of the folded images A and B on the information entropy calculated in the third step can be reduced by setting only the folded image A as the normal image A.

Landscapes

  • Health & Medical Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • General Health & Medical Sciences (AREA)
  • Pathology (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Engineering & Computer Science (AREA)
  • Radiology & Medical Imaging (AREA)
  • Signal Processing (AREA)
  • Public Health (AREA)
  • Molecular Biology (AREA)
  • Surgery (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Biomedical Technology (AREA)
  • Medical Informatics (AREA)
  • Veterinary Medicine (AREA)
  • Animal Behavior & Ethology (AREA)
  • Biophysics (AREA)
  • Optics & Photonics (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • Immunology (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)

Abstract

 鮮明な光断層画像を得ることができる光学的測定方法を提供する。 本発明の光学測定方法は、当該干渉光スペクトルを取得する第1ステップと、干渉光スペクトルに分散の影響を変化させる試行関数を乗じ、当該試行関数を乗じた干渉光スペクトルのフーリエ変換の結果に基づき、第一評価画像を取得する第2ステップと、測定原点よりも光源部10側で生じる拡散反射光Lに対応する像がフーリエ変換により測定原点で折り返されて形成される折り返し像A,Bを第一評価画像から除いて第二評価画像とし、第二評価画像の鮮明さに関する指標値を算出する第3ステップと、を備え、試行関数を様々に設定して第2ステップおよび第3ステップを複数回繰り返し、複数の試行関数のうち情報エントロピーを最大とさせる試行関数を分散補償関数に決定し、当該分散補償関数を用いて第2ステップを行って取得される光断層画像を得る。

Description

光学的測定方法
 本発明は、光学的測定方法に関するものである。
 光コヒーレンストモグラフィ(Optical Coherence Tomography:OCT)に拠る光学的測定方法は、光の干渉を用いて対象物の深さ方向の反射量分布を測定することができる。この光学的測定方法は、高い空間分解能で対象物の内部の構造を画像化することができることから、近年では生体計測に応用されている。
 OCTでは、光源から出射する光を2分岐して参照光と測定光とし、参照光を反射体に照射したときに該反射体で生じる反射光と、測定光を対象物に照射したときに対象物で生じる拡散反射光とを互いに干渉させ、これに基づいて対象物の光断層画像を求める。OCTの方式は、TD-OCT(Time-Domain OCT、時間領域OCT)とFD-OCT(Fourier-Domain OCT、フーリエ領域OCT)とに大別される。TD-OCTでは、低コヒーレント光を用いて参照光と測定光との間の光路長差を走査しながら当該干渉光の強度を求め、各光路長差における干渉光強度に基づいて対象物の光断層画像を求める。また、FD-OCTでは、広帯域光を用いて、反射光と、拡散反射光とを互いに干渉させて干渉光スペクトルを取得し、当該干渉光スペクトルのフーリエ変換の結果に基づいて対象物の光断層画像を求める。
 FD-OCTは、TD-OCTと比べて短時間に光断層画像を取得することができることから、現在では主流となってきている。また、FD-OCTは、広帯域光源および分光器を用いる構成(Spectral-domain OCT)と、波長掃引型光源および単一または複数の検出器を用いる構成(Swept-source OCT)とに分けられる。
 FD-OCTでは、装置に分散、即ち、屈折率の波長依存性があると測定光と参照光との光路長差にも波長依存性が生じるため、得られる光断層画像が不鮮明になる場合がある。そこで、干渉光スペクトルに分散補償関数を乗じてからフーリエ変換し、光断層画像を得ることが行われている。
 この分散補償関数を決定する際には、予め様々な関数を干渉光スペクトルに乗じて分散の影響を変化させ、得られた光断層画像を最も鮮明にする関数を分散補償関数に決定する手法が採用されている。また、光断層画像の鮮明さに関する指標として、例えば、反射ピークを形成するデータ点数(Wojtkowski,“Ultrahigh-resolution, high-speed, Fourier domain optical coherence tomography and methods for dispersion compensation”,OPTICS EXPRESS,31 May 2004,Vol.12,No.11,pp2404-2422(非特許文献1)参照)や、画像の輝度分布を定量化した情報エントロピーという値(Yasuno,“In vivo high-contrast imaging of deep posterior eye by 1-μm swept source optical coherence tomography and scattering optical coherence angiography”,OPTICS EXPRESS,14 May 2007,Vol.15,No.10,pp6121-6139(非特許文献2)参照)を用いることが提案されている。しかし、上記のようにして決定した分散補償関数によっては鮮明な光断層画像が得られない場合があった。
 本発明は、鮮明な光断層画像を得ることができる光学的測定方法を提供することを目的とする。
 本発明の光学的測定方法は、広帯域光源から出力される広帯域光を2分岐して参照光および測定光とし、参照光を反射体に照射したときに該反射体で生じる反射光と、測定光を対象物に照射したときに該対象物で生じる拡散反射光とを互いに干渉させ、当該干渉光スペクトルを取得する第1ステップと、干渉光スペクトルに分散の影響を変化させる試行関数を乗じ、当該試行関数を乗じた干渉光スペクトルのフーリエ変換の結果に基づき、測定光の光路上における位置であって、参照光の光路上における反射体の位置に対応する位置である測定原点よりも広帯域光源の逆側を測定範囲とする第一評価画像を取得する第2ステップと、測定原点よりも広帯域光源側で生じる拡散反射光に対応する像がフーリエ変換により測定原点で折り返されて形成される折り返し像を第一評価画像から除いて第二評価画像とし、第二評価画像の鮮明さに関する指標値を算出する第3ステップと、を備え、試行関数を様々に設定して第2ステップおよび第3ステップを複数回繰り返し、前記指標値を使って最も鮮明な第二評価画像を求め、複数の試行関数のうち最も鮮明な第二評価画像を得ることができた試行関数を分散補償関数に決定し、干渉光スペクトルに当該分散補償関数を乗じた干渉光スペクトルをフーリエ変換して光断層画像を得る。
 本発明の光学的測定方法は、第3ステップが、折り返し像を第一評価画像から除く操作に加えてDC成分の像および多重反射の像を第一評価画像から除く操作を含んでもよい。
 本発明の光学的測定方法は、広帯域光源から出力される広帯域光を2分岐して参照光および測定光とし、参照光を反射体に照射したときに該反射体で生じる反射光と、測定光を対象物に照射したときに該対象物で生じる拡散反射光とを互いに干渉させ、当該干渉光スペクトルを取得する第1ステップと、干渉光スペクトルに分散の影響を変化させる試行関数を乗じ、当該試行関数を乗じた干渉光スペクトルのフーリエ変換の結果に基づき、測定光の光路上における位置であって、参照光の光路上における反射体の位置に対応する位置である測定原点よりも広帯域光源の逆側を測定範囲とする評価画像を取得する第2ステップと、評価画像の鮮明さに関する指標値を算出する第3ステップと、測定原点よりも広帯域光源側で生じる拡散反射光に対応する像がフーリエ変換により測定原点で折り返されて形成される折り返し像の評価画像における位置に基づいて測定光と参照光との光路長差を調整することで、折り返し像が第3ステップにおいて算出される指標値に与える影響を低減する第4ステップと、を備え、第4ステップにおいて光路長差の調整を行った後に第1ステップを行うとともに、試行関数を様々に設定して第2ステップおよび第3ステップを複数回繰り返し、指標値を使って最も鮮明な評価画像を求め、複数の試行関数のうち最も鮮明な評価画像を得ることができた試行関数を分散補償関数に決定し、干渉光スペクトルに当該分散補償関数を乗じた干渉光スペクトルをフーリエ変換して光断層画像を得る。
 本発明によれば、鮮明な光断層画像を得ることができる。
光学的測定装置のブロック図である。
測定部に用いられる測定プローブの概念図である。
第2ステップで得られる評価画像である。
各係数に対する情報エントロピーの関係を示すグラフである。
波数に対する補償量の関係を示すグラフである。
測定光と参照光との光路長差の変化による光断層画像の変化を示す図である。
図3の評価画像を測定したときよりもマイナス側に測定原点を移動させて測定した評価画像である。
図7の評価画像について分散補償した後の光断層画像である。
 以下、添付図面を参照して、本発明を実施するための形態を詳細に説明する。なお、図面の説明において同一の要素には同一の符号を付し、重複する説明を省略する。
(第1実施形態)
 図1は、光学的測定装置1のブロック図である。光学的測定装置1は、FD-OCTによって対象物2の光断層画像を取得するものであって、光源部(広帯域光源)10、干渉部20、参照部30、測定部40、検出部50、解析部60および表示部70を備える。
 光源部10は広帯域光を出力する。OCTでは、対象物2の深さ方向の空間分解能は光の帯域幅に反比例し、スペクトル形状にも依存する。したがって、光源部10として、広帯域かつ平坦度の高いスペクトルを有した光を出力することができるものが好ましい。光源部10は、帯域幅10nm以上の連続した波長帯域において強度-30dBm/nm以上である広帯域光を出力するのが好適である。
 光源部10として、例えば、希土類元素が添加されたガラスを光増幅媒体として備え広帯域の自然放出(ASE)光を出力することができるASE光源、非線形光学現象によって帯域が拡大されたスーパーコンティニウム(SC)光を出力することができるSC光源、スーパールミネッセントダイオード(SLD)を含む光源、等が好適に用いられる。また、光源部10は、波長可変レーザ光源のように時間的に波長を掃引することで全体の帯域幅が10nmとなるものであってもよいし、複数の光源それぞれから出力される各波長帯域の光を用いることで全体の帯域幅が10nmとなるものであってもよい。
 干渉部20は、光源部10からから出力される広帯域光を2分岐して参照光Lおよび測定光Lとし、参照光Lを反射体31に照射するとともに当該照射に伴う反射体31からの反射光Lを入力し、測定光Lを対象物2に照射するとともに当該照射に伴う対象物2からの拡散反射光Lを入力し、これら反射光Lと拡散反射光Lとを互いに干渉させて当該干渉光Lを検出部50へ出力する。
 参照部30は、干渉部20と反射体31との間の光学系を含み、干渉部20からの参照光Lを反射体31へ導き、反射体31からの反射光Lを干渉部20へ導く。また、反射体31の位置を干渉部20に近づく方向および遠ざかる方向に移動させ、参照光Lの光路長を変化させる移動部32が設けられている。
 測定部40は、干渉部20と対象物2との間の光学系を含み、干渉部20からの測定光Lを対象物2へ導き、対象物2からの拡散反射光Lを干渉部20へ導く。また、対象物2への測定光Lの照射位置を走査する走査部41が設けられている。
 検出部50は干渉部20から出力される干渉光Lのスペクトルを検出する。解析部60は、検出部50により検出された干渉光スペクトルに分散の影響を変化させる関数(試行関数)を乗じてから、当該関数を乗じた干渉光スペクトルをフーリエ変換し、そのフーリエ変換の結果に基づいて評価画像を取得する。評価画像は、測定光Lの光路上における位置であって、参照光Lの光路上における反射体31の位置に対応する位置である測定原点よりも光源部10の逆側(測定原点のプラス側という)を測定範囲とするものである。解析部60は、走査部41により対象物2への測定光Lの照射位置を走査することで、その走査の際の各照射位置において評価画像を取得して、2次元または3次元の評価画像を取得することができる。
 また、解析部60は評価画像の鮮明さに関する指標値を算出する。この指標値としては、例えば非特許文献1に開示されるような反射ピークのデータ点数や、非特許文献2に開示されるような情報エントロピーを用いることができる。OCTはもともと20μm程度の高分解能を特徴とし、装置の分散による画像のぼけが無視できないことが多い。このため、解析部60は、算出した指標値に基づいて分散補償関数を決定し、この分散補償関数で分散補償処理を行った光断層画像を取得する。当該分散補償処理については後述する。表示部70は、解析部60により取得された光断層画像を表示する。
 図2は、測定部に用いられる測定プローブ42の概念図である。測定プローブ42は、光ファイバ43、レンズ44、プローブ内装体45、およびプローブ外装体46を備える。光ファイバ43は、一端43a側から測定光Lを入力するとともに、レンズ44と融着された他端43b側から測定光Lを出力する。レンズ44は、他端43bと融着され測定光Lを入力する入力面44aと、入力した測定光Lの進行方向に対して45°傾斜した傾斜面44bと、測定光Lの進行方向に平行な出力面44cとを有する。レンズ44は、測定光Lを入力面44aから入力し、傾斜面44bで90°方向へ反射させ、出力面44cから対象物2へと出力する。プローブ内装体45は、レンズ44を取り囲むようにして設けられている。プローブ外装体46は、光ファイバ43およびレンズ44を全体的に取り囲むようにして設けられている。
 本発明の第1実施形態の光学的測定方法では、光学的測定装置1を用いて、対象物2の光断層画像を取得することができる。第1実施形態の光学的測定方法は、以下のような第1~3ステップを備えている。
 第1ステップおいて、光源部10から出力される広帯域光を2分岐して参照光Lおよび測定光Lとし、参照光Lを反射体に照射したときに該反射体で生じる反射光Lと、測定光Lを対象物に照射したときに該対象物で生じる拡散反射光Lとを互いに干渉させ、干渉光スペクトルを取得する。当該第1ステップは検出部50により実施される。このとき検出される干渉光スペクトルは、干渉にかかわらない成分Iと干渉成分との和で表され、波数をk、測定原点からの対象物2の深さ方向の距離をz、対象物2内での光の反射強度に関する項をC(z)、分散の影響による遅延をΦ(k)とすると、概念的には以下の式
Figure JPOXMLDOC01-appb-M000001
で表される。この式において、1行目の第2項が干渉の項で、2行目の第2項がフーリエ変換後に通常の光断層画像として現れる成分である。
 分散の影響による遅延Φ(k)、およびこれを補償する分散補償関数exp(-iΦ(k))が未知であるため、分散補償処理を行うにはこれらを決定する必要がある。そこで、第2ステップにおいて、干渉光スペクトルに分散の影響を変化させる関数exp(-iΦ´(k))を乗じ、当該関数を乗じた干渉光スペクトルをフーリエ変換する。このフーリエ変換の結果に基づき、評価画像(第一評価画像)を取得する。当該第2ステップは解析部60により実施される。
 図3は、第2ステップで得られる第一評価画像である。この第一評価画像は、図2の測定プローブ42におけるレンズ44の傾斜面44b上のX点を測定原点とし、測定範囲内に測定プローブ42のみがある状態で測定したものである。図3には、折り返し像A,Bおよび通常の像Cが示されている。OCTの光断層画像には、測定原点よりも光源部10側(測定原点のマイナス側という)の位置で生じる拡散反射光Lに対応する像が測定原点で折り返されて測定原点のプラス側に折り返し像として形成される性質がある。折り返し像A,Bは、測定原点のマイナス側の測定範囲外で生じる拡散反射光Lに対応する像がフーリエ変換により測定原点で折り返されて形成されたものであり、第1実施形態では、例えば光ファイバ43とレンズ44との融着面の像である。通常の像Cは、測定範囲内で生じる拡散反射光Lに対応する像であり、第1実施形態では、例えばプローブ内装体45およびプローブ外装体46の像である。
 続いて、第3ステップにおいて、折り返し像A,Bを第一評価画像から除いて第二評価画像とし、第二評価画像の鮮明さに関する指標値を算出する。ここでは、指標値として上述の情報エントロピーを用いる。情報エントロピーとは、単純に言えば画像の輝度分布の様子を定量化したもので、輝度分布が一様だと大きくなり、輝度分布が偏っていると小さくなる。例えば突出した高い輝度を示すピクセルがあると、その画像の情報エントロピーは低くなる。当該第3ステップは解析部60により実施される。
 第1実施形態の光学的測定方法は、第1~3ステップを備え、関数exp(-iΦ´(k))を様々に設定して第2ステップおよび第3ステップを複数回繰り返す。ここで、関数exp(-iΦ´(k))を様々に設定する際は、Φ´(k)を以下のような多項式
Figure JPOXMLDOC01-appb-M000002
と仮定し、その係数を変化させたものをΦ´(k)とする。
 一般的には低次の項の方が支配的と考えられるので低次の項の係数c,c,c,c,cの順に決定していく。しかし、kの0次の項の係数cは干渉縞全体の位相が同じだけ回転するので第二評価画像に影響はなく、kの一次の項の係数cは第二評価画像を深さ方向に平行移動させるだけなので、実際にはkの二次以降の項の係数を決定していけばよい。
 図4は、各係数に対する情報エントロピーの変化を示すグラフである。この図に示されるように、各係数c,c,cのそれぞれを順に-10から10まで変化させ、情報エントロピーが最少となる各係数c,c,cの値を決定する。図5は、波数に対する補償量の関係を示すグラフである。Φ(k)は、kの四次の項の係数cまで計算して決定したものである。Φ(k)の量が分散補償による補償量とされる。
 複数の関数exp(-iΦ´(k))のうち情報エントロピーを最大とさせる関数を分散補償関数exp(-iΦ(k))に決定し、当該分散補償関数を用いて第2ステップを行って取得される第一評価画像を光断層画像とする。ここで、分散補償関数を用いて第2ステップを再度行って光断層画像を得てもよいし、当該分散補償関数に決定された関数を用いて第2ステップを行った際に得た第一評価画像がメモリ等の記憶装置に保存されていれば、それを光断層画像としてもよい。このような分散補償処理は、解析部60により実施される。
 第1実施形態の光学測定方法では、正しく分散補償を行うと逆にぼけて分解能を低下させる傾向がある折り返し像A,Bをデータ処理により第一評価画像から除いて第二評価画像とし、第二評価画像の鮮明さに関する指標値として情報エントロピーを算出する。これにより、折り返し像A,Bの影響を受けずに評価画像の鮮明さの定量化を正しく行うことができる。このように鮮明さの定量化を正しく行うことができるので、鮮明な光断層画像を得ることが可能となる。
 OCT装置は基本的には測定原点のマイナス側に拡散反射光Lを生じさせる反射点がないように設計される。しかし、測定プローブ42における測定光Lの出力部付近では、例えば、光ファイバ43とレンズ44との融着面といった部分により、拡散反射光Lの発生が避けられない場合もある。また、これらの拡散反射光Lに対応する像が折り返し像を形成した場合でも、対象物2の像と重なるほど原点のマイナス側にはないため、光断層画像としては気にされない。しかし、上述のように鮮明さの定量化においては障害となるため、第1実施形態の光学的測定方法により折り返し像を除いて評価画像の鮮明さの定量化を行うことで、鮮明な光断層画像を得ることが可能となる。
 なお、第1実施形態では第一評価画像から折り返し像のみを除去することとしたが、これに限られない。図6は、DC成分の像および多重反射の像を有する第一評価画像である。図6(a)は、測定原点を図2のX点とする第一評価画像である。図6(b)は、移動部32により反射体31の位置を干渉部20に近づく方向に移動させ、参照光Lの光路長を短くすることで、測定原点をX点よりマイナス側の位置、即ち、X点より干渉部20に近い位置に移動させて測定した第一評価画像である。測定光Lと参照光Lとの光路長差の調整による測定原点の移動に伴い、通常の像Cは移動するのに対し、像Dおよび像Eは移動しない。
 DC成分の像Dは干渉縞にDC成分があるとフーリエ変換後に評価画像の原点付近に現れる。多重反射の像Eは測定装置内の多重反射を主な発生原因とし、測定原点の位置に関係なく評価画像の同じ位置に現れる。例えば、これらのDおよび像Eについても指標値の計算から除去することとしてもよい。これらの2つの像は、上述のように測定原点の移動に伴っては移動しないので、データ処理により除去することが好ましい。具体的には、上記第3ステップが、折り返し像A,Bを第一評価画像から除く操作に加えてDC成分の像Dおよび多重反射の像Eを第一評価画像から除く操作を含むこととする。なお、第一評価画像における各像が、DC成分の像Dおよび多重反射の像Eに該当するか否かは、測定原点を移動させたときに第一評価画像における位置が変わるか否かで判断することができる。
 また、第1実施形態では、分散補償関数を決定する際に用いる評価画像のデータとして同じ対象物2、ここでは測定プローブ42の評価画像のデータを用いることとしたが、別の対象物2の評価画像のデータを用いることとしてもよい。例えば、分散補償関数を決定する際に測定プローブ42だけによる評価画像を用い、分散補償関数を決定後に生体測定を行うようにしてもよい。
(第2実施形態)
 第2実施形態の光学的測定方法は、第1実施形態と同じ光学的測定装置1を用いて、対象物2の光断層画像を取得することができる。第2実施形態の光学的測定方法は、以下のような第1~4ステップを備えている。第1ステップおよび第2ステップは第1実施形態の第1ステップおよび第2ステップと同じである。
 第3ステップにおいて、評価画像の鮮明さに関する指標値を算出する。ここでは、指標値として上述の情報エントロピーを用いる。第3ステップは、折り返し像A,Bを評価画像から除く必要がない点で第1実施形態の第3ステップと相違している。当該第3ステップは、解析部60により実施される。
 第4ステップにおいて、折り返し像A,Bの評価画像における位置に基づいて測定光Lと参照光Lとの光路長差を調整することで、折り返し像A,Bが指標値に与える影響を低減する。ここでは、移動部32により反射体31の位置を干渉部20に近づく方向に移動させ、参照光Lの光路長を短くすることで、測定原点をレンズ44の傾斜面44bから干渉部20に近い位置、即ちマイナス側に移動させる。当該第4ステップは解析部60により実施される。
 図7は、図3の評価画像を測定したときよりもマイナス側に測定原点を移動させて測定した評価画像である。測定原点がマイナス側に移動したことにより、図3の評価画像においてz方向の中央付近に存在した折り返し像A,Bが、通常の像A,Bとなってz方向の原点付近に移動している。また、図3の評価画像においてz方向の原点寄りに存在した通常の像Cが、z方向に原点から遠ざかる位置に移動している。
 第2実施形態の光学的測定方法は、以上のような第1~4ステップを備え、第4ステップにおいて光路長差の調整を行った後に第1ステップを行うとともに、関数exp(-iΦ´(k))を様々に設定して第2ステップおよび第3ステップを繰り返す。このとき第1実施形態と同様に、Φ´(k)を多項式と仮定し、その係数c,c,cのそれぞれを順に変化させてΦ´(k)を様々に設定する。そして、複数の関数exp(-iΦ´(k))のうち情報エントロピーを最大とさせる関数を分散補償関数exp(-iΦ(k))に決定し、当該分散補償関数を用いて第2ステップを行って取得される評価画像を光断層画像とする。ここで、分散補償関数を用いて第2ステップを再度行って光断層画像を得てもよいし、当該分散補償関数に決定された関数を用いて第2ステップを行った際に得た評価画像がメモリ等の記憶装置に保存されていれば、それを光断層画像としてもよい。このような分散補償処理は、解析部60により実施される。
 図8は、図7の評価画像について分散補償した後の光断層画像である。通常の像A,B,Cのそれぞれは図7よりも図8において輝度分布が偏り鮮明になっている。
 第2実施形態の光学測定方法では、正しく分散補償を行うと逆にぼける傾向がある折り返し像A,Bを、測定光Lと参照光Lとの光路長差を調整することにより、折り返し像としてではなく通常の像A,Bとして評価画像に現れるようにした後、評価画像の鮮明さに関する指標値として情報エントロピーを算出する。これにより、折り返し像A,Bの影響を受けずに評価画像の鮮明さの定量化を正しく行うことができる。このように鮮明さの定量化を正しく行うことができるので、鮮明な光断層画像を得ることが可能となる。
 折り返し像A,Bを評価画像からデータ処理により除く第1実施形態の方法は、簡便で実用的であるものの、折り返し像A,Bが測定したい対象物2の通常の像Cに重なっている場合は実施が困難である。測定光Lと参照光Lとの光路長差を調整することにより折り返し像A,Bが情報エントロピーに与える影響を低減する第2実施形態の方法は、このような場合に優位性を有する。
 なお、第2実施形態では、折り返し像A,Bを全て通常の像A,Bとするまで測定光Lと参照光Lとの光路長差を調整することとしたが、これに限られない。例えば、折り返し像Aだけを通常の像Aとすることによっても、折り返し像A,Bが第3ステップにおいて算出される情報エントロピーに与える影響を低減することができる。

Claims (3)

  1.  広帯域光源から出力される広帯域光を2分岐して参照光および測定光とし、前記参照光を反射体に照射したときに該反射体で生じる反射光と、前記測定光を対象物に照射したときに該対象物で生じる拡散反射光とを互いに干渉させ、当該干渉光スペクトルを取得する第1ステップと、
     前記干渉光スペクトルに分散の影響を変化させる試行関数を乗じ、当該試行関数を乗じた干渉光スペクトルのフーリエ変換の結果に基づき、前記測定光の光路上における位置であって、前記参照光の光路上における前記反射体の位置に対応する位置である測定原点よりも前記広帯域光源の逆側を測定範囲とする第一評価画像を取得する第2ステップと、
     前記測定原点よりも前記広帯域光源側で生じる前記拡散反射光に対応する像がフーリエ変換により前記測定原点で折り返されて形成される折り返し像を前記第一評価画像から除いて第二評価画像とし、前記第二評価画像の鮮明さに関する指標値を算出する第3ステップと、
     を備え、
     前記試行関数を様々に設定して前記第2ステップおよび前記第3ステップを複数回繰り返し、前記指標値を使って最も鮮明な第二評価画像を求め、複数の前記試行関数のうち前記最も鮮明な第二評価画像を得ることができた試行関数を分散補償関数に決定し、前記干渉光スペクトルに当該分散補償関数を乗じた干渉光スペクトルをフーリエ変換して光断層画像を得る、光学的測定方法。
  2.  前記第3ステップが、前記折り返し像を前記第一評価画像から除く操作に加えてDC成分の像および多重反射の像を前記第一評価画像から除く操作を含む、請求項1に記載の光学的測定方法。
  3.  広帯域光源から出力される広帯域光を2分岐して参照光および測定光とし、前記参照光を反射体に照射したときに該反射体で生じる反射光と、前記測定光を対象物に照射したときに該対象物で生じる拡散反射光とを互いに干渉させ、当該干渉光スペクトルを取得する第1ステップと、
     前記干渉光スペクトルに分散の影響を変化させる試行関数を乗じ、当該試行関数を乗じた干渉光スペクトルのフーリエ変換の結果に基づき、前記測定光の光路上における位置であって、前記参照光の光路上における前記反射体の位置に対応する位置である測定原点よりも前記広帯域光源の逆側を測定範囲とする評価画像を取得する第2ステップと、
     前記評価画像の鮮明さに関する指標値を算出する第3ステップと、
     前記測定原点よりも前記広帯域光源側で生じる前記拡散反射光に対応する像がフーリエ変換により前記測定原点で折り返されて形成される折り返し像の前記評価画像における位置に基づいて前記測定光と前記参照光との光路長差を調整することで、前記折り返し像が前記第3ステップにおいて算出される前記指標値に与える影響を低減する第4ステップと、
     を備え、
     前記第4ステップにおいて前記光路長差の調整を行った後に前記第1ステップを行うとともに、前記試行関数を様々に設定して第2ステップおよび第3ステップを複数回繰り返し、前記指標値を使って最も鮮明な評価画像を求め、複数の前記試行関数のうち前記最も鮮明な評価画像を得ることができた試行関数を分散補償関数に決定し、前記干渉光スペクトルに当該分散補償関数を乗じた干渉光スペクトルをフーリエ変換して光断層画像を得る、光学的測定方法。
PCT/JP2014/076882 2014-01-09 2014-10-08 光学的測定方法 WO2015104877A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014002239A JP2015129730A (ja) 2014-01-09 2014-01-09 光学的測定方法
JP2014-002239 2014-01-09

Publications (1)

Publication Number Publication Date
WO2015104877A1 true WO2015104877A1 (ja) 2015-07-16

Family

ID=53523719

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/076882 WO2015104877A1 (ja) 2014-01-09 2014-10-08 光学的測定方法

Country Status (2)

Country Link
JP (1) JP2015129730A (ja)
WO (1) WO2015104877A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110063714A (zh) * 2018-01-22 2019-07-30 株式会社多美 光学相干层析成像装置

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002214127A (ja) * 1996-02-27 2002-07-31 Massachusetts Inst Of Technol <Mit> 光ファイバ撮像ガイドワイヤ、カテーテルまたは内視鏡を用いて光学測定を行う方法および装置
JP2008175698A (ja) * 2007-01-18 2008-07-31 Univ Of Tsukuba 光コヒーレンストモグラフィーの画像処理方法及び画像処理装置
JP2010164351A (ja) * 2009-01-14 2010-07-29 Kowa Co 光断層画像化装置
JP2011174920A (ja) * 2010-01-28 2011-09-08 Panasonic Corp 光干渉計測方法および光干渉計測装置
JP2011242177A (ja) * 2010-05-14 2011-12-01 Canon Inc 撮像装置及びその撮像方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002214127A (ja) * 1996-02-27 2002-07-31 Massachusetts Inst Of Technol <Mit> 光ファイバ撮像ガイドワイヤ、カテーテルまたは内視鏡を用いて光学測定を行う方法および装置
JP2008175698A (ja) * 2007-01-18 2008-07-31 Univ Of Tsukuba 光コヒーレンストモグラフィーの画像処理方法及び画像処理装置
JP2010164351A (ja) * 2009-01-14 2010-07-29 Kowa Co 光断層画像化装置
JP2011174920A (ja) * 2010-01-28 2011-09-08 Panasonic Corp 光干渉計測方法および光干渉計測装置
JP2011242177A (ja) * 2010-05-14 2011-12-01 Canon Inc 撮像装置及びその撮像方法

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110063714A (zh) * 2018-01-22 2019-07-30 株式会社多美 光学相干层析成像装置
CN110063714B (zh) * 2018-01-22 2023-12-29 株式会社多美 光学相干层析成像装置

Also Published As

Publication number Publication date
JP2015129730A (ja) 2015-07-16

Similar Documents

Publication Publication Date Title
JP5371315B2 (ja) 光干渉断層撮像方法および光干渉断層撮像装置
JP4389032B2 (ja) 光コヒーレンストモグラフィーの画像処理装置
EP2812881B1 (en) Segmentation and enhanced visualization techniques for full-range fourier domain optical coherence tomography
JP5306075B2 (ja) 光干渉断層法を用いる撮像装置及び撮像方法
JP5036785B2 (ja) 光断層画像生成方法及び光断層画像生成装置
JP2011087813A (ja) 光断層画像生成装置及び光断層画像生成方法
JP2011257160A (ja) 光干渉断層撮像装置、光干渉断層撮像方法、およびプログラム
JP6840520B2 (ja) 画像処理装置、撮像装置、画像処理方法及びプログラム
JP5675268B2 (ja) 光干渉断層撮像装置、光干渉断層撮像方法、補償方法およびプログラム
US9600911B2 (en) Reconstruction of optical coherent tomography (OCT) images of morphological features
US9250060B2 (en) Optical coherence tomography system having real-time artifact and saturation correction
US10524663B2 (en) Phase measurement, analysis, and correction methods for coherent imaging systems
US10716476B2 (en) Methods to improve axial resolution in optical coherence tomography
Poddar et al. In vitro 3D anterior segment imaging in lamb eye with extended depth range swept source optical coherence tomography
JP5990224B2 (ja) 撮像装置及び撮像方法
WO2015104877A1 (ja) 光学的測定方法
Ding et al. A new spectral calibration method for Fourier domain optical coherence tomography
JP6047202B2 (ja) 光干渉断層撮像装置、光干渉断層撮像方法、およびプログラム
JP6214020B2 (ja) 光断層イメージング法、その装置およびプログラム
Wang et al. Deconvolution with fall-off compensated axial point spread function in spectral domain optical coherence tomography
JP7425220B2 (ja) 画像内の共役の存在を識別するためのシステム、方法、およびコンピュータプログラム製品
JP5451822B2 (ja) 光断層画像生成方法及び光断層画像生成装置
US20230414095A1 (en) Processing system for oct imaging, oct imaging system and method for oct imaging
NL2020483B1 (en) Method and apparatus for optical coherence projection tomography
JP5746741B2 (ja) 画像生成装置、画像生成システム及び画像生成方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14878125

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14878125

Country of ref document: EP

Kind code of ref document: A1