WO2015104874A1 - 電子機器 - Google Patents

電子機器 Download PDF

Info

Publication number
WO2015104874A1
WO2015104874A1 PCT/JP2014/075302 JP2014075302W WO2015104874A1 WO 2015104874 A1 WO2015104874 A1 WO 2015104874A1 JP 2014075302 W JP2014075302 W JP 2014075302W WO 2015104874 A1 WO2015104874 A1 WO 2015104874A1
Authority
WO
WIPO (PCT)
Prior art keywords
heat
cooling device
electronic device
generating member
ceramic material
Prior art date
Application number
PCT/JP2014/075302
Other languages
English (en)
French (fr)
Inventor
三浦 忠将
淳 柳原
是如 山下
Original Assignee
株式会社村田製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社村田製作所 filed Critical 株式会社村田製作所
Publication of WO2015104874A1 publication Critical patent/WO2015104874A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F1/00Details not covered by groups G06F3/00 - G06F13/00 and G06F21/00
    • G06F1/16Constructional details or arrangements
    • G06F1/20Cooling means
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/34Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements
    • H01L23/36Selection of materials, or shaping, to facilitate cooling or heating, e.g. heatsinks
    • H01L23/373Cooling facilitated by selection of materials for the device or materials for thermal expansion adaptation, e.g. carbon
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/34Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements
    • H01L23/36Selection of materials, or shaping, to facilitate cooling or heating, e.g. heatsinks
    • H01L23/373Cooling facilitated by selection of materials for the device or materials for thermal expansion adaptation, e.g. carbon
    • H01L23/3731Ceramic materials or glass
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/34Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements
    • H01L23/36Selection of materials, or shaping, to facilitate cooling or heating, e.g. heatsinks
    • H01L23/373Cooling facilitated by selection of materials for the device or materials for thermal expansion adaptation, e.g. carbon
    • H01L23/3735Laminates or multilayers, e.g. direct bond copper ceramic substrates
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/34Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements
    • H01L23/40Mountings or securing means for detachable cooling or heating arrangements ; fixed by friction, plugs or springs
    • H01L23/4006Mountings or securing means for detachable cooling or heating arrangements ; fixed by friction, plugs or springs with bolts or screws
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/0001Technical content checked by a classifier
    • H01L2924/0002Not covered by any one of groups H01L24/00, H01L24/00 and H01L2224/00

Definitions

  • the present invention relates to an electronic apparatus provided with a cooling device.
  • a cooling device that combines a heat sink and a fan or Peltier element as described above makes the device relatively large and consumes power, making the device smaller and thinner, and lower power consumption (battery life). It is disadvantageous from the point of view. Therefore, an electronic device that can be used without a power source and includes a small cooling device is strongly desired.
  • a heat sink or a graphite sheet is generally used.
  • the heat sink simply assists in heat dissipation, and the graphite sheet only has the effect of diffusing heat and eliminating heat spots. Therefore, when such a cooling device is used in a closed electronic device such as a smartphone, a tablet PC (personal computer), or a notebook PC, heat can be diffused into the space inside the housing. There is a problem that heat dissipation to the outside (that is, cooling) cannot catch up.
  • the cooling device can be It is necessary to fix securely so that it does not move.
  • the present inventors have used a ceramic material that can absorb heat by a solid-solid phase transition as a member that absorbs heat, thereby reducing the thickness without requiring power.
  • a ceramic material that can absorb heat by a solid-solid phase transition as a member that absorbs heat, thereby reducing the thickness without requiring power.
  • an electronic apparatus provided with a cooling device including a ceramic material that absorbs or releases heat by latent heat is provided.
  • the present invention it is possible to provide an electronic device that is efficiently cooled by using a ceramic material that absorbs heat in association with a solid-solid phase transition. Moreover, the electronic device by which the cooling device was fixed reliably by using various fixing means is provided.
  • FIGS. 1A and 1B show the temperature distributions on the surface of the casings of Comparative Example 1 and Example 1 in Test Example 1, respectively.
  • 2 (a) and 2 (b) are graphs showing temperature changes on the surfaces of the heating elements of Comparative Example 2 and Example 2 in Test Example 2, respectively.
  • FIG. 3A is a schematic plan view of the cooling device used in the third embodiment.
  • FIG. 3B is a schematic cross-sectional view of the electronic apparatus of the third embodiment.
  • the cooling device used in the electronic apparatus of the present invention comprises a ceramic material that absorbs heat accompanying electrical, magnetic, and structural phase transitions, that is, has a huge latent heat.
  • a ceramic material can obtain a higher cooling effect than conventional cooling devices such as graphite sheets by temporarily absorbing excess heat and standardizing temporal heat. Is possible.
  • the ceramic material a ceramic material mainly composed of vanadium oxide is preferable.
  • the ceramic material mainly composed of vanadium oxide means a ceramic material containing V and O.
  • V and O a ceramic material containing V and O.
  • VO 2 , V 2 O 3 , V 4 O 7 , V 6 O 11, etc. Including those doped with the above atoms.
  • the ceramic material has latent heat associated with solid-solid phase transition, for example, latent heat associated with crystal structure phase transition or magnetic phase transition, and absorbs heat generated by the heat generating member due to the latent heat.
  • the ceramic material preferably has a latent heat amount of 5 J / g or more, more preferably 20 J / g or more. By having such a large amount of latent heat, a large cooling effect can be exhibited with a smaller volume, which is advantageous in terms of downsizing.
  • latent heat is the total amount of thermal energy required when the phase of a substance changes, and generally refers to the amount of heat absorbed and exothermed with the change of phase.
  • Specific ceramic material is not particularly limited, for example, JP-ceramic material described in JP 2010-163510, specifically, VO 2, LiVS 2, LiVO 2, V 2 O 3, V 4 O 7 , V 6 O 11 , A y VO 2 (wherein A is Li or Na, 0.1 ⁇ y ⁇ 2.0, preferably 0.5 ⁇ y ⁇ 1.0), V 1-x M x O 2 (wherein M is W, Ta, Mo, Nb, Ru or Re, and 0 ⁇ x ⁇ 0.2, preferably 0 ⁇ x ⁇ 0.05).
  • the ceramic material contained in the cooling device used in the present invention is an oxide containing vanadium V and M (where M is at least one selected from W, Ta, Mo and Nb). , And the total content of M when the total of V and M is 100 mol parts is about 0 mol parts or more and about 5 mol parts or less.
  • the ceramic material included in the cooling device used in the present invention is an oxide containing A (where A is Li or Na) and vanadium V, wherein V is 100 mole parts.
  • A is Li or Na
  • V vanadium
  • the content mole part of A is about 50 mole parts or more and about 100 mole parts or less.
  • the ceramic material contained in the cooling device used in the present invention has a composition formula: V 1-x M x O 2 (Wherein, M is W, Ta, Mo or Nb, 0 ⁇ x ⁇ 0.05) Or the composition formula: A y VO 2 (Wherein, A is Li or Na, 0.5 ⁇ y ⁇ 1.0)
  • V 1-x M x O 2 wherein, M is W, Ta, Mo or Nb, 0 ⁇ x ⁇ 0.05
  • a y VO 2 wherein, A is Li or Na, 0.5 ⁇ y ⁇ 1.0
  • the ceramic material contained in the cooling device used in the present invention has a composition formula: V 1-x W x O 2 (Where 0 ⁇ x ⁇ 0.01) The substance shown by is included as a main component.
  • the main component means a component contained in the ceramic material by 50% by mass or more, particularly 60% by mass or more, preferably 80% by mass or more, more preferably 90% by mass or more, and further preferably 98% by mass. For example, it means 98.0 to 99.8% by mass.
  • Other components include VO x having a different oxygen content from VO 2 .
  • the temperature indicating the latent heat of the ceramic material that is, the temperature at which the ceramic material undergoes phase transition can be adjusted by the amount of the element to be added (dope).
  • a ceramic material has a composition formula: V 1-x W x O 2 When x is 0.005, the phase transition occurs at about 50 ° C., and when x is 0.01, the phase transition occurs at about 40 ° C.
  • the above ceramic material preferably changes its thermal conductivity before and after the phase transition. As a result, it is possible to realize a device that can be cooled more efficiently from the viewpoint of not only cooling but also heat diffusion and heat dissipation due to heat absorption caused by latent heat.
  • the cooling device used in the present invention may contain metal particles (for example, powder). Since the metal particles have a higher thermal conductivity than the ceramic material, the heat generated by the heat generating member can be efficiently transmitted to a wide area of the ceramic portion by using the metal particles.
  • a powder obtained by coating a ceramic particle with a metal using a chemical or physical method may be used.
  • the metal particles need only be in contact with the ceramic material.
  • the metal particles are dispersed in the ceramic sheet and may be present uniformly or non-uniformly.
  • the metal particles are not particularly limited as long as they have higher thermal conductivity than the ceramic material, and examples thereof include particles made of tin, nickel, silver, copper, aluminum, and the like. These metal particles may be used alone or in combination of two or more metal particles. Preferred metal particles are tin, silver, or copper particles.
  • the particle size of the metal particles (powder) is not particularly limited.
  • the average particle size is 0.5 to 100 ⁇ m, preferably 1 to 50 ⁇ m.
  • Such an average particle diameter can be measured using a laser diffraction / scattering soot particle diameter / particle size distribution measuring apparatus or a scanning electron microscope.
  • the average particle diameter is preferably 1 ⁇ m or more from the viewpoint of ease of handling, and is preferably 50 ⁇ m or less from the viewpoint of reducing the porosity between particles.
  • the mixing ratio of the ceramic material and the metal particles is not particularly limited.
  • the volume ratio is 8: 2 to 2: 8, preferably 6: 4 to 3: 7.
  • the volume ratio between the ceramic material and the metal particles can be obtained by measuring the respective weights and calculating the volume from the theoretical density.
  • the thermal conductivity inside the cooling device can be improved, and the cooling efficiency can be increased.
  • the strength of the cooling device after molding can be increased.
  • the amount of heat that can be absorbed can be increased by increasing the proportion of the ceramic material.
  • the cooling device used in the present invention may have elasticity.
  • the cooling device By having elasticity, for example, the cooling device can be fixed more easily and stably by being sandwiched between other members.
  • a method for imparting elasticity to the cooling device of the present invention is not particularly limited, and examples thereof include a method of incorporating a resin into one or more sheets.
  • the cooling device used in the present invention may have one or more thermally conductive sheets.
  • the heat conductive sheet has a function of spreading heat over the entire cooling device, thereby improving the efficiency of heat absorption or release.
  • the heat conductive sheet is not particularly limited, and is composed of a metal selected from copper, aluminum and stainless steel, and a heat conductive material selected from graphite.
  • the cooling device used in the present invention may contain a resin.
  • a resin By containing the resin, flexibility can be given to the cooling device, and the strength can be increased.
  • the resin is not particularly limited, and examples thereof include acrylic resin, epoxy, polyester, silicon, polyurethane, polyethylene, polypropylene, polystyrene, nylon, polycarbonate, and polybutylene terephthalate.
  • the content of the resin is not particularly limited, but is, for example, 10 to 60 parts by volume, preferably 20 to 40 parts by volume with respect to 100 parts by volume of the ceramic material.
  • the electronic device according to the present invention has a cooling device directly on a heat generating member in the electronic device or a heat conductive member that transmits heat generated by the heat generating member (hereinafter also simply referred to as “heat conductive member”). Or it is arrange
  • direct contact means that the cooling device and the heat generating member or the heat conducting member are in direct contact with each other.
  • the above “indirect contact” means that the cooling device and the heat generating member or the heat conducting member are in contact via the interposition member.
  • the intervening member is not particularly limited, and examples thereof include fixing means described below, a resin such as a silicone resin, grease, and a metal member.
  • the heating member is not particularly limited, but is an integrated circuit (IC) such as a central processing unit (CPU), power management IC (PMIC), power amplifier (PA), transceiver IC, voltage regulator (VR); LED), incandescent bulbs, semiconductor lasers and other light emitting elements; field effect transistors (FETs), capacitors, distributed power supplies and the like.
  • IC integrated circuit
  • the heat generating member also includes an element used integrally with the electronic component, for example, a shield case in the case of a CPU.
  • the heat conducting member that transmits heat generated by the heat generating member means a member that transfers heat generated by the heat generating member, and is not particularly limited, and examples thereof include a casing, a battery, a substrate, and a display.
  • the cooling device is fixed on the heat generating member or the heat conducting member in the electronic device by various fixing means.
  • Securing means includes, for example, an adhesive substance such as an adhesive, an adhesive tape or a double-sided tape, solder, or welding.
  • fixing means include mechanical means such as screws, springs, claws, pins, or hook-and-loop fasteners.
  • a screw When a screw is used as the fixing means, although not particularly limited, a plurality of, for example, 4 to 10 holes may be provided in the cooling device, and a screw receiver corresponding to the fixing location may be provided, or conversely, a hole may be provided at the fixing location. And a screw receiver may be provided on the cooling device.
  • this nail When using a nail as a fixing means, this nail may be provided in a cooling device, or may be provided at a fixed location. Since it is easy to reinforce with a reinforcing member such as a reinforcing plate of the nail, it is preferable to install the nail at a fixed location.
  • the hook-and-loop fastener is used by being fixed to the cooling device and the fixing portion with an adhesive or the like.
  • the cooling device may be sandwiched between the heat generating member and the heat conducting member in the electronic apparatus, or between the heat generating member or the heat conducting member and another member. In this case, it becomes possible to hold the cooling device more reliably by interposing an elastic member such as a spring or silicone resin between the members.
  • the cooling device may be fixed by being incorporated or enclosed in one member of an electronic device, preferably a heat conducting member.
  • the heat conductive member include a substrate, a casing, and a battery.
  • the material constituting the thermally conductive member that can be used in such an embodiment is not particularly limited as long as it is a material that can incorporate or enclose the cooling device of the present invention.
  • epoxy resin epoxy resin
  • ABS acrylonitrile
  • polycarbonate resin polycarbonate resin
  • PP polypropylene
  • PET polyethylene terephthalate
  • the material constituting the heat conductive member may be glass epoxy or aluminum laminate material.
  • the cooling device can be securely fixed, and further, the step of connecting the cooling device is omitted when assembling the electronic apparatus. be able to.
  • pure water, partially stabilized zirconium (PSZ) balls, a dispersant (manufactured by San Nopco: SN5468) and the ceramic material powder obtained above are added to a polypot and pulverized and mixed for 24 hours. Thereafter, a urethane-based binder, a plasticizer, and an antifoaming agent were added and mixed again for 2 hours to obtain a sheet-forming slurry.
  • a sheet forming slurry is formed into a sheet to produce a green sheet, then cut into strips, and a ceramic sheet (2.0 cm ⁇ 2.0 cm ⁇ 0.1 cm size) by a crimping process. ) was produced.
  • a copper sheet (thermal conductive sheet) of the same size was pressure-bonded to this ceramic sheet to produce a cooling device.
  • the copper sheet surface of the cooling device obtained above is attached to the inner wall of a housing (inner dimensions: 4.0 cm ⁇ 5.0 cm ⁇ 0.5 cm) containing a CPU with an acrylic double-sided adhesive film (Nitto Denko TP5600). And adhered.
  • Test example 1 In the device obtained in Example 1, the CPU was operated, and the temperature of the outer surface of the housing was measured using a thermo viewer (model number FSV-1200, manufactured by APISTE). Further, as Comparative Example 1, the housing temperature in the case of no cooling device was also measured. The results of Example 1 and Comparative Example 1 are shown in FIGS. 1 (a) and (b), respectively.
  • Example 2 A ceramic sheet (4.7 cm ⁇ 2.4 cm ⁇ 0.2 cm) was produced in the same manner as in Example 1. This ceramic sheet was used as a cooling device, and was adhered to the surface (4.8 cm ⁇ 1.2 cm) of a fixed resistance heater as a heating element with an acrylic double-sided adhesive film (Nitto Denko TP5600) having the same dimensions.
  • Test example 2 The heating element of Example 2 was heated at about 6 W for about 600 seconds, and the temperature of the heating element central top surface (that is, the contact surface between the cooling device and the heating element) was measured with a thermocouple. Further, as Comparative Example 2, the temperature of the heating element surface in the case of no cooling device was measured. The results are shown in FIGS. 2 (a) and (b).
  • the surface temperature of the heating element of Comparative Example 2 without the cooling device of the present invention reached about 85 ° C., but the heating element of Example 2 with the cooling device It was confirmed that the surface temperature was reduced to about 70 ° C.
  • Example 3 A ceramic sheet (5 cm ⁇ 10 cm ⁇ 0.04 cm) was produced in the same manner as in Example 1. A cooling sheet was prepared by pressing a graphite sheet of the same size on this ceramic sheet. Next, as shown in FIG. 3, nine holes corresponding to the M2 size (effective diameter 1.74 mm) were provided in the cooling device by die punching. Screw receiving holes were also formed on the surface of the electronic device housing so as to have the same positional relationship as the obtained holes, and the cooling device was fixed by screwing so that the cooling device side was in contact with the housing surface.
  • the electronic device obtained in this way did not cause the displacement of the cooling device due to vibration or impact accompanying movement or dropping.
  • Example 4 A ceramic sheet (3.0 cm ⁇ 8.0 cm ⁇ 0.3 cm) was produced in the same manner as in Example 1. After sandwiching the lithium ion battery pack with this ceramic sheet, each surface is further encapsulated in an aluminum laminate material of PP and PET, and the PP surfaces are subjected to conditions of 0.5 MPa, 170 ° C., 10 seconds. A battery case in which a cooling device and a lithium ion battery pack were enclosed in an aluminum laminate material was manufactured by thermocompression bonding.
  • the step of connecting the cooling device can be omitted when assembling the electronic apparatus.
  • the electronic device of the present invention can be used as, for example, a small communication terminal in which the problem of heat countermeasures has become prominent.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Materials Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Ceramic Engineering (AREA)
  • Theoretical Computer Science (AREA)
  • Human Computer Interaction (AREA)
  • General Engineering & Computer Science (AREA)
  • Cooling Or The Like Of Electrical Apparatus (AREA)
  • Cooling Or The Like Of Semiconductors Or Solid State Devices (AREA)

Abstract

 本発明は、電力を必要とせず、薄型化・小型化が可能であり、高効率の冷却デバイスを備えた電子機器を提供する。本発明の電子機器は、潜熱により熱を吸収または放出するセラミックス材料を含んで成る冷却デバイスを備える。

Description

電子機器
 本発明は、冷却デバイスを備えた電子機器に関する。
 近年、小型通信機器の進歩により薄くて軽いスマートフォンやタブレット型端末が広く普及し始めている。このような機器においてもパーソナルコンピューターと同様に高性能化が進められ、それに伴いCPUなどの発熱に関する問題が顕著化しており、機器の内部温度を、より高度に制御することが求められている。このような課題に対しては、従来からヒートシンクとファンまたはペルチェ素子を組み合わせた冷却装置が知られている(特許文献1を参照)。
特開2010-223497号公報
 上記のようなヒートシンクとファンまたはペルチェ素子を組み合わせた冷却装置は、機器が比較的大きくなり、また、電力を消費するので、機器の小型化・薄型化、および低消費電力(バッテリーの持ち時間)の観点から不利である。したがって、無電源で使用可能で、かつ小型な冷却デバイスを備えた電子機器が強く望まれている。
 このような無電源での冷却デバイスとしては、一般的に、ヒートシンクまたはグラファイトシートが用いられる。しかしながら、ヒートシンクは単に放熱を補助するだけであり、グラファイトシートは熱を拡散し、ヒートスポットをなくすという効果しかない。したがって、このような冷却デバイスを、スマートフォン、タブレット型PC(パーソナルコンピューター)、ノート型PC等の閉系の電子機器に用いた場合、熱を筐体内部の空間に拡散することはできるが、筺体外部への熱放散(即ち、冷却)が追いつかないという問題がある。
 また、スマートフォン、タブレット型パーソナルコンピューター(PC)、ノート型PC等のモバイル機器は、上下左右の移動、反転・回転などにより振動・衝撃が生じることから、冷却デバイスが、この振動・衝撃により機器内部で移動しないように確実に固定する必要がある。
 したがって、本発明の目的は、電力を必要とせず、薄型化・小型化が可能であり、高効率の冷却デバイスを備えた電子機器を提供することにある。また、本発明のさらなる目的は、機器内部に冷却デバイスが確実に固定された電子機器を提供することにある。
 本発明者らは、上記問題を解決すべく鋭意検討した結果、熱を吸収する部材として、固体-固体相転移により熱を吸収し得るセラミックス材料を用いることにより、電力を必要とせず、薄型化・小型化が可能であり、高効率の冷却デバイスを備えた電子機器を提供することができることを見出した。さらに、種々の固定手段により、冷却デバイスを確実に固定できることを見出した。
 本発明の要旨によれば、潜熱により熱を吸収または放出するセラミックス材料を含んで成る冷却デバイスを備えた電子機器が提供される。
 本発明によれば、固体-固体相転移に伴い熱を吸収するセラミックス材料を用いることにより、効率よく冷却される電子機器が提供される。また、種々の固定手段を用いることにより、冷却デバイスが確実に固定された電子機器が提供される。
図1(a)および(b)は、それぞれ、試験例1における比較例1および実施例1の筺体表面の温度分布を示す。 図2(a)および(b)は、それぞれ、試験例2における比較例2および実施例2の発熱体表面の温度変化を示すグラフである。 図3(a)は、実施例3で用いる冷却デバイスの概略平面図である。図3(b)は、実施例3の電子機器の概略断面図である。
 本発明の電子機器に用いられる冷却デバイスは、電気・磁気・構造相転移に伴い熱を吸収する、即ち巨大な潜熱を有するセラミックス材料を含んで成る。このようなセラミックス材料は、過剰な熱を一時的に吸収することにより、時間的な熱の標準化をすることで、グラファイトシートのような従来の冷却デバイスと比較して高い冷却効果を得ることが可能である。
 上記セラミックス材料としては、酸化バナジウムを主成分とするセラミックス材料が好ましい。ここに、酸化バナジウムを主成分とするセラミックス材料とは、VおよびOを含んだセラミックス材料を意味し、例えばVO、V、V、V11等に加え、他の原子がドープされたものも含む。
 上記セラミックス材料は、固体-固体相転移に伴う潜熱、例えば結晶構造相転移や磁気相転移等に伴う潜熱を有し、この潜熱により発熱部材で生じた熱を吸収する。上記セラミックス材料は、好ましくは5J/g以上、より好ましくは20J/g以上の潜熱量を有する。このように大きな潜熱量を有することにより、より小さな体積で大きな冷却効果を発揮できるので、小型化の点で有利である。ここに、「潜熱」とは、物質の相が変化するときに必要とされる熱エネルギーの総量であり、一般的に相の変化に伴う吸発熱量の事をいう。
 具体的なセラミックス材料としては、特に限定されないが、例えば特開2010-163510号公報に記載のセラミックス材料、具体的には、VO、LiVS、LiVO、V、V、V11、AVO(式中、AはLiまたはNaであり、0.1≦y≦2.0、好ましくは0.5≦y≦1.0)、V1-x(式中、Mは、W、Ta、Mo、Nb、RuまたはReであり、0≦x≦0.2、好ましくは0≦x≦0.05)等が挙げられる。
 好ましい態様において、本発明で用いられる冷却デバイスに含まれるセラミックス材料はバナジウムVおよびM(ここに、Mは、W、Ta、MoおよびNbから選ばれる少なくとも一種である)を含む酸化物であって、VとMの合計を100モル部としたときのMの含有モル部が約0モル部以上約5モル部以下である。
 別の好ましい態様において、本発明で用いられる冷却デバイスに含まれるセラミックス材料は、A(ここに、AはLiまたはNaである)およびバナジウムVを含む酸化物であって、Vを100モル部としたときのAの含有モル部が約50モル部以上約100モル部以下である。
 また、別の好ましい態様において、本発明で用いられる冷却デバイスに含まれるセラミックス材料は、組成式:
   V1-x
(式中、Mは、W、Ta、MoまたはNbであり、0≦x≦0.05)
または、組成式:
    AVO
 (式中、AはLiまたはNaであり、0.5≦y≦1.0)
で表される1種またはそれ以上の物質を主成分として含む。
 より好ましい態様において、本発明で用いられる冷却デバイスに含まれるセラミックス材料は、組成式:
   V1-x
(式中、0≦x≦0.01)
で示される物質を主成分として含む。
 ここで、主成分とは、セラミックス材料中に50質量%以上含まれる成分を意味し、特に60質量%以上、好ましくは80質量%以上、より好ましくは90質量%以上、さらに好ましくは98質量%以上、例えば98.0~99.8質量%含むことを意味する。その他の成分としては、VOと酸素量の異なるVOが挙げられる。
 セラミックス材料の潜熱を示す温度、即ち、セラミックス材料が相転移する温度は、添加(ドープ)する元素の添加量により調節することができる。
 例えば、セラミックス材料が、組成式:
   V1-x
で示される場合、xを0.005とすると、相転移は約50℃で起こり、xを0.01とすると、相転移は約40℃で起こる。
 上記セラミックス材料は好ましくは相転移の前後で熱伝導率が変化することが好ましい。これにより潜熱に起因する吸熱により冷却だけでなく、熱拡散・放熱の観点でより効率よく冷却することができるデバイスを実現することが可能となる。
 一の態様において、本発明で用いられる冷却デバイスは、金属粒子(例えば、粉末)を含んでいてもよい。この金属粒子は、上記セラミックス材料よりも熱伝導率が高いので、金属粒子を用いることにより発熱部材で生じた熱を効率的にセラミックス部の広範な領域に伝えることが可能になる。また、この場合、化学的、物理的手法を用いてセラミックス粒子に金属をコーティングした紛体を使用してもよい。
 上記金属粒子は、セラミックス材料と接触していればよく、例えば、セラミックスシートに分散して存在し、均一で存在しても不均一で存在してもよい。
 上記金属粒子としては、上記セラミックス材料よりも熱伝導率が高いものであれば特に限定されず、例えば、スズ、ニッケル、銀、銅およびアルミニウムなどからなる粒子が挙げられる。この金属粒子は、単独で用いてもよく、または2種以上の金属粒子を組み合わせて用いてもよい。好ましい金属粒子は、スズ、銀、または銅粒子である。
 上記金属粒子(粉末)の粒度は、特に限定されないが、例えば平均粒子径が、0.5~100μmであり、好ましくは、1~50μmである。かかる平均粒子径は、レーザー回折・散乱式 粒子径・粒度分布測定装置または走査電子顕微鏡を用いて測定することができる。平均粒子径は、取り扱いの容易性の観点から、1μm以上であることが好ましく、粒子間の空隙率を小さくする観点から、50μm以下であることが好ましい。
 上記セラミックス材料と金属粒子の混合比は、特に限定されないが、例えば、体積比で8:2~2:8であり、好ましくは6:4~3:7である。なお、セラミックス材料と金属粒子の体積比は、それぞれの重量を測定して理論密度から体積を算出することにより得ることができる。金属粒子の割合を多くすることにより、冷却デバイス内部の熱伝導性を向上させることができ、冷却効率を高めることができる。さらに、成形後の冷却デバイスの強度を高めることができる。他方、セラミックス材料の割合を多くすることにより、吸収できる熱量を大きくすることができる。
 好ましい態様において、本発明に用いられる冷却デバイスは弾性を有し得る。弾性を有することにより、例えば他の部材に挟むことによる冷却デバイスの固定をより容易かつ安定に行うことができる。本発明の冷却デバイスに弾性を与える方法は、特に限定されないが、例えば1つまたはそれ以上のシートに樹脂を含有させる方法が挙げられる。
 好ましい態様において、本発明で用いられる冷却デバイスは、1つまたはそれ以上の熱伝導性シートを有してもよい。
 上記熱伝導性シートは、熱を冷却デバイス全体に広げる機能を有し、これにより熱の吸収または放出の効率を向上させることができる。
 熱伝導性シートは、特に限定されないが、銅、アルミニウムおよびステンレス鋼から選択される金属ならびにグラファイトから選択される熱伝導性材料から構成される。
 好ましい態様において、本発明で用いられる冷却デバイスは、樹脂を含んでいてもよい。樹脂を含有させることにより、冷却デバイスに柔軟性を与えることができ、また、強度を高めることができる。
 上記樹脂としては、特に限定されるものではないが、例えばアクリル系樹脂、エポキシ、ポリエステル、シリコン、ポリウレタン、ポリエチレン、ポリプロピレン、ポリスチレン、ナイロン、ポリカーボネート、ポリブチレンテレフタレート等が挙げられる。
 上記樹脂の含有量は、特に限定されないが、例えば、セラミックス材料100体積部に対して、10~60体積部であり、20~40体積部が好ましい。
 好ましい態様において、本発明の電子機器は、冷却デバイスが、電子機器内の発熱部材または発熱部材で生じた熱を伝える熱伝導部材(以下、単に「熱伝導部材」ともいう)の上に直接的または間接的に接触して配置されることを特徴とする。
 上記「直接的に接触」とは、冷却デバイスと、発熱部材または熱伝導部材とが、互いに直接接触していることを意味する。
 上記「間接的に接触」とは、冷却デバイスと、発熱部材または熱伝導部材とが、介在部材を介して接触していることを意味する。介在部材としては、特に限定されないが、例えば下記する固定手段、シリコーン樹脂等の樹脂、グリース、金属部材等が挙げられる。
 上記発熱部材としては、特に限定されないが、中央処理装置(CPU)、パワーマネージメントIC(PMIC)、パワーアンプ(PA)、トランシーバーIC、ボルテージレギュレータ(VR)などの集積回路(IC);発光ダイオード(LED)、白熱電球、半導体レーザーなどの発光素子;電界効果トランジスタ(FET)、コンデンサ、分散電源などが挙げられる。また、本発明において、発熱部材は、上記の電子部品と一体的に用いられる要素、例えばCPUの場合シールドケース等も含む。
 上記発熱部材で生じた熱を伝える熱伝導部材とは、発熱部材で生じた熱を伝達する部材を意味し、特に限定されないが、例えば、筺体、電池、基板、ディスプレイ等が挙げられる。
 好ましくは、本発明の電子機器において、冷却デバイスは、種々の固定手段により電子機器内の発熱部材または熱伝導部材上に固定される。
 固定手段としては、例えば、粘着性物質、例えば接着剤、粘着テープもしくは両面テープ、半田または溶接などが挙げられる。
 他の固定手段としては、機械的手段、例えば、ねじ、バネ、爪、ピン、または面ファスナー等が挙げられる。これらの固定手段を用いることにより、冷却デバイスの着脱が容易になり、修理および交換を容易に行うことが可能になる。なお、上記粘着性物質を用いる場合であっても、微粘着性のものを用いることにより、冷却デバイスの着脱を容易にすることができる。
 固定手段としてねじを用いる場合、特に限定されないが、冷却デバイスに複数個、例えば4~10個の穴を設け、固定箇所に対応するねじ受けを設けてもよく、または、逆に固定箇所に穴を設け、冷却デバイスにねじ受けを設けてもよい。
 固定手段として爪を用いる場合、この爪は冷却デバイスに設けてもよく、または、固定箇所に設けてもよい。爪の補強板などの補強部材による補強が容易であることから、固定箇所に爪を設置することが好ましい。
 面ファスナーは、冷却デバイスおよび固定箇所のそれぞれに接着剤などにより固定して用いられる。
 また、冷却デバイスを固定する別の方法として、冷却デバイスを、電子機器内の発熱部材および熱伝導部材間、または発熱部材もしくは熱伝導部材と、他の部材との間に挟持してもよい。この場合、各部材間に弾性のある部材、例えばバネ、シリコーン樹脂等を介在させることにより、より確実に冷却デバイスを保持することが可能になる。
 上記のように種々の固定手段を用いることにより、冷却デバイスを電子機器に確実に固定することが可能になり、電子機器の移動、回転または落下等に伴う振動または衝撃による冷却デバイスの位置ずれを防止することができる。
 一の態様において、冷却デバイスは、電子機器の一部材、好ましくは熱伝導部材中に内蔵または内封することにより固定されていてもよい。上記熱伝導性部材としては、基板、筐体、電池などが挙げられる。
 かかる態様に用いることができる熱伝導性部材を構成する材料としては、本発明の冷却デバイスを内蔵または内封することが可能である材料であれば特に限定されず、例えばエポキシ樹脂、ABS(アクリロニトリル-ブタジエン-スチレン)樹脂、ポリカーボネート樹脂、PP(ポリプロピレン)、PET(ポリエチレンテレフタレート)などの樹脂が挙げられる。また、熱伝導性部材を構成する材料は、ガラスエポキシまたはアルミラミネート材であってもよい。
 このように本発明の冷却デバイスを他の部材中に内蔵または内封することにより、冷却デバイスを確実に固定することができ、さらに電子機器の組み立ての際、冷却デバイスを接続する工程を省略することができる。
 実施例1
・冷却デバイス(セラミックスシート)の作製
 セラミックス原料として、三酸化バナジウム(V)、五酸化バナジウム(V)、および酸化タングステン(WO)を用い、これらをV:W:O=0.995:0.005:2(モル比)となるように秤量し、乾式混合した。その後、窒素/水素/水雰囲気下で1000℃、4時間熱処理し、セラミックス材料としてV0.9950.005(0.5at%WドープVO)の粉末を調製した。
 次に、純水、部分安定化ジルコニウム(Partial Stabilized Zirconia;PSZ)ボール、分散剤(サンノプコ製:SN5468)および上記で得られたセラミックス材料の粉末をポリポットに加えて、24時間粉砕混合を行い、その後ウレタン系バインダー、可塑剤および消泡剤を加え、再度2時間混合を行い、シート成形用スラリーを得た。
 次に、ドクターブレード法を使用し、シート成形用スラリーをシート成形して、グリーンシートを作製し、その後短冊カットし、圧着プロセスにより、セラミックスシート(2.0cm×2.0cm×0.1cmサイズ)を作製した。このセラミックスシートに、同寸法の銅シート(熱伝導性シート)を圧着して、冷却デバイスを作製した。
 上記で得られた冷却デバイスの銅シート面を、CPUを含む筐体(内寸4.0cm×5.0cm×0.5cm)の内壁に、アクリル系の両面接着性フィルム(日東電工TP5600)を用いて接着した。
 試験例1
 実施例1で得られた機器において、CPUを動作させ、筐体外表面の温度を、サーモビューアー(型番FSV-1200、APISTE社製)を用いて測定した。また、比較例1として、冷却デバイスなしの場合の筐体温度も測定した。実施例1および比較例1の結果を、それぞれ、図1(a)および(b)に示す。
 結果から、実施例1の冷却デバイスを備えた筐体は、比較例1の冷却デバイスを有しない筐体と比較して、ヒートスポット温度が低減されることが確認された。
 実施例2
 実施例1と同様の方法で、セラミックスシート(4.7cm×2.4cm×0.2cm)を作製した。このセラミックスシートを冷却デバイスとして用い、同じ寸法のアクリル系両面接着性フィルム(日東電工TP5600)にて、発熱体としての固定抵抗ヒーターの表面(4.8cm×1.2cm)に接着した。
 試験例2
 実施例2の発熱体を約6Wで約600秒間発熱させ、発熱体中心天面(即ち、冷却デバイスと発熱体の接触面)の温度を熱電対によって測定した。また、比較例2として、冷却デバイスなしの場合の発熱体表面の温度を測定した。結果を、図2(a)および(b)に示す。
 図2に示されるように、約600秒後に、本発明の冷却デバイスを有しない比較例2の発熱体の表面温度は約85℃に達したが、冷却デバイスを有する実施例2における発熱体の表面温度は約70℃に低減されることが確認された。
 実施例3
 実施例1と同様の方法で、セラミックスシート(5cm×10cm×0.04cm)を作製した。このセラミックスシートに、同寸法のグラファイトシートを圧着して、冷却デバイスを作製した。ついで、図3に示されるように、冷却デバイスに、金型打ち抜きにより、M2サイズ(有効径1.74mm)に対応する穴を9か所設けた。得られた穴と同じ位置関係となるように電子機器筺体面にもねじ受け穴を形成し、冷却デバイスを冷却デバイス側が筺体面に接するようにねじ止めによって固定した。
 このようにして得られた電子機器は、移動または落下に伴う振動または衝撃によっても、冷却デバイスの位置ずれが生じなかった。
 実施例4
 実施例1と同様の方法で、セラミックスシート(3.0cm×8.0cm×0.3cm)を作製した。このセラミックスシートにて、リチウムイオン電池バッテリーパックを挟持した後に、さらにそれぞれの表面がPPおよびPETであるアルミラミネート材に封入し、PP面同士を0.5MPa、170℃、10秒の条件にて熱圧着し、アルミラミネート材に冷却デバイスとリチウムイオン電池パックが内封されたバッテリーケースを作製した。
 実施例4のように冷却デバイスを、他の部材中に内蔵することにより、電子機器の組み立ての際、冷却デバイスを接続する工程を省略することができる。
 本発明の電子機器は、例えば、熱対策問題が顕著化している小型通信端末として利用することができる。
  1…電子機器
  2…冷却デバイス
  4…セラミックスシート
  6…グラファイトシート
  8…穴
  10…ねじ
  12…筐体

Claims (12)

  1.  潜熱により熱を吸収または放出するセラミックス材料を含んで成る冷却デバイスを備えた電子機器。
  2.  セラミックス材料が、バナジウムVおよびM(ここに、Mは、W、Ta、MoおよびNbから選ばれる少なくとも一種である)を含む酸化物であって、VとMの合計を100モル部としたときのMの含有モル部が約0モル部以上約5モル部以下であることを特徴とする、請求項1に記載の電子機器。
  3.  セラミックス材料が、A(ここに、AはLiまたはNaである)およびバナジウムVを含む酸化物であって、Vを100モル部としたときのAの含有モル部が約50モル部以上約100モル部以下であることを特徴とする、請求項1に記載の電子機器。
  4.  セラミックス材料が、式:
       V1-x
    (式中、Mは、W、Ta、MoまたはNbであり、xは、0以上0.05以下である)
    または、式:
       AVO
    (式中、Aは、LiまたはNaであり、yは、0.5以上1.0以下である)
    で表される1種またはそれ以上の材料を含むことを特徴とする、請求項1~3のいずれかに記載の電子機器。
  5.  冷却デバイスが、電子機器内の発熱部材または発熱部材で生じた熱を伝える熱伝導部材の上に直接的または間接的に接触して配置されることを特徴とする、請求項1~4のいずれかに記載の電子機器。
  6.  冷却デバイスが、電子機器内の発熱部材または発熱部材で生じた熱を伝える熱伝導部材に少なくとも接着性の物質を介して接着されていることを特徴とする、請求項1~5のいずれかに記載の電子機器。
  7.  冷却デバイスが、電子機器内の発熱部材または発熱部材で生じた熱を伝える熱伝導部材の上に、機械的手段により固定されていることを特徴とする、請求項1~5のいずれかに記載の電子機器。
  8.  機械的手段が、ねじ、バネ、爪またはピンであることを特徴とする、請求項7に記載の電子機器。
  9.  冷却デバイスが、電子機器内の発熱部材および発熱部材で生じた熱を伝える熱伝導部材間、または電子機器内の発熱部材もしくは発熱部材で生じた熱を伝える熱伝導部材と、他の部材との間に挟持されて固定されていることを特徴とする、請求項1~5のいずれかに記載の電子機器。
  10.  冷却デバイスが、電子機器内の発熱部材で生じた熱を伝える熱伝導部材に内蔵されていることを特徴とする、請求項1~5のいずれかに記載の電子機器。
  11.  熱伝導部材が、筺体、電池、基板およびディスプレイからなる群より選択されることを特徴とする、請求項1~10のいずれかに記載の電子機器。
  12.  発熱部材が、集積回路、発光素子、電界効果トランジスタ、モーター、コイル、コンバーター、インバーターおよびコンデンサーからなる群より選択されることを特徴とする、請求項1~11のいずれかに記載の電子機器。
PCT/JP2014/075302 2014-01-07 2014-09-24 電子機器 WO2015104874A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014001052 2014-01-07
JP2014-001052 2014-01-07

Publications (1)

Publication Number Publication Date
WO2015104874A1 true WO2015104874A1 (ja) 2015-07-16

Family

ID=53523716

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/075302 WO2015104874A1 (ja) 2014-01-07 2014-09-24 電子機器

Country Status (1)

Country Link
WO (1) WO2015104874A1 (ja)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63207799A (ja) * 1987-02-20 1988-08-29 日本電気株式会社 人工衛星の熱制御装置
JP2010163510A (ja) * 2009-01-14 2010-07-29 Institute Of Physical & Chemical Research 蓄熱材
JP2013084710A (ja) * 2011-10-07 2013-05-09 Nikon Corp 蓄熱体、電子機器および電子機器の製造方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63207799A (ja) * 1987-02-20 1988-08-29 日本電気株式会社 人工衛星の熱制御装置
JP2010163510A (ja) * 2009-01-14 2010-07-29 Institute Of Physical & Chemical Research 蓄熱材
JP2013084710A (ja) * 2011-10-07 2013-05-09 Nikon Corp 蓄熱体、電子機器および電子機器の製造方法

Similar Documents

Publication Publication Date Title
US9322541B2 (en) Cooling structure
CN110048518B (zh) 电力接收装置和电力传输系统
US20100142154A1 (en) Thermally Dissipative Enclosure Having Shock Absorbing Properties
WO2016194700A1 (ja) 冷却デバイス
TWM469525U (zh) 手持式行動裝置之散熱結構
JP2017123212A (ja) 電池パックおよび電子機器
WO2012029240A1 (ja) 放熱筐体及びこれを用いたリチウム電池パック、並びに、半導電性放熱用テープ
WO2015033691A1 (ja) 冷却デバイス
JP2005150249A (ja) 熱伝導部材とそれを用いた放熱用構造体
JP2004152895A (ja) 冷却装置および冷却装置を有する電子機器
WO2015104874A1 (ja) 電子機器
WO2020195956A1 (ja) 断熱部材、及び電子機器
WO2015033690A1 (ja) 冷却デバイス
WO2016006338A1 (ja) 複合体および冷却デバイス
JP6414636B2 (ja) 冷却デバイス
US20140030575A1 (en) Thermal Reservoir Using Phase-Change Material For Portable Applications
WO2015033689A1 (ja) 冷却デバイス
WO2016042909A1 (ja) 冷却デバイス
WO2017006726A1 (ja) 冷却デバイス
WO2015033687A1 (ja) 冷却デバイス
JP2017065984A (ja) セラミック粒子
WO2016006337A1 (ja) 酸化バナジウムを含有する焼結体
WO2015033688A1 (ja) 冷却デバイス
JP6589975B2 (ja) 二酸化バナジウム
KR20210016157A (ko) 디스플레이 방열구조

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14878026

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

NENP Non-entry into the national phase

Ref country code: JP

122 Ep: pct application non-entry in european phase

Ref document number: 14878026

Country of ref document: EP

Kind code of ref document: A1