CN105515427B - 基于不等式约束的无辅助电容式全桥mmc自均压拓扑 - Google Patents
基于不等式约束的无辅助电容式全桥mmc自均压拓扑 Download PDFInfo
- Publication number
- CN105515427B CN105515427B CN201610047412.XA CN201610047412A CN105515427B CN 105515427 B CN105515427 B CN 105515427B CN 201610047412 A CN201610047412 A CN 201610047412A CN 105515427 B CN105515427 B CN 105515427B
- Authority
- CN
- China
- Prior art keywords
- bridge
- full
- submodule
- bridge arm
- phases
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
- 239000003990 capacitor Substances 0.000 title claims abstract description 24
- 238000006243 chemical reaction Methods 0.000 claims abstract 2
- 101100163433 Drosophila melanogaster armi gene Proteins 0.000 claims description 7
- 238000000034 method Methods 0.000 claims description 3
- 241000283160 Inia Species 0.000 claims description 2
- 230000005611 electricity Effects 0.000 claims description 2
- 239000000203 mixture Substances 0.000 claims description 2
- 210000000080 chela (arthropods) Anatomy 0.000 claims 2
- 230000008878 coupling Effects 0.000 claims 2
- 238000010168 coupling process Methods 0.000 claims 2
- 238000005859 coupling reaction Methods 0.000 claims 2
- 101100382321 Caenorhabditis elegans cal-1 gene Proteins 0.000 claims 1
- 238000013507 mapping Methods 0.000 abstract 1
- 230000005540 biological transmission Effects 0.000 description 2
- 238000011217 control strategy Methods 0.000 description 1
- 230000007547 defect Effects 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 239000013307 optical fiber Substances 0.000 description 1
- 238000005070 sampling Methods 0.000 description 1
- 239000004065 semiconductor Substances 0.000 description 1
- 239000000725 suspension Substances 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02M—APPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
- H02M7/00—Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
- H02M7/42—Conversion of dc power input into ac power output without possibility of reversal
- H02M7/44—Conversion of dc power input into ac power output without possibility of reversal by static converters
- H02M7/48—Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
- H02M7/483—Converters with outputs that each can have more than two voltages levels
- H02M7/487—Neutral point clamped inverters
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02M—APPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
- H02M1/00—Details of apparatus for conversion
- H02M1/0067—Converter structures employing plural converter units, other than for parallel operation of the units on a single load
- H02M1/0077—Plural converter units whose outputs are connected in series
Landscapes
- Engineering & Computer Science (AREA)
- Power Engineering (AREA)
- Inverter Devices (AREA)
- Power Conversion In General (AREA)
Abstract
本发明提供基于不等式约束的无辅助电容式全桥MMC自均压拓扑。全桥MMC自均压拓扑,由全桥MMC模型和自均压辅助回路联合构建。全桥MMC模型与自均压辅助回路通过辅助回路中的6N个IGBT模块发生电气联系,IGBT模块触发,两者构成基于不等式约束的无辅助电容式全桥MMC自均压拓扑;IGBT模块闭锁,拓扑等效为全桥MMC拓扑。该全桥MMC自均压拓扑,可以箝位直流侧故障,同时不依赖于专门的均压控制,能够在完成交直流能量转换的基础上,自发地实现子模块电容电压的均衡,同时能相应降低子模块触发频率和电容容值,实现全桥MMC的基频调制。
Description
技术领域
本发明涉及柔性输电领域,具体涉及一种基于不等式约束的无辅助电容式全桥MMC自均压拓扑。
技术背景
模块化多电平换流器MMC是未来直流输电技术的发展方向,MMC采用子模块级联的方式构造换流阀,避免了大量器件的直接串联,降低了对器件一致性的要求,同时便于扩容及冗余配置。随着电平数的升高,输出波形接近正弦,能有效避开低电平VSC-HVDC的缺陷。
全桥MMC由全桥子模块组合而成,全桥子模块由四个IGBT模块,一个子模块电容及1个机械开关构成,运行灵活,具有直流故障箝位能力。
与两电平、三电平VSC不同,MMC的直流侧电压并非由一个大电容支撑,而是由一系列相互独立的悬浮子模块电容串联支撑。为了保证交流侧电压输出的波形质量和保证模块中各功率半导体器件承受相同的应力,也为了更好的支撑直流电压,减小相间环流,必须保证子模块电容电压在桥臂功率的周期性流动中处在动态稳定的状态。
基于电容电压排序的排序均压算法是目前解决MMC中子模块电容电压均衡问题的主流思路。首先,排序功能的实现必须依赖电容电压的毫秒级采样,需要大量的传感器以及光纤通道加以配合;其次,当子模块数目增加时,电容电压排序的运算量迅速增大,为控制器的硬件设计带来巨大挑战;此外,排序均压算法的实现对子模块的开断频率有很高的要求,开断频率与均压效果紧密相关,在实践过程中,可能因为均压效果的限制,不得不提高子模块的触发频率,进而带来换流器损耗的增加。
文献“A DC-Link Voltage Self-Balance Method for a Diode-ClampedModular Multilevel Converter With Minimum Number of Voltage Sensors”,提出了一种依靠钳位二极管和变压器来实现MMC子模块电容电压均衡的思路。但该方案在设计上一定程度破坏了子模块的模块化特性,子模块电容能量交换通道也局限在相内,没能充分利用MMC的既有结构,三个变压器的引入在使控制策略复杂化的同时也会带来较大的改造成本。
发明内容
针对上述问题,本发明的目的在于提出一种经济的,不依赖均压算法,同时能相应降低子模块触发频率和电容容值且具有直流故障箝位能力的全桥MMC自均压拓扑。
本发明具体的构成方式如下。
基于不等式约束的无辅助电容式全桥MMC自均压拓扑,包括由A、B、C三相构成的全桥MMC模型,A、B、C三相分别由2N个全桥子模块及2个桥臂电抗器串联而成,包括由6N个IGBT模块以及6N+1个钳位二极管构成的自均压辅助回路。
上述基于不等式约束的无辅助电容式全桥MMC自均压拓扑,全桥MMC模型中,A相上桥臂的第1个子模块,其一个IGBT模块中点向上与直流母线正极相连接,另一个IGBT模块中点向下与A相上桥臂的第2个子模块一个IGBT模块中点相连接;A相上桥臂的第i个子模块,其中i的取值为2~N-1,其一个IGBT模块中点向上与A相上桥臂的第i-1个子模块一个IGBT模块中点相连,另一个IGBT模块中点向下与A相上桥臂的第i+1个子模块一个IGBT模块中点相连;A相上桥臂的第N个子模块,其一个IGBT模块中点向下经两个桥臂电抗器与A相下桥臂的第1个子模块一个IGBT模块中点相连接,另一个IGBT模块中点向上与A相上桥臂的第N-1个子模块一个IGBT模块中点相连接;A相下桥臂的第i个子模块,其中i的取值为2~N-1,其一个IGBT模块中点向上与A相下桥臂的第i-1个子模块一个IGBT模块中点相连,另一个IGBT模块中点向下与A相下桥臂的第i+1个子模块一个IGBT模块中点相连;A相下桥臂的第N个子模块,其一个IGBT模块中点向下与直流母线负极相连接,另一个IGBT模块中点向上与A相下桥臂的第N-1个子模块两个IGBT模块中点相连接。B相和C相上下桥臂子模块的连接方式与A相一致。
上述基于不等式约束的无辅助电容式全桥MMC自均压拓扑,其自均压辅助回路中,钳位二极管,通过IGBT模块连接A相上桥臂中第i个子模块电容与第i+1个子模块电容正极,其中i的取值为1~N-1;通过IGBT模块连接A相上桥臂中第N个子模块电容与A相下桥臂第1个子模块电容正极;通过IGBT模块连接A相下桥臂中第i个子模块电容与A相下桥臂第i+1个子模块电容正极,其中i的取值为1~N-1。钳位二极管,通过IGBT模块连接B相上桥臂中第i个子模块电容与第i+1个子模块电容负极,其中i的取值为1~N-1;通过IGBT模块连接B相上桥臂中第N个子模块电容与B相下桥臂第1个子模块电容负极;通过IGBT模块连接B相下桥臂中第i个子模块电容与B相下桥臂第i+1个子模块电容负极,其中i的取值为1~N-1。同时钳位二极管,通过IGBT模块连接A相上桥臂第一个子模块电容与B相上桥臂第一个子模块电容负极;通过IGBT模块连接A相下桥臂第N个子模块电容与B相下桥臂第N个子模块电容正极。C相中钳位二极管的连接关系与A相或B相相似。
附图说明
下面结合附图对本发明进一步说明。
图1是全桥子模块的结构示意图;
图2是基于不等式约束的无辅助电容式全桥MMC自均压拓扑。
具体实施方式
为进一步阐述本发明的性能与工作原理,一下结合附图对本发明的构成方式与工作原理进行具体说明。但基于该原理的全桥MMC自均压拓扑不限于图2。
参考图2,基于不等式约束的无辅助电容式全桥MMC自均压拓扑,包括由A、B、C三相构成的全桥MMC模型,A、B、C三相每个桥臂分别由N个全桥子模块及1个桥臂电抗器串联而成;包括由6N个IGBT模块以及6N+1个钳位二极管构成的自均压辅助回路。
全桥MMC模型中,A相上桥臂的第1个子模块,其一个IGBT模块中点向上与直流母线正极相连接,另一个IGBT模块中点向下与A相上桥臂的第2个子模块一个IGBT模块中点相连接;A相上桥臂的第i个子模块,其中i的取值为2~N-1,其一个IGBT模块中点向上与A相上桥臂的第i-1个子模块一个IGBT模块中点相连接,另一个IGBT模块中点向下与A相上桥臂的第i+1个子模块一个IGBT模块中点相连接;A相上桥臂的第N个子模块,其一个IGBT模块中点向上与A相上桥臂的第N-1个子模块一个IGBT模块中点相连接,另一个IGBT模块中点向下经两个桥臂电抗器L 0与A相下桥臂的第1个全桥子模块一个IGBT模块中点相连接;A相下桥臂的第i个子模块,其中i的取值为2~N-1,其一个IGBT模块中点向上与A相下桥臂的第i-1个子模块一个IGBT模块中点相连接,另一个IGBT模块中点向下与A相下桥臂的第i+1个子模块一个IGBT模块中点相连接;A相下桥臂的第N个子模块,其一个IGBT模块中点向下与直流母线负极相连接,另一个IGBT模块中点向上与A相下桥臂的第N-1个子模块一个IGBT模块中点相连接。B相和C相上下桥臂子模块的连接方式与A相一致。
自均压辅助回路中,钳位二极管,通过IGBT模块T au_i 、T au_i+1连接A相上桥臂中第i个子模块电容C au_i 与第i+1个子模块电容C au_i+1正极,其中i的取值为1~N-1;通过IGBT模块T au_N 、T al_1连接A相上桥臂中第N个子模块电容C au_N 与A相下桥臂第1个子模块电容C al_1正极;通过IGBT模块T al_i 、T al_i+1连接A相下桥臂中第i个子模块电容C al_i 与A相下桥臂第i+1个子模块电容C al_i+1正极,其中i的取值为1~N-1。钳位二极管,通过IGBT模块T bu_i 、T bl_i+1连接B相上桥臂中第i个子模块电容Cbu_i 与第i+1个子模块电容C bu_i+1负极,其中i的取值为1~N-1;通过IGBT模块T bu_N 、T bl_1连接B相上桥臂中第N个子模块电容C bu_N 与B相下桥臂第1个子模块电容C bl_1负极;通过IGBT模块T bu_i 、T bl_i+1连接B相下桥臂中第i个子模块电容C bl_i 与B相下桥臂第i+1个子模块电容Cbl_i+1负极,其中i的取值为1~N-1。同时钳位二极管,通过IGBT模块T bu_1连接A相上桥臂第一个子模块电容C au_1与B相上桥臂第一个子模块电容C bu_1负极;通过IGBT模块T al_N 连接A相下桥臂第N个子模块电容C al_N 与B相下桥臂第N个子模块电容Cbl_N 正极。C相钳位二极管的连接关系与A相一致。
正常情况下,自均压辅助回路中6N个IGBT模块T au_i 、T al_i 、T bu_i、T bl_i 、T cu_i 、T cl_i 常闭,其中i的取值为1~N,A相上桥臂第i个子模块电容C au_i 旁路时,其中i的取值为2~N,子模块电容C au_i 与子模块电容C au_i-1通过钳位二极管并联;A相下桥臂第一个子模块电容C al_1旁路时,子模块电容C al_1通过钳位二极管、两个桥臂电抗器L 0与子模块电容C au_N 并联;A相下桥臂第i个子模块电容C al_i 旁路时,其中i的取值为2~N,子模块电容C al_i 与子模块电容C al_i-1通过钳位二极管并联。
正常情况下,自均压辅助回路中6N个IGBT模块T au_i 、T al_i 、T bu_i、T bl_i 、T cu_i 、T cl_i 常闭,其中i的取值为1~N,B相上桥臂第i个子模块电容Cbu_i 旁路时,其中i的取值为1~N-1,子模块电容C bu_i 与子模块电容C bu_i+1通过钳位二极管并联;B相上桥臂第N个子模块电容C bu_N 旁路时,子模块电容C bu_N 通过钳位二极管、两个桥臂电抗器L 0与子模块电容C bl_1并联;B相下桥臂第i个子模块电容C bl_i 旁路时,其中i的取值为1~N-1,子模块电容C bl_i 与子模块电容C bl_i+1通过钳位二极管并联。
在直交流能量转换的过程中,各个子模块交替投入、旁路,A相上下桥臂子模块电容电压在钳位二极管的作用下,满足下列约束:
B相上下桥臂子模块电容电压在钳位二极管的作用下,满足下列约束:
与此同时,A相上桥臂第1个子模块电容C au_1投入时,子模块电容C au_1与子模块电容C bu_1通过钳位二极管并联;B相下桥臂第N个子模块电容C bl_N 投入时,子模块电容C al_N 与子模块电容C bl_N 通过钳位二极管并联,因而存在下面的不等式约束:
所以可得:
C、B相间的约束条件与A、B相间的约束条件一致。
由上述具体说明可知,该全桥MMC拓扑具备子模块电容电压自均衡能力。
最后应当说明的是:所描述的实施例仅是本申请一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。
Claims (2)
1.基于不等式约束的无辅助电容式全桥MMC自均压拓扑,其特征在于:包括由A、B、C三相构成的全桥MMC模型,A、B、C三相分别由2N个全桥子模块,2个桥臂电抗器串联而成;包括由6N个IGBT模块,6N+1个钳位二极管构成的自均压辅助回路;其中全桥MMC模型中,A相上桥臂的第1个全桥子模块,其一桥臂两个IGBT的联接点与直流母线正极相连接,另一桥臂两个IGBT的联接点与A相上桥臂的第2个全桥子模块一桥臂两个IGBT的联接点相连接;A相上桥臂的第i个全桥子模块,其中i的取值为2~N-1,其一桥臂两个IGBT的联接点与A相上桥臂的第i-1个全桥子模块一桥臂两个IGBT的联接点相连接,另一桥臂两个IGBT的联接点与A相上桥臂的第i+1个全桥子模块一桥臂两个IGBT的联接点相连接;A相上桥臂的第N个全桥子模块,其一桥臂两个IGBT的联接点与A相上桥臂的第N-1个全桥子模块一桥臂两个IGBT的联接点相连接,另一桥臂两个IGBT的联接点经两个桥臂电抗器L 0与A相下桥臂的第1个全桥子模块一桥臂两个IGBT的联接点相连接;A相下桥臂的第i个全桥子模块,其中i的取值为2~N-1,其一桥臂两个IGBT的联接点与A相下桥臂的第i-1个全桥子模块一桥臂两个IGBT的联接点相连接,另一桥臂两个IGBT的联接点与A相下桥臂的第i+1个全桥子模块一桥臂两个IGBT的联接点相连接;A相下桥臂的第N个全桥子模块,其一桥臂两个IGBT的联接点与直流母线负极相连接,另一桥臂两个IGBT的联接点与A相下桥臂的第N-1个全桥子模块一桥臂两个IGBT的联接点相连接;B相和C相上下桥臂子模块的连接方式与A相一致;在A、B、C相上下桥臂的第i个全桥子模块输出端口间分别并联有机械开关K au_i ,K al_i ,K bu_i ,K bl_i ,K cu_i ,K cl_i ,其中i的取值为1~N;自均压辅助回路中,钳位二极管D au_i 的负极通过IGBT模块T au_i 连接A相上桥臂中第i个全桥子模块电容C au_i 的正极,钳位二极管D au_i 的正极通过IGBT模块T au_i+1连接A相上桥臂中第i+1个全桥子模块电容C au_i+1正极,其中T au_i 漏极连接C au_i 正极,T au_i 源极连接D au_i 负极,T au_i+1漏极连接C au_i+1正极,T au_i+1源极连接D au_i 正极,i的取值为1~N-1;钳位二极管D au_N 的负极通过IGBT模块T au_N 连接A相上桥臂中第N个全桥子模块电容C au_N 的正极,钳位二极管D au_N 的正极通过IGBT模块T al_1连接A相下桥臂第1个全桥子模块电容C al_1正极,其中T au_N 漏极连接C au_N 正极,T au_N 源极连接D au_N 负极,T al_1漏极连接C al_1正极,T al_1源极连接D au_N 正极;钳位二极管D al_i 的负极通过IGBT模块Tal_i 连接A相下桥臂中第i个全桥子模块电容C al_i 的正极,钳位二极管D al_i 的正极通过IGBT模块T al_i+1连接A相下桥臂第i+1个全桥子模块电容C al_i+1正极,其中Tal_i 漏极连接C al_i 正极,Tal_i 源极连接D al_i 负极,T al_i+1漏极连接C al_i+1正极,T al_i+1源极连接D al_i 正极,i的取值为1~N-1;钳位二极管D al_N 负极通过IGBT模块T al_N 连接A相下桥臂中第N个全桥子模块电容C al_N 正极,钳位二极管D al_N 正极连接B相下桥臂中第N个全桥子模块电容C bl_N 正极,其中T al_N 漏极连接C al_N 正极,T al_N 源极连接D al_N 负极;钳位二极管D bu_0的正极通过IGBT模块T bu_1连接B相上桥臂中第1个全桥子模块电容C bu_1负极,钳位二极管D bu_0的负极连接A相上桥臂中第1个全桥子模块电容C au_1负极,D bu_1负极连接C相上桥臂中第1个全桥子模块电容C cu_1负极,D bu_1正极连接IGBT模块T bu_1的源极,其中T bu_1漏极连接C bu_1负极,T bu_1源极连接D bu_0正极;钳位二极管D bu_ i+1负极通过IGBT模块T bu_i 连接B相上桥臂中第i个全桥子模块电容C bu_i 负极,钳位二极管D bu_ i+1正极通过IGBT模块T bu_i+1连接B相上桥臂中第i+1个全桥子模块电容C bu_i+1负极,其中T bu_i 漏极连接C bu_i 负极,T bu_i 源极连接D bu_ i+1负极, T bu_i+1漏极连接C bu_i+1负极,T bu_i+1源极连接D bu_ i+1正极,i的取值为1~N-1;钳位二极管D bl_1负极通过IGBT模块T bu_N 连接B相上桥臂中第N个全桥子模块电容C bu_N 负极,钳位二极管D bl_1正极通过IGBT模块T bl_1连接B相下桥臂第1个全桥子模块电容C bl_1负极,其中T bu_N 漏极连接C bu_N 负极,T bu_N 源极连接D bl_1负极,T bl_1漏极连接C bl_1负极,T bl_1源极连接D bl_1正极;钳位二极管D bl_i+1负极通过IGBT模块T bl_i 连接B相下桥臂中第i个全桥子模块电容C bl_i 负极,钳位二极管D bl_i+1正极通过IGBT模块T bl_i+1连接B相下桥臂第i+1个全桥子模块电容C bl_i+1负极,其中T bl_i 漏极连接C bl_i 负极,T bl_i 源极连接D bl_i+1负极,T bl_i+1漏极连接C bl_i+1负极,T bl_i+1源极连接D bl_i+1正极,i的取值为1~N-1;C相上下桥臂中子模块间钳位二极管的连接方式与A相一致,此外,钳位二极管D cl_N 正极连接B相下桥臂中第N个全桥子模块电容C bl_N 正极,钳位二极管D cl_N 负极连接IGBT模块T cl_N 源极;上述A、B、C三相中6N个IGBT模块T au_i 、T al_i 、T bu_i 、T bl_i 、T cu_i 、T cl_i ,其中i的取值为1~N,6N+1个钳位二极管,共同构成自均压辅助回路。
2.根据权利要求1所述的基于不等式约束的无辅助电容式全桥MMC自均压拓扑,其特征在于:正常情况时,自均压辅助回路中6N个IGBT模块T au_i 、T al_i 、T bu_i 、T bl_i 、T cu_i 、T cl_i 常闭,故障情况时,6N个IGBT模块T au_i 、T al_i 、T bu_i 、T bl_i 、T cu_i 、T cl_i 断开,其中i的取值为1~N;正常情况下,A相上桥臂第i个全桥子模块电容C au_i 旁路时,其中i的取值为2~N,子模块电容C au_i 与子模块电容C au_i-1通过钳位二极管并联;A相下桥臂第一个全桥子模块电容C al_1旁路时,子模块电容C al_1通过钳位二极管、两个桥臂电抗器L 0与子模块电容C au_N 并联;A相下桥臂第i个全桥子模块电容C al_i 旁路时,其中i的取值为2~N,子模块电容C al_i 与子模块电容C al_i-1通过钳位二极管并联;B相上桥臂第i个全桥子模块电容Cbu_i 旁路时,其中i的取值为1~N-1,子模块电容C bu_i 与子模块电容C bu_i+1通过钳位二极管并联;B相上桥臂第N个全桥子模块电容C bu_N 旁路时,子模块电容C bu_N 通过钳位二极管、两个桥臂电抗器L 0与子模块电容C bl_1并联;B相下桥臂第i个全桥子模块电容C bl_i 旁路时,其中i的取值为1~N-1,子模块电容C bl_i 与子模块电容C bl_i+1通过钳位二极管并联;同时A相上桥臂第1个全桥子模块电容C au_1投入时,子模块电容C au_1与子模块电容C bu_1通过钳位二极管并联;B相下桥臂第N个全桥子模块电容C bl_N 投入时,子模块电容C al_N 与子模块电容C bl_N 通过钳位二极管并联;在直交流能量转换的过程中,各个全桥子模块交替投入、旁路,A相上下桥臂子模块电容电压在钳位二极管的作用下,满足下列约束,U Cau_1≥U Cau_2…≥U Cau_N ≥U Cal_1≥U Cal_2…≥U Cal_N ;B相上下桥臂子模块电容电压在钳位二极管的作用下,满足下列约束,U Cbu_1≤U Cbu_2…≤U Cbu_N ≤U Cbl_1≤U Cbl_2…≤U Cbl_N ;依靠跨在A、B相间的两个钳位二极管,基于不等式约束的无辅助电容式全桥MMC自均压拓扑中,子模块电容C au_1与子模块电容C bu_1的电压之间,子模块电容C al_N 与子模块电容C bl_N 的电压之间存在下列不等式约束,U Cau_1≤U Cbu_1,U Cal_N≥U Cbl_N ;基于“U Cau_1≤U Cbu_1,U Cal_N≥U Cbl_N ”这一不等式约束,A、B相上下桥臂的4N个全桥子模块电容,C au_i 、C al_i 、C bu_i 、C bl_i ,其中i取值为1~N,电压桥臂在自平衡状态,拓扑的A、B相间具备子模块电容电压自均衡能力;拓扑中C相的构成形式与A相一致,则C、B相间电容电压的约束条件与A、B相间电容电压约束条件一致,拓扑具备子模块电容电压自均衡能力。
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201610047412.XA CN105515427B (zh) | 2016-01-25 | 2016-01-25 | 基于不等式约束的无辅助电容式全桥mmc自均压拓扑 |
EP17152577.7A EP3197038B1 (en) | 2016-01-25 | 2017-01-23 | Modular multilevel converter (mmc) topologies with voltage self-balancing capability |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201610047412.XA CN105515427B (zh) | 2016-01-25 | 2016-01-25 | 基于不等式约束的无辅助电容式全桥mmc自均压拓扑 |
Publications (2)
Publication Number | Publication Date |
---|---|
CN105515427A CN105515427A (zh) | 2016-04-20 |
CN105515427B true CN105515427B (zh) | 2018-10-30 |
Family
ID=55723157
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201610047412.XA Expired - Fee Related CN105515427B (zh) | 2016-01-25 | 2016-01-25 | 基于不等式约束的无辅助电容式全桥mmc自均压拓扑 |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN105515427B (zh) |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN108471249B (zh) * | 2018-04-17 | 2020-05-22 | 西安交通大学 | 一种基于钳位二极管的mmc模块电容电压自均衡拓扑 |
CN111342687B (zh) * | 2018-12-19 | 2021-10-01 | 南京南瑞继保工程技术有限公司 | 具有自均压特性的级联全桥多电平换流器拓扑及控制方法 |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101253675A (zh) * | 2005-08-30 | 2008-08-27 | 西门子公司 | 带有分布式储能器的变流电路 |
CN102223080A (zh) * | 2011-06-10 | 2011-10-19 | 浙江大学 | 一种混合箝位背靠背式多电平ac-dc-ac变换电路 |
CN102832841A (zh) * | 2012-08-27 | 2012-12-19 | 清华大学 | 一种带辅助二极管模块化多电平变换器 |
CN203608108U (zh) * | 2013-12-17 | 2014-05-21 | 山东大学 | 模块化多电平变换器电容电压自平衡电路 |
CN206099809U (zh) * | 2016-01-25 | 2017-04-12 | 华北电力大学 | 基于不等式约束的无辅助电容式全桥mmc自均压拓扑 |
-
2016
- 2016-01-25 CN CN201610047412.XA patent/CN105515427B/zh not_active Expired - Fee Related
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101253675A (zh) * | 2005-08-30 | 2008-08-27 | 西门子公司 | 带有分布式储能器的变流电路 |
CN102223080A (zh) * | 2011-06-10 | 2011-10-19 | 浙江大学 | 一种混合箝位背靠背式多电平ac-dc-ac变换电路 |
CN102832841A (zh) * | 2012-08-27 | 2012-12-19 | 清华大学 | 一种带辅助二极管模块化多电平变换器 |
CN203608108U (zh) * | 2013-12-17 | 2014-05-21 | 山东大学 | 模块化多电平变换器电容电压自平衡电路 |
CN206099809U (zh) * | 2016-01-25 | 2017-04-12 | 华北电力大学 | 基于不等式约束的无辅助电容式全桥mmc自均压拓扑 |
Non-Patent Citations (2)
Title |
---|
A DC-Link Voltage Self-Balance Method for a Diode-Clamped Modular Multilevel Converter With Minimum Number of Voltage Sensors;Congzhe Gao 等;《IEEE Transactions on Power Electronics》;20130531;第28卷(第5期);第1-26页 * |
Research on submodule capacitance voltage balancing of MMC based on carrier phase shifted SPWM technique;Xin Zhao 等;《China International Conference on Electricity Distribution》;20110322;第2-3页 * |
Also Published As
Publication number | Publication date |
---|---|
CN105515427A (zh) | 2016-04-20 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN106998152B (zh) | 无需均压控制的电气隔离单向dc-dc变换器 | |
CN105515427B (zh) | 基于不等式约束的无辅助电容式全桥mmc自均压拓扑 | |
CN205960964U (zh) | 基于不等式约束的辅助电容集中式半桥/全桥混联mmc自均压拓扑 | |
CN206099809U (zh) | 基于不等式约束的无辅助电容式全桥mmc自均压拓扑 | |
CN105634316B (zh) | 基于等式约束的辅助电容分布式全桥mmc自均压拓扑 | |
CN105450069B (zh) | 基于等式约束的辅助电容集中式全桥mmc自均压拓扑 | |
CN205754041U (zh) | 基于等式约束的辅助电容集中式单箝位mmc自均压拓扑 | |
CN205657607U (zh) | 基于不等式约束的辅助电容分布式半桥/单箝位混联mmc自均压拓扑 | |
CN205754039U (zh) | 基于不等式约束的辅助电容集中式全桥mmc自均压拓扑 | |
CN105515424B (zh) | 基于不等式约束的辅助电容集中式全桥mmc自均压拓扑 | |
CN206099810U (zh) | 基于不等式约束的无辅助电容式单箝位mmc自均压拓扑 | |
CN105471306B (zh) | 基于不等式约束的辅助电容分布式全桥mmc自均压拓扑 | |
CN205754048U (zh) | 基于不等式约束的辅助电容分布式全桥mmc自均压拓扑 | |
CN205725504U (zh) | 基于等式约束的辅助电容集中式全桥mmc自均压拓扑 | |
CN105450070A (zh) | 基于不等式约束的无辅助电容式半桥/全桥混联mmc自均压拓扑 | |
CN205754029U (zh) | 基于不等式约束的辅助电容集中式单箝位mmc自均压拓扑 | |
CN105515428A (zh) | 基于不等式约束的无辅助电容式半桥mmc自均压拓扑 | |
CN205725505U (zh) | 基于不等式约束的无辅助电容式半桥/全桥混联mmc自均压拓扑 | |
CN205960952U (zh) | 基于等式约束的辅助电容集中式半桥/单箝位混联mmc自均压拓扑 | |
CN205960963U (zh) | 基于等式约束的辅助电容分布式半桥/单箝位混联mmc自均压拓扑 | |
CN205754046U (zh) | 基于等式约束的辅助电容分布式半桥/全桥混联mmc自均压拓扑 | |
CN205960989U (zh) | 基于不等式约束的辅助电容集中式半桥/单箝位混联mmc自均压拓扑 | |
CN205754042U (zh) | 基于不等式约束的辅助电容集中式半桥mmc自均压拓扑 | |
CN105471259A (zh) | 基于等式约束的辅助电容集中式半桥/单箝位混联mmc自均压拓扑 | |
CN205754043U (zh) | 基于不等式约束的辅助电容分布式半桥mmc自均压拓扑 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant | ||
CF01 | Termination of patent right due to non-payment of annual fee |
Granted publication date: 20181030 |
|
CF01 | Termination of patent right due to non-payment of annual fee |