CN107070289B - 一种模块化多电平结构的冲击电压产生装置及其方法 - Google Patents

一种模块化多电平结构的冲击电压产生装置及其方法 Download PDF

Info

Publication number
CN107070289B
CN107070289B CN201710002223.5A CN201710002223A CN107070289B CN 107070289 B CN107070289 B CN 107070289B CN 201710002223 A CN201710002223 A CN 201710002223A CN 107070289 B CN107070289 B CN 107070289B
Authority
CN
China
Prior art keywords
voltage
bridge arm
half bridge
surge voltage
modular multilevel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201710002223.5A
Other languages
English (en)
Other versions
CN107070289A (zh
Inventor
陈柏超
薛钢
杨雨桐
田翠华
费雯丽
袁佳歆
郭俊华
周宇雄
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Wuhan University WHU
Original Assignee
Wuhan University WHU
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Wuhan University WHU filed Critical Wuhan University WHU
Priority to CN201710002223.5A priority Critical patent/CN107070289B/zh
Publication of CN107070289A publication Critical patent/CN107070289A/zh
Application granted granted Critical
Publication of CN107070289B publication Critical patent/CN107070289B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03KPULSE TECHNIQUE
    • H03K3/00Circuits for generating electric pulses; Monostable, bistable or multistable circuits
    • H03K3/02Generators characterised by the type of circuit or by the means used for producing pulses
    • H03K3/53Generators characterised by the type of circuit or by the means used for producing pulses by the use of an energy-accumulating element discharged through the load by a switching device controlled by an external signal and not incorporating positive feedback
    • H03K3/57Generators characterised by the type of circuit or by the means used for producing pulses by the use of an energy-accumulating element discharged through the load by a switching device controlled by an external signal and not incorporating positive feedback the switching device being a semiconductor device

Landscapes

  • Inverter Devices (AREA)

Abstract

本发明涉及电力电子技术领域,具体涉及一种模块化多电平结构的冲击电压产生装置及其方法,装置包括直流电源、模块化多电平变换器和被试品,模块化多电平变换器与直流电源连接,被试品连接在模块化多电平变换器上。冲击电压产生方法,包括以下步骤:步骤1、充电,产生冲击电压之前,在带被试品的情况下,对子模块电容进行充电;步骤2、冲击电压的产生,将上、下半桥臂的调制信号分别与阶梯波进行比较,得到各个子模块的控制信号,通过控制,产生所需的冲击电压。该装置采用全控型开关器件,运用模块化结构,在产生冲击电压的过程中,具有良好的控制性能,可以产生任意波形的冲击电压。

Description

一种模块化多电平结构的冲击电压产生装置及其方法
技术领域
本发明属于电力电子技术领域,尤其涉及一种模块化多电平结构的冲击电压产生装置及其方法。
背景技术
试验技术对自然科学极其重要。雷电以及操作过电压等现象对电网的运行有很大的影响。为了维持电网安全运行,电网中各设备在冲击电压下应该能够承受相应的扰动。然而,当前关于介质击穿的一些机理还不是很清楚,为了研究各种介质和器件在冲击电压下的物理现象,很多时候还是要靠实验来解决,此时冲击电压发生器就变的尤为重要。
冲击电压发生器是一种产生脉冲波的高压发生装置,原来用于研究电力设备遭受大气过电压(雷击)时的绝缘性能,后来被用于研究电力设备遭受操作过电压时的绝缘性能。要求其不仅能产生雷电波形,还要能产生操作过电压波形。传统的冲击电压发生器结构是通过交流变压器升压后,通过电容并联充电,球隙触发电容串联放电,并且通过计算来得到波前电阻和波尾电阻的取值,进而控制波形,可控性较差。
发明内容
本发明的目的之一是提供一种采用全控型开关器件,运用模块化结构,产生冲击电压的过程中,具有良好的控制性能,能够灵活地产生任意波形的冲击电压的冲击电压产生装置。
本发明的目的之二是提供一种利用模块化多电平结构的冲击电压产生装置产生冲击电压的方法。
为实现上述第一个目的,本发明采用的技术方案是:一种模块化多电平结构的冲击电压产生装置,包括直流电源、模块化多电平变换器和被试品,模块化多电平变换器与直流电源连接,被试品连接在模块化多电平变换器上。
在上述的模块化多电平结构的冲击电压产生装置中,直流电源为高压直流电源,高压直流电源为串级倍压整流电路或者绝缘芯变压器倍压整流电路。
在上述的模块化多电平结构的冲击电压产生装置中,模块化多电平变换器为单相模块化多电平变换器,单相模块化多电平变换器包括上半桥臂和下半桥臂,上半桥臂和下半桥臂均由2m个子模块级联而成,其中,m为正整数;在上半桥臂回路中串联第一限流电阻并配有第一旁路开关,下半桥臂回路中串联第二限流电阻,并配有第二旁路开关;单相模块化多电平变换器的直流侧分别对上、下半桥臂回路接入第一稳压电容、第二稳压电容,且将其串联后再并联接入直流电源;上、下半桥臂的连接点与直流侧第一稳压电容和第二稳压电容的中点为模块化多电平变换器的输出端。
在上述的模块化多电平结构的冲击电压产生装置中,被试品为电容器、变压器、电抗器、互感器、HVDC阀、电力电缆、高压绝缘子或套管,被试品连接在模块化多电平变换器的输出端。
在上述的模块化多电平结构的冲击电压产生装置中,子模块包括两个带有反并联二极管的全控型器件串联之后再与电容并联;全控型器件采用MOSFET或IGBT,全控型器件材料为Si、SiC或GaN;通过FPGA控制子模块中全控型器件来控制电容的接入或旁路;在产生冲击电压时,每个时刻上、下半桥臂共有n个子模块电容串联接入电路,n=2m,m为正整数;n个电容电压之和为直流侧第一稳压电容和第二稳压电容电压之和。
为实现上述第二个目的,本发明采用的技术方案是:一种模块化多电平结构的冲击电压产生方法,包括以下步骤:
步骤1、充电,产生冲击电压之前,在带被试品的情况下,对子模块电容进行充电;
步骤2、冲击电压的产生,将上、下半桥臂的调制信号分别与阶梯波进行比较,得到各个子模块的控制信号,通过控制,产生所需的冲击电压。
在上述的模块化多电平结构的冲击电压产生方法中,步骤1的实现包括以下步骤:
步骤11、保证充电过程中被试品两端电压为零,在充电过程中,模块化多电平变换器上半桥臂和下半桥臂投入电路的子模块电容数量时刻保持相同,并且上、下半桥臂分别采用相同的充电策略同时进行充电;
步骤12、为了限制冲击电流,在充电时,将旁路开关断开,限流电阻接入电路;
步骤13、对子模块电容进行闭锁充电,将所有子模块的全控型器件关断,通过全控型器件两端并联的反并联二极管构成充电回路,将子模块电容电压充电到正常工作电压的一半;
步骤14、将一半的子模块电容进行旁路,对另一半子模块电容充电至正常工作电压;
步骤15、将充电完成的一半子模块电容进行旁路,对另一半子模块电容进行充电至正常工作电压;
步骤16、充电完毕,再将旁路开关闭合,限流电阻旁路。
在上述的模块化多电平结构的冲击电压产生方法中,步骤2的实现包括以下步骤:
步骤21、模块化多电平变换器的上半桥臂的调制信号为m-f(t),下半桥臂的调制信号为m+f(t); m为上半桥臂或下半桥臂子模块数量的一半,f(t)为将目标冲击电压波形的函数相对于子模块电容电压进行归一化处理之后得到的函数;
步骤22、将上、下半桥臂的调制信号分别与相应的阶梯电压波形进行比较,得到上、下半桥臂各个子模块的控制信号,产生目标冲击电压。
本发明的有益效果是:
1、采用模块化多电平结构的设计,其模块化的设计使得该冲击电压产生装置的设计、组装、维修、扩容等十分得方便、灵活。
2、具有控制灵活的优势,通过控制模块化多电平变换器,能够灵活地产生任意波形的冲击电压。
附图说明
图1为本发明一个实施例的冲击电压产生装置拓扑结构示意图;其中,Cs1第一稳压电容,Cs2第二稳压电容,S1第一旁路开关,Rd第一限流电阻,S2第二旁路开关,Rd’第二限流电阻; 1-直流电源,2-模块化多电平变换器及被试品;
图2为本发明一个实施例直流电源的一种拓扑结构示意图;
图3为本发明一个实施例模块化多电平变换器的拓扑结构示意图;
图4为本发明一个实施例子模块的一种拓扑结构示意图。
具体实施方式
下面结合附图对本发明的实施方式进行详细描述。
所述实施例的示例在附图中示出,其中自始至终相同或类似的标号表示相同或类似的元件或具有相同或类似功能的元件。下面通过参考附图描述的实施例是示例性的,仅用于解释本发明,而不能解释为对本发明的限制。
下文的公开提供了许多不同的实施例或例子用来实现本发明的不同结构。为了简化本发明的公开,下文中对特定例子的部件和设置进行描述。它们仅仅为示例,并且目的不在于限制本发明。此外,本发明可以在不同例子中重复参考数字和/或字母。这种重复是为了简化和清楚的目的,其本身不指示所讨论各种实施例和/或设置之间的关系。此外,本发明提供了各种特定的工艺和材料的例子,但是本领域普通技术人员可以意识到其它工艺的可应用性和/或其他材料的使用。另外,以下描述的第一特征在第二特征之“上”的结构可以包括第一和第二特征形成为直接接触的实施例,也可以包括另外的特征形成在第一和第二特征之间的实施例,这样第一和第二特征可能不是直接接触。
本发明的描述中,需要说明的是,除非另有规定和限定,术语“相连”“连接"应做广义理解,例如,可以是机械连接或电连接,也可以是两个元件内部的连通,可以是直接相连,也可以通过中间媒介间接相连,对于相关领域的普通技术人员而言,可以根据具体情况理解上述术语的具体含义。
本实施例采用技术方案如下:一种模块化多电平结构的冲击电压产生装置,包括直流电源、模块化多电平变换器和被试品,模块化多电平变换器与直流电源连接,被试品连接在模块化多电平变换器上。
进一步,直流电源为高压直流电源,高压直流电源为串级倍压整流电路或者绝缘芯变压器倍压整流电路。
进一步,模块化多电平变换器为单相模块化多电平变换器,单相模块化多电平变换器包括上半桥臂和下半桥臂,上半桥臂和下半桥臂均由2m个子模块级联而成,其中,m为正整数;在上半桥臂回路中串联第一限流电阻并配有第一旁路开关,下半桥臂回路中串联第二限流电阻,并配有第二旁路开关;单相模块化多电平变换器的直流侧分别对上、下半桥臂回路接入第一稳压电容、第二稳压电容,且将其串联后再并联接入直流电源;上、下半桥臂的连接点与直流侧第一稳压电容和第二稳压电容的中点为模块化多电平变换器的输出端。
进一步,被试品为电容器、变压器、电抗器、互感器、HVDC阀、电力电缆、高压绝缘子或套管,被试品连接在模块化多电平变换器的输出端。
更进一步,子模块包括两个带有反并联二极管的全控型器件串联之后再与电容并联;全控型器件采用MOSFET或IGBT,全控型器件材料为Si、SiC或GaN;通过FPGA控制子模块中全控型器件来控制电容的接入或旁路;在产生冲击电压时,每个时刻上、下半桥臂共有n个子模块电容串联接入电路,n=2m,m为正整数;n个电容电压之和为直流侧第一稳压电容和第二稳压电容电压之和。
一种模块化多电平结构的冲击电压产生方法,包括以下步骤:
步骤1、充电,产生冲击电压之前,在带被试品的情况下,对子模块电容进行充电;
步骤2、冲击电压的产生,将上、下半桥臂的调制信号分别与阶梯波进行比较,得到各个子模块的控制信号,通过控制,产生所需的冲击电压。
进一步,步骤1的实现包括以下步骤:
步骤11、保证充电过程中被试品两端电压为零,在充电过程中,模块化多电平变换器上半桥臂和下半桥臂投入电路的子模块电容数量时刻保持相同,并且上、下半桥臂分别采用相同的充电策略同时进行充电;
步骤12、为了限制冲击电流,在充电时,将旁路开关断开,限流电阻接入电路;
步骤13、对子模块电容进行闭锁充电,将所有子模块的全控型器件关断,通过全控型器件两端并联的反并联二极管构成充电回路,将子模块电容电压充电到正常工作电压的一半;
步骤14、将一半的子模块电容进行旁路,对另一半子模块电容充电至正常工作电压;
步骤15、将充电完成的一半子模块电容进行旁路,对另一半子模块电容进行充电至正常工作电压;
步骤16、充电完毕,再将旁路开关闭合,限流电阻旁路。
进一步,步骤2的实现包括以下步骤:
步骤21、模块化多电平变换器的上半桥臂的调制信号为m-f(t),下半桥臂的调制信号为m+f(t); m为上半桥臂或下半桥臂子模块数量的一半,f(t)为将目标冲击电压波形的函数相对于子模块电容电压进行归一化处理之后得到的函数;
步骤22、将上、下半桥臂的调制信号分别与相应的阶梯电压波形进行比较,得到上、下半桥臂各个子模块的控制信号,产生目标冲击电压。
具体实施时,如图1所示,一种模块化多电平结构的冲击电压产生装置,采用全控型电力电子器件,基于模块化多电平结构,包括:直流电源,模块化多电平变换器和被试品。模块化多电平变换器直流侧并联有第一稳压电容Cs1、第二稳压电容Cs2;为了限制冲击电流,在上、下半桥臂回路中各串联了第一限流电阻Rd、第二限流电阻Rd’;并配有第一旁路开关S1、第二旁路开关S2;在充电时,旁路开关断开,限流电阻接入电路,起到限流的作用;充电完毕后,旁路开关闭合,将限流电阻旁路。
直流电源为高压直流电源,高压直流电源可以通过串级倍压整流电路或者绝缘芯变压器倍压整流电路实现;所图2所示 ,为一个串级倍压整流电路,该串级倍压整流电路的输出端与模块化多电平变换器的直流侧第一稳压电容Cs1、第二稳压电容Cs2串联后的电路相并联。
如图3所示,模块化多电平变换器,为一个单相模块化多电平变换器,单相模块化多电平变换器分成上半桥臂和下半桥臂,上半桥臂和下半桥臂均由2m个子模块级联而成,m为正整数;上、下半桥臂的连接点与直流侧第一稳压电容Cs1、第二稳压电容Cs2的中点构成模块化多电平变换器的输出端。被试品连接在直流侧两个稳压电容的中点和上、下半桥臂连接处之间,即模块化多电平变换器的输出端。
具体到模块化多电平变换器的子模块,如图4所示,是由两个带有反并联二极管的全控型器件串联之后再与电容并联组成;全控型器件可以是MOSFET、IGBT等,器件材料可以为Si、SiC或GaN材料等。
可以通过FPGA来控制子模块中的电力电子器件,从而控制子模块电容的接入或旁路,产生冲击电压时,每个时刻上、下半桥臂共有n(n=2m)个子模块电容串联接入电路,而这n个电容电压的和即为直流侧第一稳压电容Cs1、第二稳压电容Cs2电压之和。
被试品,可以为电容器、变压器、电抗器、互感器及其它高压电器、 HVDC阀、电力电缆、各类高压绝缘子、套管等等,连接在模块化多电平变换器的输出端。
在具体实施时,一种利用上述的模块化多电平结构的冲击电压产生装置产生冲击电压的方法,包括:
(1)充电步骤,产生冲击电压波形之前,在带被试品的情况下,对子模块电容进行充电;
(2)冲击电压产生步骤,将上、下半桥臂的调制信号分别与阶梯波进行比较,得到各个子模块的控制信号,从而产生所需的冲击电压。
具体来说,在充电步骤(1)中,为保证在充电过程中,被试品两端电压为零,充电过程中,模块化多电平变换器上半桥臂和下半桥臂投入电路的子模块电容数量时刻保持相同,并且上、下半桥臂分别采用相同的充电策略同时进行充电。
在上述充电步骤(1)中,首先对子模块电容进行闭锁充电,即所有子模块的全控型器件关断,通过全控型器件两端并联的反并联二极管构成充电回路,将子模块电容电压充电到正常工作电压的一半;然后,将一半的子模块电容进行旁路,对另一半子模块电容充电至正常工作电压;随后,将充电完成的一半子模块电容进行旁路,对另一半子模块电容进行充电至正常工作电压。
在充电过程中,为了限制冲击电流,在上、下半桥臂回路中各串联了第一限流电阻Rd、第二限流电阻Rd’,并配有第一旁路开关S1、第二旁路开关S2;在充电时,第一旁路开关S1、第二旁路开关S2断开,第一限流电阻Rd、第二限流电阻Rd’接入电路,起到限流的作用;充电完毕后,第一旁路开关S1、第二旁路开关S2闭合,将第一限流电阻Rd、第二限流电阻Rd’旁路。
在冲击电压产生步骤(2)中,模块化多电平变换器的上半桥臂的调制信号为m-f(t),下半桥臂的调制信号为m+f(t);其中m为上半桥臂或下半桥臂子模块数量的一半,f(t)为将目标冲击电压波形的函数相对于子模块电容电压进行归一化处理之后得到的函数;将上、下半桥臂的调制信号分别与相应的阶梯电压波形进行比较,得到上、下半桥臂各个子模块的控制信号,从而产生目标冲击电压波形。
本实施例采用模块化结构,具有诸多优点,通过灵活的调制以及控制,能够输出雷电冲击波形,操作冲击波形甚至是任意波形的冲击电压。
应当理解的是,本说明书未详细阐述的部分均属于现有技术。
虽然以上结合附图描述了本发明的具体实施方式,但是本领域普通技术人员应当理解,这些仅是举例说明,可以对这些实施方式做出多种变形或修改,而不背离本发明的原理和实质。本发明的范围仅由所附权利要求书限定。

Claims (1)

1.一种模块化多电平结构的冲击电压产生方法,其特征是,包括以下步骤:
步骤1、充电,产生冲击电压之前,在带被试品的情况下,对子模块电容进行充电;
步骤2、冲击电压的产生,将上、下半桥臂的调制信号分别与阶梯波进行比较,得到各个子模块的控制信号,通过控制,产生所需的冲击电压;
步骤1的实现包括以下步骤:
步骤11、保证充电过程中被试品两端电压为零,在充电过程中,模块化多电平变换器上半桥臂和下半桥臂投入电路的子模块电容数量时刻保持相同,并且上、下半桥臂分别采用相同的充电策略同时进行充电;
步骤12、为了限制冲击电流,在充电时,将旁路开关断开,限流电阻接入电路;
步骤13、对子模块电容进行闭锁充电,将所有子模块的全控型器件关断,通过全控型器件两端并联的反并联二极管构成充电回路,将子模块电容电压充电到正常工作电压的一半;
步骤14、将一半的子模块电容进行旁路,对另一半子模块电容充电至正常工作电压;
步骤15、将充电完成的一半子模块电容进行旁路,对另一半子模块电容进行充电至正常工作电压;
步骤16、充电完毕,再将旁路开关闭合,限流电阻旁路;
步骤2的实现包括以下步骤:
步骤21、模块化多电平变换器的上半桥臂的调制信号为m-f(t),下半桥臂的调制信号为m+f(t);m为上半桥臂或下半桥臂子模块数量的一半,f(t)为将目标冲击电压波形的函数相对于子模块电容电压进行归一化处理之后得到的函数;
步骤22、将上、下半桥臂的调制信号分别与相应的阶梯电压波形进行比较,得到上、下半桥臂各个子模块的控制信号,产生目标冲击电压。
CN201710002223.5A 2017-01-03 2017-01-03 一种模块化多电平结构的冲击电压产生装置及其方法 Active CN107070289B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201710002223.5A CN107070289B (zh) 2017-01-03 2017-01-03 一种模块化多电平结构的冲击电压产生装置及其方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201710002223.5A CN107070289B (zh) 2017-01-03 2017-01-03 一种模块化多电平结构的冲击电压产生装置及其方法

Publications (2)

Publication Number Publication Date
CN107070289A CN107070289A (zh) 2017-08-18
CN107070289B true CN107070289B (zh) 2019-05-24

Family

ID=59624230

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201710002223.5A Active CN107070289B (zh) 2017-01-03 2017-01-03 一种模块化多电平结构的冲击电压产生装置及其方法

Country Status (1)

Country Link
CN (1) CN107070289B (zh)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109787591B (zh) * 2018-12-06 2020-06-26 西安交通大学 基于气体密闭环境具有低等效电感的强脉冲电流发生装置
CN109743042B (zh) * 2018-12-06 2020-06-26 西安交通大学 基于真空密闭环境具有低等效电感的强脉冲电流发生装置
WO2021013229A1 (zh) * 2019-07-23 2021-01-28 上海交通大学 级联型变流器多子模块的测试电路、系统及其控制方法
CN117554770B (zh) * 2024-01-11 2024-04-02 中国电力科学研究院有限公司 一种电力电子化雷电脉冲波形产生方法、系统及存储介质

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102435800A (zh) * 2011-11-07 2012-05-02 四川中物海通特种电源有限责任公司 一种高压脉冲发生器
CN102832801A (zh) * 2012-09-19 2012-12-19 山东大学 一种模块化多电平变换器电容分组预充电的系统及方法
CN104764943A (zh) * 2014-01-03 2015-07-08 国家电网公司 一种模块化多电平变换器单相逆变试验电路及其试验方法
CN204597805U (zh) * 2015-04-30 2015-08-26 华南理工大学 一种用于模块组合多电平变换器的子模块电路

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102435800A (zh) * 2011-11-07 2012-05-02 四川中物海通特种电源有限责任公司 一种高压脉冲发生器
CN102832801A (zh) * 2012-09-19 2012-12-19 山东大学 一种模块化多电平变换器电容分组预充电的系统及方法
CN104764943A (zh) * 2014-01-03 2015-07-08 国家电网公司 一种模块化多电平变换器单相逆变试验电路及其试验方法
CN204597805U (zh) * 2015-04-30 2015-08-26 华南理工大学 一种用于模块组合多电平变换器的子模块电路

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
模块化多电平变换器全电平产生原理及电容均压策略;陈耀军等;《电力系统自动化》;20151210;第126-130页

Also Published As

Publication number Publication date
CN107070289A (zh) 2017-08-18

Similar Documents

Publication Publication Date Title
CN107070289B (zh) 一种模块化多电平结构的冲击电压产生装置及其方法
Jovcic et al. Lcl dc/dc converter for dc grids
CN202230181U (zh) 柔性直流输电mmc阀稳态运行试验的功率环试验装置
CN102323545B (zh) 柔性直流输电mmc阀稳态运行试验的功率环试验方法
Farr et al. The alternate arm converter (AAC)—“Short-Overlap” mode operation—Analysis and design parameter selection
Li et al. Experiment on DC-fault ride through of MMC using a half-voltage clamp submodule
CN105406748B (zh) 一种抑制模块化多电平变流器输出电流谐波的控制方法
Amankwah et al. Experimental validation of a parallel hybrid modular multilevel voltage source converter for HVDC transmission
CN107086605A (zh) 一种电网零起升压的黑启动方法
Wu et al. Technical assessment on self-charging mechanical HVDC circuit breaker
CN116500430A (zh) 高压直流断路器分断支路小电流开断试验回路及方法
CN103825483B (zh) SiC功率开关器件与硅IGBT混合式单相高压变换器
Li et al. Improvement and dynamic simulation test of the power electronic device applied to phase sequence exchange technology
Liu et al. A study on VSC-HVDC based black start method
CN206442315U (zh) 浪涌电流发生装置
Hussain et al. Investigations on solar PV grid interfaced power generating system using two-level twelve-pulse double bridge converter
CN111722099B (zh) 一种柔性直流换流阀短路电流试验系统
CN104866656B (zh) 一种全桥结构模块化多电平换流器桥臂等效电路
CN105162339B (zh) Z源矩阵整流器及其矢量调制方法
Wu et al. Research on a novel bidirectional direct current circuit breaker
Lin et al. Step-up unidirectional DC-DC autotransformer for HVDC applications
CN111220861A (zh) 一种用于mmc子模块电容器试验的大电流发生电路
CN105021984B (zh) 直流换流阀故障电流试验装置及其试验方法
Rothmund 10 KV SiC-Based Medium-Voltage Solid-State Transformer Concepts for 400V DC Distribution Systems
CN110995018B (zh) 基于双向h桥不同布置的拓扑结构

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant