WO2015103961A1 - 一种红外摄像机及其红外灯亮度调整方法 - Google Patents

一种红外摄像机及其红外灯亮度调整方法 Download PDF

Info

Publication number
WO2015103961A1
WO2015103961A1 PCT/CN2015/070147 CN2015070147W WO2015103961A1 WO 2015103961 A1 WO2015103961 A1 WO 2015103961A1 CN 2015070147 W CN2015070147 W CN 2015070147W WO 2015103961 A1 WO2015103961 A1 WO 2015103961A1
Authority
WO
WIPO (PCT)
Prior art keywords
brightness
sub
adjusted
lamp
area
Prior art date
Application number
PCT/CN2015/070147
Other languages
English (en)
French (fr)
Inventor
王宇铭
Original Assignee
杭州海康威视数字技术股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 杭州海康威视数字技术股份有限公司 filed Critical 杭州海康威视数字技术股份有限公司
Priority to EP15734896.2A priority Critical patent/EP3094081B1/en
Priority to US15/110,601 priority patent/US10187582B2/en
Publication of WO2015103961A1 publication Critical patent/WO2015103961A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/70Circuitry for compensating brightness variation in the scene
    • H04N23/71Circuitry for evaluating the brightness variation
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T7/00Image analysis
    • G06T7/10Segmentation; Edge detection
    • G06T7/11Region-based segmentation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/20Cameras or camera modules comprising electronic image sensors; Control thereof for generating image signals from infrared radiation only
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/56Cameras or camera modules comprising electronic image sensors; Control thereof provided with illuminating means
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/70Circuitry for compensating brightness variation in the scene
    • H04N23/74Circuitry for compensating brightness variation in the scene by influencing the scene brightness using illuminating means
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/70Circuitry for compensating brightness variation in the scene
    • H04N23/76Circuitry for compensating brightness variation in the scene by influencing the image signals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N5/00Details of television systems
    • H04N5/30Transforming light or analogous information into electric information
    • H04N5/33Transforming infrared radiation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N7/00Television systems
    • H04N7/18Closed-circuit television [CCTV] systems, i.e. systems in which the video signal is not broadcast
    • H04N7/183Closed-circuit television [CCTV] systems, i.e. systems in which the video signal is not broadcast for receiving images from a single remote source

Definitions

  • the invention relates to the field of security monitoring, in particular to an infrared camera and a method for adjusting the brightness of the infrared lamp.
  • cameras with infrared function (such as ball machines) on the market adopt a combined infrared fill light strategy, that is, a strategy of using multiple sets of infrared light of different illumination angles to open at different times to achieve a low illumination environment. Realize video surveillance and clear picture.
  • an average brightness value of the monitoring screen can be obtained, and the obtained average brightness value is compared with a preset brightness reference value, and the brightness of the infrared lamp is adjusted according to the comparison result, thereby adjusting the brightness of the monitoring picture. purpose.
  • the above method adjusts the parameters according to the average brightness value of the entire monitoring picture, and can only achieve a rough adjustment of the entire monitoring picture, and cannot guarantee that the brightness of each sub-area in the monitoring picture is not abrupt, that is, for some sub-areas. It is said that over-exposure or over-darkness may occur, which reduces the picture quality of the monitor picture.
  • the present invention provides an infrared camera and an infrared lamp brightness adjustment method thereof, which can improve the picture quality of the monitoring picture.
  • An infrared camera brightness adjustment method for an infrared camera includes:
  • N is a positive integer greater than one
  • An infrared camera comprising:
  • the timing module is configured to notify the fine adjustment module to perform its own function every time the predetermined time is passed after the infrared light of the infrared camera is turned on;
  • the fine adjustment module is configured to determine whether there are at least one sub-area of the brightness abnormality in the N sub-areas of the same size that constitute the monitoring picture, where N is a positive integer greater than 1; if yes, according to the obtained at least a predetermined parameter of the sub-area with abnormal brightness and a predetermined parameter of the monitoring screen, determining an infrared lamp adjusting mode, and performing infrared lamp brightness adjustment according to the determined infrared lamp adjusting mode, so that the at least one sub-area with abnormal brightness is restored to normal.
  • the monitoring picture can be divided into multiple sub-areas, and the brightness of each sub-area is determined to be abnormal. If the brightness is abnormal, the infrared light adjustment mode can be determined according to the obtained predetermined parameters, and The brightness adjustment of the infrared lamp is performed accordingly, so that the sub-area with abnormal brightness is restored to normal, and the phenomenon that some sub-areas are over-exposed or too dark is avoided, thereby improving the picture quality of the monitoring picture.
  • FIG. 1 is a flow chart of implementing the coarse adjustment mode of the present invention.
  • FIG. 2 is a flow chart showing the implementation of the fine tuning mode of the present invention.
  • FIG. 3 is a schematic structural diagram of an embodiment of an infrared camera according to the present invention.
  • FIG. 4 is a schematic structural diagram of an embodiment of an infrared camera according to the present invention.
  • an infrared lamp brightness adjustment scheme of an infrared camera is proposed in the present invention, which can improve the picture quality of the monitoring picture.
  • the following processing can be performed: determining the composition monitoring screen Whether there are sub-regions with abnormal brightness in the N sub-regions of the same size, N is a positive integer greater than 1; if yes, it is determined according to predetermined parameters of the sub-regions of the acquired luminance anomalies and predetermined parameters of the monitoring screen Infrared lamp adjustment mode, and according to the determined infrared lamp adjustment mode, the infrared lamp brightness adjustment is performed, so that the sub-area with abnormal brightness returns to normal.
  • fine tuning in order to further improve the picture quality of the monitoring picture, coarse adjustment can be performed before fine adjustment, that is, before determining whether there is a sub-area with abnormal brightness, the following is performed. Processing: determining whether the current gain value of the monitoring screen is within a reasonable gain interval, and if so, directly determining whether there is a sub-area with abnormal brightness; if not, determining the infrared light adjustment according to the predetermined parameter of the acquired monitoring screen In the mode, the infrared light brightness adjustment is performed according to the determined infrared light adjustment mode, and the gain value of the monitoring screen is adjusted to a reasonable gain interval, and then it is determined whether there is a sub-area with abnormal brightness.
  • the coarse adjustment is an adjustment for the overall monitoring screen. It does not guarantee that the brightness of each sub-area is not abrupt, so it needs to be fine-tuned. After fine adjustment, the details of the monitoring picture can be kept sufficiently sharp. In practical applications, only the monitoring screen can be fine-tuned. In a In one embodiment, coarse adjustment and fine adjustment can be performed simultaneously.
  • FIG. 1 is a flow chart of implementing the coarse adjustment mode of the present invention. As shown in FIG. 1, the following steps 11 to 13 are included.
  • Step 11 Obtain the current gain value of the monitor screen.
  • Step 12 If the acquired gain value is outside the reasonable gain interval, the predetermined parameters of the monitoring picture are further acquired.
  • the reasonable gain interval refers to the gain interval corresponding to the screen from too dark to overexposed.
  • the current magnification Z of the predetermined parameter monitoring screen of the monitoring screen may be further obtained, and the viewing angle ⁇ may be calculated according to Z (in radians) ): Where ⁇ represents the horizontal maximum field of view of the infrared camera.
  • Step 13 Determine the infrared light adjustment mode according to the obtained predetermined parameters, and adjust the infrared light brightness according to the determined infrared light adjustment mode, and adjust the gain value of the monitoring screen to within a reasonable gain interval.
  • ⁇ and ⁇ 3, ⁇ 2, and ⁇ 1 can be respectively compared, and the infrared lamp adjustment mode is determined according to the comparison result.
  • the infrared lamp brightness adjustment is performed according to the determined infrared lamp adjustment mode, and the gain value of the monitoring screen is adjusted to a reasonable gain range.
  • Infrared lights of infrared cameras usually consist of near, middle and far lights, the difference between the three is the difference in illumination angle.
  • ⁇ 3 represents the illumination angle of the high lamp,
  • ⁇ 2 represents the illumination angle of the middle lamp, and
  • ⁇ 1 represents the illumination angle of the near lamp, then: ⁇ 1 > ⁇ 2> ⁇ 3.
  • the brightness of the headlight is preferentially adjusted, and then the brightness of the lamp is adjusted, and the gain value of the monitor screen is adjusted to a reasonable gain range;
  • ⁇ ⁇ ⁇ 1 the brightness of the high beam is preferentially adjusted, the brightness of the middle lamp is adjusted, and finally the brightness of the near lamp is adjusted, and the gain value of the monitor picture is adjusted to within a reasonable gain range.
  • the adjustment range at each adjustment may be determined according to the magnitude of the obtained gain value deviating from the reasonable gain interval and the current magnification of the monitor screen. In addition, whether the brightness is adjusted to be high or low may be determined according to the direction in which the obtained gain value deviates from the reasonable gain interval.
  • the brightness of the far-light can be adjusted again. And so on, until the gain value of the monitor picture is adjusted to within the reasonable gain range.
  • preferentially adjusting the brightness of the far-light lamp and adjusting the brightness of the light in the second step means that if the brightness of the far-light lamp is adjusted one or more times, the gain value of the monitoring screen can be adjusted to a reasonable value. Within the gain range, there is no need to adjust the brightness of the center lamp. If the brightness of the monitor picture cannot be adjusted to within the reasonable gain range after adjusting the brightness of the headlight to the limit allowed for adjustment, then the brightness of the center lamp needs to be further adjusted.
  • the brightness of the far-light is adjusted, and if the brightness of the far-light is adjusted to its extreme value, the gain value of the monitoring picture is still not adjusted to the gain interval. Adjusting the brightness of the middle lamp. If the brightness of the middle lamp is adjusted to its extreme value, the gain value of the monitoring screen is still not adjusted within the gain interval, and the brightness of the near lamp is adjusted to monitor the screen. The gain value is adjusted to within the reasonable gain range.
  • pulse width modulation Pulse Width
  • Modulation to adjust the brightness of the high, medium and low lights, you can change the brightness of the high, long and medium lights by changing the duty cycle of the PWM, the accuracy can reach 0.1%.
  • FIG. 2 is a flow chart showing the implementation of the fine tuning mode of the present invention. As shown in FIG. 2, the following steps 21 to 23 are included.
  • Step 21 The monitoring screen is divided into N sub-regions of the same size in advance, and N is a positive integer greater than 1.
  • N may be determined according to actual needs, and may be 9 or 16 in one embodiment.
  • Step 22 When fine adjustment is required, if it is determined that there are sub-regions with abnormal brightness in the N sub-regions, step 23 is performed.
  • the manner of determining whether there are sub-regions with abnormal brightness in the N sub-regions may be: for each sub-region, respectively acquiring the theoretical luminance value and the actual luminance value of the sub-region, and calculating the theoretical luminance value and the actual luminance value.
  • the absolute value of the difference if the absolute value is greater than the predetermined threshold, determining that the sub-area is a sub-area of abnormal brightness.
  • the method for obtaining the theoretical brightness value of the sub-area may be: determining an angle between a center position of the sub-area and an optical axis, and determining the angle according to the included angle and a predetermined light intensity model.
  • the theoretical luminance value of the sub-region; the actual luminance value is: an average luminance value of each pixel point in the sub-region.
  • the angle between the center position of the sub-area and the optical axis is expressed in radians as: Where X represents the horizontal coordinate maximum of the monitoring picture; x represents the horizontal coordinate value of the center position of the sub-area; ⁇ represents the angle of view (in radians), ⁇ represents the horizontal maximum angle of view of the infrared camera, and Z represents the current magnification of the monitor screen.
  • the upper left corner of the monitor screen is usually used as the coordinate origin, and the value of X is equal to the length of the monitor screen. Assuming that the center position coordinates of a sub-area are (x, y), then there are: which is
  • the light intensity model generally refers to a light intensity model of an infrared light, which can be pre-established. How to determine the theoretical brightness value of the sub-area according to the angle and the light intensity model can be determined according to the actual situation. For example, an estimation formula can be determined by experiments or the like in advance.
  • Y is used to represent the theoretical luminance value of the sub-region
  • cY is used to represent the actual luminance value of the sub-region
  • represents a predetermined threshold, and the specific value can be determined according to actual needs.
  • Y-cY> ⁇ the sub-region is too dark
  • Y-cY ⁇ - ⁇ the sub-region is overexposed.
  • Step 23 Determine an infrared light adjustment mode according to the predetermined parameter of the obtained sub-area of the brightness abnormality and a predetermined parameter of the monitoring screen, and perform the infrared light brightness adjustment according to the determined infrared light adjustment mode to make the brightness abnormal sub-area Return to normal.
  • A obtaining a predetermined parameter ⁇ of the sub-area with abnormal brightness, and acquiring a predetermined parameter Z of the monitoring picture, and calculating the viewing angle ⁇ according to Z;
  • represents the angle between the center position of the luminance sub-region and the optical axis of the camera.
  • Z represents the magnification of the current monitor screen.
  • step B determining whether the sub-area of abnormal brightness meets the following conditions: the number is 1, or the number of gamma is greater than 1 but the sub-areas of each brightness abnormality is the same, if yes, step C is performed, otherwise, step D is performed;
  • the ⁇ and ⁇ ′ are compared with ⁇ 3, ⁇ 2, and ⁇ 1, respectively, and the infrared lamp adjustment mode is determined according to the comparison result, and the infrared lamp brightness adjustment is performed according to the determined infrared lamp adjustment mode,
  • the sub-region of the luminance abnormality corresponding to ⁇ ' returns to normal, and then the processing ends;
  • ⁇ 3 represents an illumination angle of the high lamp
  • ⁇ 2 represents an illumination angle of the middle lamp
  • ⁇ 1 represents an illumination angle of the near lamp
  • the infrared lamp is composed of a high beam, a middle lamp and a close lamp
  • step E from each ⁇ selected the smallest value of ⁇ , the selected ⁇ as ⁇ ', then perform step E;
  • step E Determining whether there is still a sub-region with abnormal brightness, and if not, ending the process, and if so, selecting a ⁇ having the smallest value larger than ⁇ ' from each of the unselected ⁇ , and selecting the selected ⁇ as ⁇ ', then repeat step E.
  • ⁇ and ⁇ ' are compared with ⁇ 3, ⁇ 2, and ⁇ 1, respectively, and the infrared lamp adjustment mode is determined according to the comparison result, and the infrared lamp brightness adjustment is performed according to the determined infrared lamp adjustment mode, and the brightness corresponding to ⁇ ' is abnormal.
  • the way the sub-area returns to normal can be:
  • the brightness of the middle lamp is preferentially adjusted, and then the brightness of the headlight is adjusted, and the sub-area with abnormal brightness corresponding to ⁇ ' is restored to normal;
  • the brightness of the near lamp is preferentially adjusted, the brightness of the lamp is adjusted next, and the brightness of the far lamp is finally adjusted, and the sub-region with abnormal brightness corresponding to ⁇ ' is restored to normal;
  • the brightness of the middle lamp is preferentially adjusted, and then the remote light is adjusted.
  • the brightness of the sub-area of the brightness abnormality corresponding to ⁇ ' is restored to normal;
  • the brightness of the far-light is adjusted, and the sub-region with abnormal brightness corresponding to ⁇ ' is restored to normal;
  • the brightness of the middle lamp is adjusted, and if the brightness of the middle lamp is adjusted to its extreme value, the gain value of the monitoring picture is still not adjusted to the gain interval. Adjusting the brightness of the far-light, and returning the sub-area with abnormal brightness corresponding to ⁇ ' to normal;
  • the brightness of the near lamp is adjusted, and if the brightness of the near lamp is adjusted to its extreme value, the gain value of the monitor picture is still not adjusted to the gain interval. Internally, the brightness of the middle lamp is adjusted. If the brightness of the monitor light is adjusted to its extreme value, and the gain value of the monitor picture is still not adjusted within the gain interval, the brightness of the far light is adjusted, and ⁇ is adjusted. 'The corresponding sub-area with abnormal brightness returns to normal;
  • the brightness of the middle lamp is adjusted first, and if the brightness of the middle lamp is adjusted to its extreme value, the gain value of the monitor picture is still not adjusted to the gain interval. Adjusting the brightness of the far-light, and returning the sub-area with abnormal brightness corresponding to ⁇ ' to normal;
  • the brightness of the infrared lamp can be directly adjusted according to the ⁇ .
  • the sub-area with abnormal brightness returns to normal.
  • the ⁇ with the smallest value is preferred, that is, the sub-region closest to the center position of the monitoring screen in the sub-regions of each brightness abnormality is first adjusted, and the sub-region closest to the center position of the monitoring screen is restored to After normal, it may be affected by the adjustments made.
  • Other sub-areas with abnormal brightness are also restored to normal, and may be partially restored to normal. Of course, other sub-areas with abnormal brightness may not return to normal. For the latter two cases. Then, the above processing may be repeated, that is, the sub-regions closest to the center position of the monitoring screen among the remaining sub-regions of the brightness abnormalities are restored to normal, and so on.
  • the amplitude of each adjustment can be determined according to the magnitude of
  • the PWM mode can be used to adjust the brightness of the high, medium and low lights.
  • FIG. 3 is a schematic structural diagram of an embodiment of an infrared camera according to the present invention. As shown in Figure 3, it includes:
  • the timing module is configured to notify the fine adjustment module to perform its own function every time the predetermined time is passed after the infrared light of the infrared camera is turned on;
  • the fine adjustment module is configured to determine whether there are sub-regions with abnormal brightness in the N sub-regions of the same size that constitute the monitoring picture, where N is a positive integer greater than 1; if yes, the sub-region is obtained according to the obtained luminance abnormality
  • the predetermined parameters and the predetermined parameters of the monitoring screen are determined Infrared lamp adjustment mode, and according to the determined infrared lamp adjustment mode, the infrared lamp brightness adjustment is performed, so that the sub-area with abnormal brightness returns to normal.
  • the apparatus may further include: a coarse adjustment module, configured to determine whether a current gain value of the monitoring screen is within a reasonable gain interval before the fine adjustment module performs its own function, and if yes, notify the fine adjustment module Performing its own function; if not, determining the infrared light adjustment mode according to the predetermined parameters of the acquired monitoring screen, and adjusting the infrared light brightness according to the determined infrared light adjustment mode, and adjusting the gain value of the monitoring screen to a reasonable gain Within the interval, the fine-tuning module is then notified to perform its own functions.
  • a coarse adjustment module configured to determine whether a current gain value of the monitoring screen is within a reasonable gain interval before the fine adjustment module performs its own function, and if yes, notify the fine adjustment module Performing its own function; if not, determining the infrared light adjustment mode according to the predetermined parameters of the acquired monitoring screen, and adjusting the infrared light brightness according to the determined infrared light adjustment mode, and adjusting the gain value of the monitoring
  • the coarse adjustment module may specifically include (to simplify the drawing, not shown):
  • a first processing unit configured to determine whether a current gain value of the monitoring screen is within a reasonable gain interval, and if yes, notify the fine-tuning module to perform its own function; if not, notify the second processing unit to perform its own function;
  • the second processing unit is configured to acquire a current magnification Z of the monitoring screen; calculate an angle of view ⁇ according to Z: Where ⁇ represents the horizontal maximum field of view of the infrared camera; ⁇ is compared with ⁇ 3, ⁇ 2, and ⁇ 1, respectively, and the infrared lamp adjustment mode is determined according to the comparison result, and the infrared lamp brightness adjustment is performed according to the determined infrared lamp adjustment mode. Adjusting the gain value of the monitoring picture to within a reasonable gain interval; wherein ⁇ 3 represents the illumination angle of the high lamp, ⁇ 2 represents the illumination angle of the middle lamp, ⁇ 1 represents the illumination angle of the near lamp, and the infrared lamp is composed of the high beam and the middle lamp. And near lights.
  • the second processing unit adjusts the brightness of the headlights, and adjusts the gain value of the monitoring picture to within a reasonable gain interval;
  • the second processing unit preferentially adjusts the brightness of the headlight, and then adjusts the brightness of the lamp, and adjusts the gain value of the monitoring screen to within a reasonable gain interval;
  • the second processing unit preferentially adjusts the brightness of the headlights, adjusts the brightness of the light in the second adjustment, and finally adjusts the brightness of the near lamp, and adjusts the gain value of the monitoring screen to within a reasonable gain interval.
  • the fine adjustment module may specifically include (to simplify the drawing, not shown):
  • a third processing unit configured to acquire a theoretical brightness value and an actual brightness value of the sub-area separately for each sub-area, and calculate an absolute value of a difference between the theoretical brightness value and the actual brightness value, if the absolute value is greater than a predetermined threshold, Determining that the sub-region is a sub-region with abnormal brightness; if there is a sub-region with abnormal brightness, notifying the fourth processing unit to perform its own function;
  • the fourth processing unit is configured to determine an infrared light adjustment mode according to the predetermined parameter of the acquired sub-area of the brightness abnormality and a predetermined parameter of the monitoring screen, and perform infrared light brightness adjustment according to the determined infrared light adjustment mode, Returns the sub-area with abnormal brightness to normal.
  • the third processing unit respectively determines an angle between a center position of the sub-area and an optical axis for each sub-area, and determines a theoretical brightness of the sub-area according to the included angle and a predetermined light intensity model. value;
  • the actual brightness value of the sub-area is the average of the brightness of each pixel in the sub-area.
  • X represents the maximum horizontal coordinate of the monitoring screen
  • x represents the horizontal coordinate value of the center position of the sub-area
  • represents the angle of view
  • represents the horizontal maximum angle of view of the infrared camera
  • Z represents the current magnification of the monitor screen.
  • the fourth processing unit acquires a predetermined parameter ⁇ of the sub-region with abnormal brightness, and acquires a predetermined parameter Z of the monitoring screen, calculates a viewing angle ⁇ according to Z, and determines whether the sub-region with abnormal brightness satisfies the following condition: the number is 1 Or, the number of ⁇ s of the sub-areas whose number is greater than 1 but each brightness is abnormal;
  • the only one ⁇ is taken as ⁇ '; ⁇ and ⁇ ' are compared with ⁇ 3, ⁇ 2, and ⁇ 1, respectively, and the infrared lamp adjustment mode is determined according to the comparison result, and the infrared lamp is adjusted according to the determined infrared lamp adjustment mode.
  • the brightness adjustment restores the sub-region of the brightness abnormality corresponding to ⁇ ' to normal, and then ends the process; wherein ⁇ 3 represents the illumination angle of the high lamp, ⁇ 2 represents the illumination angle of the middle lamp, and ⁇ 1 represents the illumination angle of the near lamp, the infrared
  • the lamp is composed of a high beam, a middle lamp and a close lamp;
  • the predetermined processing including: comparing ⁇ and ⁇ ' with ⁇ 3, ⁇ 2, and ⁇ 1, respectively, according to comparison
  • the infrared lamp adjustment mode is determined, and the infrared lamp brightness adjustment is performed according to the determined infrared lamp adjustment mode, and the sub-area of the brightness abnormality corresponding to ⁇ ' is restored to normal; determining whether there is still a sub-area with abnormal brightness, if not, Then, the processing is terminated. If so, one ⁇ having the smallest value larger than ⁇ ' is selected from the ⁇ which is not selected, and the selected ⁇ is taken as ⁇ ', and then the predetermined processing is repeatedly executed.
  • the fourth processing unit adjusts the brightness of the headlights, and restores the sub-region of the brightness abnormality corresponding to ⁇ ' to normal;
  • the fourth processing unit preferentially adjusts the brightness of the middle lamp, and then adjusts the brightness of the high beam, and restores the sub-region with abnormal brightness corresponding to ⁇ ′ to normal;
  • the fourth processing unit adjusts the brightness of the headlights, and restores the sub-region of the brightness abnormality corresponding to ⁇ ′ to normal;
  • the fourth processing unit preferentially adjusts the brightness of the near lamp, the brightness of the lamp in the second adjustment, and finally adjusts the brightness of the far-light, and the sub-light of the ⁇ ′ is abnormal.
  • the fourth processing unit preferentially adjusts the brightness of the middle lamp, secondly adjusts the brightness of the headlight, and restores the sub-area of the brightness abnormality corresponding to ⁇ ' to normal;
  • the fourth processing unit adjusts the brightness of the headlights, and restores the sub-area of the brightness abnormality corresponding to ⁇ ' to normal.
  • the device may further include: a control module, configured to lock the module other than itself when it is determined that the monitoring screen flickers due to the brightness adjustment being too frequent; when the unlocking condition is met, the locked module is unlocked.
  • a control module configured to lock the module other than itself when it is determined that the monitoring screen flickers due to the brightness adjustment being too frequent; when the unlocking condition is met, the locked module is unlocked.
  • the control module is configured to unlock the locked module when it is determined that the predetermined unlocking time is reached.
  • the monitor screen will remain stable or slowly changing. However, if there is interference from external or special factors, the brightness of the monitor screen may be adjusted too frequently, causing the screen to flicker. At this time, the adjusted effect may be It is better not to adjust the effect. Therefore, the adjustment function of the present invention can be locked, and the infrared lamp can be kept in a state before the adjustment function of the present invention is executed. Accordingly, when the monitoring screen is in a stable state, it can be performed. Unlock.
  • FIG. 4 is a schematic structural diagram of an embodiment of an infrared camera according to the present invention.
  • the apparatus includes at least a memory and a processor in communication with the memory, wherein the memory includes timing instructions, coarse adjustment instructions, fine adjustment instructions, and control instructions executable by the processor.
  • the timing command is used to notify the fine-tuning instruction to perform its own function every time the predetermined time is elapsed after the infrared light of the infrared camera is turned on;
  • the fine-tuning instruction is configured to determine whether there are sub-regions with abnormal brightness in the N sub-regions of the same size that constitute the monitoring picture, where N is a positive integer greater than 1; if yes, the sub-region is obtained according to the obtained luminance abnormality
  • the predetermined parameters of the predetermined parameters and the monitoring screen determine the infrared light adjustment mode, and adjust the infrared light brightness according to the determined infrared light adjustment mode to restore the abnormal sub-area of the brightness to normal.
  • the apparatus may further include: a coarse adjustment instruction, configured to determine whether a current gain value of the monitoring screen is within a reasonable gain interval before the fine adjustment instruction performs its own function, and if yes, notify the fine adjustment instruction Performing its own function; if not, determining the infrared light adjustment mode according to the predetermined parameters of the acquired monitoring screen, and adjusting the infrared light brightness according to the determined infrared light adjustment mode, and adjusting the gain value of the monitoring screen to a reasonable gain Within the interval, the fine-tuning instruction is then notified to perform its own function.
  • a coarse adjustment instruction configured to determine whether a current gain value of the monitoring screen is within a reasonable gain interval before the fine adjustment instruction performs its own function, and if yes, notify the fine adjustment instruction Performing its own function; if not, determining the infrared light adjustment mode according to the predetermined parameters of the acquired monitoring screen, and adjusting the infrared light brightness according to the determined infrared light adjustment mode, and adjusting the gain value of the monitoring
  • the brightness adjustment can be separately performed for each sub-area, thereby avoiding the phenomenon that some sub-areas are over-exposed or too dark, thereby improving the picture quality of the monitoring picture;
  • the combination with the fine adjustment can not only make the overall picture of the monitoring picture clear, but also preserve the details of the picture, that is, the details of the monitoring picture can also maintain sufficient definition;
  • the infrared light in the solution of the invention can be
  • the brightness of the lamp is adjusted step by step, which is very flexible and convenient in implementation, and has a strong applicability.

Landscapes

  • Engineering & Computer Science (AREA)
  • Multimedia (AREA)
  • Signal Processing (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Studio Devices (AREA)
  • Closed-Circuit Television Systems (AREA)
  • Transforming Light Signals Into Electric Signals (AREA)

Abstract

本发明公开了一种红外摄像机及其红外灯亮度调整方法:当红外摄像机的红外灯开启后,每经过预定时长,则进行以下处理:确定组成监控画面的N个大小相同的子区域中是否存在至少一个亮度异常的子区域,N为大于1的正整数;如果是,则根据获取到的所述至少一个亮度异常的子区域的预定参数以及监控画面的预定参数,确定出红外灯调整方式,并按照确定出的红外灯调整方式进行红外灯亮度调整,使所述至少一个亮度异常的子区域恢复为正常。应用本发明所述方案,能够提高监控画面的画面质量。

Description

一种红外摄像机及其红外灯亮度调整方法
本申请要求于2014年1月10日提交中国专利局、申请号为201410012898.4、发明名称为“一种红外摄像机及其红外灯亮度调整方法”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本发明涉及安全监控领域,特别涉及一种红外摄像机及其红外灯亮度调整方法。
发明背景
目前市场上具有红外功能的摄像机(如球机),均采用组合红外补光策略,即采用多组不同照射角度的红外灯在不同倍率下分时开启的策略,以达到在低照度环境下,实现视频监控且画面清晰的目的。
另外,可获取监控画面的平均亮度值,并将获取到的平均亮度值与预设的亮度参考值进行比较,根据比较结果对红外灯的亮度进行调整,从而达到对监控画面的亮度进行调整的目的。
但是,上述方式是以整个监控画面的平均亮度值为调整参数的,只能实现对于整个监控画面的大致调整,不能保证监控画面中的各个子区域的亮度无突变,即对于某些子区域来说,可能会出现过曝或过暗的现象,从而降低了监控画面的画面质量。
发明内容
有鉴于此,本发明提供了一种红外摄像机及其红外灯亮度调整方法,能够提高监控画面的画面质量。
为了达到上述目的,本发明的技术方案是这样实现的:
一种红外摄像机的红外灯亮度调整方法,包括:
当红外摄像机的红外灯开启后,每经过预定时长,则进行以下处理:
确定组成监控画面的N个大小相同的子区域中是否存在至少一个亮度异常的子区域,N为大于1的正整数;
如果是,则根据获取到的所述至少一个亮度异常的子区域的预定参数以及监控画面的预定参数,确定出红外灯调整方式,并按照确定出的红外灯调整方式进行红外灯亮度调整,使所述至少一个亮度异常的子区域恢复为正常。
一种红外摄像机,包括:
计时模块,用于当红外摄像机的红外灯开启后,每经过预定时长,则通知细调模块执行自身功能;
所述细调模块,用于确定组成监控画面的N个大小相同的子区域中是否存在至少一个亮度异常的子区域,N为大于1的正整数;如果是,则根据获取到的所述至少一个亮度异常的子区域的预定参数以及监控画面的预定参数,确定出红外灯调整方式,并按照确定出的红外灯调整方式进行红外灯亮度调整,使所述至少一个亮度异常的子区域恢复为正常。
可见,采用本发明所述方案,可将监控画面划分为多个子区域,并分别确定每个子区域的亮度是否异常,如果亮度异常,则可按照获取到的预定参数确定出红外灯调整方式,并相应地进行红外灯亮度调整,以便使亮度异常的子区域恢复为正常,避免了出现某些子区域过曝或过暗的现象,进而提高了监控画面的画面质量。
附图简要说明
图1为本发明粗调方式的实现流程图。
图2为本发明细调方式的实现流程图。
图3为本发明红外摄像机实施例的组成结构示意图。
图4为本发明红外摄像机实施例的组成结构示意图。
实施本发明的方式
针对现有技术中存在的问题,本发明中提出一种红外摄像机的红外灯亮度调整方案,能够提高监控画面的画面质量。
具体来说,当红外摄像机的红外灯开启后(通常来说,当处于低照度环境下时,红外摄像机的红外灯才会开启),每经过预定时长,则可进行以下处理:确定组成监控画面的N个大小相同的子区域中是否存在亮度异常的子区域,N为大于1的正整数;如果是,则根据获取到的亮度异常的子区域的预定参数以及监控画面的预定参数,确定出红外灯调整方式,并按照确定出的红外灯调整方式进行红外灯亮度调整,使亮度异常的子区域恢复为正常。
以上过程可称为细调,在实际应用中,为了进一步提高监控画面的画面质量,还可在进行细调之前,先进行粗调,即在确定是否存在亮度异常的子区域之前,先进行以下处理:确定监控画面当前的增益值是否位于合理增益区间之内,如果是,则直接确定是否存在亮度异常的子区域;如果否,则根据获取到的监控画面的预定参数,确定出红外灯调整方式,并按照确定出的红外灯调整方式进行红外灯亮度调整,将监控画面的增益值调整到合理增益区间之内,之后确定是否存在亮度异常的子区域。
粗调是针对监控画面的整体进行的调整,不能保证各个子区域的亮度无突变,因此还需要进行细调,经过细调之后,可使得监控画面的细节保持足够的清晰度。在实际应用中,可仅对监控画面进行细调。在一 个实施方式中,可以同时进行粗调和细调。
为了使本发明的技术方案更加清楚、明白,以下参照附图并举实施例,对本发明所述方案作进一步的详细说明。
图1为本发明粗调方式的实现流程图。如图1所示,包括以下步骤11~13。
步骤11:获取监控画面当前的增益值。
步骤12:如果获取到的增益值位于合理增益区间之外,则进一步获取监控画面的预定参数。
合理增益区间,即指画面从过暗到过曝所对应的增益区间。
如果获取到的增益值偏离了合理增益区间,即位于合理增益区间之外,则可进一步获取监控画面的预定参数监控画面当前的倍率Z,并可根据Z计算出视场角α(以弧度表示):
Figure PCTCN2015070147-appb-000001
其中,θ表示红外摄像机的水平最大视场角。
步骤13:根据获取到的预定参数,确定出红外灯调整方式,并按照确定出的红外灯调整方式进行红外灯亮度调整,将监控画面的增益值调整到合理增益区间之内。
本步骤中,可分别将α与β3、β2、β1进行比较,根据比较结果确定出红外灯调整方式。并按照确定出的红外灯调整方式进行红外灯亮度调整,将监控画面的增益值调整到合理增益区间之内。
红外摄像机的红外灯通常由近灯、中灯和远灯组成,三者的区别在于照射角度的不同。通常,近灯的照射角度>中灯的照射角度>远灯的照射角度;上述β3表示远灯的照射角度,β2表示中灯的照射角度,β1表示近灯的照射角度,那么则有:β1>β2>β3。
具体来说:
如果α≤β3,则调整远灯的亮度,将监控画面的增益值调整到合理增益区间之内;
如果α≤β2,则优先调整远灯的亮度、其次调整中灯的亮度,将监控画面的增益值调整到合理增益区间之内;
如果α≤β1,则优先调整远灯的亮度、其次调整中灯的亮度、最后调整近灯的亮度,将监控画面的增益值调整到合理增益区间之内。
每次调整时的调整幅度可根据获取到的增益值偏离合理增益区间的大小以及监控画面当前的倍率等而定。另外,是将亮度向高调整还是向低调整可根据获取到的增益值偏离合理增益区间的方向等而定。
以α≤β3为例,如果对远灯的亮度进行一次调整之后,监控画面的增益值仍位于合理增益区间之外,那么可再次对远灯的亮度进行调整。依次类推,直到将监控画面的增益值调整到合理增益区间之内。
另外,以α≤β2为例,优先调整远灯的亮度、其次调整中灯的亮度是指:如果对远灯的亮度进行一次或多次调整之后,即可将监控画面的增益值调整到合理增益区间之内,那么则无需再对中灯的亮度进行调整。如果将远灯的亮度调至允许调整到的极值之后,仍无法将监控画面的增益值调整到合理增益区间之内,那么则需要进一步对中灯的亮度进行调整。
另外,以α≤β1为例,如果α≤β1,则调整远灯的亮度,若所述远灯的亮度调整到其极值之后,所述监控画面的增益值仍未调整到所述增益区间之内,调整中灯的亮度,若所述中灯的亮度调整到其极值之后,所述监控画面的增益值仍未调整到所述增益区间之内,调整近灯的亮度,将监控画面的增益值调整到合理增益区间之内。
在一个实施方式中,可采用脉冲宽度调制(PWM,Pulse Width  Modulation)方式来对远灯、中灯和近灯的亮度进行调整,即可通过改变PWM的占空比来改变远灯、中灯和近灯的亮度,其精度可达到0.1%。
图2为本发明细调方式的实现流程图。如图2所示,包括以下步骤21~23。
步骤21:预先将监控画面划分为N个大小相同的子区域,N为大于1的正整数。
N的具体取值可根据实际需要而定,在一个实施方式中,可为9或16。
步骤22:当需要进行细调时,如果确定N个子区域中存在亮度异常的子区域,则执行步骤23。
本步骤中,确定N个子区域中是否存在亮度异常的子区域的方式可为:针对每个子区域,分别获取该子区域的理论亮度值和实际亮度值,并计算理论亮度值和实际亮度值的差值的绝对值,如果该绝对值大于预定阈值,则确定该子区域为亮度异常的子区域。
其中,针对每个子区域,获取该子区域的理论亮度值的方式可为:确定该子区域的中心位置与光轴的夹角,根据所述夹角以及预先确定的光强模型,确定出该子区域的理论亮度值;所述实际亮度值为:该子区域中的各像素点的亮度平均值。
该子区域的中心位置与光轴的夹角以弧度进行表示为:
Figure PCTCN2015070147-appb-000002
其中,X表示监控画面的水平坐标最大值;x表示该子区域的中心位置的水平坐标值;α表示视场角(以弧度表示),
Figure PCTCN2015070147-appb-000003
θ表示红外摄像机的水平最大视场角,Z表示监控画面当前的倍率。
在实际应用中,通常将监控画面的左上角作为坐标原点,那么X的 取值即等于监控画面的长度。假设某子区域的中心位置坐标为(x,y),那么则有:
Figure PCTCN2015070147-appb-000004
Figure PCTCN2015070147-appb-000005
所述光强模型通常是指红外灯的光强模型,可预先建立。如何根据夹角以及光强模型确定出子区域的理论亮度值可根据实际情况而定,比如,可预先通过试验等确定出一个推算公式。
基于上述介绍可知,针对每个子区域,如果用Y来表示该子区域的理论亮度值,用cY来表示该子区域的实际亮度值,那么当该子区域为亮度异常的子区域时,则有:|Y-cY|>ε,ε表示预定阈值,具体取值可根据实际需要而定。另外,如果Y-cY>ε,则说明该子区域为过暗状态,如果Y-cY<-ε,则说明该子区域为过曝状态。
步骤23:根据获取到的亮度异常的子区域的预定参数以及监控画面的预定参数,确定出红外灯调整方式,并按照确定出的红外灯调整方式进行红外灯亮度调整,使亮度异常的子区域恢复为正常。
本步骤的具体实现可为:
A、获取亮度异常的子区域的预定参数γ,并获取监控画面的预定参数Z,根据Z计算出视场角α;
其中,:γ表示亮度子区域的中心位置与摄像机光轴的夹角。Z表示当前监控画面的倍率。
B、确定亮度异常的子区域是否满足以下条件:个数为1,或者,个数大于1但各亮度异常的子区域的γ相同,如果是,则执行步骤C,否则,执行步骤D;
C、将唯一的一个γ作为γ′;
分别将α和γ′与β3、β2、β1进行比较,根据比较结果确定出红外灯调整方式,并按照确定出的红外灯调整方式进行红外灯亮度调整,将 γ′对应的亮度异常的子区域恢复为正常,之后结束处理;
其中,β3表示远灯的照射角度,β2表示中灯的照射角度,β1表示近灯的照射角度,所述红外灯由远灯、中灯和近灯组成;
D、从各γ中选出取值最小的一个γ,将选出的γ作为γ′,之后执行步骤E;
E、分别将α和γ′与β3、β2、β1进行比较,根据比较结果确定出红外灯调整方式,并按照确定出的红外灯调整方式进行红外灯亮度调整,将γ′对应的亮度异常的子区域恢复为正常;
确定是否还存在亮度异常的子区域,如果否,则结束处理,如果是,则从未被选出的各γ中选出大于γ′的取值最小的一个γ,并将选出的γ作为γ′,之后重复执行步骤E。
其中,分别将α和γ′与β3、β2、β1进行比较,根据比较结果确定出红外灯调整方式,并按照确定出的红外灯调整方式进行红外灯亮度调整,将γ′对应的亮度异常的子区域恢复为正常的方式可为:
如果α≤β3,且γ′≤β3,则调整远灯的亮度,将γ′对应的亮度异常的子区域恢复为正常;
如果α≤β2,且β3<γ′≤β2,则优先调整中灯的亮度、其次调整远灯的亮度,将γ′对应的亮度异常的子区域恢复为正常;
如果α≤β2,且γ′≤β3,则调整远灯的亮度,将γ′对应的亮度异常的子区域恢复为正常;
如果α≤β1,且β2<γ′≤β1,则优先调整近灯的亮度、其次调整中灯的亮度、最后调整远灯的亮度,将γ′对应的亮度异常的子区域恢复为正常;
如果α≤β1,且β3<γ′≤β2,则优先调整中灯的亮度、其次调整远灯 的亮度,将γ′对应的亮度异常的子区域恢复为正常;
如果α≤β1,且γ′≤β3,则调整远灯的亮度,将γ′对应的亮度异常的子区域恢复为正常。
在一个实施方式中,如果α≤β3,且γ′≤β3,则调整远灯的亮度,将γ′对应的亮度异常的子区域恢复为正常;
如果α≤β2,且β3<γ′≤β2,则调整中灯的亮度,若所述中灯的亮度调整到其极值之后,所述监控画面的增益值仍未调整到所述增益区间之内,调整远灯的亮度,将γ′对应的亮度异常的子区域恢复为正常;
如果α≤β2,且γ′≤β3,则调整远灯的亮度,将γ′对应的亮度异常的子区域恢复为正常;
如果α≤β1,且β2<γ′≤β1,则调整近灯的亮度,若所述近灯的亮度调整到其极值之后,所述监控画面的增益值仍未调整到所述增益区间之内,则调整中灯的亮度,若所述中灯的亮度调整到其极值之后,所述监控画面的增益值仍未调整到所述增益区间之内,则调整远灯的亮度,将γ′对应的亮度异常的子区域恢复为正常;
如果α≤β1,且β3<γ′≤β2,则先调整中灯的亮度、若所述中灯的亮度调整到其极值之后,所述监控画面的增益值仍未调整到所述增益区间之内,调整远灯的亮度,将γ′对应的亮度异常的子区域恢复为正常;
如果α≤β1,且γ′≤β3,则调整远灯的亮度,将γ′对应的亮度异常的子区域恢复为正常。
基于上述介绍可知,如果亮度异常的子区域的个数为1个或者多个,但这多个亮度异常的子区域的γ相同,则可直接根据该γ,通过进行红外灯亮度调整,将各亮度异常的子区域恢复为正常。
如果亮度异常的子区域的个数为多个,且这多个亮度异常的子区域 的γ不完全相同,那么,首选取值最小的γ,即首先对各亮度异常的子区域中最靠近监控画面中心位置的子区域进行调整,待将最靠近监控画面中心位置的子区域恢复为正常后,有可能受到所作调整的影响,其它亮度异常的子区域也都恢复了正常,还可能部分恢复了正常,当然,也可能其它亮度异常的子区域均未恢复正常,对于后两种情况,则可重复上述处理,即将剩下的各亮度异常的子区域中最靠近监控画面中心位置的子区域恢复为正常,依次类推。
在对远灯、中灯和近灯的亮度进行调整时,每次调整的幅度可根据|Y-cY|偏离ε的大小等而定,另外,是将亮度向大调整还是向小调整可根据子区域为过曝状态还是过暗状态等而定。
另外,以α≤β3、且γ′≤β3为例,如果对远灯的亮度进行一次调整之后,γ′对应的亮度异常的子区域的亮度仍未恢复正常,所述正常即指|Y-cY|≤ε,那么则可再次对远灯的亮度进行调整,依次类推,直到γ′对应的亮度异常的子区域恢复正常为止。
上述优先调整的含义等请参照图1所示实施例中的相关说明,此处不再赘述。
较佳地,可采用PWM方式来对远灯、中灯和近灯的亮度进行调整。
基于上述介绍,图3为本发明红外摄像机实施例的组成结构示意图。如图3所示,包括:
计时模块,用于当红外摄像机的红外灯开启后,每经过预定时长,则通知细调模块执行自身功能;
所述细调模块,用于确定组成监控画面的N个大小相同的子区域中是否存在亮度异常的子区域,N为大于1的正整数;如果是,则根据获取到的亮度异常的子区域的预定参数以及监控画面的预定参数,确定出 红外灯调整方式,并按照确定出的红外灯调整方式进行红外灯亮度调整,使亮度异常的子区域恢复为正常。
另外,
该装置中还可进一步包括:粗调模块,用于在所述细调模块执行自身功能之前,确定监控画面当前的增益值是否位于合理增益区间之内,如果是,则通知所述细调模块执行自身功能;如果否,则根据获取到的监控画面的预定参数,确定出红外灯调整方式,并按照确定出的红外灯调整方式进行红外灯亮度调整,将监控画面的增益值调整到合理增益区间之内,之后通知所述细调模块执行自身功能。
其中,
粗调模块中可具体包括(为简化附图,未图示):
第一处理单元,用于确定监控画面当前的增益值是否位于合理增益区间之内,如果是,则通知所述细调模块执行自身功能;如果否,则通知第二处理单元执行自身功能;
所述第二处理单元,用于获取监控画面当前的倍率Z;根据Z计算出视场角α:
Figure PCTCN2015070147-appb-000006
其中,θ表示红外摄像机的水平最大视场角;分别将α与β3、β2、β1进行比较,根据比较结果确定出红外灯调整方式,并按照确定出的红外灯调整方式进行红外灯亮度调整,将监控画面的增益值调整到合理增益区间之内;其中,β3表示远灯的照射角度,β2表示中灯的照射角度,β1表示近灯的照射角度,所述红外灯由远灯、中灯和近灯组成。
较佳地,
如果α≤β3,则所述第二处理单元调整远灯的亮度,将监控画面的增益值调整到合理增益区间之内;
如果α≤β2,则所述第二处理单元优先调整远灯的亮度、其次调整中灯的亮度,将监控画面的增益值调整到合理增益区间之内;
如果α≤β1,则所述第二处理单元优先调整远灯的亮度、其次调整中灯的亮度、最后调整近灯的亮度,将监控画面的增益值调整到合理增益区间之内。
另外,
细调模块中可具体包括(为简化附图,未图示):
第三处理单元,用于针对每个子区域,分别获取该子区域的理论亮度值和实际亮度值,并计算理论亮度值和实际亮度值的差值的绝对值,如果该绝对值大于预定阈值,则确定该子区域为亮度异常的子区域;如果存在亮度异常的子区域,则通知第四处理单元执行自身功能;
所述第四处理单元,用于根据获取到的亮度异常的子区域的预定参数以及监控画面的预定参数,确定出红外灯调整方式,并按照确定出的红外灯调整方式进行红外灯亮度调整,使亮度异常的子区域恢复为正常。
其中,所述第三处理单元针对每个子区域,分别确定该子区域的中心位置与光轴的夹角,并根据所述夹角以及预先确定的光强模型,确定出该子区域的理论亮度值;
该子区域的实际亮度值为:该子区域中的各像素点的亮度平均值。
该子区域的中心位置与光轴的夹角以弧度进行表示为:
Figure PCTCN2015070147-appb-000007
其中,X表示监控画面的水平坐标最大值;
x表示该子区域的中心位置的水平坐标值;
α表示视场角,
Figure PCTCN2015070147-appb-000008
θ表示红外摄像机的水平最大视场角,Z表示监控画面当前的倍率。
具体地,
所述第四处理单元获取亮度异常的子区域的预定参数γ,并获取监控画面的预定参数Z,根据Z计算出视场角α;确定亮度异常的子区域是否满足以下条件:个数为1,或者,个数大于1但各亮度异常的子区域的γ相同;
如果是,则将唯一的一个γ作为γ′;分别将α和γ′与β3、β2、β1进行比较,根据比较结果确定出红外灯调整方式,并按照确定出的红外灯调整方式进行红外灯亮度调整,将γ′对应的亮度异常的子区域恢复为正常,之后结束处理;其中,β3表示远灯的照射角度,β2表示中灯的照射角度,β1表示近灯的照射角度,所述红外灯由远灯、中灯和近灯组成;
如果否,则从各γ中选出取值最小的一个γ,将选出的γ作为γ′,之后执行预定处理,包括:分别将α和γ′与β3、β2、β1进行比较,根据比较结果确定出红外灯调整方式,并按照确定出的红外灯调整方式进行红外灯亮度调整,将γ′对应的亮度异常的子区域恢复为正常;确定是否还存在亮度异常的子区域,如果否,则结束处理,如果是,则从未被选出的各γ中选出大于γ′的取值最小的一个γ,并将选出的γ作为γ′,之后重复执行所述预定处理。
较佳地,
如果α≤β3,且γ′≤β3,则所述第四处理单元调整远灯的亮度,将γ′对应的亮度异常的子区域恢复为正常;
如果α≤β2,且β3<γ′≤β2,则所述第四处理单元优先调整中灯的亮度、其次调整远灯的亮度,将γ′对应的亮度异常的子区域恢复为正常;
如果α≤β2,且γ′≤β3,则所述第四处理单元调整远灯的亮度,将γ′对应的亮度异常的子区域恢复为正常;
如果α≤β1,且β2<γ′≤β1,则所述第四处理单元优先调整近灯的亮度、其次调整中灯的亮度、最后调整远灯的亮度,将γ′对应的亮度异常的子区域恢复为正常;
如果α≤β1,且β3<γ′≤β2,则所述第四处理单元优先调整中灯的亮度、其次调整远灯的亮度,将γ′对应的亮度异常的子区域恢复为正常;
如果α≤β1,且γ′≤β3,则所述第四处理单元调整远灯的亮度,将γ′对应的亮度异常的子区域恢复为正常。
再有,
该装置中还可进一步包括:控制模块,用于当确定由于亮度调整过于频繁而造成监控画面闪烁时,将自身以外的其它模块锁定;当满足解锁条件时,将被锁定的模块解锁。
控制模块用于当确定由于当达到预定的解锁时长时,将被锁定的模块解锁。
通常情况下,监控画面会保持稳定或者缓慢变化的状态,但如果存在外界人为或特殊因素的干扰,可能会导致监控画面的亮度调整过于频繁,从而造成画面闪烁,此时,调整后的效果可能还不如不进行调整的效果,因此,可锁定本发明所述调整功能,并可保持红外灯处于本发明所述调整功能执行之前的状态,相应地,当监控画面处于稳定状态时,则可进行解锁。
在实际应用中,图3所示装置中还会进一步包括一些其它组成部分,由于与本发明所述方案无直接关系,故不作介绍。
图3所示装置实施例的具体工作流程请参照前述方法实施例中的相应说明,此处不再赘述。
图4为本发明红外摄像机实施例的组成结构示意图。参见图4,该装置至少包括:存储器以及与存储器通信的处理器,其中该存储器中包括可由处理器执行的计时指令、粗调指令、细调指令和控制指令。
计时指令,用于当红外摄像机的红外灯开启后,每经过预定时长,则通知细调指令执行自身功能;
所述细调指令,用于确定组成监控画面的N个大小相同的子区域中是否存在亮度异常的子区域,N为大于1的正整数;如果是,则根据获取到的亮度异常的子区域的预定参数以及监控画面的预定参数,确定出红外灯调整方式,并按照确定出的红外灯调整方式进行红外灯亮度调整,使亮度异常的子区域恢复为正常。
另外,
该装置中还可进一步包括:粗调指令,用于在所述细调指令执行自身功能之前,确定监控画面当前的增益值是否位于合理增益区间之内,如果是,则通知所述细调指令执行自身功能;如果否,则根据获取到的监控画面的预定参数,确定出红外灯调整方式,并按照确定出的红外灯调整方式进行红外灯亮度调整,将监控画面的增益值调整到合理增益区间之内,之后通知所述细调指令执行自身功能。
图4所示装置实施例的具体工作流程请参照前述方法实施例中的相应说明,此处不再赘述
总之,采用本发明所述方案,可针对每个子区域分别进行亮度调整,从而避免了出现某些子区域过曝或过暗的现象,进而提高了监控画面的画面质量;而且,可采用粗调与细调相结合的方式,从而不但可以使监控画面的整体比较清晰,而且可以保留画面细节,即使得监控画面的细节也可以保持足够的清晰度;另外,本发明所述方案中可对红外灯的亮度采用多次逐步调整的方式,从实现上来说非常灵活方便,具有很强的 适用性。
综上所述,以上仅为本发明的较佳实施例而已,并非用于限定本发明的保护范围。凡在本发明的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。

Claims (19)

  1. 一种红外摄像机的红外灯亮度调整方法,其特征在于,包括:
    当红外摄像机的红外灯开启后,每经过预定时长,则进行以下处理:
    确定组成监控画面的N个大小相同的子区域中是否存在至少一个亮度异常的子区域,N为大于1的正整数;
    如果是,则根据获取到的所述至少一个亮度异常的子区域的预定参数以及监控画面的预定参数,确定出红外灯调整方式,并按照确定出的所述红外灯调整方式进行红外灯亮度调整,使所述至少一个亮度异常的子区域恢复为正常。
  2. 根据权利要求1所述的方法,其特征在于,
    所述确定是否存在亮度异常的子区域之前,进一步包括:
    确定监控画面的增益值是否位于增益区间之内,如果是,则直接确定是否存在所述至少一个亮度异常的子区域;
    如果否,则根据所述获取到的监控画面的预定参数,确定出红外灯调整方式,并按照确定出的红外灯调整方式进行红外灯亮度调整,将所述监控画面的增益值调整到所述增益区间之内,之后确定是否存在所述至少一个亮度异常的子区域。
  3. 根据权利要求2所述的方法,其特征在于,
    所述根据获取到的监控画面的预定参数,确定出红外灯调整方式,并按照确定出的红外灯调整方式进行红外灯亮度调整,将监控画面的增益值调整到合理增益区间之内包括:
    根据获取的监控画面的倍率Z,计算视场角α:
    Figure PCTCN2015070147-appb-100001
    其中,θ表示红外摄像机的水平最大视场角;
    分别将α与β3、β2、β1进行比较,根据比较结果确定出红外灯调整方式,并按照确定出的红外灯调整方式进行红外灯亮度调整,将监控画面的增益值调整到合理增益区间之内;
    其中,β3表示远灯的照射角度,β2表示中灯的照射角度,β1表示近灯的照射角度,所述红外灯由远灯、中灯和近灯组成。
  4. 根据权利要求3所述的方法,其特征在于,
    所述根据比较结果确定出红外灯调整方式,并按照确定出的红外灯调整方式进行红外灯亮度调整,将监控画面的增益值调整到合理增益区间之内包括:
    如果α≤β3,则调整远灯的亮度,将监控画面的增益值调整到合理增益区间之内;
    如果α≤β2,则先调整远灯的亮度,若所述远灯的亮度调整到其极值之后,所述监控画面的增益值仍未调整到所述增益区间之内,调整中灯的亮度,将监控画面的增益值调整到合理增益区间之内;
    如果α≤β1,则调整远灯的亮度,若所述远灯的亮度调整到其极值之后,所述监控画面的增益值仍未调整到所述增益区间之内,调整中灯的亮度,若所述中灯的亮度调整到其极值之后,所述监控画面的增益值仍未调整到所述增益区间之内,调整近灯的亮度,将监控画面的增益值调整到合理增益区间之内。
  5. 根据权利要求1所述的方法,其特征在于,
    所述确定是否存在所述至少一个亮度异常的子区域包括:
    针对每个子区域,分别获取该子区域的理论亮度值和实际亮度值,并计算理论亮度值和实际亮度值的差值的绝对值,如果该绝对值大于预定阈值,则确定该子区域为亮度异常的子区域。
  6. 根据权利要求5所述的方法,其特征在于,
    所述获取该子区域的理论亮度值包括:
    确定该子区域的中心位置与光轴的夹角,根据所述夹角以及预先确定的光强模型,确定出该子区域的理论亮度值;
    该子区域的实际亮度值为:该子区域中的各像素点的亮度平均值。
  7. 根据权利要求6所述的方法,其特征在于,
    该子区域的中心位置与光轴的夹角以弧度进行表示为:
    Figure PCTCN2015070147-appb-100002
    其中,X表示监控画面的水平坐标最大值;
    x表示该子区域的中心位置的水平坐标值;
    α表示视场角,
    Figure PCTCN2015070147-appb-100003
    θ表示红外摄像机的水平最大视场角,Z表示监控画面的倍率。
  8. 根据权利要求7所述的方法,其特征在于,
    所述根据获取到的所述至少一个亮度异常的子区域的预定参数以及监控画面的预定参数,确定出红外灯调整方式,并按照确定出的红外灯调整方式进行红外灯亮度调整,使所述至少一个亮度异常的子区域恢复为正常,包括:
    A、分别获取每个亮度异常的子区域的预定参数γ,并获取监控画面的预定参数Z,根据Z计算出视场角α;
    B、确定所述至少一个亮度异常的子区域是否满足以下条件:个数为1,或者,个数大于1但各亮度异常的子区域的γ相同,如果是,则执行步骤C,否则,执行步骤D;
    C、将唯一的一个γ作为γ′;
    分别将α和γ′与β3、β2、β1进行比较,根据比较结果确定出红外灯调整方式,并按照确定出的红外灯调整方式进行红外灯亮度调整,将γ′对应的亮度异常的子区域恢复为正常,之后结束处理;
    其中,β3表示远灯的照射角度,β2表示中灯的照射角度,β1表示近灯的照射角度,所述红外灯由远灯、中灯和近灯组成;
    D、从各γ中选出取值最小的一个γ,将选出的γ作为γ′,之后执行步骤E;
    E、分别将α和γ′与β3、β2、β1进行比较,根据比较结果确定出红外灯调整方式,并按照确定出的红外灯调整方式进行红外灯亮度调整,将γ′对应的亮度异常的子区域恢复为正常;
    确定在调整后的N个子区域中,是否还存在至少一个亮度异常的子区域,如果否,则结束处理,如果是,则从所述调整后的N个子区域中的至少一个亮度异常的子区域对应的γ中选出最小的一个γ,并将选出的γ作为γ′,之后重复执行步骤E。
  9. 根据权利要求8所述的方法,其特征在于,
    所述分别将α和γ′与β3、β2、β1进行比较,根据比较结果确定出红外灯调整方式,并按照确定出的红外灯调整方式进行红外灯亮度调整,将γ′对应的亮度异常的子区域恢复为正常包括:
    如果α≤β3,且γ′≤β3,则调整远灯的亮度,将γ′对应的亮度异常的子区域恢复为正常;
    如果α≤β2,且β3<γ′≤β2,则调整中灯的亮度,若所述中灯的亮度调整到其极值之后,所述监控画面的增益值仍未调整到所述增益区间之内,调整远灯的亮度,将γ′对应的亮度异常的子区域恢复为正常;
    如果α≤β2,且γ′≤β3,则调整远灯的亮度,将γ′对应的亮度异常的 子区域恢复为正常;
    如果α≤β1,且β2<γ′≤β1,则调整近灯的亮度,若所述近灯的亮度调整到其极值之后,所述监控画面的增益值仍未调整到所述增益区间之内,则调整中灯的亮度,若所述中灯的亮度调整到其极值之后,所述监控画面的增益值仍未调整到所述增益区间之内,则调整远灯的亮度,将γ′对应的亮度异常的子区域恢复为正常;
    如果α≤β1,且β3<γ′≤β2,则先调整中灯的亮度、若所述中灯的亮度调整到其极值之后,所述监控画面的增益值仍未调整到所述增益区间之内,调整远灯的亮度,将γ′对应的亮度异常的子区域恢复为正常;
    如果α≤β1,且γ′≤β3,则调整远灯的亮度,将γ′对应的亮度异常的子区域恢复为正常。
  10. 一种红外摄像机,其特征在于,包括:
    计时模块,用于当红外摄像机的红外灯开启后,每经过预定时长,则通知细调模块执行自身功能;
    所述细调模块,用于确定组成监控画面的N个大小相同的子区域中是否存在至少一个亮度异常的子区域,N为大于1的正整数;如果是,则根据获取到的所述至少一个亮度异常的子区域的预定参数以及监控画面的预定参数,确定出所述红外灯调整方式,并按照确定出的红外灯调整方式进行红外灯亮度调整,使所述至少一个亮度异常的子区域恢复为正常。
  11. 根据权利要求10所述的装置,其特征在于,
    该装置中进一步包括:粗调模块,用于在所述细调模块执行自身功能之前,确定监控画面的增益值是否位于增益区间之内,如果是,则通 知所述细调模块执行自身功能;如果否,则根据获取到的所述监控画面的预定参数,确定出红外灯调整方式,并按照确定出的红外灯调整方式进行红外灯亮度调整,将监控画面的增益值调整到所述增益区间之内,之后通知所述细调模块执行自身功能。
  12. 根据权利要求11所述的装置,其特征在于,
    所述粗调模块中包括:
    第一处理单元,用于确定所述监控画面的增益值是否位于所述增益区间之内,如果是,则通知所述细调模块执行自身功能;如果否,则通知第二处理单元执行自身功能;
    所述第二处理单元,用于根据获取监控画面的倍率Z,计算出视场角α:
    Figure PCTCN2015070147-appb-100004
    其中,θ表示红外摄像机的水平最大视场角;分别将α与β3、β2、β1进行比较,根据比较结果确定出红外灯调整方式,并按照确定出的红外灯调整方式进行红外灯亮度调整,将监控画面的增益值调整到合理增益区间之内;其中,β3表示远灯的照射角度,β2表示中灯的照射角度,β1表示近灯的照射角度,所述红外灯由远灯、中灯和近灯组成。
  13. 根据权利要求12所述的装置,其特征在于,
    如果α≤β3,则所述第二处理单元调整远灯的亮度,将监控画面的增益值调整到合理增益区间之内;
    如果α≤β2,则所述第二处理单元调整远灯的亮度,若所述远灯的亮度调整到其极值之后,所述监控画面的增益值仍未调整到所述增益区间之内,调整中灯的亮度,将监控画面的增益值调整到合理增益区间之内;
    如果α≤β1,则所述第二处理单元调整远灯的亮度,若所述远灯的亮度调整到其极值之后,所述监控画面的增益值仍未调整到所述增益区间之内,调整中灯的亮度、若所述中灯的亮度调整到其极值之后,所述监控画面的增益值仍未调整到所述增益区间之内,调整近灯的亮度,将监控画面的增益值调整到合理增益区间之内。
  14. 根据权利要求10所述的装置,其特征在于,
    所述细调模块中包括:
    第三处理单元,用于针对每个子区域,分别获取该子区域的理论亮度值和实际亮度值,并计算理论亮度值和实际亮度值的差值的绝对值,如果该绝对值大于预定阈值,则确定该子区域为亮度异常的子区域;如果存在亮度异常的子区域,则通知第四处理单元执行自身功能;
    所述第四处理单元,用于根据获取到的亮度异常的子区域的预定参数以及监控画面的预定参数,确定出红外灯调整方式,并按照确定出的红外灯调整方式进行红外灯亮度调整,使亮度异常的子区域恢复为正常。
  15. 根据权利要求14所述的装置,其特征在于,
    所述第三处理单元针对每个子区域,分别确定该子区域的中心位置与光轴的夹角,并根据所述夹角以及预先确定的光强模型,确定出该子区域的理论亮度值;
    该子区域的实际亮度值为:该子区域中的各像素点的亮度平均值。
  16. 根据权利要求15所述的装置,其特征在于,
    该子区域的中心位置与光轴的夹角以弧度进行表示为:
    Figure PCTCN2015070147-appb-100005
    其中,X表示监控画面的水平坐标最大值;
    x表示该子区域的中心位置的水平坐标值;
    α表示视场角,
    Figure PCTCN2015070147-appb-100006
    θ表示红外摄像机的水平最大视场角,Z表示监控画面的倍率。
  17. 根据权利要求16所述的装置,其特征在于,
    所述第四处理单元分别获取每个亮度异常的子区域的预定参数γ,并获取监控画面的预定参数Z,根据Z计算出视场角α;确定所述至少一个亮度异常的子区域是否满足以下条件:个数为1,或者,个数大于1但各亮度异常的子区域的γ相同;
    如果是,则将唯一的一个γ作为γ′;分别将α和γ′与β3、β2、β1进行比较,根据比较结果确定出红外灯调整方式,并按照确定出的红外灯调整方式进行红外灯亮度调整,将γ′对应的亮度异常的子区域恢复为正常,之后结束处理;其中,β3表示远灯的照射角度,β2表示中灯的照射角度,β1表示近灯的照射角度,所述红外灯由远灯、中灯和近灯组成;
    如果否,则从各γ中选出取值最小的一个γ,将选出的γ作为γ′,之后执行预定处理,包括:分别将α和γ′与β3、β2、β1进行比较,根据比较结果确定出红外灯调整方式,并按照确定出的红外灯调整方式进行红外灯亮度调整,将γ′对应的亮度异常的子区域恢复为正常;确定在调整后的N个子区域中,是否还存在至少一个亮度异常的子区域,如果否,则结束处理,如果是,则从所述调整后的N个子区域中的至少一个亮度异常的子区域对应的γ中选出大于γ′的取值最小的一个γ,并将选出的γ作为γ′,之后重复执行所述预定处理。
  18. 根据权利要求17所述的装置,其特征在于,
    如果α≤β3,且γ′≤β3,则所述第四处理单元调整远灯的亮度,将γ′ 对应的亮度异常的子区域恢复为正常;
    如果α≤β2,且β3<γ′≤β2,则所述第四处理单元调整中灯的亮度,若所述中灯的亮度调整到其极值之后,所述监控画面的增益值仍未调整到所述增益区间之内,调整远灯的亮度,将γ′对应的亮度异常的子区域恢复为正常;
    如果α≤β2,且γ′≤β3,则所述第四处理单元调整远灯的亮度,将γ′对应的亮度异常的子区域恢复为正常;
    如果α≤β1,且β2<γ′≤β1,则所述第四处理单元调整近灯的亮度,若所述近灯的亮度调整到其极值之后,所述监控画面的增益值仍未调整到所述增益区间之内,调整中灯的亮度,若所述中灯的亮度调整到其极值之后,所述监控画面的增益值仍未调整到所述增益区间之内,调整远灯的亮度,将γ′对应的亮度异常的子区域恢复为正常;
    如果α≤β1,且β3<γ′≤β2,则所述第四处理单元调整中灯的亮度,若所述中灯的亮度调整到其极值之后,所述监控画面的增益值仍未调整到所述增益区间之内,调整远灯的亮度,将γ′对应的亮度异常的子区域恢复为正常;
    如果α≤β1,且γ′≤β3,则所述第四处理单元调整远灯的亮度,将γ′对应的亮度异常的子区域恢复为正常。
  19. 根据权利要求10~18中任一项所述的装置,其特征在于,
    该装置中进一步包括:控制模块,用于当确定由于亮度调整过于频繁而造成监控画面闪烁时,将自身以外的其它模块锁定;当达到预定的解锁时长时,将被锁定的模块解锁。
PCT/CN2015/070147 2014-01-10 2015-01-06 一种红外摄像机及其红外灯亮度调整方法 WO2015103961A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP15734896.2A EP3094081B1 (en) 2014-01-10 2015-01-06 Infrared camera and infrared lamp brightness adjustment method therefor
US15/110,601 US10187582B2 (en) 2014-01-10 2015-01-06 Infrared camera and infrared lamp brightness adjustment method therefor

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201410012898.4 2014-01-10
CN201410012898.4A CN104702849B (zh) 2014-01-10 2014-01-10 一种红外摄像机及其红外灯亮度调整方法

Publications (1)

Publication Number Publication Date
WO2015103961A1 true WO2015103961A1 (zh) 2015-07-16

Family

ID=53349587

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2015/070147 WO2015103961A1 (zh) 2014-01-10 2015-01-06 一种红外摄像机及其红外灯亮度调整方法

Country Status (4)

Country Link
US (1) US10187582B2 (zh)
EP (1) EP3094081B1 (zh)
CN (1) CN104702849B (zh)
WO (1) WO2015103961A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109792829A (zh) * 2016-10-11 2019-05-21 昕诺飞控股有限公司 监控系统的控制系统、监控系统和控制监控系统的方法

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105991901A (zh) * 2015-02-06 2016-10-05 群光电子股份有限公司 影像撷取装置与影像处理的方法
CN104954700B (zh) * 2015-06-17 2018-09-14 浙江宇视科技有限公司 一种过曝控制方法和装置
CN106375645B (zh) * 2015-07-21 2019-08-30 杭州海康威视数字技术股份有限公司 一种基于红外摄像装置的自适应控制系统
TWI608735B (zh) * 2017-03-13 2017-12-11 晶睿通訊股份有限公司 影像擷取裝置及亮度調整方法
CN107370966B (zh) * 2017-08-24 2018-05-04 珠海安联锐视科技股份有限公司 一种智能红外控制电路及其控制方法
CN107566752B (zh) * 2017-10-31 2020-08-11 努比亚技术有限公司 一种拍摄方法、终端及计算机存储介质
WO2019129083A1 (zh) * 2017-12-27 2019-07-04 杭州海康威视数字技术股份有限公司 一种红外灯控制方法、装置及四目可调节摄像机
CN109981971B (zh) * 2017-12-28 2022-03-11 浙江宇视科技有限公司 手电筒效应消除方法及装置
US10609298B2 (en) * 2018-02-06 2020-03-31 Google Llc Adaptive infrared illumination for exposure correction
CN112036278A (zh) * 2020-08-21 2020-12-04 上海明略人工智能(集团)有限公司 基于图像识别的场景监测方法及系统
CN112218415B (zh) * 2020-11-06 2022-03-08 浙江大华技术股份有限公司 一种确定补光灯照度强度的方法、装置及设备
CN112738412B (zh) * 2020-12-31 2022-08-16 佛山市南海天富科技有限公司 基于经编机瑕疵检测系统的全自动补光方法及装置

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN201733490U (zh) * 2010-06-28 2011-02-02 浙江大华技术股份有限公司 一种红外摄像机的红外灯功率自适应量化调整电路
CN102368809A (zh) * 2011-09-02 2012-03-07 深圳市先河系统技术有限公司 曝光补偿装置和方法、以及红外摄像机
CN102821250A (zh) * 2012-08-23 2012-12-12 青岛海信网络科技股份有限公司 红外摄像机的自动调光方法及装置

Family Cites Families (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004048455A (ja) * 2002-07-12 2004-02-12 Niles Co Ltd 撮像システム
US9955551B2 (en) * 2002-07-12 2018-04-24 Yechezkal Evan Spero Detector controlled illuminating system
US6898331B2 (en) * 2002-08-28 2005-05-24 Bae Systems Aircraft Controls, Inc. Image fusion system and method
JP4091942B2 (ja) * 2003-03-31 2008-05-28 富士通株式会社 照明制御装置
US9900478B2 (en) * 2003-09-04 2018-02-20 Flir Systems, Inc. Device attachment with infrared imaging sensor
CN1886983A (zh) 2003-12-25 2006-12-27 耐力有限公司 成像系统
JP4244018B2 (ja) * 2004-03-25 2009-03-25 ノーリツ鋼機株式会社 欠陥画素修正方法、プログラム及びその方法を実施する欠陥画素修正システム
JP4702598B2 (ja) * 2005-03-15 2011-06-15 オムロン株式会社 監視システム、監視装置および方法、記録媒体、並びにプログラム
US8838210B2 (en) * 2006-06-29 2014-09-16 AccuView, Inc. Scanned laser vein contrast enhancer using a single laser
JP4899534B2 (ja) * 2006-02-28 2012-03-21 ソニー株式会社 監視カメラ
US20080151052A1 (en) 2006-11-01 2008-06-26 Videolarm, Inc. Infrared illuminator with variable beam angle
US8994757B2 (en) * 2007-03-15 2015-03-31 Scalable Display Technologies, Inc. System and method for providing improved display quality by display adjustment and image processing using optical feedback
KR101437849B1 (ko) 2007-11-21 2014-09-04 삼성전자주식회사 휴대 단말기 및 그의 촬영 모드 수행 방법
JP5126084B2 (ja) * 2009-01-22 2013-01-23 日本電気株式会社 生体認証装置、生体認証方法及びプログラム
US10244181B2 (en) * 2009-02-17 2019-03-26 Trilumina Corp. Compact multi-zone infrared laser illuminator
JP2011109634A (ja) 2009-06-17 2011-06-02 Rohm Co Ltd 車載カメラ
JP2012014668A (ja) * 2010-06-04 2012-01-19 Sony Corp 画像処理装置、画像処理方法、プログラム、および電子装置
CN102256066B (zh) * 2011-01-17 2012-06-20 深圳市保千里电子有限公司 红外高速球及其智能调节红外灯亮度的方法
US8836816B2 (en) * 2011-05-19 2014-09-16 Foveon, Inc. Method of adjusting the brightness of a digital camera image
JP2012242676A (ja) * 2011-05-20 2012-12-10 Canon Inc 撮像装置及び制御方法
CN202120197U (zh) * 2011-05-20 2012-01-18 德信互动科技(北京)有限公司 捕捉对象锁定系统
KR101283079B1 (ko) * 2011-08-17 2013-07-05 엘지이노텍 주식회사 적외선 엘이디 조명을 갖는 네트워크 카메라
WO2014110654A1 (en) * 2013-01-15 2014-07-24 Avigilon Corporation Imaging apparatus with scene adaptive auto exposure compensation
CN103118232B (zh) * 2013-02-20 2016-07-13 浙江宇视科技有限公司 一种补光控制装置及方法
JP6274794B2 (ja) * 2013-09-12 2018-02-07 株式会社ミツトヨ 情報処理装置、情報処理方法、プログラム、及び画像測定装置
JP5983575B2 (ja) * 2013-09-27 2016-08-31 株式会社Jvcケンウッド 操作入力装置、操作入力方法およびプログラム

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN201733490U (zh) * 2010-06-28 2011-02-02 浙江大华技术股份有限公司 一种红外摄像机的红外灯功率自适应量化调整电路
CN102368809A (zh) * 2011-09-02 2012-03-07 深圳市先河系统技术有限公司 曝光补偿装置和方法、以及红外摄像机
CN102821250A (zh) * 2012-08-23 2012-12-12 青岛海信网络科技股份有限公司 红外摄像机的自动调光方法及装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3094081A4 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109792829A (zh) * 2016-10-11 2019-05-21 昕诺飞控股有限公司 监控系统的控制系统、监控系统和控制监控系统的方法
CN109792829B (zh) * 2016-10-11 2021-12-10 昕诺飞控股有限公司 监控系统的控制系统、监控系统和控制监控系统的方法

Also Published As

Publication number Publication date
CN104702849A (zh) 2015-06-10
US20160381272A1 (en) 2016-12-29
EP3094081A4 (en) 2017-06-07
CN104702849B (zh) 2018-03-30
EP3094081A1 (en) 2016-11-16
US10187582B2 (en) 2019-01-22
EP3094081B1 (en) 2019-08-07

Similar Documents

Publication Publication Date Title
WO2015103961A1 (zh) 一种红外摄像机及其红外灯亮度调整方法
US10931885B2 (en) Illumination processing method and apparatus for adjusting light transmittance
US8194127B2 (en) Method and apparatus for masking surveillance video images for privacy protection
US11159711B2 (en) Image-capturing apparatus
EP3136377B1 (en) Information processing device, information processing method, program
JP4258539B2 (ja) 複数画角カメラ
JP2013195741A5 (zh)
US20150215518A1 (en) Imaging apparatus, imaging method, and focus control apparatus
JP2015111238A5 (zh)
CN103237177B (zh) 光源亮度调整方法与装置
US20180115694A1 (en) Apparatus for controlling exposure of multi-view camera, system including the same, and method for controlling exposure of multi-view camera
US20130057716A1 (en) Imaging apparatus
KR102292672B1 (ko) 영상 안정화를 위한 방법 및 시스템
US20170124685A1 (en) Image processing device, and image processing method and program for executing same
KR102193984B1 (ko) 감시시스템, 그 시스템에서의 어안 카메라를 이용한 ptz 카메라 제어 방법
US9509896B2 (en) Apparatus, imaging method, and focus control apparatus to control autofocus based on contrast signal
US9672598B2 (en) Color moire reducing method, color moire reducing apparatus, and image processing apparatus
US20130286245A1 (en) System and method for minimizing flicker
US10863092B2 (en) Imaging device and method for correcting shake of captured image
US11375109B2 (en) Maintaining peak intensity frames as preview frames in slow motion mode of electronic device
JP7490397B2 (ja) 画像処理装置、判定方法およびプログラム
KR101708620B1 (ko) Avm 시스템의 카메라 공차 보정 방법 및 장치
WO2017033498A1 (ja) 水中撮影装置、水中撮影装置の制御方法、水中撮影装置の制御プログラム
JP2012151669A (ja) テレビ受像機
CN109981971B (zh) 手电筒效应消除方法及装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15734896

Country of ref document: EP

Kind code of ref document: A1

REEP Request for entry into the european phase

Ref document number: 2015734896

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2015734896

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 15110601

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE