WO2015101164A1 - Circuit de test d'onduleur monophasé pour convertisseur multiniveau modulaire et procédé de test associé - Google Patents
Circuit de test d'onduleur monophasé pour convertisseur multiniveau modulaire et procédé de test associé Download PDFInfo
- Publication number
- WO2015101164A1 WO2015101164A1 PCT/CN2014/093818 CN2014093818W WO2015101164A1 WO 2015101164 A1 WO2015101164 A1 WO 2015101164A1 CN 2014093818 W CN2014093818 W CN 2014093818W WO 2015101164 A1 WO2015101164 A1 WO 2015101164A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- voltage
- sub
- module
- capacitor
- modular multi
- Prior art date
Links
Images
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01R—MEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
- G01R31/00—Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
- G01R31/40—Testing power supplies
- G01R31/42—AC power supplies
Definitions
- the invention relates to a test circuit of a modular multilevel converter, in particular to a modular multilevel converter single phase inverter test circuit and a test method thereof.
- Modular multilevel converters use sub-modules in series to achieve high voltage output with lower voltage shutdown devices, and lower output voltage waveforms with lower switching frequency, low switching frequency for device switching The loss and the total loss of the system are greatly reduced, which improves the efficiency, reliability and economy of the converter system. Modular multilevel converters are used in flexible DC transmission, high voltage inverters and other fields.
- tests for single-phase (two-bridge) converters enable verification of sub-module electrical characteristics, bridge arm and phase-to-phase capacitance voltage balancing strategies. Compared to the complete three-phase converter test, testing for single-phase converters can reduce the number of sub-modules used in the test, simplify the test circuit, and reduce losses that may be caused by faults.
- test circuit In order to complete the test, a test circuit needs to be built.
- the test circuit should be as simple as possible in order to be equivalent to the actual operating conditions.
- Modular multilevel converters differ from two level converters.
- the modular multilevel converter does not have a concentrated DC bus like a two-level converter, and its DC support capacitance is dispersed in each sub-module. Since the bridge arm current will charge or discharge the sub-module capacitance, the modular multi-level converter must have both forward current and negative current in each leg so that the sub-module can be charged. Can discharge, the voltage can be maintained within a certain range, without being charged or always discharged, the circuit will eventually fail to work.
- the conventional DC voltage source can only output the forward current. Therefore, the modular multilevel converter single-phase inverter circuit cannot be directly connected in parallel with the DC voltage source.
- an object of the present invention is to provide a single phase inverse of a modular multilevel converter.
- the test circuit is composed of a single-phase modular multi-level bridge arm, and is equipped with necessary DC support power and auxiliary devices, and can realize electrical characteristics and bridge arms of the modular multi-level sub-module Verification of the pressure algorithm.
- the invention provides a modular multi-level converter single-phase inverter test circuit, which is improved in that the test circuit comprises a parallel modular multi-level single-phase bridge arm, a capacitor series branch and a DC voltage source.
- the series branch, one end of the load is connected between the two reactors of the modular multi-level single-phase bridge arm, and the other end is connected between the two DC voltage sources of the DC voltage source series branch through the capacitor series branch.
- the modular multi-level single-phase bridge arm is composed of upper and lower bridge arms of the same structure in series; the intermediate points of the upper and lower bridge arms are connected to the AC output end of the modular multilevel converter;
- Each of the upper and lower arms includes a reactor and n sub-modules having the same structure; the sub-modules of each bridge are cascaded and the one end passes through the AC output of the reactor and the modular multi-level converter. End connection; the other end of each bridge arm is cascaded and the other end is respectively connected with one end of the capacitor series branch and one end of the DC voltage source series branch to form a positive and negative bus bar of the DC end of the modular multilevel converter;
- the current of the modular multi-level single-phase bridge arm is equal to the current between the positive and negative bus bars of the DC terminal.
- the submodule is composed of a parallel half bridge structure and a DC capacitor branch; a voltage equalizing resistor is connected in parallel between the half bridge structure and the DC capacitor branch for the sub The voltage equalization of the module in the locked state and the discharge of the capacitor voltage of the submodule after the shutdown is blocked;
- the half bridge is composed of an upper half bridge arm and a lower half bridge arm, and both the upper half bridge arm and the lower half bridge arm are composed of an insulated gate bipolar transistor IGBT and a diode connected in parallel therewith.
- the capacitor series is composed of two capacitors connected in series; the DC voltage source is connected in series with two DC voltage sources connected in series; the output voltages of the two DC voltage sources are equal, and both are modular.
- the level converter is half of the rated DC voltage.
- the load is a resistive load.
- the invention provides a test method for a modular multi-level converter single-phase inverter test circuit based on another object, which is improved in that after the test circuit connection is completed, the modular multilevel converter is The submodules are all in a locked state, and the test method includes the following steps:
- step (3) Observe the capacitor voltage of the sub-module, and check whether the capacitor voltage of the sub-module is balanced, and determine whether the sub-module voltage is too high or too low.
- the sub-module design voltage range is 1V to 6V; there is abnormality in the sub-module capacitor voltage.
- Two DC voltage sources after the capacitor voltage of the sub-module is discharged, the fault sub-module is processed; if the capacitor voltage of the sub-module is normal, step (3) is performed;
- the submodule equalization algorithm is verified by detecting the submodule equalization effect and the output waveform quality; if the difference between the capacitor voltages of the submodule in the modular multilevel converter is Within the design range, the sub-module capacitor voltage is designed to be 0.5V, and the output voltage waveform distortion is small, indicating that the sub-module equalization algorithm works well; otherwise, the sub-module equalization algorithm needs to be improved.
- the present invention uses two modular multi-level bridge arms to construct a single-phase real test circuit, which is connected to a passive resistive load, and outputs a sinusoidal voltage and a sinusoidal current through an open-loop passive inverter algorithm and a capacitance balancing algorithm, and an analog module.
- the normal operation of the multilevel converter completes the testing of the converter electrical and capacitance balancing algorithms.
- the test for the single-phase (two-bridge) converter can verify the electrical characteristics of the sub-module, the bridge arm and the phase-in-capacitor voltage balance strategy. Compared to the complete three-phase converter test, testing for single-phase converters can reduce the number of sub-modules used in the test, simplify the test circuit, and reduce losses that may be caused by faults.
- the DC side is supported by the voltage source, so that the control algorithm does not need to control the DC voltage, which simplifies the test controller algorithm.
- the proposed test circuit is simple and easy to implement.
- FIG. 1 is a topological diagram of a single-phase inverter test circuit of a modular multilevel converter provided by the present invention
- FIG. 2 is a circuit diagram of a sub-module provided by the present invention.
- the invention provides a modular multi-level converter single-phase inverter test circuit, the topology diagram of which is shown in Figure 1.
- the test circuit comprises a parallel modular multi-level single-phase bridge arm, a capacitor series branch and a direct current.
- the voltage source is connected in series, one end of the load is connected between the two reactors of the modular multi-level single-phase bridge arm, and the other end is connected between the two DC voltage sources of the DC voltage source series branch through the capacitor series branch.
- the modular multi-level single-phase bridge arm is composed of a series of identical upper arm Leg1 and lower arm Leg2.
- the upper arm is composed of n sub-modules SM11, SM12, SM13...SM1n connected in series
- the lower arm is composed of n sub-modules SM21, SM22, SM23...SM2n connected in series.
- each submodule cascade end of each arm by two reactors L u and L l is connected at point C, point C as an intermediate modular multilevel inverter AC output; bridge arm each submodule The other end of the cascade is connected to one end of the capacitor series branch and one end of the DC voltage source series branch to form the positive and negative bus bars of the DC end of the modular multilevel converter; the current of the modular multilevel single phase bridge arm It is equal to the current between the positive and negative bus bars of the DC terminal.
- the number n of series connected sub-modules in the bridge arm is the same as in the three-phase converter in practical use.
- the internal circuit of each submodule is shown in Figure 2.
- the first sub-module SM 11 of the above bridge arm is taken as an example.
- the internal circuit of the sub-module includes a DC capacitor C 11 , two turn-off devices T 11 , T 12 , and two power diodes respectively connected in parallel to the turn-off device. D 11 , D 12 .
- the sub-module DC capacitor is connected in parallel with a voltage equalizing resistor R 11 .
- the DC side DC voltage source series branch includes two independent DC voltage sources U dc1 , U dc2 in series .
- the output voltages of the two voltage sources are equal, which are half of the rated DC voltage of the modular multilevel converter.
- the lower end of the voltage source U dc1 and the upper end of the voltage source U dc2 are connected to the O point.
- Two DC voltage sources are connected in parallel with one capacitor.
- the DC voltage source U dc1 is connected in parallel with the capacitor C 1
- the DC voltage source U dc2 is connected in parallel with the capacitor C 2 .
- the upper end of the DC voltage source U dc1 and the upper end of the upper arm Leg1 are connected to point A, and the lower end of the DC voltage source U dc2 and the lower end of the lower arm Leg2 are connected to point B.
- the load Z is resistive, one end is connected to the middle point C of the reactor, and one end is connected to the middle O of the series DC voltage source.
- the capacitors C 1 and C 2 are connected in parallel with the DC voltage sources U dc1 and U dc2 in order to allow bidirectional current to flow through the bridge arm.
- the bridge arm current is the DC bus current. If the DC bus is only supported by the DC voltage source, the DC bus current can only be unidirectional, and the unidirectional current flows through the bridge arm. The sub-module can only be charged. Discharge will eventually lead to overvoltage damage to the submodule.
- the capacitor can provide bidirectional current, the bridge arm current is also bidirectional, and the bridge arm sub-module voltage can be kept within a certain range.
- the invention also provides a test method for a modular multi-level converter single-phase inverter test circuit.
- the test after the test circuit connection is completed, all sub-modules in the converter are in a locked state, and the method comprises the following steps:
- step (3) Observe the capacitor voltage of the sub-module, and check whether the capacitor voltage of the sub-module is balanced, and determine whether the sub-module voltage is too high or too low.
- the sub-module design voltage range is 1V to 6V; there is abnormality in the sub-module capacitor voltage.
- Two DC voltage sources after the capacitor voltage of the sub-module is discharged, the fault sub-module is processed; if the capacitor voltage of the sub-module is normal, step (3) is performed;
- the submodule equalization algorithm is verified by detecting the submodule equalization effect and the output waveform quality; if the difference between the capacitor voltages of the submodule in the modular multilevel converter is Within the design range, the sub-module capacitor voltage is designed to be 0.5V, and the output voltage waveform distortion is small, indicating that the sub-module equalization algorithm works well; otherwise, the sub-module equalization algorithm needs to be improved.
- the invention provides a modular multi-level converter single-phase inverter test circuit and a test method thereof, and uses two modular multi-level bridge arms to construct a single-phase test circuit, which is connected with a passive resistance load and is passively opened through the ring.
- Inverter algorithm and capacitance balancing algorithm output sinusoidal voltage and sinusoidal current, simulate the normal operation of modular multilevel converter, complete the test of modular multilevel converter electrical and capacitance balancing algorithm.
Landscapes
- Engineering & Computer Science (AREA)
- Power Engineering (AREA)
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Inverter Devices (AREA)
Abstract
L'invention concerne un circuit de test d'onduleur monophasé pour un convertisseur multiniveau modulaire et un procédé de test associé. Le procédé comprend les étapes consistant à : construire un circuit de test monophasé en utilisant deux bras de pont multiniveau modulaires ; connecter une charge de résistance-inductance passive ; au moyen de l'algorithme d'inversion passive à boucle ouverte et de l'algorithme d'équilibrage capacitif, sortir une tension sinusoïdale et un courant sinusoïdal ; et simuler le fonctionnement normal d'un convertisseur multiniveau modulaire, ce qui permet d'achever le test des algorithmes d'équilibrage électrique et capacitif du convertisseur multiniveau modulaire. Dans le circuit de test, un côté courant continu est supporté par une source de tension, de sorte que dans l'algorithme de commande, il soit inutile de commander une tension de courant continu, ce qui permet de simplifier l'algorithme de l'organe de commande du test. Dans le circuit de test, une source de tension continue au niveau du côté courant continu est connectée à un condensateur en parallèle, de sorte que des courants bidirectionnels puissent circuler dans un bus de courant continu et des bras de pont, ce qui résout le problème selon lequel un sous-module peut être chargé uniquement, mais ne pas être déchargé lorsque la source de tension continue est testée séparément.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201410003017.2A CN104764943B (zh) | 2014-01-03 | 2014-01-03 | 一种模块化多电平变换器单相逆变试验电路及其试验方法 |
CN201410003017.2 | 2014-01-03 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2015101164A1 true WO2015101164A1 (fr) | 2015-07-09 |
Family
ID=53493178
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2014/093818 WO2015101164A1 (fr) | 2014-01-03 | 2014-12-15 | Circuit de test d'onduleur monophasé pour convertisseur multiniveau modulaire et procédé de test associé |
Country Status (2)
Country | Link |
---|---|
CN (1) | CN104764943B (fr) |
WO (1) | WO2015101164A1 (fr) |
Cited By (14)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN109274311A (zh) * | 2018-05-18 | 2019-01-25 | 巨自动化装备(上海)有限公司 | 电机控制器电路 |
CN109302058A (zh) * | 2018-10-11 | 2019-02-01 | 昆明理工大学 | 一种具有类三电平输出的直流—直流模块化多电平变换器及其控制方法 |
CN109856565A (zh) * | 2018-12-27 | 2019-06-07 | 北京清盛电气科技研究院有限公司 | 一种非隔离dc/dc变换器的功率环试验电路及控制方法 |
CN110333426A (zh) * | 2019-07-26 | 2019-10-15 | 沈阳工业大学 | 一种模块化多电平储能系统开路故障诊断装置及方法 |
CN112134455A (zh) * | 2020-09-25 | 2020-12-25 | 浙江大学 | 具有自均压能力的多模块串联型变换器自供电电路及其控制方法 |
CN112564499A (zh) * | 2020-12-04 | 2021-03-26 | 河海大学 | 模块化多电平直流变压器高压侧逆变器参数设计方法 |
CN113092963A (zh) * | 2021-04-07 | 2021-07-09 | 华北电力大学 | 一种桥臂电抗器交直流叠加温升试验拓扑与装置 |
CN113131765A (zh) * | 2019-12-31 | 2021-07-16 | 核工业西南物理研究院 | 一种探针电源中h桥快速线性调节驱动电路 |
CN113189438A (zh) * | 2021-07-02 | 2021-07-30 | 成都康拓兴业科技有限责任公司 | 一种静止变流器测试仪 |
CN113447853A (zh) * | 2021-06-10 | 2021-09-28 | 南京航空航天大学 | 一种电励磁双凸极电机功率变换器开路故障诊断方法 |
CN114019272A (zh) * | 2021-10-18 | 2022-02-08 | 清华大学 | 一种换流器测试电路和测试方法 |
CN114167167A (zh) * | 2021-11-15 | 2022-03-11 | 许继集团有限公司 | 一种模块化多电平换流器短路电流试验装置及试验方法 |
WO2022112273A3 (fr) * | 2020-11-26 | 2022-07-28 | Technische Universität Ilmenau | Circuiterie et procédé de commande d'équipements électriques et/ou de parties de lignes de réseau |
CN114839470A (zh) * | 2022-07-06 | 2022-08-02 | 西安交通大学 | Mmc系统子模块的电容器监测方法、装置、设备和介质 |
Families Citing this family (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN105652117B (zh) * | 2015-12-29 | 2020-10-27 | 国网智能电网研究院 | 一种基于dc/dc变换器的直流电网全功率循环的试验电路 |
CN107070289B (zh) * | 2017-01-03 | 2019-05-24 | 武汉大学 | 一种模块化多电平结构的冲击电压产生装置及其方法 |
CN107966623B (zh) * | 2017-10-25 | 2022-05-31 | 全球能源互联网研究院 | 一种模块化多电平换流器的测试方法、装置及系统 |
CN109787336A (zh) * | 2019-01-23 | 2019-05-21 | 北京平高清大科技发展有限公司 | 一种试验用mmc换流器的充电方法 |
CN109905046A (zh) * | 2019-01-23 | 2019-06-18 | 北京平高清大科技发展有限公司 | 一种mmc换流器的试验电路 |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102253247A (zh) * | 2011-06-22 | 2011-11-23 | 中国电力科学研究院 | 一种可灵活扩展的模块化多电平换流器的通用实验平台 |
CN102353896A (zh) * | 2010-05-28 | 2012-02-15 | 通用电气公司 | 用于多电平转换器的开关装置故障检测系统和方法 |
CN103235219A (zh) * | 2013-04-17 | 2013-08-07 | 华北电力大学 | 一种模块化多电平换流器的子模块故障诊断方法 |
CN103248255A (zh) * | 2013-05-24 | 2013-08-14 | 哈尔滨工业大学 | 三相模块化多电平换流器及其子模块中igbt开路故障检测容错方法 |
WO2013120664A1 (fr) * | 2012-02-14 | 2013-08-22 | Siemens Aktiengesellschaft | Procédé permettant de faire fonctionner un convertisseur de puissance multiniveau modulaire, polyphasé |
Family Cites Families (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN100386959C (zh) * | 2004-12-16 | 2008-05-07 | 西安交通大学 | 五电平高频直流变换装置 |
FR2956266B1 (fr) * | 2010-02-05 | 2012-02-03 | Mge Ups Systems | Dispositif convertisseur et alimentation sans interruption equipee d'un tel dispositif |
-
2014
- 2014-01-03 CN CN201410003017.2A patent/CN104764943B/zh active Active
- 2014-12-15 WO PCT/CN2014/093818 patent/WO2015101164A1/fr active Application Filing
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102353896A (zh) * | 2010-05-28 | 2012-02-15 | 通用电气公司 | 用于多电平转换器的开关装置故障检测系统和方法 |
CN102253247A (zh) * | 2011-06-22 | 2011-11-23 | 中国电力科学研究院 | 一种可灵活扩展的模块化多电平换流器的通用实验平台 |
WO2013120664A1 (fr) * | 2012-02-14 | 2013-08-22 | Siemens Aktiengesellschaft | Procédé permettant de faire fonctionner un convertisseur de puissance multiniveau modulaire, polyphasé |
CN103235219A (zh) * | 2013-04-17 | 2013-08-07 | 华北电力大学 | 一种模块化多电平换流器的子模块故障诊断方法 |
CN103248255A (zh) * | 2013-05-24 | 2013-08-14 | 哈尔滨工业大学 | 三相模块化多电平换流器及其子模块中igbt开路故障检测容错方法 |
Cited By (19)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN109274311A (zh) * | 2018-05-18 | 2019-01-25 | 巨自动化装备(上海)有限公司 | 电机控制器电路 |
CN109274311B (zh) * | 2018-05-18 | 2023-11-21 | 一巨自动化装备(上海)有限公司 | 电机控制器电路 |
CN109302058A (zh) * | 2018-10-11 | 2019-02-01 | 昆明理工大学 | 一种具有类三电平输出的直流—直流模块化多电平变换器及其控制方法 |
CN109856565A (zh) * | 2018-12-27 | 2019-06-07 | 北京清盛电气科技研究院有限公司 | 一种非隔离dc/dc变换器的功率环试验电路及控制方法 |
CN109856565B (zh) * | 2018-12-27 | 2021-04-27 | 北京清盛电气科技研究院有限公司 | 一种非隔离dc/dc变换器的功率环试验电路及控制方法 |
CN110333426A (zh) * | 2019-07-26 | 2019-10-15 | 沈阳工业大学 | 一种模块化多电平储能系统开路故障诊断装置及方法 |
CN113131765A (zh) * | 2019-12-31 | 2021-07-16 | 核工业西南物理研究院 | 一种探针电源中h桥快速线性调节驱动电路 |
CN112134455A (zh) * | 2020-09-25 | 2020-12-25 | 浙江大学 | 具有自均压能力的多模块串联型变换器自供电电路及其控制方法 |
WO2022112273A3 (fr) * | 2020-11-26 | 2022-07-28 | Technische Universität Ilmenau | Circuiterie et procédé de commande d'équipements électriques et/ou de parties de lignes de réseau |
CN112564499A (zh) * | 2020-12-04 | 2021-03-26 | 河海大学 | 模块化多电平直流变压器高压侧逆变器参数设计方法 |
CN113092963A (zh) * | 2021-04-07 | 2021-07-09 | 华北电力大学 | 一种桥臂电抗器交直流叠加温升试验拓扑与装置 |
CN113447853A (zh) * | 2021-06-10 | 2021-09-28 | 南京航空航天大学 | 一种电励磁双凸极电机功率变换器开路故障诊断方法 |
CN113447853B (zh) * | 2021-06-10 | 2021-12-14 | 南京航空航天大学 | 一种电励磁双凸极电机功率变换器开路故障诊断方法 |
CN113189438A (zh) * | 2021-07-02 | 2021-07-30 | 成都康拓兴业科技有限责任公司 | 一种静止变流器测试仪 |
CN114019272A (zh) * | 2021-10-18 | 2022-02-08 | 清华大学 | 一种换流器测试电路和测试方法 |
CN114167167A (zh) * | 2021-11-15 | 2022-03-11 | 许继集团有限公司 | 一种模块化多电平换流器短路电流试验装置及试验方法 |
CN114167167B (zh) * | 2021-11-15 | 2024-02-09 | 许继集团有限公司 | 一种模块化多电平换流器短路电流试验装置及试验方法 |
CN114839470A (zh) * | 2022-07-06 | 2022-08-02 | 西安交通大学 | Mmc系统子模块的电容器监测方法、装置、设备和介质 |
CN114839470B (zh) * | 2022-07-06 | 2022-10-11 | 西安交通大学 | Mmc系统子模块的电容器监测方法、装置、设备和介质 |
Also Published As
Publication number | Publication date |
---|---|
CN104764943A (zh) | 2015-07-08 |
CN104764943B (zh) | 2018-01-19 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2015101164A1 (fr) | Circuit de test d'onduleur monophasé pour convertisseur multiniveau modulaire et procédé de test associé | |
Deng et al. | Voltage-balancing method for modular multilevel converters under phase-shifted carrier-based pulsewidth modulation | |
US8547718B2 (en) | Power converter apparatus | |
US9800167B2 (en) | Multi-phase AC/AC step-down converter for distribution systems | |
JP5449893B2 (ja) | 電力変換装置 | |
JP6192114B2 (ja) | 変換器の試験方法及び試験装置 | |
US20180212533A1 (en) | A multilevel converter with reduced ac fault handling rating | |
US9479076B2 (en) | Converter cell with reduced power losses, high voltage multilevel converter and associated method | |
KR20120025531A (ko) | 스위칭 셀을 테스팅하기 위한 장치 | |
US20180241321A1 (en) | Voltage source converter and control thereof | |
EP3609069A1 (fr) | Système de convertisseur | |
Rech | Modified five-level ANPC inverter with output voltage boosting capability | |
CN108323224A (zh) | 电力变换装置及其控制方法 | |
Sim et al. | A detection method for an open-switch fault in cascaded H-bridge multilevel inverters | |
CN105897004B (zh) | 一种多电平直流母线自平衡的电力电子变压器拓扑结构 | |
Bordignon et al. | Modular multilevel converter in HVDC systems under fault conditions | |
Lee et al. | Fault diagnosis for a sparse matrix converter using current patters | |
Li et al. | Reliability comparison for 3L-NPC and 3L-ANPC converters for drives application | |
Zhang et al. | Analysis and control of MMC-HVDC under unbalanced voltage conditions | |
Zhang et al. | DC-link capacitor voltage balancing for a five-level diode-clamped active power filter using redundant vectors | |
Tran et al. | Fault tolerant strategy for inverter stage in indirect matrix converter | |
CN105515427B (zh) | 基于不等式约束的无辅助电容式全桥mmc自均压拓扑 | |
JP2018093662A (ja) | 電力変換装置 | |
US9614429B2 (en) | System for converting AC electrical power to DC electrical power and methods | |
CN105450069B (zh) | 基于等式约束的辅助电容集中式全桥mmc自均压拓扑 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 14877449 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 14877449 Country of ref document: EP Kind code of ref document: A1 |