WO2015100592A1 - 在设备到设备(d2d)通信中时频资源的管理方法和设备 - Google Patents

在设备到设备(d2d)通信中时频资源的管理方法和设备 Download PDF

Info

Publication number
WO2015100592A1
WO2015100592A1 PCT/CN2013/091053 CN2013091053W WO2015100592A1 WO 2015100592 A1 WO2015100592 A1 WO 2015100592A1 CN 2013091053 W CN2013091053 W CN 2013091053W WO 2015100592 A1 WO2015100592 A1 WO 2015100592A1
Authority
WO
WIPO (PCT)
Prior art keywords
link
user equipment
transmission
domain
sensing
Prior art date
Application number
PCT/CN2013/091053
Other languages
English (en)
French (fr)
Inventor
刘勇
杨凯
蔡立羽
Original Assignee
上海贝尔股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 上海贝尔股份有限公司 filed Critical 上海贝尔股份有限公司
Priority to CN201380080995.0A priority Critical patent/CN105766039B/zh
Priority to PCT/CN2013/091053 priority patent/WO2015100592A1/zh
Publication of WO2015100592A1 publication Critical patent/WO2015100592A1/zh

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W74/00Wireless channel access
    • H04W74/08Non-scheduled access, e.g. ALOHA
    • H04W74/0808Non-scheduled access, e.g. ALOHA using carrier sensing, e.g. carrier sense multiple access [CSMA]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0001Arrangements for dividing the transmission path
    • H04L5/0003Two-dimensional division
    • H04L5/0005Time-frequency
    • H04L5/0007Time-frequency the frequencies being orthogonal, e.g. OFDM(A), DMT
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0032Distributed allocation, i.e. involving a plurality of allocating devices, each making partial allocation
    • H04L5/0033Distributed allocation, i.e. involving a plurality of allocating devices, each making partial allocation each allocating device acting autonomously, i.e. without negotiation with other allocating devices
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0058Allocation criteria
    • H04L5/0062Avoidance of ingress interference, e.g. ham radio channels
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W76/00Connection management
    • H04W76/10Connection setup
    • H04W76/14Direct-mode setup

Definitions

  • Exemplary and non-limiting embodiments of the present invention relate generally to wireless communications, and more particularly to methods and apparatus for sensing and communicating in device-to-device (D2D) communications.
  • D2D device-to-device
  • D2D device-to-device
  • 3GPP 3rd Generation Partnership Project
  • Inter-device communication techniques may use the radio resources of the primary cellular system, but allow two computing devices, such as mobile terminals (also referred to as user equipment UEs), to communicate directly with one another without having to communicate their communications via components of the cellular network.
  • mobile terminals also referred to as user equipment UEs
  • a direct communication link between mobile terminals performing D2D communication can reduce end-to-end delay time of data exchange between terminals as compared with indirect communication via a cellular system component.
  • the network load is reduced.
  • Other benefits of D2D communication include improved coverage of the area, improved service network resources, and reduced transmission power of user equipment and network access points.
  • D2D communication can support a variety of end-user services, such as end-to-end applications, human-to-human game applications, collaborative applications, and similar applications that can be used by mobile end users that are close to each other.
  • interference may come from the following aspects: D2D communication uses the same resources as cellular communication, thereby causing interference between the D2D device and the cellular communication device, and different D2D devices are used. The same resources therefore cause interference between D2D devices ( Figure 2).
  • the existing scheme is as follows: It is assumed that the channel state information of the interference channel between the D2D communication and the cellular network is measured and reported to the serving eNB, and then the serving eNB performs joint scheduling on the D2D link and the cellular link.
  • the above scheme has two main deficiencies: 1) There are many combinations of D2D links and cellular links, which will result in too much measurement work, and the signaling overhead of the channel state information of the corresponding interference channel is also large. . 2) Joint scheduling of D2D links and cellular links affects the use of existing scheduling schemes for current cellular links. Summary of the invention
  • one of the objectives of the embodiments of the present invention is to support D2D communication as an extension of a cellular network, and the D2D communication adopts a mechanism of first sensing and then transmitting, and each subframe is divided into a sensing domain, including a small number of OFDM symbols at the beginning. Next, it is a D2D transmission domain, including the OFDM symbols in the latter part.
  • the D2D sensing domain is used by the D2D user equipment to sense whether there is a cellular uplink transmission nearby, and the D2D transmission domain is used for D2D transmission.
  • a method for time-frequency resource management in device-to-device (D2D) communication comprising:
  • At least one of the sensing domain and the transmission domain is selected from at least one of the sensing domain and the transmission domain
  • the OFDM symbol is set to a blank field.
  • a device-to-device (D2D) communication method including:
  • the transmitting user equipment of the device-to-device (D2D) link receives a message from the base station, the message including D2D sensing and transmission of the user equipment informing the device-to-device (D2D) link;
  • the transmitting device device of the device-to-device (D2D) link senses in the sensing domain; if the transmitting device device of the device-to-device (D2D) link does not detect the cellular uplink transmission in the sensing domain or the interference from the cellular signal is determined to be Tolerant, the transmitting device device of the device-to-device (D2D) link performs data transmission in the D2D transmission domain.
  • a receiving user equipment of a device-to-device (D2D) link receives a message from a base station, the message including a user equipment that notifies a device-to-device (D2D) link for D2D sensing and transmission;
  • the receiving user equipment of the device-to-device (D2D) link senses in the sensing domain; when the receiving user equipment of the device-to-device (D2D) link does not detect the cellular uplink transmission in the sensing domain or the interference from the cellular signal is determined Tolerable, the receiving user equipment of the device-to-device (D2D) link receives data in the D2D transmission domain.
  • the receiving user equipment of the device-to-device (D2D) link is not perceived in the sensing domain;
  • the receiving user equipment of the device-to-device (D2D) link performs data reception in the D2D transmission domain.
  • the receiving user equipment of the device-to-device (D2D) link decodes only the data that it is the receiving object.
  • the message further includes resource block information for performing D2D sensing and data transmission.
  • the device-to-device (D2D) link does not interfere with cellular uplink transmission. In an embodiment of the invention, the device-to-device (D2D) links do not interfere with each other.
  • a D2D link management method for device-to-device (D2D) communication the device-to-device (D2D) communication coexisting with a cellular communication network, including:
  • the base station device establishes/helps to establish a D2D link set M;
  • the base station device determines, in the D2D link set M, a D2D link that does not interfere with the cellular uplink, and forms a D2D link set N; and selects the D2D link in the D2D link set N as the selected D2D communication.
  • the base station device sends a message to the user equipment of the D2D link selected to perform D2D communication, the message including the user equipment that informs the device-to-device (D2D) link selected for D2D communication to perform D2D sensing in the sensing domain, if Feasible, further D2D transmission in the transmission domain.
  • D2D device-to-device
  • the base station device determines, in the D2D link set N, a D2D link that does not cause interference with each other, constitutes a D2D link set P, and uses the D2D link in the D2D link set P as a A D2D link for D2D communication is selected.
  • the base station device estimates the distance from the transmitting user equipment of a D2D link according to the received signal from the user equipment, and estimates from the D2D chain according to the distance and the transmission power of the D2D link. Possible interference with the road.
  • the spatially independent D2D links are determined to be D2D links that do not interfere with each other according to the neighbor relationship between the D2D user equipments.
  • a D2D device for D2D communication and coexisting in a cellular system, including:
  • a message receiving unit configured to receive a message from a base station, where the message includes a user equipment that notifies a device-to-device (D2D) link for D2D sensing and transmission;
  • D2D device-to-device
  • a sensing unit configured to perform sensing in a D2D sensing domain
  • the message further includes resource block information for performing D2D sensing and data transmission.
  • a D2D device for D2D communication and coexisting in a cellular system, including:
  • a message receiving unit configured to receive a message from a base station, where the message includes a user equipment that notifies a device-to-device (D2D) link for D2D sensing and transmission;
  • D2D device-to-device
  • the data receiving unit is configured to perform data reception in the D2D transmission domain.
  • the D2D device further includes a sensing unit configured to perform sensing in a D2D sensing domain;
  • the data receiving unit is configured to perform data reception in the D2D transmission domain when the sensing unit does not detect the cellular uplink transmission in the sensing domain or the interference from the cellular signal is determined to be tolerable.
  • the D2D device decoding unit is configured to decode data received by the data receiving unit that is itself a receiving object.
  • the message further includes resource block information for performing D2D sensing and data transmission.
  • a base station apparatus that operates in a cellular system and coexists with a D2D communication system, including:
  • a D2D link set establishing unit configured to establish/help establish a D2D link set M
  • a first D2D link grouping unit configured to determine, in the D2D link set M, a D2D link that does not cause interference to the cellular uplink, to form a D2D link set N; and to set the D2D link set N a D2D link as a D2D link selected for D2D communication;
  • a message sending unit configured to send a message to a user equipment selected to perform D2D communication for D2D communication, the message including a user equipment that informs a device-to-device (D2D) link selected for D2D communication to be aware
  • the domain performs D2D sensing, and if feasible, proceeds to D2D transmission in the transmission domain.
  • the base station device further includes: a second D2D link grouping unit configured to determine, in the D2D link set N, a D2D link that does not cause interference with each other, constitute a D2D link set P, and use the D2D link in the D2D link set P as The D2D link for D2D communication is selected.
  • a second D2D link grouping unit configured to determine, in the D2D link set N, a D2D link that does not cause interference with each other, constitute a D2D link set P, and use the D2D link in the D2D link set P as The D2D link for D2D communication is selected.
  • the first D2D link grouping unit estimates a distance from a transmitting user equipment of a D2D link according to the received signal from the user equipment, and according to the distance and the D2D link. Transmit power estimates possible interference from a D2D link.
  • the second D2D link grouping unit determines, according to the neighbor relationship between the D2D user equipments, the spatially independent D2D links as D2D links that do not interfere with each other. . DRAWINGS
  • Figure 1 shows an example of device-to-device communication and cellular system coexistence
  • FIG. 2 is a schematic diagram showing interference when a device communicates with a device and a cellular system
  • FIG. 3 is a schematic diagram of time-frequency resources and resource blocks of a subframe
  • FIG. 4 is a schematic diagram of a sensing domain and a transmission domain of a configuration subframe according to an embodiment of the present invention
  • FIG. 5 is a schematic diagram showing device-to-device communication and cellular system coexistence according to some embodiments of the present invention
  • FIG. 6 is a schematic flow chart showing resource management for an eNB in a device-to-device (D2D) communication map and D2D communication for a D2D user device, according to some exemplary embodiments of the present invention
  • FIG. 7 is a schematic diagram showing device-to-device communication and cellular system coexistence, in accordance with some embodiments of the present invention.
  • FIG. 8 is a diagram showing mutual interference between devices and communication links of devices, in accordance with some embodiments of the present invention.
  • 9 is a schematic diagram showing a neighbor relationship between user equipments of a D2D communication link, in accordance with an embodiment of the present invention.
  • 10 is a schematic diagram showing a neighbor relationship between user equipments of a D2D communication link, in accordance with an embodiment of the present invention.
  • FIG. 11 is a schematic diagram showing device-to-device communication and cellular system coexistence, in accordance with some embodiments of the present invention.
  • FIG. 12 is a schematic diagram showing resource configuration in accordance with some embodiments of the present invention.
  • FIG. 13 is a diagram showing interference of device-to-device communication and cellular system coexistence, in accordance with some embodiments of the present invention.
  • FIG. 14 is a schematic diagram showing resource configuration in accordance with some embodiments of the present invention.
  • Figure 15 is a diagram showing resource configuration in accordance with some embodiments of the present invention.
  • FIG. 16 is a block diagram showing an exemplary base station device structure for implementing resource management of device-to-device (D2D) communication, in accordance with some embodiments of the present invention
  • FIG. 17 is a block diagram showing an exemplary D2D transmitting user equipment structure for implementing device-to-device (D2D) communication, in accordance with some embodiments of the present invention
  • FIG. 18 is a block diagram showing an exemplary D2D receiving user equipment structure for implementing device-to-device (D2D) communication, in accordance with some embodiments of the present invention.
  • D2D device-to-device
  • LTE/LTE-A is exemplarily employed as a cellular system coexisting with a D2D system.
  • D2D communication and cellular communication coexist in the cellular uplink channel (Fig. 1).
  • D2D link as a slave communication link, it attempts to reuse the cellular uplink frequency band to improve the spectrum efficiency of the entire cellular system; the coexistence of cellular network and D2D communication brings mutual interference between the cellular network and D2D communication (Fig. 2).
  • the basic scheduling operation is dynamic scheduling. In each subframe (1 ms), one eNB schedules the data transmission of the cellular link for the selected set of user equipment.
  • the basic time-frequency resource unit allocated to the macro user equipment is a resource block (RB) pair, which includes two time-contiguous resource blocks in one subframe; an uplink transmission of one macro user equipment may be assigned multiple RB pairs.
  • RB resource block
  • Such as 3 exemplarily illustrates a subframe and a resource block, one subframe (lms) including 14 OFDM symbols in the time domain, and how many subcarriers in the frequency domain depend on system bandwidth, for example, 10 MHz bandwidth, 50 resource block width in the frequency domain, Each resource block has 12 consecutive subcarriers in the frequency domain (a total of 12x50 subcarriers).
  • one resource block includes 7 OFDM symbols and 12 consecutive subcarriers in the frequency domain.
  • the slash area surrounded by the black thick solid line is a resource block.
  • FIG. 4 shows a schematic diagram of the perceptual and transmission domains of a configured subframe.
  • Each subframe is divided into a perceptual domain, including a small number of OFDM symbols at the beginning, followed by a D2D transmission domain, including the last OFDM symbol, that is, a perceptual domain and a transmission domain.
  • At least one OFDM symbol between the sensing domain and the transmission domain may be left blank for use as a possible transmitter/receiver switch.
  • the sensing domain is used by the D2D user equipment to sense whether there is a cellular uplink transmission nearby, and the D2D transmission domain is used as a D2D transmission.
  • the D2D user equipment perceives the uplink channel at the beginning of the subframe. If no cellular signal is detected, or interference from the cellular signal is determined to be tolerable, the D2D user equipment D2D transmission is performed in the remaining part of the subframe, that is, the D2D transmission domain. Even after sensing, collisions between D2D transmissions may occur, which will reduce spectral efficiency and increase the power consumption of the user equipment. This problem can be mitigated by the serving eNB performing scheduling on the D2D link. For some time-frequency resources, the serving eNB only requires D2D link execution sensing that does not interfere with each other (or interference tolerable) and performs D2D transmission. Techniques such as interference detection, judgment of whether interference is tolerable, and the like are conventional techniques in the field of communication, and the application of the present invention is not limited by such techniques.
  • LTE adopts SC-FDMA (single carrier-frequency division multiplexing access) in the cellular uplink, and in the frequency domain of the same subframe, different pairs of resource blocks are allocated to different macro user equipments.
  • SC-FDMA single carrier-frequency division multiplexing access
  • the eNB determines and notifies the selected D2D user equipment according to actual conditions.
  • An eNB can request a selected set of D2D user equipment (including at least one D2D user equipment) to perceive time-frequency resources allocated to a single macro user equipment, and can also require a selected set of D2D user equipments to simultaneously be perceived to be allocated. Time-frequency resources for multiple macro user devices, even perceiving the entire system band (eg 5MHZ, 20MHZ) Wait) .
  • the D2D user equipment does not find other transmissions such as cellular uplink transmission (in this case, no interference) around it (in this case, no interference), that is, the space around the D2D user equipment.
  • the time-frequency resource is idle in the range, so the band/resource block can be used for D2D transmission.
  • the paired resource blocks (D2D transmission domain) that are free on the D2D link selection space are subjected to D2D transmission.
  • the cellular uplink transmission from the macro user equipment and the D2D transmission on the D2D links 1 to 5 are considered to coexist, as shown in FIG.
  • FIG. 6 is a specific flowchart of resource management by the eNB and D2D transmission by the D2D user equipment. Next, a first embodiment of the present invention will be described with reference to Figs. 5 and 6.
  • Step S601 An eNB establishes or helps establish a D2D link set M (D2D link 1 ⁇ 5) for D2D transmission;
  • Step S602 The eNB selects a D2D link for performing D2D communication.
  • the eNB determines that the D2D link that does not interfere with the cellular uplink constitutes the D2D link set N, and the D2D chain in the D2D link set N The road acts as a D2D link that is selected for D2D communication.
  • the eNB is capable of estimating the distance of the transmitting user equipment of a D2D link based on the received signal from the user equipment.
  • the eNB can limit the maximum transmission power of the D2D link or directly allocate the transmission power of the D2D link.
  • the eNB can estimate the possible interference of the D2D transmission. For example, in Figure 7, D2D links 1 ⁇ 4 are determined not to cause interference to the cellular uplink, while possible interference from D2D link 5 is unacceptable to the eNB.
  • the eNB performs scheduling for the cellular uplink communication and allocates some time-frequency resources (RBs) to the macro user equipment A for uplink transmission before the next step;
  • the D2D user equipments of the roads 1 ⁇ 4 send a message, notify the user equipment of the D2D links 1 ⁇ 4, perform the sensing on the RBs allocated to the macro user equipment A, and if possible, further perform D2D data transmission.
  • Step S604 D2D transmitting user equipment and receiving user equipment of D2D links 1 ⁇ 4 Do not receive messages from the eNB.
  • Step S605 In the sensing domain, the transmitting user equipment of the D2D links 1 ⁇ 4 is perceived on the resource block allocated to the macro user equipment A.
  • the transmitting user equipment of D2D link 1 detects the presence or unacceptable interference of an uplink transmission of a cellular link because D2D link 1 is close to macro user equipment A.
  • the transmitting user equipment of the D2D link 2, 3, 4 does not detect the cellular uplink transmission or the interference from the cellular signal is determined to be tolerable.
  • the receiving user equipment of the D2D links 1 ⁇ 4 is perceived on the resource block allocated to the macro user equipment A.
  • the receiving user equipment of D2D link 1 detects the presence of an uplink transmission of a cellular link because D2D link 1 is close to macro user equipment A.
  • the receiving user equipment of the D2D link 2, 3, 4 does not detect the presence of cellular uplink transmission or the interference from the cellular signal is determined to be tolerable.
  • Step S606 In the D2D transmission domain, the D2D links 2, 3, 4 perform D2D data transmission, and the D2D links 2, 3, 4 transmit user equipments perform data transmission, as shown in FIG. 8.
  • Step S607 Since the receiving user equipment of the D2D link 2, 3, 4 does not detect the presence of the cellular uplink transmission or the interference from the cellular signal is determined to be tolerable in step S605, the D2D link 2, 3 The receiving user equipment of 4 receives data in the transmission domain.
  • Step S608 The receiving user equipment of the D2D link 2, 3, 4 decodes the received data.
  • D2D communication is only established for short-distance links, and long-distance D2D communication is more efficiently supported by two-hop cellular communication because of low altitude (because the antenna height of the user equipment is low, usually about 1.5 meters)
  • the D2D channel is faster after a long distance than the channel between the user equipment and the eNB at the top of the tower.
  • long-distance D2D communication may cause uncontrollable interference in existing cellular topologies. Therefore, due to the D2D communication of the short-distance link, the transmitting user equipment of one D2D link and the receiving user equipment measure the interference from the cellular uplink transmission to a similar extent.
  • the transmitting user equipment transmits a signal in the D2D transmission domain only when the presence of any cellular uplink transmission is not detected in the sensing domain. At the same time, receiving user equipment only when not The signal is received in the D2D transmission domain only when any cellular uplink transmission is detected.
  • An alternative is: The receiving user equipment of the D2D link does not perceive the cellular uplink channel in the sensing domain, but in the D2D transmission domain it always tries to receive the signal, and the receiving user equipment only decodes the data itself as the receiving object. This reduces the perceived overhead, and the corresponding disadvantage is that the power consumption of the receiving D2D user equipment is increased.
  • the D2D link 3 and the link 4 fail due to mutual interference, and the collision between the D2D links also reduces the spectrum efficiency and increases the work of the D2D user equipment. Consumption.
  • This problem can be mitigated by the serving eNB performing D2D link scheduling.
  • the eNB only requires D2D links that do not interfere with each other to perform sensing and perform D2D transmissions. The specific scheme is described in the second embodiment as follows, and is also described in detail in conjunction with the steps of Fig. 6.
  • Step S601 An eNB establishes or helps establish a D2D link set M for D2D transmission (as shown in Figure 5, D2D link 1 ⁇ 5);
  • Step S602 The eNB selects a D2D link for performing D2D communication.
  • the eNB (the eNB acts as a receiver of the cellular uplink) first determines that the D2D link that does not interfere with the cellular uplink constitutes a D2D link set N, as shown in FIG. 5, link 1 ⁇ 4. It is determined that the D2D link will not interfere with the cellular uplink, and conversely, the possible interference from the D2D link 5 is unacceptable to the eNB, and the specific method of the process is the same as that of the first embodiment.
  • the eNB further divides all D2D links into multiple groups, and those D2D links that do not cause interference with each other are a group.
  • the packet may be based on valid information at the eNB side, such as a neighbor relationship between user equipments of the D2D link.
  • D2D links 1, 2, and 4 are spatially independent and do not interfere with each other. They are well suited for coexistence within the same group. Therefore, the eNB forms a set P of D2D links 1, 2, 4 which do not interfere with the cellular uplink and do not interfere with each other, and serves as a D2D link selected for D2D communication.
  • the eNB as a base station device of the cellular system, performs scheduling for cellular uplink communication and allocates some time-frequency resources (RBs) to the macro user equipment A for uplink transmission before the next step;
  • Step S603 The eNB sends the D2D user equipment of the selected D2D link 1, 2, 4 The user equipment of the D2D link 1, 2, 4 is notified (as shown in FIG. 9), the sensing is performed on the resource block allocated to the macro user equipment A, and if possible, the D2D data transmission is further performed.
  • Step S604 The D2D transmitting user equipment of the D2D link 1, 2, 4 and the receiving user equipment respectively receive the message from the eNB.
  • Step S605 In the sensing domain, the transmitting user equipment of the D2D link 1, 2, 4 is perceived on the resource block allocated to the macro user equipment A. As shown in Figure 10, the transmitting user equipment of D2D link 1 detects the presence of an uplink transmission of a cellular link because D2D link 1 is close to macro user equipment A. The transmitting user equipment of the D2D link 2, 4 does not detect the presence of cellular uplink transmission or the interference from the cellular signal is determined to be tolerable. Similarly, the receiving user equipment of D2D links 1, 2, 4 is aware of the resource blocks allocated to macro user equipment A.
  • the receiving user equipment of D2D link 1 detects the presence of an uplink transmission of a cellular link or its interference is intolerable because D2D link 1 is close to macro user equipment A.
  • the receiving user equipment of the D2D link 2, 4 does not detect the presence of cellular uplink transmission or the interference from the cellular signal is determined to be tolerable.
  • Step S606 In the D2D transmission domain, the D2D link 2, 4 performs D2D data transmission, and the D2D link 2, 4 transmits the user equipment for data transmission.
  • Step S607 Since the receiving user equipment of the D2D link 2, 4 does not detect the presence of the cellular uplink transmission or the interference from the cellular signal is determined to be tolerable in step S605, the reception of the D2D link 2, 4 The user equipment performs data reception in the transmission domain.
  • the receiving user equipment of the D2D link 1 detects the presence of an uplink transmission of a cellular link or its interference is intolerable, and it does not receive data in the receiving domain.
  • Step S608 The receiving user equipment of the D2D link 2, 4 decodes the received data.
  • D2D transmissions on D2D links 2 and 4 are successful because there is no D2D transmission around D2D link 2, 4.
  • the transmitting user equipment transmits a signal in the D2D transmission domain only when the presence of any cellular uplink transmission is not detected in the sensing domain.
  • the receiving user equipment is only connected in the D2D transmission domain when no cellular uplink transmission is detected. Receive the signal.
  • the receiving user equipment of the D2D link does not perceive the cellular uplink channel in the sensing domain, but in the D2D transmission domain it always tries to receive the signal, and the receiving user equipment only decodes itself for receiving. The data of the object. This reduces the perceived overhead, and the corresponding disadvantage is that the power consumption of the receiving D2D user equipment is increased.
  • the selected set of D2D links are perceived on a defined time-frequency resource (a resource block assigned to a single macro user equipment).
  • a defined time-frequency resource a resource block assigned to a single macro user equipment.
  • SC-FDMA Single Carrier-Frequency Division Multiple Access
  • SC-FDMA Single Carrier-Frequency Division Multiple Access
  • an eNB can request a group of selected D2D user equipments to perceive resource blocks that are simultaneously allocated to a plurality of macro user equipments, even the entire system bandwidth (5 MHz, 20 MHz, etc.).
  • the D2D user equipment can perform D2D transmission; then the D2D link can select a pair of resource blocks that are idle in the space around its user equipment for D2D. transmission.
  • D2D link can select a pair of resource blocks that are idle in the space around its user equipment for D2D. transmission.
  • Step S601 An eNB establishes or helps establish a D2D link set M for D2D communication (such as D2D link 1 ⁇ 3 shown in FIG. 11).
  • Step S602 The eNB selects a D2D link for performing D2D communication.
  • the eNB determines those D2D links that will not interfere with the cellular uplink (eNB). For example, in Figure 11, links 1 ⁇ 3 are determined to be D2D links that will not interfere with the cellular uplink.
  • the eNB divides all D2D links into multiple groups. D2D links that do not interfere with each other are a group.
  • the packet may be based on valid information at the eNB side, such as a neighbor relationship between user equipments of the D2D link.
  • the D2D links 1, 2, and 3 are spatially independent and do not interfere with each other. They are well suited to coexist in the same group.
  • the eNB acts as a base station device of the cellular system, and performs scheduling for cellular uplink communication before the next step.
  • two macro user equipments are selected for time-frequency resource allocation to illustrate that multiple macro user equipments exist simultaneously.
  • the eNB allocates time-frequency resource A to the macro user equipment A, and the time-frequency resource B to the macro user equipment B.
  • the time-frequency resource A and the time-frequency resource B are orthogonal in the frequency domain.
  • Step S603 The eNB sends a message to the D2D user equipment of the selected D2D link 1, 2, 3, and notifies the user equipment of the D2D link 1, 2, 3 (as shown in FIG. 13), and the user equipment is assigned to the macro.
  • the sensing is performed on the resource blocks of User Equipment A and Macro User Equipment B, and if feasible, D2D data transmission is further performed.
  • Step S604 The D2D transmitting user equipment of the D2D link 1, 2, 3 and the receiving user equipment respectively receive the message from the eNB.
  • Step S605 In the sensing domain, the transmitting user equipment of the D2D link 1, 2, 3 perceives the channel on the resource blocks allocated to the macro user equipment A and the macro user equipment B. As shown in FIG. 13, the transmitting user equipment of the D2D link 1 detects the presence of the uplink transmission from the macro user equipment A on the resource block allocated to the macro user equipment A or its interference is tolerable because the D2D link 1 The macro user equipment A is approached; and the transmitting user equipment of the D2D link 1 does not detect the presence of any cellular uplink transmission or its interference can be tolerated on the resource blocks allocated to the macro user equipment B.
  • the transmitting user equipment of the D2D link 2, 3 detects the presence of an uplink transmission from the macro user equipment B on the resource block allocated to the macro user equipment B or its interference is intolerable; and the transmission of the D2D link 2, 3 The user equipment does not detect the presence or interference from any cellular uplink transmission on the resource block assigned to macro user equipment A.
  • the receiving user equipment of the D2D link 1 detects the presence of the uplink transmission from the macro user equipment A on the resource block allocated to the macro user equipment A or its interference is tolerable because the D2D link 1 is close to the macro user.
  • the receiving user equipment of D2D Link 1 does not detect the presence of any cellular uplink transmission or its interference is not tolerable on the resource blocks allocated to Macro User Equipment B.
  • the receiving user equipment of the D2D link 2, 3 detects the presence of an uplink transmission from the macro user equipment B or its interference is not tolerable on the resource block allocated to the macro user equipment B; and the D2D link 2, 3 The receiving user equipment does not detect the presence of any cellular uplink transmissions on the resource blocks allocated to the macro user equipment A or its interference can be tolerated.
  • Step S606 In the D2D transmission domain, the D2D link 1 performs D2D data transmission on the resource block allocated to the macro user equipment B (as shown in FIG. 14), and the transmitting user equipment of the D2D link 1 is allocated to the macro user equipment.
  • D2D data transmission on resource block of B; D2D link 2 and 3 perform D2D data transmission on the resource block allocated to the macro user equipment A (as shown in FIG. 15), and the transmitting user equipment performs D2D on the resource block allocated to the macro user equipment A on the D2D links 2 and 3. data transmission.
  • Step S607 In the D2D transmission domain, the D2D link 1 performs D2D data transmission on the resource block allocated to the macro user equipment B (as shown in FIG. 14), and the receiving user equipment of the D2D link 1 is allocated to the macro user equipment. D2D data reception is performed on the resource block of B; D2D links 2 and 3 perform D2D data transmission on the resource block allocated to the macro user equipment A (as shown in FIG. 15), and the receiving user equipment of the D2D links 2 and 3 D2D data reception is performed on the resource block allocated to the macro user equipment A.
  • Step S608 The receiving user equipment of the D2D link 1, 2, 3 decodes the received data.
  • the D2D links 1, 2, 3 are spatially independent and do not cause mutual interference, so their D2D transmissions are successful.
  • the transmitting user equipment transmits a signal in the D2D transmission domain only when the sensing domain does not detect any cellular uplink transmission.
  • the receiving user equipment receives the signal in the D2D transmission domain only when no cellular uplink transmission is detected.
  • an alternative is: the receiving user equipment of the D2D link does not perceive the cellular uplink channel in the sensing domain, but in the D2D transmission domain, it always tries to receive signals, and the receiving user equipment only decodes itself. To receive the data of the object. This reduces the perceived overhead, and the corresponding disadvantage is the increased power consumption of the receiving D2D user equipment.
  • FIG. 16 shows a block diagram of an exemplary base station device 1600 for implementing resource management of device-to-device (D2D) communication, in accordance with some example embodiments.
  • D2D device-to-device
  • the base station apparatus 1600 may include a D2D link set establishing unit 1601 that establishes or helps establish a D2D link set for D2D communication; D2D link grouping unit 1602, a message transmitting unit 1604.
  • the D2D link set establishing unit 1601 is configured to establish/help establish a D2D link set M.
  • the first D2D link grouping unit 1602 is configured to determine in the D2D link set M that the cellular uplink is not to be performed.
  • the D2D links shown are 1 ⁇ 3.
  • the first D2D link grouping unit 1601 estimates the distance of the transmitting user equipment of one D2D link from the received signal from the D2D user equipment, and estimates from the distance and the transmission power of the D2D link. Possible interference with a D2D link.
  • the eNB may limit the maximum transmission power of the D2D link or directly allocate the transmission power of the D2D link. Through the distance from the D2D user equipment to the eNB and the transmission power of the D2D user equipment transmitter, the eNB can estimate the possible interference of the D2D transmission.
  • the message sending unit 1604 is configured to send a message to the user equipment of the D2D link selected to perform the D2D communication, where the message includes the user equipment that informs the device-to-device (D2D) link selected for D2D communication.
  • the sensing domain performs D2D sensing, and if feasible, proceeds to D2D transmission in the transmission domain.
  • the message sending unit 1604 may send resource block information that needs to be perceived, and the message may specify that a specific D2D link is perceived by a specific resource block and possible D2D transmission.
  • an eNB can request a selected set of D2D user equipments to perceive resource blocks that are simultaneously allocated to multiple macro user equipments, or even the entire system bandwidth (5 MHz, 20 MHz, etc.).
  • the message requires the D2D user equipment to perform sensing on the resource blocks allocated to the macro user equipment A and the macro user equipment B, and if possible, further perform D2D data transmission.
  • base station device 1600 may further include a second link grouping unit 1603.
  • the second D2D link grouping unit 1603 is configured to determine D2D links that do not cause interference with each other in the D2D link set N, constitute a D2D link set P, and form a D2D link in the D2D link set P As a D2D selected for D2D communication link.
  • the second D2D link grouping unit 1603 determines, according to the neighbor relationship between the D2D user equipments, the spatially independent D2D links as D2D links that do not cause interference with each other.
  • the D2D links 1, 2, and 4 are spatially independent and do not cause mutual interference, and they are well suited to coexist in the same group. Therefore, the eNB forms a set P of D2D links 1, 2, 4 that do not interfere with the cellular uplink and do not interfere with each other, and serves as a D2D link that is selected for D2D communication.
  • the base station device of the present invention also operates in a cellular network, and its specific structure, function, and the like in the cellular network are not discussed in the present invention, and are not described herein.
  • FIG. 17 is a block diagram showing an exemplary D2D transmission user equipment architecture for implementing device-to-device (D2D) communication, in accordance with some embodiments of the present invention.
  • D2D device-to-device
  • the D2D transmitting user equipment 1700 can include a message receiving unit 1701, a sensing unit 1702, and a transmitting unit 1703.
  • the message receiving unit 1701 is configured to receive a message from the base station, the message comprising: notifying the user equipment of the device-to-device (D2D) link for D2D sensing and transmission; according to some embodiments of the present invention, the message from the base station may be Specifying specific resource blocks that the D2D user equipment is aware of, such as time-frequency resources allocated to a single macro user equipment, or time-frequency resources allocated to multiple macro user equipments, and even sensing the entire system frequency band (eg, 5MHZ, 20MHZ, etc.) . In the third embodiment of the present invention, the message requires the D2D user equipment to perform sensing on the resource blocks allocated to the macro user equipment A and the macro user equipment B, and if possible, further perform D2D data transmission.
  • D2D device-to-device
  • the sensing unit 1702 is configured to perform sensing in the D2D sensing domain; based on the message from the base station, the sensing unit may be perceived on a time-frequency resource allocated to a single macro user equipment, or may be allocated to multiple macro users. Perceived on the time-frequency resources of the device, even on the entire system band (eg 5MHZ, 20MHZ, etc.). As in accordance with the third embodiment of the present invention, the sensing unit 1702 is configured to perform sensing on the resource blocks allocated to the macro user equipment A and the macro user equipment B according to the message from the base station. As shown in FIG. 13, the sensing unit 1702 of the transmitting user equipment of the D2D link 1 is in the resource block allocated to the macro user equipment A.
  • the presence of an uplink transmission from the macro user equipment A is detected or its interference is tolerable because the D2D link 1 is close to the macro user equipment A; and the sensing unit 1702 of the transmitting user equipment of the D2D link 1 is assigned to the macro user
  • the presence of any cellular uplink transmission or its interference is not tolerated on the resource block of device B.
  • the sensing unit 1702 of the transmitting user equipment of the D2D link 2, 3 detects the presence of the uplink transmission from the macro user equipment B on the resource block allocated to the macro user equipment B or its interference is intolerable; and the D2D link 2
  • the sensing unit 1702 of the transmitting user equipment of 3 does not detect the presence or interference from any cellular uplink transmission on the resource block allocated to the macro user equipment A.
  • the transmitting unit 1703 is configured to perform data transmission in the corresponding D2D transmission domain when the sensing unit does not detect the cellular uplink transmission or the interference from the cellular signal is determined to be tolerable.
  • the transmission unit of the transmitting user equipment of the D2D link 1 performs D2D data transmission in the corresponding D2D transmission domain of the time-frequency resource B; and the transmission of the transmitting user equipment of the D2D link 2, 3 The unit performs D2D data transmission in the corresponding D2D transmission domain of the time-frequency resource A.
  • FIG. 18 is a block diagram showing an exemplary D2D receiving user equipment architecture for implementing device-to-device (D2D) communication, in accordance with some embodiments of the present invention.
  • D2D device-to-device
  • D2D receiving user equipment 1800 can include a message receiving unit 1801, a data receiving unit 1803, and a decoding unit 1804.
  • the message receiving unit 1801 is configured to receive a message from a base station, where the message includes a D2D sensing and transmission of a user equipment that informs a device-to-device (D2D) link.
  • a message from a base station may specify a specific resource block that is perceived by a D2D user equipment, such as a time-frequency resource allocated to a single macro user equipment, or a time-frequency allocated to multiple macro user equipments. Resources, even perceive the entire system band (eg 5MHZ, 20MHZ, etc.).
  • the message requires the D2D user equipment to perform sensing on the resource blocks allocated to the macro user equipment A and the macro user equipment B, and if possible, further perform D2D data transmission.
  • the data receiving unit 1803 is configured to perform data reception in the corresponding D2D transmission domain according to the message received by the message receiving unit 1801.
  • the received data is sent to a decoding unit 1804, and the decoding unit 1804 is configured to decode the data received by the data receiving unit 1803 as a receiving object.
  • the receiving user equipment of the D2D link is configured to not perceive the cellular uplink channel in the sensing domain, while the D2D transmission domain data receiving unit 1803 always attempts to receive signals, and the decoding unit only decodes the data itself as the receiving object. This reduces the perceived overhead, and the corresponding disadvantage is that the power consumption of the receiving D2D user equipment is increased.
  • the D2D receiving user equipment 1800 may further include a sensing unit 1802 configured to perform sensing in the D2D sensing domain.
  • the data receiving unit 1803 is configured to not have the sensing unit 1802 in the sensing domain. It is detected that the cellular uplink transmission or interference from the cellular signal is determined to be tolerable when data is received in the corresponding D2D transmission domain, and the received data is sent to the decoding unit 1804.
  • the sensing unit 1802 is configured to perform sensing on the resource blocks assigned to the macro user equipment A and the macro user equipment B. As shown in FIG.
  • the sensing unit 1802 of the receiving user equipment of the D2D link 1 detects the presence of the uplink transmission from the macro user equipment A on the resource block allocated to the macro user equipment A or its interference is tolerable because The D2D link 1 is close to the macro user equipment A; and the sensing unit 1802 of the receiving user equipment of the D2D link 1 does not detect the presence of any cellular uplink transmission or its interference on the resource block allocated to the macro user equipment B. tolerate.
  • the sensing unit 1802 of the receiving user equipment of the D2D link 2, 3 detects the presence of an uplink transmission from the macro user equipment B or its interference is not tolerable on the resource block allocated to the macro user equipment B; and the D2D link The sensing unit 1802 of the receiving user equipment of 2, 3 does not detect the presence of any cellular uplink transmission or its interference can be tolerated on the resource blocks allocated to the macro user equipment A.
  • the data receiving unit 1803 of the receiving user equipment of the D2D link 1 performs D2D data reception in the corresponding D2D transmission domain of the time-frequency resource B and sends the received data to the decoding unit 1804.
  • the data receiving unit 1803 of the receiving user equipment of the D2D link 2, 3 performs D2D data reception in the corresponding D2D transmission domain of the time-frequency resource A and sends the received data to the decoding unit 1804.
  • the invention proposes a mechanism of perceptually detecting and transmitting, which can effectively avoid interference between the D2D device and the cellular communication device, and improve the spectrum reuse rate; and the eNB is only in the link grouping.
  • the existing measurement and parameters are used to select the D2D communication user equipment, the existing cellular communication scheduling scheme does not need to be changed, and does not affect the existing cellular system; at the same time, through the scheduling of the eNB side and the sensing of the user equipment of the D2D link, Perform some necessary measurements and judgments at both ends without having to do a lot of measurement work, reduce signaling overhead, and improve system efficiency.
  • the serving eNB performs scheduling on the D2D link, and the serving eNB only requires D2D link execution sensing that does not interfere with each other (or interference tolerable) and performs D2D transmission, and the D2D link tries to use those spatially idle time frequencies. Resources, which increase the spectrum reuse gain.

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本发明的实施方式提供一种D2D通信方法,采用先感知后传输的机制,将每个子帧被分成一个感知域,包括一开始的少量OFDM符号,接着是一个D2D传输域,包括后面部分的OFDM符号。D2D感知域被D2D用户设备用来感知附近是否存在蜂窝上行传输,而D2D传输域被用作D2D传输。通过先感知后传输的机制,可以有效的避免D2D设备和蜂窝通信设备间的干扰,提高频谱重用率;且无需做很多的测量工作,减少信令开销,提高系统效率。本发明还包括可以被配置来完成所述方法的装置。

Description

在设备到设备 (D2D) 通信中时频资源的管理方法和设备 技术领域
本发明的示例性和非限制性实施例一般性的涉及无线通信, 更具 体地涉及在设备到设备 (D2D ) 通信中感知和通信的方法和设备。
背景技术
受消费者需求的驱动, 现代通信时代已经带来无线网络技术的巨 大扩张。 这种无线和移动网络技术的扩张满足了相应的消费者需求, 同时为信息传递提供了更大的灵活性和即时性, 并为用户提供便利。
当前和未来的网络技术继续推动信息传递的简便和用户的便利。 为了提供更简便快捷的信息传递以及便利性, 电信工业服务提供者正 对现存网络进行改进。 网络和通信技术的一个正进行的发展领域是设 备到设备 (D2D)通信技术的部署,例如第三代合作伙伴项目 (3GPP ) 目前正在进行 D2D相关的标准化工作。
设备间通信技术可以使用主蜂窝系统的无线电资源, 但是允许两 台计算设备, 诸如移动终端 (也被称为用户设备 UE ) , 直接彼此通 信而无需使他们的通信经由蜂窝网络的组件。 这会带来诸多益处。 例 如进行 D2D通信的移动终端间的直接通信链路比起经由蜂窝系统组 件的非直接通信可以减少终端间数据交换的端到端的延迟时间。 此 夕卜, 由于通信可以被从蜂窝网络转移至设备间通信链路, 网络负载会 降低。 D2D通信的其他好处包括改进区域的覆盖性, 改进服务网络资 源的有效性,以及节省用户设备和网络接入点的传输功率。进一歩地, D2D通信可以支持多种终端用户服务, 诸如端到端应用, 人对人的游 戏应用, 协作应用以及类似的可以被彼此距离接近的移动终端用户使 用的应用。
为了使 D2D通信方式和通信设备具有竞争力,性能和成本是 D2D 通信系统设计中需要考虑的两大因素。成本方面, D2D系统的设计将 尽可能地重用已有的无线通信系统技术从而减少额外的设计和实现 成本。 性能方面, 例如由于 D2D可以使用主蜂窝系统的无线电资源, 因此将不得不总体考虑 D2D的性能以及对主蜂窝系统的影响(图 1 )。 干扰是影响性能的主要因素之一。 在支持 D2D 的无线通信系统中, 比如 LTE无线通信系统中, 干扰可以来自于以下方面: D2D通信与 蜂窝通信使用同样的资源, 从而导致 D2D 设备和蜂窝通信设备间的 干扰, 不同的 D2D设备使用同样的资源因此导致 D2D设备间的干扰 (图 2 ) 。
为了解决上述问题, 现有的方案是: 假设 D2D 通信和蜂窝网络 之间的干扰信道的信道状态信息被测量并且被汇报给服务 eNB, 接着 服务 eNB对 D2D链路和蜂窝链路进行联合调度。 上述方案有两个主 要的不足之处: 1 ) 有许多 D2D链路和蜂窝链路的组合, 这将导致需 要做太多的测量工作, 相应干扰信道的信道状态信息的信令开销也很 大。 2 ) 对 D2D链路和蜂窝链路进行联合调度, 影响了目前蜂窝链路 的现有的调度方案的使用。 发明内容
有鉴于此, 本发明的实施方式的目的之一在于支持 D2D 通信作 为蜂窝网络的延伸, D2D通信采用先感知后传输的机制, 将每个子帧 被分成一个感知域,包括一开始的少量 OFDM符号,接着是一个 D2D 传输域, 包括后面部分的 OFDM符号。 D2D感知域被 D2D用户设备 用来感知附近是否存在蜂窝上行传输, 而 D2D传输域被用作 D2D传 输。 通过先感知后传输的机制, 可以有效的避免 D2D 设备和蜂窝通 信设备间的干扰, 提高频谱重用率; 且无需做很多的测量工作, 减少 信令开销, 提高系统效率。
根据本发明的一个方面, 提供一种用于在设备到设备 (D2D) 通 信中时频资源管理方法, 包括:
- 把子帧的开始一部分 OFDM符号设置为感知域,用于 D2D设 备感知蜂窝上行传输;
- 把子帧的后面一部分 OFDM符号设置为传输域,用于 D2D设 备的数据传输。
在本发明的一实施例中, 所述感知域和传输域之间的至少一个
OFDM符号设置为空白域。
根据本发明的另一个方面, 提供一种设备到设备 (D2D) 的通信 方法, 所述设备到设备 (D2D ) 通信和蜂窝系统共存, 包括:
设备到设备 (D2D ) 链路的发送用户设备接收来自基站的消息, 所述消息包括通知设备到设备 (D2D) 链路的用户设备进行 D2D 感 知和传输;
设备到设备 (D2D ) 链路的发送用户设备在感知域进行感知; 如果设备到设备 (D2D ) 链路的发送用户设备在感知域没有检测 到蜂窝上行传输或者来自蜂窝信号的干扰被确定是可容忍的, 则设备 到设备 (D2D ) 链路的发送用户设备在 D2D传输域进行数据传输。
在本发明的一实施例中, 设备到设备 (D2D) 链路的接收用户设 备接收来自基站的消息, 所述消息包括通知设备到设备 (D2D ) 链路 的用户设备进行 D2D感知和传输;
设备到设备 (D2D ) 链路的接收用户设备在感知域进行感知; 当所述设备到设备 (D2D ) 链路的接收用户设备在感知域没有检 测到蜂窝上行传输或者来自蜂窝信号的干扰被确定是可容忍的, 则设 备到设备 (D2D ) 链路的接收用户设备在 D2D传输域进行数据接收。
在本发明的一实施例中, 设备到设备 (D2D) 链路的接收用户设 备在感知域不进行感知;
设备到设备(D2D)链路的接收用户设备在 D2D传输域进行数据 接收。
在本发明的一实施例中, 设备到设备 (D2D) 链路的接收用户设 备仅译码自己为接收对象的数据。
在本发明的一实施例中,所述消息还进一歩包括进行 D2D感知和 数据传输的资源块信息。
在本发明的一实施例中, 所述设备到设备 (D2D) 链路不会对蜂 窝上行传输造成干扰。 在本发明的一实施例中, 所述设备到设备 (D2D) 链路之间彼此 不会造成相互干扰。
根据本发明的另一方面, 提供一种用于在设备到设备 (D2D) 通 信中的 D2D 链路管理方法, 所述设备到设备 (D2D) 通信和蜂窝通 信网络共存, 包括:
基站设备建立 /帮助建立一个 D2D链路集合 M;
基站设备在 D2D链路集合 M中确定不会对蜂窝上行链路造成干 扰的 D2D链路, 组成 D2D链路集合 N; 并将 D2D链路集合 N中的 D2D链路作为被选出进行 D2D通信的 D2D链路;
基站设备给被选出进行 D2D通信的 D2D链路的用户设备发送消 息, 所述消息包括通知被选出进行 D2D 通信的设备到设备 (D2D ) 链路的用户设备在感知域进行 D2D感知, 如果可行, 进一歩在传输 域进行 D2D传输。
在本发明的一实施例中, 基站设备在 D2D链路集合 N中确定彼 此不会造成干扰的 D2D链路, 组成 D2D链路集合 P, 并将 D2D链路 集合 P中的 D2D链路作为被选出进行 D2D通信的 D2D链路。
在本发明的一实施例中, 基站设备根据接收到的来自用户设备的 信号估计一个 D2D链路的发送用户设备与其的距离, 并且根据所述 距离以及 D2D链路的发送功率估计来自一个 D2D链路的可能干扰。
在本发明的一实施例中, 根据 D2D 用户设备之间的邻居关系, 确定在空间上相互独立的 D2D链路为相互间不会造成干扰的 D2D链 路。
根据本发明的另一方面, 提供一种 D2D设备, 所述 D2D设备用 于 D2D通信并共存于蜂窝系统, 包括:
消息接收单元, 被配置用于接收来自基站的消息, 所述消息包括 通知设备到设备 (D2D) 链路的用户设备进行 D2D感知和传输;
感知单元, 被配置用于在 D2D感知域进行感知;
传输单元, 被配置用于当感知单元没有检测到蜂窝上行传输或者 来自蜂窝信号的干扰被确定是可容忍时在 D2D传输域进行数据传输。 在本发明的一实施例中,所述消息还进一歩包括进行 D2D感知和 数据传输的资源块信息。
根据本发明的另一方面, 提供一种 D2D设备, 所述 D2D设备用 于 D2D通信并共存于蜂窝系统, 包括:
消息接收单元, 被配置用于接收来自基站的消息, 所述消息包括 通知设备到设备 (D2D) 链路的用户设备进行 D2D感知和传输;
数据接收单元, 被配置为在 D2D传输域进行数据接收。
在本发明的一实施例中, 所述 D2D设备还包括感知单元, 被配置 用于在 D2D感知域进行感知;
数据接收单元, 被配置为当所述感知单元在感知域没有检测到蜂 窝上行传输或者来自蜂窝信号的干扰被确定是可容忍的时在 D2D传 输域进行数据接收。
在本发明的一实施例中, 所述 D2D设备译码单元, 被配置用于对 数据接收单元收到的自己为接收对象的数据进行译码。
在本发明的一实施例中,所述消息还进一歩包括进行 D2D感知和 数据传输的资源块信息。
根据本发明的另一方面, 提供一种基站设备, 工作在蜂窝系统并 与 D2D通信系统共存, 包括:
D2D链路集合建立单元, 被配置用于建立 /帮助建立一个 D2D链 路集合 M;
第一 D2D链路分组单元,被配置用于在 D2D链路集合 M中确定 不会对蜂窝上行链路造成干扰的 D2D链路, 组成 D2D链路集合 N; 并将 D2D链路集合 N中的 D2D链路作为被选出进行 D2D通信的 D2D 链路;
消息发送单元,被配置用于给被选出进行 D2D通信的 D2D链路的 用户设备发送消息, 所述消息包括通知被选出进行 D2D通信的设备 到设备 (D2D) 链路的用户设备在感知域进行 D2D感知, 如果可行, 进一歩在传输域进行 D2D传输。
在本发明的一实施例中, 所述基站设备进一歩包括: 第二 D2D链路分组单元, 被配置用于在 D2D链路集合 N中确定 彼此不会造成干扰的 D2D链路, 组成 D2D链路集合 P, 并将 D2D链 路集合 P中的 D2D链路作为被选出进行 D2D通信的 D2D链路。
在本发明的一实施例中,所述第一 D2D链路分组单元根据接收到 的来自用户设备的信号估计一个 D2D链路的发送用户设备与其的距 离, 并且根据所述距离以及 D2D链路的发送功率估计来自一个 D2D 链路的可能干扰。
在本发明的一实施例中,所述第二 D2D链路分组单元,根据 D2D 用户设备之间的邻居关系, 确定在空间上相互独立的 D2D链路为相 互间不会造成干扰的 D2D链路。 附图说明
通过以下结合附图的说明, 并且随着对本发明的更全面了解, 本 发明的其他目的和效果将变得更加清楚和易于理解, 其中:
图 1示出设备对设备通信和蜂窝系统共存的例子;
图 2示出设备对设备通信和蜂窝系统共存时的干扰示意图; 图 3是子帧的时频资源以及资源块示意图;
图 4是根据本发明实施例的配置子帧的感知域和传输域示意图; 图 5是根据本发明的一些实施例示出设备对设备通信和蜂窝系统 共存的示意图;
图 6 根据本发明的一些示例性实施例示出的用于在设备到设备 ( D2D)通信图的 eNB进行资源管理以及 D2D用户设备实现 D2D通信 的示意流程图;
图 7是根据本发明的一些实施例示出设备对设备通信和蜂窝系统 共存的示意图;
图 8是根据本发明的一些实施例示出设备对设备通信链路间相互 干扰的示意图;
图 9是根据本发明的实施例示出 D2D通信链路的用户设备之间的 邻居关系的示意图; 图 10是根据本发明的实施例示出 D2D通信链路的用户设备之间 的邻居关系的示意图;
图 11 是根据本发明的一些实施例示出设备对设备通信和蜂窝系 统共存时示意图;
图 12是根据本发明的一些实施例示出资源配置示意图;
图 13 是根据本发明的一些实施例示出设备对设备通信和蜂窝系 统共存时干扰示意图;
图 14是根据本发明的一些实施例示出资源配置示意图;
图 15是根据本发明的一些实施例示出资源配置示意图;
图 16是根据本发明的一些实施例示出用来实现设备对设备 (D2D) 通信的资源管理的一个示例性基站设备结构框图;
图 17是根据本发明的一些实施例示出用来实现设备对设备 ( D2D ) 通信的一个示例性 D2D发送用户设备结构框图;
图 18是根据本发明的一些实施例示出用来实现设备对设备 ( D2D ) 通信的一个示例性 D2D接收用户设备结构框图。 具体实施方式 下面结合附图对本发明的实施例做进一歩的说明。
在本发明的实施例中, 示范性的采用 LTE/LTE-A作为与 D2D系统 共存的蜂窝系统。
本发明中, 考虑以下场景: D2D通信和蜂窝通信共存于蜂窝上行 信道(图 1 ) 。 把 D2D链路作为一个从属通信链路, 尝试重用蜂窝上行 频带以提高整个蜂窝系统的频谱效率;蜂窝网络和 D2D通信共存带来了 蜂窝网络和 D2D通信之间的相互干扰 (图 2) 。 在 LTE/LTE-A系统, 基本的调度操作是动态调度, 在每一个子帧 (1ms) , 一个 eNB为被选 择的用户设备集合调度蜂窝链路的数据传输。 分配给宏用户设备的基本 的时频资源单元是一个资源块(RB)对, 包含在一个子帧内的两个时间 连续的资源块; 一个宏用户设备的上行传输可以被分配多个 RB对。 如 图 3示例性的说明子帧和资源块, 一个子帧 (lms)包括时域 14个 OFDM 符号,频域上多少子载波取决于系统带宽, 例如 10MHz带宽, 频域上 50 资源块宽, 则每个资源块在频域上有 12个连续子载波 (总共 12x50个子 载波)。 图 3中, 一个资源块包括 7个 OFDM符号, 频域 12个连续子载 波. 黑色粗实线围着的斜线区域是一个资源块。
为了避免来自在蜂窝上行链路的宏用户设备的干扰影响到 D2D 用 户设备, 本发明为 D2D通信提出了一个感知 /传输机制。 图 4给出了配 置子帧的感知域和传输域示意图。 每个子帧被分成一个感知域, 包括一 开始的少量 OFDM符号, 接着是一个 D2D传输域, 包括最后的 OFDM 符号, 即一个感知域和一个传输域对应。 其中感知域和传输域之间的至 少一个 OFDM符号可以留白, 作为备用, 如作为可能的传输机 /接收机 开关之用。 感知域被 D2D 用户设备用来感知附近是否存在蜂窝上行传 输, 而 D2D传输域被用作 D2D传输。
在一个子帧(如 lms子帧) 内, D2D用户设备在子帧开始部分感知 上行链路的信道, 如果没有检测到蜂窝信号, 或者来自蜂窝信号的干扰 被确定是可容忍的, D2D用户设备在该子帧剩余部分即 D2D传输域进 行 D2D传输。 即使在感知之后, 可能还会发生 D2D传输之间的碰撞, 这将降低频谱效率, 并且提高用户设备的功率消耗。 这个问题可以通过 服务 eNB对 D2D链路执行调度来缓和, 如对某些时频资源, 服务 eNB 仅要求那些相互将没有干扰(或者干扰可容忍)的 D2D链路执行感知并 进一歩进行 D2D传输。干扰检测、干扰是否可容忍的判断等技术是通信 领域的常规技术, 本发明的应用不受此等技术的限制。
LTE在蜂窝上行采用 SC-FDMA (单载波-频分复用接入),在同一个子 帧的频域, 不同的成对资源块集合被分配给不同的宏用户设备。 在本发 明提出的方案中, 在哪些资源块进行感知, eNB根据实际情况决定并通 知被选择的 D2D用户设备。一个 eNB能够要求一组被选择的 D2D用户 设备(至少包括一个 D2D用户设备)来感知被分配给单个宏用户设备的 时频资源,也能够要求一组被选择的 D2D用户设备同时来感知被分配给 多个宏用户设备的时频资源,甚至感知整个系统频带(如 5MHZ, 20MHZ 等) 。 如果在某个频段上 (以资源块对为单位), D2D 用户设备在它的周 围 (空间上)没有发现其它传输如蜂窝上行传输(此情况下无干扰), 即在 D2D用户设备周围的空间范围内该时频资源空闲,所以该频段 /资源块可 用于 D2D传输。 接着 D2D链路选择空间上空闲的成对资源块 (D2D传 输域) 进行 D2D传输。
下面结合附图详细描述本方案的三个具体实施例。
在第一个实施例中,考虑来自宏用户设备的蜂窝上行传输和在 D2D 链路 1~5的 D2D传输共存, 如图 5所示。
图 6是 eNB进行资源管理以及 D2D用户设备实现 D2D传输的具体 流程图。 下面结合图 5和图 6描述本发明的第一个实施例。
歩骤 S601 : —个 eNB为 D2D传输建立或者帮助建立一个 D2D链 路集合 M (D2D链路 1~5 ) ;
歩骤 S602: eNB选择进行 D2D通信的 D2D链路。
在本实施例中, eNB (eNB作为蜂窝上行链路的接收机) 确定不会 对蜂窝上行链路造成干扰的 D2D链路组成 D2D链路集合 N, 并将 D2D 链路集合 N中的 D2D链路作为被选出进行 D2D通信的 D2D链路。
eNB能够根据接收到的来自用户设备的信号估计一个 D2D链路的 发送用户设备的距离。 为了使 D2D链路造成的可能干扰可控, eNB可 以限制 D2D链路的最大传输功率,或者直接分配 D2D链路的传输功率。 通过 D2D 用户设备 到 eNB的距离和 D2D 用户设备 发射机的传输功 率, eNB可以估算出 D2D传输的可能干扰。例如,在图 7, D2D链路 1~4 被确定为不会对蜂窝上行链路造成干扰,而来自 D2D链路 5的可能干扰 对 eNB是不可接受的。
eNB作为蜂窝系统的基站设备, 在下一个歩骤之前, 为蜂窝上行通 信执行调度, 分配一些时频资源(RBs)给宏用户设备 A作上行传输用; 歩骤 S603 : eNB给选定的 D2D链路 1~4的 D2D用户设备发消息, 通知 D2D链路 1~4的用户设备, 在分配给宏用户设备 A的 RBs上执行 感知, 并且如果可行, 进一歩进行 D2D数据传输。
歩骤 S604: D2D链路 1~4的 D2D发送用户设备和接收用户设备分 别接收来自 eNB的消息。
歩骤 S605: 在感知域, D2D链路 1~4的发送用户设备在分配给宏 用户设备 A的资源块上进行感知。如图 7所示, D2D链路 1的发送用户 设备检测到一个蜂窝链路的上行传输的存在或有不可容忍干扰, 因为 D2D链路 1接近宏用户设备 A。 D2D链路 2, 3 , 4的发送用户设备没 有检测到蜂窝上行传输或者来自蜂窝信号的干扰被确定是可容忍的。 同 理, D2D链路 1~4的接收用户设备在分配给宏用户设备 A的资源块上进 行感知。 如图 7所示, D2D链路 1的接收用户设备检测到一个蜂窝链路 的上行传输的存在, 因为 D2D链路 1接近宏用户设备 A。 D2D链路 2, 3, 4的接收用户设备没有检测到蜂窝上行传输的存在或者来自蜂窝信号 的干扰被确定是可容忍的。
歩骤 S606:在 D2D传输域, D2D链路 2, 3, 4执行 D2D数据传输, D2D链路 2, 3, 4的发送用户设备进行数据传输, 如图 8所示。
歩骤 S607: 由于在歩骤 S605, D2D链路 2, 3, 4的接收用户设备 没有检测到蜂窝上行传输的存在或者来自蜂窝信号的干扰被确定是可 容忍的,因此 D2D链路 2, 3, 4的接收用户设备在传输域进行数据接收。
歩骤 S608: D2D链路 2, 3, 4的接收用户设备对接收到的数据进 行译码。
如图 8所示, 由于 D2D链路 2周边没有 D2D传输, D2D传输在 D2D链路 2是成功的, 而由于 D2D链路 3和 D2D链路 4互相干扰, 在 D2D链路 3和 D2D链路 4上的 D2D传输则失败了。
在本发明中,我们假定 D2D通信仅为短距离链路建立,长距离 D2D 通信则由两跳蜂窝通信来支持更有效, 因为低海拔 (因为用户设备的天 线高度低, 通常为 1.5米左右) D2D信道在长距离后比在用户设备和通 常塔顶的 eNB之间的信道衰减更快。 此外, 长距离 D2D通信可能会造 成现有蜂窝拓扑的干扰不可控。 因此, 由于短距离链路的 D2D通信, 一 个 D2D链路的发送用户设备和接收用户设备测得来自蜂窝上行传输的 干扰处于相似的程度。 发送用户设备仅当在感知域检测不到任何蜂窝上 行传输的存在时才在 D2D传输域发送信号。同时,接收用户设备仅当未 检测到任何蜂窝上行链路传输时才在 D2D传输域接收信号。一个可替换 方案是: D2D链路的接收用户设备在感知域不感知蜂窝上行信道, 而在 D2D传输域它总是试图接收信号,接收用户设备仅译码自己为接收对象 的数据。 这样可以减少感知开销, 相对应的缺点是接收 D2D 用户设备 的功耗增加了。
如在该第一个实施例的所示, D2D链路 3和链路 4由于相互之间的 干扰造成 D2D通信失败, D2D链路之间的碰撞也会降低频谱效率, 增 加 D2D用户设备的功耗。这个问题可通过服务 eNB执行 D2D链路调度 来得到缓解。如在某些时频资源, eNB只要求那些不会彼此干扰的 D2D 链路来执行感知并进一歩进行 D2D传输。具体方案在如下的第二个实施 例中, 并同样结合图 6的歩骤进行详细描述。
歩骤 S601 : —个 eNB为 D2D传输建立或者帮助建立一个 D2D链 路集合 M (如图 5的 D2D链路 1~5 ) ;
歩骤 S602: eNB选择进行 D2D通信的 D2D链路。
在本实施例中, eNB (eNB作为蜂窝上行链路的接收机) 先确定不 会对蜂窝上行链路造成干扰的 D2D链路组成 D2D链路集合 N, 如图 5 中,链路 1~4被确定为将不会对蜂窝上行链路造成干扰的 D2D链路,相 反, 来自 D2D链路 5的可能干扰对 eNB是不可接受的, 该过程的具体 方法和第一实施例相同。 eNB进一歩的将所有的 D2D链路分成多个组, 那些彼此不会造成干扰的 D2D链路为一个组。 分组可基于在 eNB端的 有效信息, 如 D2D链路的用户设备之间的邻居关系。如图 9所示, D2D 链路 1, 2, 4在空间上独立, 不会造成相互干扰, 他们很适合放在同一 个组内共存。 因此, eNB将既不会对蜂窝上行链路造成干扰又不会相互 干扰的 D2D链路 1, 2, 4组成集合 P, 并作为被选出进行 D2D通信的 D2D链路。
与第一实施例类似, eNB作为蜂窝系统的基站设备, 在下一个歩骤 之前, 为蜂窝上行通信执行调度, 分配一些时频资源 (RBs) 给宏用户 设备 A作上行传输用;
歩骤 S603 : eNB给选定的 D2D链路 1, 2, 4的 D2D用户设备发消 息, 通知 D2D链路 1, 2, 4的用户设备(如图 9所示) , 在分配给宏用 户设备 A的资源块上执行感知, 并且如果可行, 进一歩进行 D2D数据 传输。
歩骤 S604: D2D链路 1, 2, 4的 D2D发送用户设备和接收用户设 备分别接收来自 eNB的消息。
歩骤 S605: 在感知域, D2D链路 1, 2, 4的发送用户设备在分配 给宏用户设备 A的资源块上进行感知。 如图 10所示, D2D链路 1的发 送用户设备检测到一个蜂窝链路的上行传输的存在, 因为 D2D 链路 1 接近宏用户设备 A。 D2D链路 2, 4的发送用户设备没有检测到蜂窝上 行传输的存在或者来自蜂窝信号的干扰被确定是可容忍的。 同理, D2D 链路 1, 2, 4的接收用户设备在分配给宏用户设备 A的资源块上进行感 知。 如图 10所示, D2D链路 1的接收用户设备检测到一个蜂窝链路的 上行传输的存在或其干扰不可容忍, 因为 D2D链路 1接近宏用户设备 A。 D2D链路 2, 4的接收用户设备没有检测到蜂窝上行传输的存在或者 来自蜂窝信号的干扰被确定是可容忍的。
歩骤 S606: 在 D2D传输域, D2D链路 2, 4执行 D2D数据传输, D2D链路 2, 4的发送用户设备进行数据传输。
歩骤 S607: 由于在歩骤 S605, D2D链路 2, 4的接收用户设备没有 检测到蜂窝上行传输的存在或者来自蜂窝信号的干扰被确定是可容忍 的,因此 D2D链路 2, 4的接收用户设备在传输域进行数据接收。而 D2D 链路 1的接收用户设备检测到一个蜂窝链路的上行传输的存在或其干扰 不可容忍, 它在接收域不进行数据接收。
歩骤 S608: D2D链路 2, 4的接收用户设备对接收到的数据进行译 码。
如图 10所示, 由于 D2D链路 2, 4周边没有 D2D传输, 在 D2D链 路 2和 4的 D2D传输都是成功的。
同样, 上述第二实施例具体描述中, 发送用户设备仅当在感知域检 测不到任何蜂窝上行传输的存在时才在 D2D传输域发送信号。同时,接 收用户设备仅当未检测到任何蜂窝上行链路传输时才在 D2D传输域接 收信号。 与第一实施例类似, 一个可替换方案是: D2D链路的接收用户 设备在感知域不感知蜂窝上行信道,而在 D2D传输域它总是试图接收信 号, 接收用户设备仅译码自己为接收对象的数据。 这样可以减少感知开 销, 相对应的缺点是接收 D2D 用户设备的功耗增加了。
在上述第一和第二实施例中, 为了描述的清楚性, 选定的一组 D2D 链路是在限定的时频资源上 (被分配给单个的宏用户设备的资源块) 进 行感知。 实际系统中, 该限定并不是必须的。 因为如实际 LTE在蜂窝上 行应用 SC-FDMA (单载波-频分复用接入) , 其中在频域, 在相同子帧 成对资源块的不同集合被分配给不同的宏用户设备。 那么, 本发明在实 际应用中, 一个 eNB可以请求一组的被选择的 D2D用户设备来感知被 同时分配给多个的宏用户设备的资源块, 甚至整个系统带宽 (5MHZ, 20MHZ等) 。 如果 D2D 用户设备在它的周围 (空间上)没有发现其它传 输, 那么 D2D 用户设备可以进行 D2D传输;接着 D2D链路可以选择在 其用户设备周围的空间范围内空闲的成对资源块用于 D2D传输。这样的 方案在下面第三实施例中具体描述。 同样, 该实施例结合图 6的流程图 以及其他示例图进行说明。
歩骤 S601: —个 eNB为 D2D通信建立或者帮助建立一个 D2D链 路集合 M (如图 11所示的 D2D链路 1~3 ) 。
歩骤 S602: eNB选择进行 D2D通信的 D2D链路。
与第二实施例类似, eNB确定那些将不会对蜂窝上行链路 (eNB) 造成干扰的 D2D链路。 如, 图 11中, 链路 1~3被确定为将不会对蜂窝 上行链路造成干扰的 D2D链路。
eNB将所有的 D2D链路分成多个组。那些彼此不会造成干扰的 D2D 链路为一个组。 分组可基于在 eNB端的有效信息, 如 D2D链路的用户 设备之间的邻居关系。 如图 11所示, D2D链路 1, 2, 3在空间上独立, 不会造成相互干扰, 他们很适合放在同一个组内共存。
与第一、 第二实施例类似, eNB作为蜂窝系统的基站设备, 在下一 个歩骤之前, 为蜂窝上行通信执行调度。 在此实施例中, 示例性的选择 2 个宏用户设备进行时频资源分配用以说明多个宏用户设备同时存在的 情况。 如图 12所示, eNB分配时频资源 A给宏用户设备 A, 时频资源 B给宏用户设备 B, 时频资源 A和时频资源 B在频域正交。
歩骤 S603 : eNB给选定的 D2D链路 1, 2, 3的 D2D用户设备发消 息, 通知 D2D链路 1, 2, 3的用户设备 (如图 13所示) , 用户设备在 分配给宏用户设备 A和宏用户设备 B的资源块上执行感知,并且如果可 行, 进一歩进行 D2D数据传输。
歩骤 S604: D2D链路 1, 2, 3的 D2D发送用户设备和接收用户设 备分别接收来自 eNB的消息。
歩骤 S605: 在感知域, D2D链路 1, 2, 3 的发送用户设备在分配 给宏用户设备 A和宏用户设备 B的资源块上感知信道。 如图 13所示, D2D链路 1的发送用户设备在分配给宏用户设备 A的资源块上检测到来 自宏用户设备 A的上行链路传输的存在或其干扰可容忍, 因为 D2D链 路 1接近宏用户设备 A;而 D2D链路 1的发送用户设备在分配给宏用户 设备 B的资源块上未检测到来自任何蜂窝上行链路传输的存在或其干扰 可容忍。 D2D链路 2, 3的发送用户设备在分配给宏用户设备 B的资源 块上检测到来自宏用户设备 B 的上行链路传输的存在或其干扰不可容 忍; 而 D2D链路 2, 3的发送用户设备在分配给宏用户设备 A的资源块 上未检测到来自任何蜂窝上行链路传输的存在或或干扰可容忍。 同理, D2D链路 1的接收用户设备在分配给宏用户设备 A的资源块上检测到来 自宏用户设备 A的上行链路传输的存在或其干扰可容忍, 因为 D2D链 路 1接近宏用户设备 A;而 D2D链路 1的接收用户设备在分配给宏用户 设备 B的资源块上未检测到来自任何蜂窝上行链路传输的存在或其干扰 不可容忍。 D2D链路 2, 3的接收用户设备在分配给宏用户设备 B的资 源块上检测到来自宏用户设备 B的上行链路传输的存在或或其干扰不可 容忍; 而 D2D链路 2, 3的接收用户设备在分配给宏用户设备 A的资源 块上未检测到来自任何蜂窝上行链路传输的存在或其干扰可容忍。
歩骤 S606: 在 D2D传输域, D2D链路 1在分配给宏用户设备 B的 资源块上进行 D2D数据传输(如图 14所示) , D2D链路 1的发送用户 设备在分配给宏用户设备 B的资源块上进行 D2D数据传输; D2D链路 2和 3在分配给宏用户设备 A的资源块上进行 D2D数据传输 (如图 15 所示) , D2D链路 2和 3的、发送用户设备在分配给宏用户设备 A的资 源块上进行 D2D数据传输。
歩骤 S607: 在 D2D传输域, D2D链路 1在分配给宏用户设备 B的 资源块上进行 D2D数据传输(如图 14所示) , D2D链路 1的接收用户 设备在分配给宏用户设备 B的资源块上进行 D2D数据接收; D2D链路 2和 3在分配给宏用户设备 A的资源块上进行 D2D数据传输 (如图 15 所示) , D2D链路 2和 3的、接收用户设备在分配给宏用户设备 A的资 源块上进行 D2D数据接收。
歩骤 S608: D2D链路 1, 2, 3 的接收用户设备对接收到的数据进 行译码。
在本实施例中, D2D链路 1, 2, 3在空间上独立, 不会造成相互干 扰, 因此他们的 D2D传输都是成功的。
与第一、 二实施例类似, 同样, 上述第三实施例具体描述中, 在一 资源块上, 发送用户设备仅在感知域检测不到任何蜂窝上行传输存在时 才在 D2D传输域发送信号。同时,接收用户设备仅当未检测到任何蜂窝 上行链路传输时才在 D2D传输域接收信号。与第一、二实施例类似, 一 个可替换方案是: D2D链路的接收用户设备在感知域不感知蜂窝上行信 道,而在 D2D传输域它总是试图接收信号,接收用户设备仅译码自己为 接收对象的数据。这样可以减少感知开销,相对应的缺点是接收 D2D 用 户设备的功耗增加了。
图 16示出根据一些示例性实施例用来实现设备对设备(D2D)通信 的资源管理的一个示例性基站设备 1600 的框图。 将会理解, 基站设备 1600以及其它附图中的图示分别提供一个实施例的例子,不应该以任何 方式将其解释为缩小本公开的范围和实质。 在这方面, 虽然图 1600 示 出一个用来实现设备对设备通信的资源管理的基站设备的例子, 许多其 他配置也可以被用于实现本发明的实施例。
如图 16所示,基站设备 1600可以包含一个为 D2D通信建立或者帮 助建立一个 D2D链路集合的 D2D链路集合建立单元 1601 ; —个第一 D2D链路分组单元 1602, 一个消息发送单元 1604。
D2D 链路集合建立单元 1601, 被配置用于建立 /帮助建立一个 D2D链路集合 M; 第一 D2D链路分组单元 1602, 被配置用于在 D2D 链路集合 M中确定不会对蜂窝上行链路造成干扰的 D2D链路, 组成 D2D链路集合 N;并将 D2D链路集合 N中的 D2D链路作为被选出进 行 D2D通信的 D2D链路; 如本发明第三实施例中, 图 11所示的 D2D 链路 1~3。
根据一些实施例, 第一 D2D链路分组单元 1601根据接收到的来 自 D2D用户设备的信号估计一个 D2D链路的发送用户设备与其的距 离, 并且根据所述距离以及 D2D链路的发送功率估计来自一个 D2D 链路的可能干扰。 为了使 D2D链路造成的可能干扰可控, eNB可以限 制 D2D链路的最大传输功率, 或者直接分配 D2D链路的传输功率。 通 过 D2D 用户设备 到 eNB的距离和 D2D 用户设备 发射机的传输功率, eNB可以估算出 D2D传输的可能干扰。
消息发送单元 1604,被配置用于给被选出进行 D2D通信的 D2D链 路的用户设备发送消息, 所述消息包括通知被选出进行 D2D通信的 设备到设备 (D2D) 链路的用户设备在感知域进行 D2D 感知, 如果 可行, 进一歩在传输域进行 D2D传输。
根据一些实施例, 消息发送单元 1604可以发送需要感知的资源 块信息, 消息中可以指定特定 D2D链路在特定的资源块进行感知以 及可能的 D2D传输。 这样, 一个 eNB可以请求一组的被选择的 D2D 用户设备来感知被同时分配给多个的宏用户设备的资源块, 甚至整个系 统带宽(5MHZ, 20MHZ等)。如本发明第三实施例中, 消息中要求 D2D 用户设备在分配给宏用户设备 A和宏用户设备 B的资源块上执行感知, 并且如果可行, 进一歩进行 D2D数据传输。
根据一些实施例, 基站设备 1600可以进一歩包含一个第二链路分 组单元 1603。第二 D2D链路分组单元 1603, 被配置用于在 D2D链路 集合 N中确定彼此不会造成干扰的 D2D链路,组成 D2D链路集合 P, 并将 D2D链路集合 P中的 D2D链路作为被选出进行 D2D通信的 D2D 链路。
根据本发明的一些实施例, 第二 D2D链路分组单元 1603, 根据 D2D用户设备之间的邻居关系, 确定在空间上相互独立的 D2D链路 为相互间不会造成干扰的 D2D链路。 如本发明第二实施例,图 9所示, D2D链路 1, 2, 4在空间上独立, 不会造成相互干扰, 他们很适合放在 同一个组内共存。 因此, eNB将既不会对蜂窝上行链路造成干扰又不会 相互干扰的 D2D链路 1, 2, 4组成集合 P, 并作为被选出进行 D2D通 信的 D2D链路。
本发明的基站设备, 同时也工作在蜂窝网络中, 其在蜂窝网络中 的具体结构、 功能等不在本发明的讨论之内, 在此不赘述。
图 17是根据本发明的一些实施例示出用来实现设备对设备 ( D2D ) 通信的一个示例性 D2D发送用户设备结构框图。
根据本发明, D2D发送用户设备 1700可以包括一个消息接收单 元 1701, 感知单元 1702和传输单元 1703。
消息接收单元 1701 被配置用于接收来自基站的消息, 所述消息 包括通知设备到设备 (D2D) 链路的用户设备进行 D2D感知和传输; 根据本发明的一些实施例,来自基站的消息中可以指定 D2D用户 设备进行感知的具体资源块, 如被分配给单个宏用户设备的时频资源, 或者被分配给多个宏用户设备的时频资源, 甚至感知整个系统频带 (如 5MHZ, 20MHZ等) 。 如本发明第三实施例中, 消息中要求 D2D用户设 备在分配给宏用户设备 A和宏用户设备 B的资源块上执行感知,并且如 果可行, 进一歩进行 D2D数据传输。
感知单元 1702, 被配置用于在 D2D感知域进行感知; 根椐来自 基站的消息, 感知单元可以在被分配给单个宏用户设备的时频资源上 感知, 也可以在被分配给多个宏用户设备的时频资源上进行感知, 甚至 在整个系统频带 (如 5MHZ, 20MHZ等) 上进行感知。 如根据本发明第 三实施例, 根据来自基站的消息, 感知单元 1702 被配置在分配给宏用 户设备 A和宏用户设备 B的资源块上执行感知。 如图 13所示, D2D链 路 1的发送用户设备的感知单元 1702在分配给宏用户设备 A的资源块 上检测到来自宏用户设备 A的上行链路传输的存在或其干扰可容忍, 因 为 D2D链路 1接近宏用户设备 A; 而 D2D链路 1的发送用户设备的感 知单元 1702在分配给宏用户设备 B的资源块上未检测到来自任何蜂窝 上行链路传输的存在或其干扰可容忍。 D2D链路 2, 3的发送用户设备 的感知单元 1702在分配给宏用户设备 B的资源块上检测到来自宏用户 设备 B的上行链路传输的存在或其干扰不可容忍; 而 D2D链路 2, 3的 发送用户设备的感知单元 1702在分配给宏用户设备 A的资源块上未检 测到来自任何蜂窝上行链路传输的存在或或干扰可容忍。
传输单元 1703,被配置用于当感知单元没有检测到蜂窝上行传输 或者来自蜂窝信号的干扰被确定是可容忍时在对应的 D2D传输域进 行数据传输。如本发明第三实施例中, D2D链路 1的发送用户设备的传 输单元就在时频资源 B的对应的 D2D传输域进行 D2D数据传输; 而 D2D链路 2, 3的发送用户设备的传输单元在时频资源 A的对应的 D2D 传输域进行 D2D数据传输。
图 18是根据本发明的一些实施例示出用来实现设备对设备 (D2D) 通信的一个示例性 D2D接收用户设备结构框图。
根据本发明, D2D接收用户设备 1800可以包括一个消息接收单 元 1801, 一个数据接收单元 1803和一个译码单元 1804。
消息接收单元 1801, 被配置用于接收来自基站的消息, 所述消息 包括通知设备到设备 (D2D) 链路的用户设备进行 D2D感知和传输。 根据本发明的一些实施例, 来自基站的消息中可以指定 D2D用户设 备进行感知的具体资源块,如被分配给单个宏用户设备的时频资源,或 者被分配给多个宏用户设备的时频资源, 甚至感知整个系统频带 (如 5MHZ, 20MHZ等) 。 如根据本发明第三实施例, 消息中要求 D2D用户 设备在分配给宏用户设备 A和宏用户设备 B的资源块上执行感知,并且 如果可行, 进一歩进行 D2D数据传输。 根据本发明的一些实施例, 数据接收单元 1803 被配置用于根据 消息接收单元 1801接收的消息,在对应的 D2D传输域进行数据接收。 并将接收到的数据送到译码单元 1804, 译码单元 1804, 被配置用于 对数据接收单元 1803 收到的自己为接收对象的数据进行译码。 D2D 链路的接收用户设备被配置为在感知域不感知蜂窝上行信道, 而在 D2D 传输域数据接收单元 1803 总是试图接收信号, 而译码单元仅译码自己 为接收对象的数据。 这样可以减少感知开销, 相对应的缺点是接收 D2D 用户设备的功耗增加了。
根据本发明的一些实施例, D2D接收用户设备 1800还可以包括 一个感知单元 1802, 被配置用于在 D2D感知域进行感知; 数据接收 单元 1803, 被配置为当所述感知单元 1802在感知域没有检测到蜂窝 上行传输或者来自蜂窝信号的干扰被确定是可容忍时在对应的 D2D 传输域进行数据接收, 并将接收到的数据送到译码单元 1804。 如根据 本发明第三实施例, 根据来自基站的消息, 感知单元 1802 被配置在分 配给宏用户设备 A和宏用户设备 B的资源块上执行感知。如图 13所示, D2D链路 1的接收用户设备的感知单元 1802在分配给宏用户设备 A的 资源块上检测到来自宏用户设备 A的上行链路传输的存在或其干扰可容 忍, 因为 D2D链路 1接近宏用户设备 A; 而 D2D链路 1的接收用户设 备的感知单元 1802在分配给宏用户设备 B的资源块上未检测到来自任 何蜂窝上行链路传输的存在或其干扰不可容忍。 D2D链路 2, 3的接收 用户设备的感知单元 1802在分配给宏用户设备 B的资源块上检测到来 自宏用户设备 B 的上行链路传输的存在或或其干扰不可容忍; 而 D2D 链路 2, 3的接收用户设备的感知单元 1802在分配给宏用户设备 A的资 源块上未检测到来自任何蜂窝上行链路传输的存在或其干扰可容忍。 如 本发明第三实施例中, D2D链路 1的接收用户设备的数据接收单元 1803 就在时频资源 B的对应的 D2D传输域进行 D2D数据接收并将接收到 的数据送到译码单元 1804; 而 D2D链路 2, 3的接收用户设备的数据 接收单元 1803在时频资源 A的对应的 D2D传输域进行 D2D数据接 收并将接收到的数据送到译码单元 1804。
本发明提出了先感知后传输的机制, 可以有效的避免 D2D 设备 和蜂窝通信设备间的干扰, 提高频谱重用率; 且 eNB 仅在链路分组 时, 利用现有的测量以及参数选择 D2D通信用户设备, 现有的蜂窝 通信调度方案无需更改, 不会对现有的蜂窝系统造成影响; 同时通过 eNB端的调度和 D2D链路用户设备的感知, 分别在两端完成一些必 要的测量和判断而无需集中做很多的测量工作, 减少信令开销, 提高 系统效率。 另外通过服务 eNB对 D2D链路执行调度, 服务 eNB仅要 求那些相互将没有干扰 (或者干扰可容忍) 的 D2D链路执行感知并 进一歩进行 D2D传输, D2D链路尽量使用那些空间上空闲的时频资 源, 这样可以提高频谱重用增益。
得益于前面的描述以及相关附图中的启示, 与本发明有关的领域 的技术人员将可以想到本文所述的本发明的许多修改和其他实施例。 因此, 可以理解本发明并不限于所公开的特定的实施例, 并且修改和 其它实施例也将被包含在所附的权利要求书的范围之内。 此外, 虽然 前面的描述和相关附图在某些元素和 /或功能的示例性组合的背景下 描述示例性实施例, 可以理解的是其他可选的实施例可以提供不同 的元素和 /或功能的组合,而不脱离所附的权利要求书的范围。在这方 面,例如,可以预期不同于以上描述的元素和 /或功能的组合也可以在 所附的一些权力要求中被阐述。 虽然本文使用了特定的术语, 它们仅 仅是一般的和描述性的使用, 而并非为了限制的目的。

Claims

权利要求书
1. 一种用于在设备到设备 (D2D ) 通信中的时频资源管理方法, 包括:
- 把子帧的开始一部分 OFDM符号设置为感知域,用于 D2D设 备感知蜂窝上行传输;
- 把子帧的后面一部分 OFDM符号设置为传输域,用于 D2D设 备的数据传输。
2. 根据权利要求 1的方法,将所述感知域和传输域之间的至少一 个 OFDM符号设置为空白域。
3. 一种设备到设备(D2D) 的通信方法, 所述设备到设备(D2D) 通信和蜂窝系统共存, 包括:
设备到设备 (D2D ) 链路的发送用户设备接收来自基站的消息, 所述消息包括通知设备到设备 (D2D) 链路的用户设备进行 D2D 感 知和传输;
设备到设备 (D2D ) 链路的发送用户设备在感知域进行感知; 如果设备到设备 (D2D ) 链路的发送用户设备在感知域没有检测 到蜂窝上行传输或者来自蜂窝信号的干扰被确定是可容忍的, 则设备 到设备 (D2D ) 链路的发送用户设备在对应的 D2D 传输域进行数据 传输。
4. 根据权利要求 3的方法, 进一歩包括:
设备到设备 (D2D ) 链路的接收用户设备接收来自基站的消息, 所述消息包括通知设备到设备 (D2D) 链路的用户设备进行 D2D 感 知和传输;
设备到设备 (D2D ) 链路的接收用户设备在感知域进行感知; 当所述设备到设备 (D2D ) 链路的接收用户设备在感知域没有检 测到蜂窝上行传输或者来自蜂窝信号的干扰被确定是可容忍的, 则设 备到设备 (D2D) 链路的接收用户设备在对应的 D2D 传输域进行数 据接收。
5. 根据权利要求 3的方法, 进一歩包括:
设备到设备 (D2D ) 链路的接收用户设备在感知域不进行感知; 设备到设备(D2D)链路的接收用户设备在对应的 D2D传输域进 行数据接收。
6. 根据权利要求 5的方法, 进一歩包括:
设备到设备 (D2D ) 链路的接收用户设备仅译码自己为接收对象 的数据。
7. 根据权利要求 3-6中任一项的方法, 所述消息还进一歩包括进 行 D2D感知和数据传输的资源块信息。
8. 根据权利要求 3的方法, 所述设备到设备(D2D )链路不会对 蜂窝上行传输造成干扰。
9. 根据权利要求 8的方法, 所述设备到设备(D2D )链路之间彼 此不会造成相互干扰。
10.一种用于在设备到设备(D2D)通信中的 D2D链路管理方法, 所述设备到设备 (D2D) 通信和蜂窝通信网络共存, 包括:
基站设备建立 /帮助建立一个 D2D链路集合 M;
基站设备在 D2D链路集合 M中确定不会对蜂窝上行链路造成干 扰的 D2D链路, 组成 D2D链路集合 N; 并将 D2D链路集合 N中的 D2D链路作为被选出进行 D2D通信的 D2D链路;
基站设备给被选出进行 D2D通信的 D2D链路的用户设备发送消 息, 所述消息包括通知被选出进行 D2D 通信的设备到设备 (D2D ) 链路的用户设备在感知域进行 D2D感知, 如果可行, 进一歩在传输 域进行 D2D传输。
11 . 根据权利要求 10的方法, 进一歩包括, 基站设备在 D2D链 路集合 N中确定彼此不会造成干扰的 D2D链路,组成 D2D链路集合
P, 并将 D2D链路集合 P中的 D2D链路作为被选出进行 D2D通信的 D2D链路。
12. 根据权利要求 10 的方法, 基站设备根据接收到的来自用户 设备的信号估计一个 D2D链路的发送用户设备与其的距离, 并且根 据所述距离以及 D2D链路的发送功率估计来自一个 D2D链路的可能 干扰。
13. 根据权利要求 1 1所述的方法, 根据 D2D用户设备之间的邻 居关系, 确定在空间上相互独立的 D2D链路为相互间不会造成干扰 的 D2D链路。
14. 一种 D2D设备, 所述 D2D设备用于 D2D通信并共存于蜂窝 系统, 包括:
消息接收单元, 被配置用于接收来自基站的消息, 所述消息包括 通知设备到设备 (D2D) 链路的用户设备进行 D2D感知和传输; 感知单元, 被配置用于在 D2D感知域进行感知;
传输单元, 被配置用于当感知单元没有检测到蜂窝上行传输或者 来自蜂窝信号的干扰被确定是可容忍时在对应的 D2D传输域进行数 据传输。
15. 根据权利要求 14的设备, 所述消息还进一歩包括进行 D2D 感知和数据传输的资源块信息。
16. —种 D2D设备, 所述 D2D设备用于 D2D通信并共存于蜂窝 系统, 包括:
消息接收单元, 被配置用于接收来自基站的消息, 所述消息包括 通知设备到设备 (D2D) 链路的用户设备进行 D2D感知和传输; 数据接收单元, 被配置为在 D2D传输域进行数据接收。
17. 根据权利要求 16的设备, 进一歩包括:
感知单元, 被配置用于在感知域进行感知;
所述数据接收单元被配置为当所述感知单元在感知域没有检测 到蜂窝上行传输或者来自蜂窝信号的干扰被确定是可容忍的时在对 应的 D2D传输域进行数据接收。
18. 根据权利要求 16或 17的设备, 包括:
译码单元, 被配置用于对数据接收单元收到的自己为接收对象的 数据进行译码。
19. 根据权利要求 16-18中任一项的设备, 所述消息还进一歩包 括进行 D2D感知和数据传输的资源块信息。
20. 一种基站设备, 工作在蜂窝系统并与 D2D通信系统共存, 包 括:
D2D链路集合建立单元, 被配置用于建立 /帮助建立一个 D2D链 路集合 M;
第一 D2D链路分组单元,被配置用于在 D2D链路集合 M中确定 不会对蜂窝上行链路造成干扰的 D2D链路, 组成 D2D链路集合 N; 并将 D2D链路集合 N中的 D2D链路作为被选出进行 D2D通信的 D2D 链路;
消息发送单元,被配置用于给被选出进行 D2D通信的 D2D链路的 用户设备发送消息, 所述消息包括通知被选出进行 D2D通信的设备 到设备 (D2D) 链路的用户设备在感知域进行 D2D感知, 如果可行, 进一歩在传输域进行 D2D传输。
21 . 根据权利要求 20的基站设备, 进一歩包括:
第二 D2D链路分组单元, 被配置用于在 D2D链路集合 N中确定 彼此不会造成干扰的 D2D链路, 组成 D2D链路集合 P, 并将 D2D链 路集合 P中的 D2D链路作为被选出进行 D2D通信的 D2D链路。
22. 根据权利要求 20的基站设备, 所述第一 D2D链路分组单元 根据接收到的来自用户设备的信号估计一个 D2D链路的发送用户设 备与其的距离, 并且根据所述距离以及 D2D链路的发送功率估计来 自一个 D2D链路的可能干扰。
23. 根据权利要求 21所述的基站设备, 所述第二 D2D链路分组 单元, 根据 D2D用户设备之间的邻居关系, 确定在空间上相互独立 的 D2D链路为相互间不会造成干扰的 D2D链路。
PCT/CN2013/091053 2013-12-31 2013-12-31 在设备到设备(d2d)通信中时频资源的管理方法和设备 WO2015100592A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201380080995.0A CN105766039B (zh) 2013-12-31 2013-12-31 在设备到设备(d2d)通信中时频资源的管理方法和设备
PCT/CN2013/091053 WO2015100592A1 (zh) 2013-12-31 2013-12-31 在设备到设备(d2d)通信中时频资源的管理方法和设备

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2013/091053 WO2015100592A1 (zh) 2013-12-31 2013-12-31 在设备到设备(d2d)通信中时频资源的管理方法和设备

Publications (1)

Publication Number Publication Date
WO2015100592A1 true WO2015100592A1 (zh) 2015-07-09

Family

ID=53492944

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2013/091053 WO2015100592A1 (zh) 2013-12-31 2013-12-31 在设备到设备(d2d)通信中时频资源的管理方法和设备

Country Status (2)

Country Link
CN (1) CN105766039B (zh)
WO (1) WO2015100592A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20190140796A1 (en) * 2017-11-09 2019-05-09 Qualcomm Incorporated Intra-cell interference management for device-to-device communication using grant-free resource

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102547984A (zh) * 2012-02-23 2012-07-04 华为技术有限公司 一种设备到设备通信中寻呼的方法及装置
CN102883438A (zh) * 2012-09-27 2013-01-16 北京交通大学 蜂窝与端到端混合网络的干扰协调方法
CN103369585A (zh) * 2013-04-24 2013-10-23 华为技术有限公司 快速建立d2d通信的方法和装置
CN103460633A (zh) * 2011-03-23 2013-12-18 Lg电子株式会社 无线通信系统中的动态子帧设置的重传方法及其设备

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102026307B (zh) * 2010-12-20 2014-04-09 北京交通大学 下一代移动通信异构网络中的频谱切换方法
CN102647749B (zh) * 2012-03-30 2014-08-27 北京交通大学 蜂窝与端到端混合网络的终端干扰抑制方法
WO2013181369A1 (en) * 2012-05-31 2013-12-05 Interdigital Patent Holdings, Inc. Measurements and interference avoidance for device-to-device links
CN102724675B (zh) * 2012-06-08 2015-07-08 华为技术有限公司 基于分布式无线网络架构的干扰控制方法、终端及系统

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103460633A (zh) * 2011-03-23 2013-12-18 Lg电子株式会社 无线通信系统中的动态子帧设置的重传方法及其设备
CN102547984A (zh) * 2012-02-23 2012-07-04 华为技术有限公司 一种设备到设备通信中寻呼的方法及装置
CN102883438A (zh) * 2012-09-27 2013-01-16 北京交通大学 蜂窝与端到端混合网络的干扰协调方法
CN103369585A (zh) * 2013-04-24 2013-10-23 华为技术有限公司 快速建立d2d通信的方法和装置

Also Published As

Publication number Publication date
CN105766039A (zh) 2016-07-13
CN105766039B (zh) 2019-11-22

Similar Documents

Publication Publication Date Title
CN112154692B (zh) 覆盖范围扩展方法及用户设备
EP3334201B1 (en) Terminal device and corresponding method
JP2021132384A (ja) 通信システム、基地局、及び、通信端末
WO2021063131A1 (zh) 信息发送方法及装置、信息接收方法及装置
CN115943587A (zh) 在非许可侧行链路上的覆盖内网络控制的卸载
JP6687452B2 (ja) 移動通信システム、ユーザ端末、プロセッサ、記憶媒体及びプログラム
US10187862B2 (en) Method and apparatus for performing timing synchronization in wireless communication system
US10045266B2 (en) Scheme for transmitting and receiving information in wireless communication system
TWI756580B (zh) 無線通訊方法及裝置、電腦可讀介質
CN115606109A (zh) 网络辅助侧行链路波束故障恢复
US11082965B2 (en) Resource allocation method and relevant device
GB2497740A (en) Mapping of discovery channel to a control channel in a device to device network
JPWO2014129452A1 (ja) 移動通信システム、ユーザ端末、基地局、プロセッサ及び基地局の制御方法
JP6101486B2 (ja) バッファ状態報告の送信制御方法、ユーザ装置、および無線通信システム
US20160183319A1 (en) Method and apparatus for supporting device to device communication service in wireless communication system
CN109891965A (zh) 上行传输控制方法及其装置、通信系统
JP2016536846A (ja) 情報伝送方法、基地局、およびユーザ機器
US10805832B2 (en) Method and apparatus for handling coexistence with DSRC carrier in wireless communication system
WO2018082575A1 (zh) 一种下行控制信号的传输方法及装置
EP3211959B1 (en) Method, apparatus, and computer program product for establishing a mix of d2d direct and cellular communication links between two devices for interaction
WO2015083686A1 (ja) 通信制御方法、ユーザ端末及び基地局
US20160212730A1 (en) Network apparatus and user terminal
WO2015100592A1 (zh) 在设备到设备(d2d)通信中时频资源的管理方法和设备
KR20200018118A (ko) Nr v2x 시스템을 위한 동기화 절차 수행 방법 및 그 장치
KR102660353B1 (ko) 무선 셀룰러 네트워크 내의 전력 최적화된 데이터 송신을 위한 방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13900761

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13900761

Country of ref document: EP

Kind code of ref document: A1