WO2015083686A1 - 通信制御方法、ユーザ端末及び基地局 - Google Patents

通信制御方法、ユーザ端末及び基地局 Download PDF

Info

Publication number
WO2015083686A1
WO2015083686A1 PCT/JP2014/081835 JP2014081835W WO2015083686A1 WO 2015083686 A1 WO2015083686 A1 WO 2015083686A1 JP 2014081835 W JP2014081835 W JP 2014081835W WO 2015083686 A1 WO2015083686 A1 WO 2015083686A1
Authority
WO
WIPO (PCT)
Prior art keywords
user terminal
discovery
base station
time
control
Prior art date
Application number
PCT/JP2014/081835
Other languages
English (en)
French (fr)
Inventor
憲由 福田
空悟 守田
Original Assignee
京セラ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 京セラ株式会社 filed Critical 京セラ株式会社
Priority to EP14867634.9A priority Critical patent/EP3079441A4/en
Priority to JP2015551513A priority patent/JPWO2015083686A1/ja
Publication of WO2015083686A1 publication Critical patent/WO2015083686A1/ja
Priority to US15/168,659 priority patent/US9986548B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W8/00Network data management
    • H04W8/005Discovery of network devices, e.g. terminals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/23Control channels or signalling for resource management in the downlink direction of a wireless link, i.e. towards a terminal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W76/00Connection management
    • H04W76/10Connection setup
    • H04W76/14Direct-mode setup
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W88/00Devices specially adapted for wireless communication networks, e.g. terminals, base stations or access point devices
    • H04W88/02Terminal devices
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W88/00Devices specially adapted for wireless communication networks, e.g. terminals, base stations or access point devices
    • H04W88/08Access point devices
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W92/00Interfaces specially adapted for wireless communication networks
    • H04W92/16Interfaces between hierarchically similar devices
    • H04W92/18Interfaces between hierarchically similar devices between terminal devices

Definitions

  • the present invention relates to a communication control method, a user terminal, and a base station used in a mobile communication system that supports D2D communication.
  • D2D communication a plurality of adjacent user terminals perform direct inter-terminal communication without going through the core network.
  • cellular communication which is normal communication of a mobile communication system
  • user terminals communicate via a core network.
  • the user terminal discovers another user terminal by a discovery signal (Discovery signal or Discoverable signal) used for discovery of the counterpart terminal in D2D communication.
  • a discovery signal Discovery signal or Discoverable signal
  • a partner terminal discovery process in D2D communication there is a user terminal based discovery process (hereinafter referred to as a UE type discovery process as appropriate).
  • NW type discovery process As the partner terminal discovery process in D2D communication, in addition to the UE type discovery process, introduction of a network-based discovery process (hereinafter referred to as NW type discovery process as appropriate) is assumed. In the current specifications, there is no mechanism for effectively functioning the UE type discovery process and the NW type discovery process.
  • an object of the present invention is to provide a communication control method, a user terminal, and a base station capable of effectively functioning UE type discovery processing and NW type discovery processing.
  • the communication control method is used in a mobile communication system that supports discovery processing related to discovery of neighboring user terminals that includes user terminal-based discovery processing and network-based discovery processing.
  • the communication control method includes a step in which a base station transmits information indicating a radio resource area in which the user terminal-based discovery process can be performed by broadcast, and the base station uses the network-based discovery process.
  • FIG. 1 is a configuration diagram of an LTE system.
  • FIG. 2 is a block diagram of the UE.
  • FIG. 3 is a block diagram of the eNB.
  • FIG. 4 is a protocol stack diagram of a radio interface in the LTE system.
  • FIG. 5 is a configuration diagram of a radio frame used in the LTE system.
  • FIG. 6 is a diagram illustrating a data path in cellular communication.
  • FIG. 7 is a diagram illustrating a data path in D2D communication.
  • FIG. 8 is a sequence diagram illustrating an operation sequence 1 of the mobile communication system according to the embodiment.
  • FIG. 9 is an explanatory diagram for explaining time / frequency resources in the operation sequence 1 of the mobile communication system according to the embodiment.
  • FIG. 9 is an explanatory diagram for explaining time / frequency resources in the operation sequence 1 of the mobile communication system according to the embodiment.
  • FIG. 10 is a sequence diagram illustrating an operation sequence 2 of the mobile communication system according to the embodiment.
  • FIG. 11 is a sequence diagram illustrating an operation sequence 3 of the mobile communication system according to the embodiment.
  • FIG. 12 is a sequence diagram illustrating an operation sequence 4 of the mobile communication system according to the embodiment.
  • FIG. 13 is a sequence diagram illustrating an operation sequence 5 of the mobile communication system according to the embodiment.
  • the communication control method is used in a mobile communication system that supports discovery processing related to discovery of neighboring user terminals that includes user terminal-based discovery processing and network-based discovery processing.
  • the communication control method includes a step in which a base station transmits information indicating a radio resource area in which the user terminal-based discovery process can be performed by broadcast, and the base station uses the network-based discovery process.
  • the user terminal when the user terminal has not received the control information, the user terminal requests the control information from the base station to transmit a discovery signal.
  • the base station allocates the time / frequency resource used for the network-based discovery process to the user terminal from the radio resource region.
  • the base station transmits the control information including information assigned to the user terminal
  • the user terminal in the step of performing the network-based discovery process, includes: Based on the control information, the discovery process is performed by transmitting a discovery signal used to discover a partner user terminal to be a partner in D2D communication of the user terminal.
  • control information includes transmission information that specifies a user terminal that transmits the discovery signal, and in the step of performing the network-based discovery process, the user terminal is configured to perform the discovery based on the transmission information. Send a signal.
  • the step of performing the user terminal based discovery process includes identifying information for identifying a transmission source of a discovery signal used by the base station to discover a partner user terminal to be a partner in D2D communication. Transmitting to the user terminal, and transmitting the discovery signal using the time / frequency resource in the radio resource region based on the identification information received by the user terminal from the base station; The partner user terminal specifying the user terminal based on the identification information obtained by the received discovery signal.
  • the user terminal is used in a mobile communication system that supports discovery processing related to discovery of neighboring user terminals that includes user terminal-based discovery processing and network-based discovery processing.
  • the user terminal uses the reception unit that receives information indicating a radio resource region capable of performing the user terminal-based discovery process by broadcast from a base station, and uses the time / frequency resource in the radio resource region.
  • a control unit that performs a user terminal-based discovery process. When the control unit receives control information including information indicating the time / frequency resource allocated to the user terminal from the base station by unicast, the control unit uses the time / frequency resource allocated to the user terminal.
  • the network-based discovery process is performed.
  • the base station is used in a mobile communication system that supports discovery processing related to discovery of neighboring user terminals that includes user terminal-based discovery processing and network-based discovery processing.
  • the base station allocates time and frequency resources used for the network-based discovery process to the user terminal, and control for transmitting information indicating a radio resource area capable of performing the user-terminal-based discovery process by broadcasting
  • a control unit that executes control and control for transmitting control information including information indicating time / frequency resources allocated to the user terminal to the user terminal by unicast.
  • the user terminal is used in a mobile communication system.
  • the user terminal is configured to receive, from a base station, information indicating a radio resource area that can be used to transmit a discovery signal for discovery of a neighboring user terminal, and a time / frequency in the radio resource area And a control unit that performs control to transmit the discovery signal using a resource.
  • the control unit receives information indicating the time / frequency resource allocated to the user terminal from the base station by unicast during RRC connection with the base station, the controller allocates the time allocated to the user terminal.
  • -Control which transmits the said discovery signal using a frequency resource.
  • the user terminal requests information indicating time / frequency resources allocated to the user terminal to transmit a discovery signal to the base station.
  • the base station is used in a mobile communication system.
  • the base station broadcasts information indicating a radio resource area that can be used for transmission of discovery signals for discovery of neighboring user terminals, and time / frequency resources used for transmission of the discovery signals.
  • a control unit that executes control to be allocated to a user terminal and control to transmit information indicating time and frequency resources allocated to the user terminal to the user terminal by unicast during RRC connection with the user terminal .
  • the user terminal is used in a mobile communication system that supports discovery processing related to discovery of neighboring user terminals.
  • the user terminal includes a receiving unit that receives information indicating a radio resource region by broadcast from a base station, and a control unit that performs the discovery process autonomously using time / frequency resources in the radio resource region. .
  • FIG. 1 is a configuration diagram of an LTE system according to the present embodiment.
  • the LTE system includes a plurality of UEs (User Equipment) 100, an E-UTRAN (Evolved Universal Terrestrial Radio Access Network) 10, an EPC (Evolved Packet Core) 20, and the like.
  • the E-UTRAN 10 and the EPC 20 constitute a network.
  • the UE 100 is a mobile radio communication device, and performs radio communication with a cell (serving cell) that has established a connection.
  • UE100 is corresponded to a user terminal.
  • the E-UTRAN 10 includes a plurality of eNBs 200 (evolved Node-B).
  • the eNB 200 corresponds to a base station.
  • the eNB 200 manages a cell and performs radio communication with the UE 100 that has established a connection with the cell.
  • cell is used as a term indicating a minimum unit of a radio communication area, and is also used as a term indicating a function of performing radio communication with the UE 100.
  • the eNB 200 has, for example, a radio resource management (RRM) function, a user data routing function, and a measurement control function for mobility control and scheduling.
  • RRM radio resource management
  • the EPC 20 includes MME (Mobility Management Entity) / S-GW (Serving-Gateway) 300 and OAM (Operation and Maintenance) 400.
  • MME Mobility Management Entity
  • S-GW Serving-Gateway
  • OAM Operaation and Maintenance
  • the MME is a network node that performs various types of mobility control for the UE 100, and corresponds to a control station.
  • the S-GW is a network node that performs transfer control of user data, and corresponds to an exchange.
  • the OAM 400 is a server device managed by an operator, and performs maintenance and monitoring of the E-UTRAN 10.
  • FIG. 2 is a block diagram of the UE 100.
  • the UE 100 includes an antenna 101, a radio transceiver 110, a user interface 120, a GNSS (Global Navigation Satellite System) receiver 130, a battery 140, a memory 150, and a processor 160.
  • the memory 150 and the processor 160 constitute a control unit.
  • the UE 100 may not have the GNSS receiver 130. Further, the memory 150 may be integrated with the processor 160, and this set (that is, a chip set) may be used as the processor 160 '.
  • the antenna 101 and the wireless transceiver 110 are used for transmitting and receiving wireless signals.
  • the antenna 101 includes a plurality of antenna elements.
  • the radio transceiver 110 converts the baseband signal output from the processor 160 into a radio signal and transmits it from the antenna 101. Further, the radio transceiver 110 converts a radio signal received by the antenna 101 into a baseband signal and outputs the baseband signal to the processor 160.
  • the user interface 120 is an interface with a user who owns the UE 100, and includes, for example, a display, a microphone, a speaker, and various buttons.
  • the user interface 120 receives an operation from the user and outputs a signal indicating the content of the operation to the processor 160.
  • the GNSS receiver 130 receives a GNSS signal and outputs the received signal to the processor 160 in order to obtain position information indicating the geographical position of the UE 100.
  • the battery 140 stores power to be supplied to each block of the UE 100.
  • the memory 150 stores a program executed by the processor 160 and information used for processing by the processor 160.
  • the processor 160 includes a baseband processor that modulates / demodulates and encodes / decodes a baseband signal, and a CPU (Central Processing Unit) that executes programs stored in the memory 150 and performs various processes. .
  • the processor 160 may further include a codec that performs encoding / decoding of an audio / video signal.
  • the processor 160 executes various processes and various communication protocols described later.
  • FIG. 3 is a block diagram of the eNB 200.
  • the eNB 200 (including the MeNB 200 ⁇ / b> A, PeNB 200 ⁇ / b> B, and PeNB 200 ⁇ / b> B described later) includes an antenna 201, a radio transceiver 210, a network interface 220, a memory 230, and a processor 240.
  • the memory 230 and the processor 240 constitute a control unit.
  • the memory 230 may be integrated with the processor 240, and this set (that is, a chip set) may be used as the processor 240 '.
  • the antenna 201 and the wireless transceiver 210 are used for transmitting and receiving wireless signals.
  • the antenna 201 includes a plurality of antenna elements.
  • the wireless transceiver 210 converts the baseband signal output from the processor 240 into a wireless signal and transmits it from the antenna 201.
  • the radio transceiver 210 converts a radio signal received by the antenna 201 into a baseband signal and outputs the baseband signal to the processor 240.
  • the network interface 220 is connected to the neighboring eNB 200 via the X2 interface and is connected to the MME / S-GW 300 via the S1 interface.
  • the network interface 220 is used for communication performed on the X2 interface and communication performed on the S1 interface.
  • the memory 230 stores a program executed by the processor 240 and information used for processing by the processor 240.
  • the processor 240 includes a baseband processor that performs modulation / demodulation and encoding / decoding of a baseband signal, and a CPU that executes programs stored in the memory 230 and performs various processes.
  • the processor 240 executes various processes and various communication protocols described later.
  • FIG. 4 is a protocol stack diagram of a radio interface in the LTE system.
  • the radio interface protocol is divided into layers 1 to 3 of the OSI reference model, and layer 1 is a physical (PHY) layer.
  • Layer 2 includes a MAC (Media Access Control) layer, an RLC (Radio Link Control) layer, and a PDCP (Packet Data Convergence Protocol) layer.
  • Layer 3 includes an RRC (Radio Resource Control) layer.
  • the physical layer performs encoding / decoding, modulation / demodulation, antenna mapping / demapping, and resource mapping / demapping.
  • the physical layer provides a transmission service to an upper layer using a physical channel. Data is transmitted between the physical layer of the UE 100 and the physical layer of the eNB 200 via a physical channel.
  • the MAC layer performs data priority control, retransmission processing by hybrid ARQ (HARQ), and the like. Data is transmitted via the transport channel between the MAC layer of the UE 100 and the MAC layer of the eNB 200.
  • the MAC layer of the eNB 200 includes a MAC scheduler that determines an uplink / downlink transport format (transport block size, modulation / coding scheme, and the like) and an allocated resource block.
  • the RLC layer transmits data to the RLC layer on the receiving side using the functions of the MAC layer and the physical layer. Data is transmitted between the RLC layer of the UE 100 and the RLC layer of the eNB 200 via a logical channel.
  • the PDCP layer performs header compression / decompression and encryption / decryption.
  • the RRC layer is defined only in the control plane. Control signals (RRC messages) for various settings are transmitted between the RRC layer of the UE 100 and the RRC layer of the eNB 200.
  • the RRC layer controls the logical channel, the transport channel, and the physical channel according to establishment, re-establishment, and release of the radio bearer. If there is an RRC connection between the RRC of the UE 100 and the RRC of the eNB 200, the UE 100 is in a connected state, otherwise, the UE 100 is in an idle state.
  • the NAS (Non-Access Stratum) layer located above the RRC layer performs session management and mobility management.
  • FIG. 5 is a configuration diagram of a radio frame used in the LTE system.
  • the LTE system uses OFDMA (Orthogonal Frequency Division Multiple Access) for the downlink, and SC-FDMA (Single Carrier Division Multiple Access) for the uplink.
  • OFDMA Orthogonal Frequency Division Multiple Access
  • SC-FDMA Single Carrier Division Multiple Access
  • the radio frame is composed of 10 subframes arranged in the time direction, and each subframe is composed of two slots arranged in the time direction.
  • the length of each subframe is 1 ms, and the length of each slot is 0.5 ms.
  • Each subframe includes a plurality of resource blocks (RB) in the frequency direction and includes a plurality of symbols in the time direction.
  • a guard interval called a cyclic prefix (CP) is provided at the head of each symbol.
  • the resource block includes a plurality of subcarriers in the frequency direction.
  • a radio resource unit composed of one subcarrier and one symbol is called a resource element (RE).
  • RE resource element
  • frequency resources can be specified by resource blocks, and time resources can be specified by subframes (or slots).
  • the section of the first few symbols of each subframe is a control region mainly used as a physical downlink control channel (PDCCH).
  • the remaining section of each subframe is an area that can be used mainly as a physical downlink shared channel (PDSCH).
  • PDSCH physical downlink shared channel
  • CRS cell-specific reference signals
  • both ends in the frequency direction in each subframe are control regions mainly used as a physical uplink control channel (PUCCH). Further, the central portion in the frequency direction in each subframe is an area that can be used mainly as a physical uplink shared channel (PUSCH). Further, a demodulation reference signal (DMRS) and a sounding reference signal (SRS) are arranged in each subframe.
  • DMRS demodulation reference signal
  • SRS sounding reference signal
  • D2D communication Next, normal communication (cellular communication) of the LTE system and D2D communication will be compared and described.
  • FIG. 6 is a diagram showing a data path in cellular communication.
  • a data path means a transfer path of user data (user plane).
  • the data path of cellular communication goes through the network. Specifically, a data path passing through the eNB 200-1, the S-GW 300, and the eNB 200-2 is set.
  • FIG. 7 is a diagram showing a data path in D2D communication. Here, a case where D2D communication is performed between the UE 100-1 that has established a connection with the eNB 200-1 and the UE 100-2 that has established a connection with the eNB 200-2 is illustrated.
  • the data path of D2D communication does not go through the network. That is, direct radio communication is performed between UEs.
  • direct radio communication is performed between UEs.
  • the network traffic load and the battery consumption of the UE 100 are reduced by performing D2D communication between the UE 100-1 and the UE 100-2. The effect of doing etc. is acquired.
  • D2D communication As a case where D2D communication is started, (a) a case where D2D communication is started after the partner terminal is discovered by performing an operation for discovering the partner terminal, and (b) a partner terminal is discovered. There is a case where D2D communication is started without performing the operation for.
  • D2D communication is started when one of the UEs 100-1 and 100-2 discovers the other UE 100 in the vicinity.
  • the UE 100 discovers another UE 100 existing in the vicinity of the UE 100 in order to discover the partner terminal (Discover), and / or the UE 100 is discovered from the other UE 100 (Discoverable). It has a function.
  • the UE 100-1 transmits a discovery signal (Discovery signal / Discoverable signal) used to discover the partner terminal or to be discovered by the partner terminal.
  • the UE 100-2 that has received the discovery signal discovers the UE 100-1.
  • UE 100-2 transmits a response to the discovery signal, UE 100-1 that has transmitted the discovery signal discovers UE 100-1 that is the counterpart terminal.
  • the UE 100 does not necessarily need to perform D2D communication even if it discovers the counterpart terminal.
  • the UE 100-1 and the UE 100-2 may negotiate each other and then perform D2D communication after discovering each other. It may be determined.
  • Each of the UE 100-1 and the UE 100-2 starts D2D communication when agreeing to perform D2D communication.
  • the UE 100-1 may report the discovery of a nearby UE 100 (ie, UE 100-2) to an upper layer (eg, application).
  • the application can execute processing based on the report (for example, processing for plotting the location of the UE 100-2 on map information).
  • the UE 100 can report to the eNB 200 that the partner terminal has been found, and can receive an instruction from the eNB 200 to perform communication with the partner terminal using cellular communication or D2D communication.
  • the UE 100-1 starts transmitting a signal for D2D communication (such as broadcast notification) without specifying the partner terminal.
  • a signal for D2D communication such as broadcast notification
  • UE100 can start D2D communication irrespective of the presence or absence of a partner terminal's discovery.
  • the UE 100-2 performing the signal standby operation for D2D communication performs synchronization or / and demodulation based on the signal from the UE 100-1.
  • NW type discovery process and UE type discovery process Next, NW type discovery processing and UE type discovery processing will be described.
  • the mobile communication system supports NW-type discovery processing (network-based discovery processing) and UE-type discovery processing (user terminal-based discovery processing) as partner terminal discovery processing in D2D communication.
  • NW-type discovery processing network-based discovery processing
  • UE-type discovery processing user terminal-based discovery processing
  • the NW type discovery process and the UE type discovery process are, for example, one of the following discovery processes.
  • a network such as eNB 200 or MME performs discovery operation (discovery signal of discovery signal) to UE 100 (receiving UE 100) as a discovery partner before discovery operation of UE 100 is performed.
  • Terminal information related to the UE 100 (transmission side UE 100) performing transmission) is transmitted.
  • the receiving side UE 100 discovers the transmitting side UE 100 based on the terminal information. For example, the receiving side UE 100 specifies the range to be searched for receiving the discovery signal by the terminal information.
  • the terminal information includes at least one of the identifier of the transmission side UE 100 and information (transmission band, transmission timing, etc.) related to transmission of the discovery signal.
  • the network does not transmit terminal information to the receiving side UE 100 before the discovery operation of the UE 100 is performed. Therefore, the receiving side UE 100 does not know what kind of discovery operation the transmitting side UE 100 performs. For example, since the range to be searched for receiving the discovery signal is not specified, the receiving-side UE 100 searches the transmission band in the range in which the discovery signal is transmitted until the discovery signal is received.
  • the network transmits terminal information regarding the specific reception side UE 100 to be discovered to the transmission side UE 100.
  • the transmitting side UE 100 transmits a discovery signal based on the terminal information.
  • the terminal information here includes at least one of an identifier of the receiving UE 100 and information (reception band, reception timing, etc.) regarding reception of the discovery signal.
  • the network does not transmit terminal information to the transmission side UE 100 before the discovery operation of the UE 100 is performed. Therefore, the transmitting UE 100 does not know whether a specific receiving UE 100 exists.
  • the network transmits terminal information to each of the transmission side UE 100 and the reception side UE 100 before the discovery operation of the UE 100 is performed.
  • the transmitting UE 100 transmits a discovery signal based on the terminal information, and the receiving UE 100 discovers the transmitting UE 100 based on the terminal information.
  • the network does not transmit terminal information to each of the transmission side UE 100 and the reception side UE 100 before the discovery operation of the UE 100 is performed. Therefore, the transmitting UE 100 does not know whether or not a specific receiving UE 100 exists, and the receiving UE 100 does not know what kind of discovery operation the transmitting UE 100 performs.
  • the network when the network transmits resource information in which the time / frequency resource used for the discovery process is specified to the UE 100 before the discovery operation of the UE 100 is performed, the resource information is received.
  • UE100 must perform discovery operation (transmission or reception of a discovery signal) using resource information.
  • the UE 100 when the network transmits resource information to the UE 100 before the discovery operation of the UE 100 is performed, the UE 100 that has received the resource information uses the resource information to perform discovery operation (discovery signal transmission). (Or reception) may not be performed. UE100 which received resource information may perform discovery operation
  • the transmission side UE 100 and the reception side UE 100 know the partner to be discovered.
  • the transmission side UE 100 and the reception side UE 100 do not know the partner to be discovered.
  • a discovery operation is performed under the premise that D2D communication is performed. For example, when the network determines to perform D2D communication for a group of UEs 100 that are performing cellular communication, NW type discovery processing is performed.
  • a discovery operation is performed regardless of whether or not D2D communication is performed.
  • the network transmits terminal information to each of the transmission side UE 100 and the reception side UE 100 before the discovery operation of the UE 100 is performed.
  • the network does not transmit terminal information before the discovery operation of the UE 100 is performed.
  • the operation sequence 1 is an NW type discovery process
  • the operation sequence 2-5 is a UE type discovery process.
  • the identification information used in each operation sequence can be used in common for the control in the NW type discovery process and the control in the UE type discovery process.
  • FIG. 8 is a sequence diagram illustrating an operation sequence 1 of the mobile communication system according to the embodiment.
  • FIG. 9 is an explanatory diagram for explaining time / frequency resources in the operation sequence 1 of the mobile communication system according to the embodiment.
  • the eNB 200 transmits information indicating a radio resource area (hereinafter, appropriately referred to as a UE type radio resource area) in which UE type discovery processing can be performed by broadcast or unicast (not illustrated).
  • the UE 100 can perform UE type discovery processing using time / frequency resources in the radio resource region.
  • the information indicating the radio resource area is, for example, a dedicated resource block for discovery processing (D2D discovery) as shown in FIG.
  • step S101 the eNB 200 controls each of the UE 100-1 and UE 100-2 existing in its own cell to perform control information for performing the NW type discovery process (ie, the terminal described above) Information) is unicasted (sent).
  • NW type discovery process ie, the terminal described above
  • Information is unicasted (sent).
  • Each of the UE 100-1 and the UE 100-2 receives control information.
  • control information includes identification information that is information assigned to the UE 100-1 and the UE 100-2 to be a partner in the D2D communication of the UE 100-1.
  • ENB 200 assigns in advance identification information for specifying each other to UE 100-1 and UE 100-2 before transmitting control information.
  • Examples of the identification information assigned by the eNB 200 include the following information (a) and (b).
  • the eNB 200 selects one signal sequence from a plurality of signal sequences (orthogonal sequences) used for transmission (and reception) of the discovery signal, and selects the selected signal sequence as the UE 100. -1 and UE 100-2 are secured as a common and dedicated signal sequence. The eNB 200 transmits an identifier indicating the signal sequence of the reserved discovery signal as identification information, and allocates the reserved signal sequence to the UE 100-1 and the UE 100-2 in common.
  • the eNB 200 reserves time / frequency resources in the UE type radio resource area for the UE 100-1 and the UE 100-2.
  • the eNB 200 transmits an identifier indicating the reserved time / frequency resource as identification information, and allocates the reserved time / frequency resource to the UE 100-1 and the UE 100-2 in common.
  • control information may include transmission / reception information that specifies the UE 100 that transmits the discovery signal and / or the UE 100 that receives the discovery signal.
  • step S102 the UE 100-1 and the UE 100-2 that have received the control information perform NW type discovery processing using time / frequency resources in the UE type radio resource region.
  • the UE 100 (UE 100-1, UE 100-2) uses the time / frequency resources in the UE type radio resource region to transmit or receive a discovery signal based on control information, thereby performing discovery processing. I do.
  • the NW-type discovery process can be performed using the UE-type radio resource region, so that the control of the discovery process (specifically, for performing the discovery process) becomes common, so the radio resource is effective. Can be used.
  • the UE 100-1 can transmit the discovery signal using the signal sequence based on the identification information.
  • the UE 100-2 that has received the discovery signal when the signal sequence of the received discovery signal matches the signal sequence indicated by the identification information received from the eNB 200, the source of the received discovery signal is the UE 100-1. Can be identified. Thereby, the UE 100-2 can discover the UE 100-1.
  • the UE 100-1 can identify and discover the UE 100-2 by receiving the response of the discovery signal from the UE 100-2.
  • the UE 100-2 may transmit the response of the discovery signal using the signal sequence indicated by the identification information.
  • the UE 100-1 can transmit the discovery signal using the time / frequency resource based on the identification information.
  • the UE 100-2 that has received the discovery signal when the time / frequency resource used to transmit the received discovery signal matches the time / frequency resource indicated by the identification information received from the eNB 200, It can be specified that the transmission source is UE 100-1. Thereby, the UE 100-2 can discover the UE 100-1.
  • the eNB 200 may reserve dedicated time / frequency resources outside the UE-type radio resource area and allocate the reserved time / frequency resources to the UE 100-1 and the UE 100-2 in common. Good.
  • the radio resource area outside the UE type radio resource area (hereinafter referred to as NW type radio resource area as appropriate) may be a radio resource area (cellular communication dedicated area) used for cellular communication, or for D2D communication. It may be a radio resource area to be used (common area for cellular communication and D2D communication).
  • the UE 100-1 When the identification information indicating the first time / frequency resource, which is the time / frequency resource in the NW type radio resource area, is included in the control information, the UE 100-1 is in the same time zone as the first time / frequency resource.
  • the discovery signal can be transmitted using the second time / frequency resource that is located and is the time / frequency resource in the UE type radio resource region at the same time.
  • the UE 100-2 receives the discovery signal by simultaneously using the first time / frequency resource and the second time / frequency resource. Thereby, discovery signals can be multiplexed and transmitted, and a diversity effect can be obtained. As a result, even in a situation where many UEs 100 transmit discovery signals, the success probability of discovery can be improved.
  • the second time / frequency resource may be indicated by the identification information, or the UE 100-1 that transmits the discovery signal may appropriately select the UE type radio resource region.
  • the UE 100-1 and the UE 100-2 can perform a discovery operation (transmission or reception of a discovery signal) indicated by the transmission / reception information.
  • a discovery operation transmission or reception of a discovery signal
  • the UE 100-1 and the UE 100-2 both transmit or receive the discovery signal and cannot receive the discovery signal from each other, so that the partner terminal can be discovered efficiently.
  • each of the UE 100-1 and the UE 100-2 discovers the counterpart terminal, establishes a connection for performing D2D communication, and performs D2D communication.
  • At least one of the UE 100-1 and the UE 100-2 may transmit a discovery report indicating the discovery of the counterpart terminal to a network such as the eNB 200 after discovering the counterpart terminal.
  • the network that has received the discovery report may or may not cause the UE 100-1 and the UE 100-2 to perform D2D communication.
  • the network determines that the UE 100-1 and the UE 100-2 perform interference with other UEs 100 that perform cellular communication or D2D communication by causing the UE 100-1 and the UE 100-2 to perform D2D communication
  • the UE 100-1 and the UE 100-2 May be determined not to perform D2D communication.
  • the network issues an instruction for causing other nearby wireless communication to be performed. 1 and UE 100-2.
  • the network may request capability information indicating whether or not it has other nearby radio communication capabilities to each of the UE 100-1 and the UE 100-2.
  • Each of 1 and UE 100-2 may transmit the capability information in advance.
  • FIG. 10 is a sequence diagram illustrating an operation sequence 2 of the mobile communication system according to the embodiment. In addition, it demonstrates centering around a different part from the operation
  • operation sequence 1 NW type discovery processing is performed, but in operation sequence 2, UE type discovery processing is performed.
  • step S201 the UE 100-2 transmits a discovery signal when desiring to perform D2D communication without receiving control information for performing the NW type discovery process. Therefore, the identification information is requested to the eNB 200.
  • the eNB 200 receives the request for identification information.
  • the eNB 200 reserves resources for the UE 100-2 in response to the request for identification information. Specifically, the eNB 200 reserves one signal sequence for the UE 100-2 among a plurality of signal sequences used for transmission of discovery signals. Here, the plurality of signal sequences are common to the signal sequences in the operation pattern 1 described above.
  • the eNB 200 associates the UE 100-2 with the reserved resources and records them in the correspondence list.
  • the correspondence list is a list related to a plurality of pieces of identification information and a plurality of pieces of UE information including information indicating UEs each associated with a plurality of pieces of identification information.
  • step S202 the eNB 200 transmits (notifies) the identification information indicating the secured resource to the UE 100-2 by unicast.
  • the UE 100-2 receives the identification information.
  • the identification information is used to identify the transmission source of the discovery signal.
  • step S203 the UE 100-2 performs UE type discovery processing (specifically, transmission of a discovery signal) using time / frequency resources in the UE type radio resource region based on the identification information.
  • the UE 100-1 receives the discovery signal.
  • the UE 100-1 Unlike the operation sequence 1, the UE 100-1 cannot identify the source of the discovery signal. For this reason, the UE 100-1 obtains identification information from the received discovery signal. For example, the UE 100-1 obtains the signal sequence of the received discovery signal (and / or the time / frequency resource used for transmitting the received discovery signal) as identification information.
  • step S204 the UE 100-1 requests the eNB 200 for UE information indicating the UE corresponding to the identification information obtained from the received discovery signal.
  • ENB200 specifies UE corresponding to the identification information included in the corresponding UE information request based on the corresponding list in response to the corresponding UE information request.
  • the eNB 200 identifies the UE corresponding to the identification information as the UE 100-2.
  • step S205 the eNB 200 transmits (notifies) information (for example, an identifier) indicating the UE 100-2 to the UE 100-1 as UE information.
  • the UE 100-1 receives the UE information.
  • the UE 100-1 identifies the UE 100-2 based on the received UE information.
  • the UE 100-1 can specify the UE 100-2 based on the identification information obtained by the discovery signal. Specifically, the UE 100-1 requests the eNB 200 for UE information indicating the UE corresponding to the identification information obtained by the discovery signal, and receives the UE information from the eNB 200. As a result, the UE 100-1 can identify the UE 100-2.
  • the UE 100-1 transmits a discovery signal response including information for specifying the UE 100-1 to the UE 100-2.
  • the UE 100-2 can identify the UE 100-1.
  • the UE 100-1 and the UE 100-2 establish a connection for performing D2D communication, and perform D2D communication.
  • FIG. 11 is a sequence diagram illustrating an operation sequence 3 of the mobile communication system according to the embodiment. Note that the description will focus on the parts different from the operation sequences 1 and 2 described above, and the description of the same parts will be omitted as appropriate.
  • the UE 100-1 identifies the UE 100-2 based on requesting the UE information indicating the UE corresponding to the identification information obtained from the discovery signal to the eNB 200.
  • the UE 100-1 identifies the UE 100-2 based on transmitting the identification information obtained by the discovery signal to the transmission source of the discovery signal.
  • Steps S301 to S303 correspond to steps S201 to S203.
  • step S304 the UE 100-1 notifies the response to the discovery signal to the transmission source of the discovery signal (UE 100-2).
  • the UE 100-2 receives a response to the discovery signal.
  • the UE 100-1 requests UE information for specifying the partner UE including the identification information.
  • the UE 100-2 transmits (notifies) information indicating the UE 100-2 to the UE 100-1 that is the transmission source of the identification information.
  • the UE 100-1 can identify the UE 100-2 based on the information indicating the UE 100-2.
  • the UE 100-2 similarly requests UE information for specifying the counterpart UE from the UE 100-1 that is the transmission source of the response to the discovery signal.
  • the UE 100-1 transmits information indicating the UE 100-1 to the UE 100-2 in response to the UE information request.
  • the UE 100-2 can identify the UE 100-1 based on the information indicating the UE 100-1.
  • the UE 100-1 may include the identification information in the response to the discovery signal and transmit it to the discovery signal transmission source (UE 100-2).
  • the UE 100-1 can identify the UE 100-2 by requesting UE information between the UEs.
  • FIG. 12 is a sequence diagram illustrating an operation sequence 4 of the mobile communication system according to the embodiment. Note that the description will focus on the parts different from the operation sequence 1-3 described above, and the description of the same parts will be omitted as appropriate.
  • the UE 100-1 identifies the UE 100-2 based on the identification information obtained from the discovery signal and the correspondence list received from the eNB 200.
  • Steps S401 and S402 correspond to steps S201 and S202.
  • step S403 the eNB 200 associates the UE 100-1 with the secured resource and transmits a correspondence list (see operation sequence 2) to the UE 100-1. Based on the request from the UE 100-1, the eNB 200 may transmit the correspondence list by unicast, or may transmit the correspondence list by broadcast. The UE 100-1 receives the correspondence list.
  • Step S404 corresponds to step S203.
  • UE 100-1 identifies UE 100-2 based on the identification information obtained from the discovery signal in step S404 and the correspondence list in step S403. Specifically, the UE 100-1 compares the identification information obtained by the discovery signal with the correspondence list, and searches for UE information associated with the identification information obtained by the discovery signal. The UE 100-1 can identify the UE 100-2 based on the found UE information.
  • the UE 100-1 can specify the UE 100-2 based on the identification information obtained from the discovery signal and the correspondence list.
  • FIG. 13 is a sequence diagram illustrating an operation sequence 5 of the mobile communication system according to the embodiment. It should be noted that the description will focus on parts that are different from the operation sequence 1-4 described above, and description of similar parts will be omitted as appropriate.
  • operation sequence 2 when UE 100-2 desires to perform D2D communication, identification information is requested from eNB 200 in order to transmit a discovery signal. On the other hand, in the operation sequence 5, the eNB 200 broadcasts identification information without a request from the UE 100.
  • the eNB 200 broadcasts identification information.
  • the identification information is a plurality of identifiers, for example, a plurality of signal sequences used for transmitting a discovery signal, or a plurality of time / frequency resources.
  • step S502 the UE 100-2 selects a predetermined identifier from a plurality of identifiers.
  • the UE 100-2 transmits a discovery signal using the selected identifier.
  • the identifier used by the UE 100-2 for transmitting the discovery signal may be used by other UEs 100 for transmitting the discovery signal. Therefore, it is preferable to transmit the discovery signal including the identifier of the UE 100-2.
  • Steps S503 and S504 correspond to steps S304 and S305 except that a predetermined identifier is used instead of the identification information.
  • the UE 100-2 determines that the discovery has failed and transmits a discovery signal (S502). Try again.
  • the UE 100-2 selects a predetermined identifier from among a plurality of identifiers, and transmits a discovery signal using the selected identifier.
  • the UE 100-1 can identify the UE 100-2 based on the identifier obtained from the discovery signal.
  • the NW type discovery process can be performed using the time / frequency resources in the radio resource area where the UE type discovery process can be performed.
  • the identification information can be used in common for the control in the NW type discovery process and the control in the UE type discovery process. Therefore, the UE type discovery process and the NW type discovery process share the same discovery process control, which is effective in terms of effective use and implementation of resources.
  • D2D communication between the UE 100-1 and the UE 100-2 is assumed, but the present invention is not limited to this.
  • the partner terminal to be a partner in the D2D communication of the UE 100-1 is a plurality of UEs 100 (for example, the UE 100-2 and the UE 100-3)
  • the eNB 200 performs discovery processing such as a signal sequence of a discovery signal and time / frequency resources.
  • the resources to be used may be reserved in common and dedicated to UE 100-1, UE 100-2, and UE 100-3 (D2D group configured by).
  • the eNB 200 transmits identification information indicating the secured resource to each of a plurality of UEs 100 (UE 100-1, UE 100-2, and UE 100-3) configuring the D2D group, and the plurality of UEs 100, based on the identification information,
  • the partner terminal can be found.
  • the success or failure of the discovery is determined using the identifier of the UE 100 in the operation sequence 5, but the success or failure of the discovery is also determined using the identifier of the UE 100 in other operation sequences. It may be.
  • the operation sequence 1-5 may be implemented in combination as appropriate.
  • the present invention is not limited to the LTE system, and the present invention may be applied to a system other than the LTE system.
  • the communication control method, the user terminal, and the base station according to the present embodiment can effectively function the UE type discovery process and the NW type discovery process, they are useful in the mobile communication field.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Databases & Information Systems (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

 本実施形態に係る通信制御方法は、基地局が、前記ユーザ端末ベースの発見処理を行うことが可能な無線リソース領域を示す情報をブロードキャストによって送信するステップと、前記基地局が、前記ネットワークベースの発見処理に用いられる時間・周波数リソースをユーザ端末に割り当てるステップと、前記基地局が、前記ユーザ端末に割り当てられた時間・周波数リソースを示す情報を含む制御情報を前記ユーザ端末にユニキャストによって送信するステップと、前記ユーザ端末が、前記無線リソース領域内の時間・周波数リソースを用いて前記ユーザ端末ベースの発見処理を行うステップと、前記ユーザ端末が、前記制御情報を受信した場合には、前記ユーザ端末に割り当てられた時間・周波数リソースを用いて前記ネットワークベースの発見処理を行うステップと、を備える。

Description

通信制御方法、ユーザ端末及び基地局
 本発明は、D2D通信をサポートする移動通信システムにおいて用いられる通信制御方法、ユーザ端末及び基地局に関する。
 移動通信システムの標準化プロジェクトである3GPP(3rd Generation Partnership Project)では、リリース12以降の新機能として、端末間(Device to Device:D2D)通信の導入が検討されている(非特許文献1参照)。
 D2D通信では、近接する複数のユーザ端末がコアネットワークを介さずに直接的な端末間通信を行う。一方、移動通信システムの通常の通信であるセルラ通信では、ユーザ端末がコアネットワークを介して通信を行う。
 ここで、ユーザ端末は、D2D通信における相手端末の発見に用いられる発見信号(Discovery信号又はDiscoverable信号)によって、他のユーザ端末を発見する。
 D2D通信における相手端末の発見処理として、ユーザ端末ベースの発見処理(以下、UE型発見処理と適宜称する)がある。
3GPP技術報告書 「TR 22.803 V12.1.0」   2013年3月
 D2D通信における相手端末の発見処理として、UE型発見処理に加えて、ネットワークベースの発見処理(以下、NW型発見処理と適宜称する)の導入が想定される。現状の仕様においては、UE型発見処理及びNW型発見処理を有効に機能させるための仕組みが存在しない。
 そこで、本発明は、UE型発見処理及びNW型発見処理を有効に機能させることが可能な通信制御方法、ユーザ端末及び基地局を提供することを目的とする。
 一実施形態に係る通信制御方法は、ユーザ端末ベースの発見処理とネットワークベースの発見処理とからなる近傍ユーザ端末の発見に関する発見処理をサポートする移動通信システムにおいて用いられる。前記通信制御方法は、基地局が、前記ユーザ端末ベースの発見処理を行うことが可能な無線リソース領域を示す情報をブロードキャストによって送信するステップと、前記基地局が、前記ネットワークベースの発見処理に用いられる時間・周波数リソースをユーザ端末に割り当てるステップと、前記基地局が、前記ユーザ端末に割り当てられた時間・周波数リソースを示す情報を含む制御情報を前記ユーザ端末にユニキャストによって送信するステップと、前記ユーザ端末が、前記無線リソース領域内の時間・周波数リソースを用いて前記ユーザ端末ベースの発見処理を行うステップと、前記ユーザ端末が、前記制御情報を受信した場合には、前記ユーザ端末に割り当てられた時間・周波数リソースを用いて前記ネットワークベースの発見処理を行うステップと、を備える。
図1は、LTEシステムの構成図である。 図2は、UEのブロック図である。 図3は、eNBのブロック図である。 図4は、LTEシステムにおける無線インターフェイスのプロトコルスタック図である。 図5は、LTEシステムで使用される無線フレームの構成図である。 図6は、セルラ通信におけるデータパスを示す図である。 図7は、D2D通信におけるデータパスを示す図である。 図8は、実施形態に係る移動通信システムの動作シーケンス1を説明するシーケンス図である。 図9は、実施形態に係る移動通信システムの動作シーケンス1における時間・周波数リソースを説明するための説明図である。 図10は、実施形態に係る移動通信システムの動作シーケンス2を説明するシーケンス図である。 図11は、実施形態に係る移動通信システムの動作シーケンス3を説明するシーケンス図である。 図12は、実施形態に係る移動通信システムの動作シーケンス4を説明するシーケンス図である。 図13は、実施形態に係る移動通信システムの動作シーケンス5を説明するシーケンス図である。
 [実施形態の概要]
 実施形態に係る通信制御方法は、ユーザ端末ベースの発見処理とネットワークベースの発見処理とからなる近傍ユーザ端末の発見に関する発見処理をサポートする移動通信システムにおいて用いられる。前記通信制御方法は、基地局が、前記ユーザ端末ベースの発見処理を行うことが可能な無線リソース領域を示す情報をブロードキャストによって送信するステップと、前記基地局が、前記ネットワークベースの発見処理に用いられる時間・周波数リソースをユーザ端末に割り当てるステップと、前記基地局が、前記ユーザ端末に割り当てられた時間・周波数リソースを示す情報を含む制御情報を前記ユーザ端末にユニキャストによって送信するステップと、前記ユーザ端末が、前記無線リソース領域内の時間・周波数リソースを用いて前記ユーザ端末ベースの発見処理を行うステップと、前記ユーザ端末が、前記制御情報を受信した場合には、前記ユーザ端末に割り当てられた時間・周波数リソースを用いて前記ネットワークベースの発見処理を行うステップと、を備える。
 実施形態では、前記ユーザ端末が、前記制御情報を受信していない場合、発見信号を送信するために前記制御情報を前記基地局に要求する。
 実施形態では、前記時間・周波数リソースを割り当てるステップにおいて、前記基地局は、前記無線リソース領域の中から、前記ネットワークベースの発見処理に用いられる前記時間・周波数リソースを前記ユーザ端末に割り当てる。
 実施形態では、前記制御情報を送信するステップにおいて、前記基地局は、前記ユーザ端末に割り当てられる情報を含む前記制御情報を送信し、前記ネットワークベースの発見処理を行うステップにおいて、前記ユーザ端末は、前記制御情報に基づいて、前記ユーザ端末のD2D通信における相手となるべき相手ユーザ端末の発見に用いられる発見信号を送信することによって、前記発見処理を行う。
 実施形態では、前記制御情報は、前記発見信号を送信するユーザ端末を指定する送信情報を含み、前記ネットワークベースの発見処理を行うステップにおいて、前記ユーザ端末は、前記送信情報に基づいて、前記発見信号を送信する。
 実施形態では、前記ユーザ端末ベースの発見処理を行うステップは、前記基地局が、D2D通信における相手となるべき相手ユーザ端末の発見に用いられる発見信号の送信元を識別するための識別情報を、前記ユーザ端末に送信するステップと、前記ユーザ端末が、前記基地局から受信した前記識別情報に基づいて、前記無線リソース領域内の前記時間・周波数リソースを用いて前記発見信号を送信するステップと、前記相手ユーザ端末が、受信した前記発見信号によって得られた前記識別情報に基づいて、前記ユーザ端末を特定するステップと、を含む。
 実施形態に係るユーザ端末は、ユーザ端末ベースの発見処理とネットワークベースの発見処理とからなる近傍ユーザ端末の発見に関する発見処理をサポートする移動通信システムにおいて用いられる。当該ユーザ端末は、前記ユーザ端末ベースの発見処理を行うことが可能な無線リソース領域を示す情報を基地局からブロードキャストによって受信する受信部と、前記無線リソース領域内の時間・周波数リソースを用いて前記ユーザ端末ベースの発見処理を行う制御部と、を備える。前記制御部は、前記ユーザ端末に割り当てられた時間・周波数リソースを示す情報を含む制御情報を前記基地局からユニキャストによって受信した場合には、前記ユーザ端末に割り当てられた時間・周波数リソースを用いて前記ネットワークベースの発見処理を行う。
 実施形態に係る基地局は、ユーザ端末ベースの発見処理とネットワークベースの発見処理とからなる近傍ユーザ端末の発見に関する発見処理をサポートする移動通信システムにおいて用いられる。当該基地局は、前記ユーザ端末ベースの発見処理を行うことが可能な無線リソース領域を示す情報をブロードキャストによって送信する制御と、前記ネットワークベースの発見処理に用いられる時間・周波数リソースをユーザ端末に割り当てる制御と、前記ユーザ端末に割り当てられた時間・周波数リソースを示す情報を含む制御情報を前記ユーザ端末にユニキャストによって送信する制御と、を実行する制御部を備える。
 実施形態に係るユーザ端末は、移動通信システムにおいて用いられる。前記ユーザ端末は、近傍ユーザ端末の発見のための発見信号の送信に用いることが可能な無線リソース領域を示す情報を基地局からブロードキャストによって受信する受信部と、前記無線リソース領域内の時間・周波数リソースを用いて前記発見信号を送信する制御を行う制御部と、を備える。前記制御部は、前記基地局とRRC接続中において、前記ユーザ端末に割り当てられた時間・周波数リソースを示す情報をユニキャストによって前記基地局から受信した場合には、前記ユーザ端末に割り当てられた時間・周波数リソースを用いて前記発見信号を送信する制御を行う。
 実施形態では、前記ユーザ端末が、発見信号を送信するために前記ユーザ端末に割り当てられた時間・周波数リソースを示す情報を前記基地局に要求する。
 実施形態に係る基地局は、移動通信システムにおいて用いられる。前記基地局は、近傍ユーザ端末の発見のための発見信号の送信に用いることが可能な無線リソース領域を示す情報をブロードキャストによって送信する制御と、前記発見信号の送信に用いられる時間・周波数リソースをユーザ端末に割り当てる制御と、前記ユーザ端末とRRC接続中において、前記ユーザ端末に割り当てられた時間・周波数リソースを示す情報をユニキャストによって前記ユーザ端末に送信する制御と、を実行する制御部を備える。
 実施形態に係るユーザ端末は、近傍ユーザ端末の発見に関する発見処理をサポートする移動通信システムにおいて用いられる。前記ユーザ端末は、無線リソース領域を示す情報を基地局からブロードキャストによって受信する受信部と、前記無線リソース領域内の時間・周波数リソースを自律的に用いて前記発見処理を行う制御部と、を備える。
 [実施形態]
 (LTEシステム)
 図1は、本実施形態に係るLTEシステムの構成図である。
 図1に示すように、LTEシステムは、複数のUE(User Equipment)100と、E-UTRAN(Evolved Universal Terrestrial Radio Access Network)10と、EPC(Evolved Packet Core)20と、を含む。E-UTRAN10及びEPC20は、ネットワークを構成する。
 UE100は、移動型の無線通信装置であり、接続を確立したセル(サービングセル)との無線通信を行う。UE100はユーザ端末に相当する。
 E-UTRAN10は、複数のeNB200(evolved Node-B)を含む。eNB200は基地局に相当する。eNB200は、セルを管理しており、セルとの接続を確立したUE100との無線通信を行う。
 なお、「セル」は、無線通信エリアの最小単位を示す用語として使用される他に、UE100との無線通信を行う機能を示す用語としても使用される。
 eNB200は、例えば、無線リソース管理(RRM)機能と、ユーザデータのルーティング機能と、モビリティ制御及びスケジューリングのための測定制御機能と、を有する。
 EPC20は、MME(Mobility Management Entity)/S-GW(Serving-Gateway)300と、OAM(Operation and Maintenance)400とを含む。また、EPC20は、コアネットワークに相当する。
 MMEは、UE100に対する各種モビリティ制御等を行うネットワークノードであり、制御局に相当する。S-GWは、ユーザデータの転送制御を行うネットワークノードであり、交換局に相当する。
 OAM400は、オペレータによって管理されるサーバ装置であり、E-UTRAN10の保守及び監視を行う。
 次に、UE100及びeNB200の構成を説明する。
 図2は、UE100のブロック図である。図2に示すように、UE100は、アンテナ101と、無線送受信機110と、ユーザインターフェイス120と、GNSS(Global Navigation Satellite System)受信機130と、バッテリ140と、メモリ150と、プロセッサ160と、を有する。メモリ150及びプロセッサ160は、制御部を構成する。
 UE100は、GNSS受信機130を有していなくてもよい。また、メモリ150をプロセッサ160と一体化し、このセット(すなわち、チップセット)をプロセッサ160’としてもよい。
 アンテナ101及び無線送受信機110は、無線信号の送受信に用いられる。アンテナ101は、複数のアンテナ素子を含む。無線送受信機110は、プロセッサ160が出力するベースバンド信号を無線信号に変換してアンテナ101から送信する。また、無線送受信機110は、アンテナ101が受信する無線信号をベースバンド信号に変換してプロセッサ160に出力する。
 ユーザインターフェイス120は、UE100を所持するユーザとのインターフェイスであり、例えば、ディスプレイ、マイク、スピーカ、及び各種ボタンなどを含む。ユーザインターフェイス120は、ユーザからの操作を受け付けて、該操作の内容を示す信号をプロセッサ160に出力する。
 GNSS受信機130は、UE100の地理的な位置を示す位置情報を得るために、GNSS信号を受信して、受信した信号をプロセッサ160に出力する。
 バッテリ140は、UE100の各ブロックに供給すべき電力を蓄える。
 メモリ150は、プロセッサ160によって実行されるプログラムと、プロセッサ160による処理に使用される情報と、を記憶する。
 プロセッサ160は、ベースバンド信号の変調・復調及び符号化・復号などを行うベースバンドプロセッサと、メモリ150に記憶されるプログラムを実行して各種の処理を行うCPU(Central Processing Unit)と、を含む。プロセッサ160は、さらに、音声・映像信号の符号化・復号を行うコーデックを含んでもよい。プロセッサ160は、後述する各種の処理及び各種の通信プロトコルを実行する。
 図3は、eNB200のブロック図である。図3に示すように、eNB200(後述するMeNB200A、PeNB200B及びPeNB200Bを含む)は、アンテナ201と、無線送受信機210と、ネットワークインターフェイス220と、メモリ230と、プロセッサ240と、を有する。メモリ230及びプロセッサ240は、制御部を構成する。なお、メモリ230をプロセッサ240と一体化し、このセット(すなわち、チップセット)をプロセッサ240’としてもよい。
 アンテナ201及び無線送受信機210は、無線信号の送受信に用いられる。アンテナ201は、複数のアンテナ素子を含む。無線送受信機210は、プロセッサ240が出力するベースバンド信号を無線信号に変換してアンテナ201から送信する。また、無線送受信機210は、アンテナ201が受信する無線信号をベースバンド信号に変換してプロセッサ240に出力する。
 ネットワークインターフェイス220は、X2インターフェイスを介して隣接eNB200と接続され、S1インターフェイスを介してMME/S-GW300と接続される。ネットワークインターフェイス220は、X2インターフェイス上で行う通信及びS1インターフェイス上で行う通信に用いられる。
 メモリ230は、プロセッサ240によって実行されるプログラムと、プロセッサ240による処理に使用される情報と、を記憶する。
 プロセッサ240は、ベースバンド信号の変調・復調及び符号化・復号などを行うベースバンドプロセッサと、メモリ230に記憶されるプログラムを実行して各種の処理を行うCPUと、を含む。プロセッサ240は、後述する各種の処理及び各種の通信プロトコルを実行する。
 図4は、LTEシステムにおける無線インターフェイスのプロトコルスタック図である。
 図4に示すように、無線インターフェイスプロトコルは、OSI参照モデルのレイヤ1乃至レイヤ3に区分されており、レイヤ1は物理(PHY)レイヤである。レイヤ2は、MAC(Media Access Control)レイヤと、RLC(Radio Link Control)レイヤと、PDCP(Packet Data Convergence Protocol)レイヤと、を含む。レイヤ3は、RRC(Radio Resource Control)レイヤを含む。
 物理レイヤは、符号化・復号、変調・復調、アンテナマッピング・デマッピング、及びリソースマッピング・デマッピングを行う。物理レイヤは、物理チャネルを用いて上位レイヤに伝送サービスを提供する。UE100の物理レイヤとeNB200の物理レイヤとの間では、物理チャネルを介してデータが伝送される。
 MACレイヤは、データの優先制御、及びハイブリッドARQ(HARQ)による再送処理などを行う。UE100のMACレイヤとeNB200のMACレイヤとの間では、トランスポートチャネルを介してデータが伝送される。eNB200のMACレイヤは、上下リンクのトランスポートフォーマット(トランスポートブロックサイズ、変調・符号化方式など)、及び割り当てリソースブロックを決定するMACスケジューラを含む。
 RLCレイヤは、MACレイヤ及び物理レイヤの機能を利用してデータを受信側のRLCレイヤに伝送する。UE100のRLCレイヤとeNB200のRLCレイヤとの間では、論理チャネルを介してデータが伝送される。
 PDCPレイヤは、ヘッダ圧縮・伸張、及び暗号化・復号化を行う。
 RRCレイヤは、制御プレーンでのみ定義される。UE100のRRCレイヤとeNB200のRRCレイヤとの間では、各種設定のための制御信号(RRCメッセージ)が伝送される。RRCレイヤは、無線ベアラの確立、再確立及び解放に応じて、論理チャネル、トランスポートチャネル、及び物理チャネルを制御する。UE100のRRCとeNB200のRRCとの間にRRC接続がある場合、UE100は接続状態であり、そうでない場合、UE100はアイドル状態である。
 RRCレイヤの上位に位置するNAS(Non-Access Stratum)レイヤは、セッション管理及びモビリティ管理などを行う。
 図5は、LTEシステムで使用される無線フレームの構成図である。LTEシステムは、下りリンクにはOFDMA(Orthogonal Frequency Division Multiple Access)、上りリンクにはSC-FDMA(Single Carrier Frequency Division Multiple Access)がそれぞれ使用される。
 図5に示すように、無線フレームは、時間方向に並ぶ10個のサブフレームで構成され、各サブフレームは、時間方向に並ぶ2個のスロットで構成される。各サブフレームの長さは1msであり、各スロットの長さは0.5msである。各サブフレームは、周波数方向に複数個のリソースブロック(RB)を含み、時間方向に複数個のシンボルを含む。各シンボルの先頭には、サイクリックプレフィックス(CP)と呼ばれるガード区間が設けられる。リソースブロックは、周波数方向に複数個のサブキャリアを含む。1つのサブキャリア及び1つのシンボルにより構成される無線リソース単位はリソースエレメント(RE)と称される。
 UE100に割り当てられる無線リソースのうち、周波数リソースはリソースブロックにより特定でき、時間リソースはサブフレーム(又はスロット)により特定できる。
 下りリンクにおいて、各サブフレームの先頭数シンボルの区間は、主に物理下りリンク制御チャネル(PDCCH)として使用される制御領域である。また、各サブフレームの残りの区間は、主に物理下りリンク共有チャネル(PDSCH)として使用できる領域である。さらに、各サブフレームには、セル固有参照信号(CRS)が分散して配置される。
 上りリンクにおいて、各サブフレームにおける周波数方向の両端部は、主に物理上りリンク制御チャネル(PUCCH)として使用される制御領域である。また、各サブフレームにおける周波数方向の中央部は、主に物理上りリンク共有チャネル(PUSCH)として使用できる領域である。さらに、各サブフレームには、復調参照信号(DMRS)及びサウンディング参照信号(SRS)が配置される。
 (D2D通信)
 次に、LTEシステムの通常の通信(セルラ通信)とD2D通信とを比較して説明する。
 図6は、セルラ通信におけるデータパスを示す図である。ここでは、eNB200-1との接続を確立したUE100-1と、eNB200-2との接続を確立したUE100-2と、の間でセルラ通信を行う場合を例示している。なお、データパスとは、ユーザデータ(ユーザプレーン)の転送経路を意味する。
 図6に示すように、セルラ通信のデータパスはネットワークを経由する。詳細には、eNB200-1、S-GW300、及びeNB200-2を経由するデータパスが設定される。
 図7は、D2D通信におけるデータパスを示す図である。ここでは、eNB200-1との接続を確立したUE100-1と、eNB200-2との接続を確立したUE100-2と、の間でD2D通信を行う場合を例示している。
 図7に示すように、D2D通信のデータパスはネットワークを経由しない。すなわち、UE間で直接的な無線通信を行う。このように、UE100-1の近傍にUE100-2が存在するのであれば、UE100-1とUE100-2との間でD2D通信を行うことによって、ネットワークのトラフィック負荷及びUE100のバッテリ消費量を削減するなどの効果が得られる。
 なお、D2D通信が開始されるケースとして、(a)相手端末を発見するための動作を行うことによって相手端末を発見した後に、D2D通信が開始されるケースと、(b)相手端末を発見するための動作を行わずにD2D通信が開始されるケースがある。
 例えば、上記(a)のケースでは、UE100-1及びUE100-2のうち一方のUE100が、近傍に存在する他方のUE100を発見することで、D2D通信が開始される。
 このケースの場合、UE100は、相手端末を発見するために、自身の近傍に存在する他のUE100を発見する(Discover)機能、及び/又は、UE100は、他のUE100から発見される(Discoverable)機能を有する。
 具体的には、UE100-1は、相手端末を発見するため又は相手端末に発見されるために用いられる発見信号(Discovery信号/Discoverable信号)を送信する。発見信号を受信したUE100-2は、UE100-1を発見する。UE100-2が発見信号に対する応答を送信することで、発見信号を送信したUE100-1は、相手端末であるUE100-1を発見する。
 なお、UE100は、相手端末を発見しても必ずしもD2D通信を行う必要はなく、例えば、UE100-1及びUE100-2は、互いに相手を発見した後に、ネゴシエーションを行って、D2D通信を行うか否かを判定してもよい。UE100-1及びUE100-2のそれぞれは、D2D通信を行うことに同意した場合に、D2D通信を開始する。
なお、UE100-1は、相手端末を発見した後にD2D通信を行わなかった場合、上位レイヤ(例えば、アプリケーションなど)に近傍のUE100(すなわち、UE100-2)の発見を報告してもよい。例えば、アプリケーションは、当該報告に基づく処理(例えば、UE100-2の位置を地図情報にプロットする処理など)を実行できる。
 また、UE100は、相手端末を発見したことをeNB200に報告し、相手端末との通信をセルラ通信によって行うかD2D通信によって行うかの指示をeNB200から受けることも可能である。
 一方、上記(b)のケースでは、例えば、UE100-1は、相手端末を特定せずに、D2D通信用の信号の送信(ブロードキャストによる報知など)を開始する。これにより、UE100は、相手端末の発見の有無にかかわらず、D2D通信を開始できる。なお、D2D通信用の信号の待ち受け動作を行っているUE100-2は、UE100-1からの当該信号に基づいて、同期又は/及び復調を行う。
 (NW型発見処理とUE型発見処理)
 次に、NW型発見処理及びUE型発見処理について、説明する。
 移動通信システムは、D2D通信における相手端末の発見処理として、NW型発見処理(ネットワークベースの発見処理)とUE型発見処理(ユーザ端末ベースの発見処理)とをサポートする。
 NW型発見処理及びUE型発見処理は、例えば、以下のいずれかの発見処理である。
 第1に、NW型発見処理では、eNB200、MMEなどのネットワーク(ネットワーク装置)は、UE100の発見動作が行われる前に、発見相手となるUE100(受信側UE100)に、発見動作(発見信号の送信)を行うUE100(送信側UE100)に関する端末情報を送信する。受信側UE100は、端末情報に基づいて、送信側UE100を発見する。例えば、受信側UE100は、端末情報によって、発見信号を受信するために探索すべき範囲が特定されている。
 端末情報は、送信側UE100の識別子、発見信号の送信に関する情報(送信帯域、送信タイミングなど)の少なくともいずれかを含む。
 一方、UE型発見処理では、ネットワークは、UE100の発見動作が行われる前に、受信側UE100に、端末情報を送信しない。従って、受信側UE100は、送信側UE100がどのような発見動作を行うか分からない。例えば、受信側UE100は、発見信号を受信するために探索すべき範囲が特定されていないため、発見信号を受信するまで発見信号が送信される範囲の送信帯域を探索する。
 第2に、NW型発見処理では、ネットワークは、UE100の発見動作が行われる前に、送信側UE100に、発見すべき特定の受信側UE100に関する端末情報を送信する。送信側UE100は、端末情報に基づいて、発見信号の送信を行う。
 ここでの端末情報は、受信側UE100の識別子、発見信号の受信に関する情報(受信帯域、受信タイミングなど)の少なくともいずれかを含む。
 一方、UE型発見処理では、ネットワークは、UE100の発見動作が行われる前に、送信側UE100に、端末情報を送信しない。従って、送信側UE100は、特定の受信側UE100が存在するかどうか分からない。
 第3に、NW型発見処理では、ネットワークは、UE100の発見動作が行われる前に、送信側UE100及び受信側UE100のそれぞれに、端末情報を送信する。送信側UE100は、端末情報に基づいて、発見信号の送信を行い、受信側UE100は、端末情報に基づいて、送信側UE100を発見する。
 一方、UE型発見処理では、ネットワークは、UE100の発見動作が行われる前に、送信側UE100及び受信側UE100のそれぞれに、端末情報を送信しない。従って、送信側UE100は、特定の受信側UE100が存在するかどうか分からず、受信側UE100は、送信側UE100がどのような発見動作を行うか分からない。
 第4に、NW型発見処理では、ネットワークが、UE100の発見動作が行われる前に、発見処理に用いられる時間・周波数リソースが指定されたリソース情報をUE100に送信した場合、リソース情報を受信したUE100は、リソース情報を用いて発見動作(発見信号の送信又は受信)を行わなければならない。
 一方、UE型発見処理では、ネットワークが、UE100の発見動作が行われる前に、リソース情報をUE100に送信した場合、リソース情報を受信したUE100は、リソース情報を用いて発見動作(発見信号の送信又は受信)を行わなくてもよい。リソース情報を受信したUE100は、リソース情報を用いて発見動作を行ってもよい。
 第5に、NW型発見処理では、UE100の発見動作が行われる前に、送信側UE100及び受信側UE100は、発見すべき相手が分かっている。
 一方、UE型発見処理では、UE100の発見動作が行われる前に、送信側UE100及び受信側UE100は、発見すべき相手が分かっていない。
 第6に、NW型発見処理では、D2D通信が行われるという前提の下、発見動作が行われる。例えば、セルラ通信中のUE100のグループに対して、ネットワークがD2D通信を行わせることを決定した場合に、NW型発見処理が行われる。
 一方、UE型発見処理では、D2D通信が行われるか否かに関わらず、発見動作が行われる。
 (動作シーケンス)
 次に、本実施形態に係る移動通信システムの動作シーケンス1-5について、説明する。
 以下において、NW型発見処理では、ネットワークは、UE100の発見動作が行われる前に、送信側UE100及び受信側UE100のそれぞれに、端末情報を送信する。一方、UE型発見処理では、ネットワークは、UE100の発見動作が行われる前に、端末情報を送信しない。
 動作シーケンス1は、NW型発見処理であり、動作シーケンス2-5は、UE型発見処理である。各動作シーケンスにおいて用いられる識別情報は、NW型発見処理における制御とUE型発見処理における制御とで共通に利用可能である。
 (1)動作シーケンス1(NW型発見処理)
 動作シーケンス1について、図8及び図9を用いて説明する。図8は、実施形態に係る移動通信システムの動作シーケンス1を説明するシーケンス図である。図9は、実施形態に係る移動通信システムの動作シーケンス1における時間・周波数リソースを説明するための説明図である。
 eNB200は、UE型発見処理を行うことが可能な無線リソース領域(以下、UE型無線リソース領域と適宜称する)を示す情報をブロードキャスト又はユニキャストによって送信している(不図示)。UE100は、当該無線リソース領域内の時間・周波数リソースを用いてUE型発見処理を行うことができる。当該無線リソース領域を示す情報は、例えば、図9に示すように、発見処理(D2D discovery)のための専用のリソースブロックである。
 図8に示すように、ステップS101において、eNB200は、自セルに在圏するUE100-1及びUE100-2のそれぞれに、NW型発見処理を行わせるための制御情報(すなわち、上述で説明した端末情報)をユニキャストで通知(送信)する。UE100-1及びUE100-2のそれぞれは、制御情報を受信する。
 本実施形態において、制御情報は、UE100-1とUE100-1のD2D通信における相手となるべきUE100-2とに割り当てられる情報である識別情報を含む。
 eNB200は、制御情報を送信する前に、UE100-1及びUE100-2に、互いに相手を特定するための識別情報を予め割り当てる。eNB200が割り当てる識別情報は、例えば、以下の(a)及び(b)の情報が挙げられる。
 (a)発見信号の信号系列
 eNB200は、発見信号の送信(及び受信)のために用いられる複数の信号系列(直交系列)の中から一つの信号系列を選択し、選択した信号系列を、UE100-1とUE100-2とに共通且つ専用の信号系列として確保する。eNB200は、確保された発見信号の信号系列を示す識別子を識別情報として送信し、確保された信号系列をUE100-1とUE100-2とに共通に割り当てる。
 (b)時間・周波数リソース
 eNB200は、UE型無線リソース領域内における時間・周波数リソースを、UE100-1及びUE100-2用に確保する。eNB200は、確保された時間・周波数リソースを示す識別子を識別情報として送信し、確保された時間・周波数リソースをUE100-1及びUE100-2に共通に割り当てる。
 また、制御情報は、識別情報の他に、発見信号を送信するUE100及び/又は発見信号を受信するUE100を指定する送受信情報を含んでもよい。
 ステップS102において、制御情報を受信したUE100-1及びUE100-2は、UE型無線リソース領域内における時間・周波数リソースを用いて、NW型発見処理を行う。具体的には、UE100(UE100-1、UE100-2)は、UE型無線リソース領域内における時間・周波数リソースを用いて、制御情報に基づいて、発見信号を送信又は受信することによって、発見処理を行う。これにより、UE型無線リソース領域を用いて、NW型発見処理を行うことができるため、発見処理(具体的には、発見処理を行わせるため)の制御が共通となるため、無線リソースを有効活用できる。
 例えば、UE100-1は、発見信号の信号系列を示す識別情報が制御情報に含まれる場合、識別情報に基づく信号系列を用いて発見信号を送信できる。発見信号を受信したUE100-2は、受信した発見信号の信号系列と、eNB200から受信した識別情報によって示される信号系列とが一致した場合、受信した発見信号の送信元が、UE100-1であることが特定できる。これにより、UE100-2は、UE100-1を発見できる。一方、UE100-1は、UE100-2からの発見信号の応答を受信することによって、UE100-2を特定し、発見できる。UE100-2は、識別情報によって示される信号系列を用いて発見信号の応答を送信してもよい。
 また、UE100-1は、UE型無線リソース領域内における時間・周波数リソースを示す識別情報が制御情報に含まれる場合、識別情報に基づく時間・周波数リソースを用いて発見信号を送信できる。発見信号を受信したUE100-2は、受信した発見信号の送信に用いられた時間・周波数リソースと、eNB200から受信した識別情報によって示される時間・周波数リソースとが一致した場合、受信した発見信号の送信元が、UE100-1であることが特定できる。これにより、UE100-2は、UE100-1を発見できる。
 また、eNB200は、図9に示すように、UE型無線リソース領域外における時間・周波数リソースを専用に確保し、確保された時間・周波数リソースをUE100-1及びUE100-2に共通に割り当ててもよい。なお、UE型無線リソース領域外の無線リソース領域(以下、NW型無線リソース領域と適宜称する)は、セルラ通信に用いられる無線リソース領域(セルラ通信専用領域)であってもよいし、D2D通信に用いられる無線リソース領域(セルラ通信とD2D通信との共通領域)であってもよい。
 UE100-1は、NW型無線リソース領域内における時間・周波数リソースである第1の時間・周波数リソースを示す識別情報が制御情報に含まれる場合、第1の時間・周波数リソースと同一の時間帯に位置し、UE型無線リソース領域内の時間・周波数リソースである第2の時間・周波数リソースとを同時に用いて、発見信号を送信できる。UE100-2は、第1の時間・周波数リソースと第2の時間・周波数リソースとを同時に用いて発見信号を受信する。これにより、発見信号を多重して送信することができ、ダイバーシチ効果を得ることができる。その結果、多くのUE100が発見信号を送信するような状況であっても、発見の成功確率を向上させることができる。
 なお、第2の時間・周波数リソースは、識別情報によって示されてもよいし、発見信号を送信するUE100-1が、UE型無線リソース領域内から適宜選択してもよい。
 また、送受信情報が制御情報に含まれる場合、UE100-1及びUE100-2は、送受信情報によって示される発見動作(発見信号の送信又は受信)を行うことができる。これにより、UE100-1及びUE100-2が、共に発見信号の送信又は受信を行って、互いに発見信号を受信できないということがなくなるため、効率よく相手端末を発見できる。
 その後、発見処理によって、UE100-1及びUE100-2のそれぞれは、相手端末を発見した後、D2D通信を行うための接続を確立し、D2D通信を行う。
 なお、UE100-1及びUE100-2の少なくとも一方は、相手端末を発見した後、相手端末を発見したことを示す発見報告をeNB200などのネットワークに送信してもよい。発見報告を受信したネットワークは、UE100-1及びUE100-2にD2D通信を行わせてもよいし、行わせなくてもよい。
 例えば、ネットワークは、UE100-1及びUE100-2にD2D通信を行わせることによって、セルラ通信又はD2D通信を行う他のUE100に対して、干渉を与えると判断した場合、UE100-1及びUE100-2にD2D通信を行わせないと決定してもよい。この場合、ネットワークは、UE100-1及びUE100-2のそれぞれが、他の近傍無線通信能力(例えば、Wifi direct)を有している場合、他の近傍無線通信を行わせるための指示をUE100-1及びUE100-2のそれぞれに行ってもよい。なお、ネットワークは、D2D通信を行わせないと決定した後に、他の近傍無線通信能力を有するか否かを示す能力情報をUE100-1及びUE100-2のそれぞれに要求してもよく、UE100-1及びUE100-2のそれぞれが予め当該能力情報を送信していてもよい。
 (2)動作シーケンス2(UE型発見処理)
 次に、動作シーケンス2について、図10を用いて説明する。図10は、実施形態に係る移動通信システムの動作シーケンス2を説明するシーケンス図である。なお、上述した動作シーケンス1と異なる部分を中心に説明し、同様の部分は、説明を適宜省略する。
 動作シーケンス1では、NW型発見処理が行われたが、動作シーケンス2では、UE型発見処理が行われる。
 図10に示すように、ステップS201において、UE100-2は、NW型発見処理を行わせるための制御情報を受信していない状態で、D2D通信を行うことを希望する場合、発見信号を送信するために、識別情報をeNB200に要求する。eNB200は、識別情報の要求を受信する。
 eNB200は、識別情報の要求に応じて、UE100-2のためにリソースを確保する。具体的には、eNB200は、発見信号の送信のために用いられる複数の信号系列うち、一つの信号系列をUE100-2のために確保する。ここで、複数の信号系列は、上述した動作パターン1における信号系列と共通のものである。
 また、eNB200は、UE100-2と確保したリソースとを対応付けて対応リストに記録する。対応リストは、複数の識別情報と、複数の識別情報のそれぞれが対応付けられたUEを示す情報からなる複数のUE情報と、に関するリストである。
 ステップS202において、eNB200は、確保したリソースを示す識別情報をユニキャストによって、UE100-2に送信(通知)する。UE100-2は、識別情報を受信する。識別情報は、発見信号の送信元を識別するために用いられる。
 ステップS203において、UE100-2は、識別情報に基づいて、UE型無線リソース領域内における時間・周波数リソースを用いて、UE型発見処理(具体的には、発見信号の送信)を行う。UE100-1は、発見信号を受信する。
 UE100-1は、動作シーケンス1と異なり、発見信号の送信元が特定できない。このため、UE100-1は、受信した発見信号によって識別情報を得る。例えば、UE100-1は、受信した発見信号の信号系列(及び/又は受信した発見信号の送信に用いられた時間・周波数リソース)を識別情報として得る。
 ステップS204において、UE100-1は、受信した発見信号によって得られた識別情報に対応するUEを示すUE情報を、eNB200に要求する。
 eNB200は、対応UE情報要求に応じて、対応リストに基づいて、対応UE情報要求に含まれる識別情報に対応するUEを特定する。本実施形態において、eNB200は、識別情報に対応するUEをUE100-2と特定する。
 ステップS205において、eNB200は、UE情報として、UE100-2を示す情報(例えば、識別子)をUE100-1に送信(通知)する。UE100-1は、UE情報を受信する。UE100-1は、受信したUE情報に基づいて、UE100-2を特定する。
 このように、動作シーケンス2では、UE100-1は、発見信号によって得られた識別情報に基づいて、UE100-2を特定できる。具体的には、UE100-1は、発見信号によって得られた識別情報に対応するUEを示すUE情報をeNB200に要求し、eNB200からUE情報を受信する。これによって、UE100-1は、UE100-2を特定できる。
 また、UE100-1は、UE100-1を特定するための情報を含む発見信号応答をUE100-2に送信する。これによって、UE100-2は、UE100-1を特定できる。その後、UE100-1とUE100-2とは、D2D通信を行うための接続を確立し、D2D通信を行う。
 (3)動作シーケンス3(UE型発見処理)
 次に、動作シーケンス3について、図11を用いて説明する。図11は、実施形態に係る移動通信システムの動作シーケンス3を説明するシーケンス図である。なお、上述した動作シーケンス1,2と異なる部分を中心に説明し、同様の部分は、説明を適宜省略する。
 動作シーケンス2では、UE100-1が、発見信号によって得られた識別情報に対応するUEを示すUE情報をeNB200に要求することに基づいて、UE100-2を特定した。動作シーケンス3では、UE100-1が、発見信号によって得られた識別情報を、発見信号の送信元に送信することに基づいて、UE100-2を特定する。
 ステップS301からS303は、ステップS201からS203に対応する。
 ステップS304において、UE100-1は、発見信号に対する応答を、発見信号の送信元(UE100-2)に通知する。UE100-2は、発見信号に対する応答を受信する。
 ステップS305において、UE100-1は、識別情報を含む相手UEを特定するためのUE情報を要求する。UE100-2は、識別情報の送信元であるUE100-1に、UE100-2を示す情報を送信(通知)する。UE100-1は、UE100-2を示す情報に基づいて、UE100-2を特定できる。
 一方、UE100-2も、同様に、発見信号に対する応答の送信元であるUE100-1に対して、相手UEを特定するためのUE情報を要求する。UE100-1は、UE情報要求に応じて、UE100-1を示す情報をUE100-2に送信する。UE100-2は、UE100-1を示す情報に基づいて、UE100-1を特定できる。
 なお、UE100-1は、発見信号に対する応答に識別情報を含めて、発見信号の送信元(UE100-2)に送信してもよい。
 このように、動作シーケンス3では、UE100-1は、UE間によるUE情報の要求により、UE100-2を特定できる。
 (4)動作シーケンス4(UE型発見処理)
 次に、動作シーケンス4について、図12を用いて説明する。図12は、実施形態に係る移動通信システムの動作シーケンス4を説明するシーケンス図である。なお、上述した動作シーケンス1-3と異なる部分を中心に説明し、同様の部分は、説明を適宜省略する。
 動作シーケンス4では、UE100-1が、発見信号によって得られた識別情報と、eNB200から受信した対応リストとに基づいて、UE100-2を特定する。
 ステップS401及びS402は、ステップS201及びS202に対応する。
 ステップS403において、eNB200は、UE100-1と確保したリソースとを対応付けて対応リスト(動作シーケンス2参照)をUE100-1に送信する。eNB200は、UE100-1からの要求に基づいて、ユニキャストで対応リストを送信してもよいし、対応リストをブロードキャストで送信してもよい。UE100-1は、対応リストを受信する。
 ステップS404は、ステップS203に対応する。
 UE100-1は、ステップS404における発見信号によって得られた識別情報と、ステップS403における対応リストとに基づいて、UE100-2を特定する。具体的には、UE100-1は、発見信号によって得られた識別情報と対応リストとを比較して、発見信号によって得られた識別情報に対応付けられたUE情報を探し出す。UE100-1は、探し出したUE情報によって、UE100-2を特定できる。
 このように、動作シーケンス4では、UE100-1は、発見信号によって得られた識別情報と、対応リストとに基づいて、UE100-2を特定できる。
 (5)動作シーケンス5(UE型発見処理)
 次に、動作シーケンス5について、図13を用いて説明する。図13は、実施形態に係る移動通信システムの動作シーケンス5を説明するシーケンス図である。なお、上述した動作シーケンス1-4と異なる部分を中心に説明し、同様の部分は、説明を適宜省略する。
 動作シーケンス2では、UE100-2が、D2D通信を行うことを希望する場合、発見信号を送信するために、識別情報をeNB200に要求していた。一方、動作シーケンス5では、eNB200が、UE100からの要求なく、識別情報をブロードキャストする。
 ステップS501において、eNB200は、識別情報をブロードキャストする。ここで、識別情報は、複数の識別子であり、例えば、発見信号の送信のために用いられる複数の信号系列、或いは、複数の時間・周波数リソースである。
 ステップS502において、UE100-2は、複数の識別子の中から所定の識別子を選択する。UE100-2は、選択した識別子を用いて、発見信号の送信を行う。
 なお、UE100-2が発見信号の送信に用いた識別子は、他のUE100が発見信号の送信に用いる可能性があるため、UE100-2の識別子を含む発見信号の送信を行うことが好ましい。
 ステップS503及びS504は、識別情報の代わりに所定の識別子を用いることを除いて、ステップS304及びS305に対応する。
 なお、UE100-2は、UE100-1からUE100-2の識別子と異なるUE100の識別子を含む応答を受信した場合、UE100-2は、発見が失敗したと判定し、発見信号の送信(S502)を再度行う。
 このように、動作シーケンス5では、UE100-2は、複数の識別子の中から所定の識別子を選択し、選択した識別子を用いて、発見信号の送信を行う。一方、UE100-1は、発見信号によって得られた識別子に基づいて、UE100-2を特定できる。
 なお、リソースの有効活用及び実装の観点から、発見処理の制御(発見処理を行わせるための制御を含む)に関して、UE型発見処理とNW型発見処理とでできる限り共通にすることが望まれる。上述した実施形態によれば、UE型発見処理を行うことが可能な無線リソース領域内の時間・周波数リソースを用いてNW型発見処理を行うことができる。また、識別情報は、NW型発見処理における制御とUE型発見処理における制御とで共通に利用可能である。従って、UE型発見処理とNW型発見処理とで、発見処理の制御が共通であるため、リソースの有効活用及び実装の観点において、効果的である。
 [その他実施形態]
 上記のように、本発明は実施形態によって記載したが、この開示の一部をなす論述及び図面はこの発明を限定するものであると理解すべきではない。この開示から当業者には様々な代替実施形態、実施例及び運用技術が明らかとなる。
 例えば、上述した実施形態では、UE100-1とUE100-2とのD2D通信を想定していたが、これに限られない。UE100-1のD2D通信における相手となるべき相手端末が複数のUE100(例えば、UE100-2、UE100-3)である場合、eNB200は、発見信号の信号系列、時間・周波数リソースなどの発見処理に用いられるリソースを、UE100-1、UE100-2及びUE100-3(によって構成されるD2Dグループ)に共通且つ専用に確保してもよい。eNB200は、確保したリソースを示す識別情報をD2Dグループを構成する複数のUE100(UE100-1、UE100-2及びUE100-3)のそれぞれに送信し、当該複数のUE100は、識別情報に基づいて、相手端末を発見できる。
 また、上述した実施形態では、動作シーケンス5において、UE100の識別子を用いて、発見の成否を判定していたが、他の動作シーケンスにおいても、UE100の識別子を用いて、発見の成否を判定していてもよい。
 また、上述した実施形態において、動作シーケンス1-5は、適宜組み合わされて実施されてもよい。
 また、上述した実施形態では、本発明をLTEシステムに適用する一例を説明したが、LTEシステムに限定されるものではなく、LTEシステム以外のシステムに本発明を適用してもよい。
 なお、日本国特許出願第2013-249166号(2013年12月2日出願)の全内容が、参照により、本願明細書に組み込まれている。
 以上のように、本実施形態に係る通信制御方法、ユーザ端末及び基地局は、UE型発見処理及びNW型発見処理を有効に機能させることができるため、移動通信分野において有用である。

Claims (12)

  1.  ユーザ端末ベースの発見処理とネットワークベースの発見処理とからなる近傍ユーザ端末の発見に関する発見処理をサポートする移動通信システムにおいて用いられる通信制御方法であって、
     基地局が、前記ユーザ端末ベースの発見処理を行うことが可能な無線リソース領域を示す情報をブロードキャストによって送信するステップと、
     前記基地局が、前記ネットワークベースの発見処理に用いられる時間・周波数リソースをユーザ端末に割り当てるステップと、
     前記基地局が、前記ユーザ端末に割り当てられた時間・周波数リソースを示す情報を含む制御情報を前記ユーザ端末にユニキャストによって送信するステップと、
     前記ユーザ端末が、前記無線リソース領域内の時間・周波数リソースを用いて前記ユーザ端末ベースの発見処理を行うステップと、
     前記ユーザ端末が、前記制御情報を受信した場合には、前記ユーザ端末に割り当てられた時間・周波数リソースを用いて前記ネットワークベースの発見処理を行うステップと、を備えることを特徴とする通信制御方法。
  2.  前記ユーザ端末が、前記制御情報を受信していない場合、発見信号を送信するために前記制御情報を前記基地局に要求することを特徴とする請求項1に記載の通信制御方法。
  3.  前記時間・周波数リソースを割り当てるステップにおいて、前記基地局は、前記無線リソース領域の中から、前記ネットワークベースの発見処理に用いられる前記時間・周波数リソースを前記ユーザ端末に割り当てることを特徴とする請求項1に記載の通信制御方法。
  4.  前記制御情報を送信するステップにおいて、前記基地局は、前記ユーザ端末に割り当てられる情報を含む前記制御情報を送信し、
     前記ネットワークベースの発見処理を行うステップにおいて、前記ユーザ端末は、前記制御情報に基づいて、前記ユーザ端末のD2D通信における相手となるべき相手ユーザ端末の発見に用いられる発見信号を送信することによって、前記発見処理を行うことを特徴とする請求項1に記載の通信制御方法。
  5.  前記制御情報は、前記発見信号を送信するユーザ端末を指定する送信情報を含み、
     前記ネットワークベースの発見処理を行うステップにおいて、前記ユーザ端末は、前記送信情報に基づいて、前記発見信号を送信することを特徴とする請求項4に記載の通信制御方法。
  6.  前記ユーザ端末ベースの発見処理を行うステップは、
     前記基地局が、D2D通信における相手となるべき相手ユーザ端末の発見に用いられる発見信号の送信元を識別するための識別情報を、前記ユーザ端末に送信するステップと、
     前記ユーザ端末が、前記基地局から受信した前記識別情報に基づいて、前記無線リソース領域内の前記時間・周波数リソースを用いて前記発見信号を送信するステップと、
     前記相手ユーザ端末が、受信した前記発見信号によって得られた前記識別情報に基づいて、前記ユーザ端末を特定するステップと、を含むことを特徴とする請求項1に記載の通信制御方法。
  7.  ユーザ端末ベースの発見処理とネットワークベースの発見処理とからなる近傍ユーザ端末の発見に関する発見処理をサポートする移動通信システムにおいて用いられるユーザ端末であって、
     前記ユーザ端末ベースの発見処理を行うことが可能な無線リソース領域を示す情報を基地局からブロードキャストによって受信する受信部と、
     前記無線リソース領域内の時間・周波数リソースを用いて前記ユーザ端末ベースの発見処理を行う制御部と、を備え、
     前記制御部は、前記ユーザ端末に割り当てられた時間・周波数リソースを示す情報を含む制御情報を前記基地局からユニキャストによって受信した場合には、前記ユーザ端末に割り当てられた時間・周波数リソースを用いて前記ネットワークベースの発見処理を行うことを特徴とするユーザ端末。
  8.  ユーザ端末ベースの発見処理とネットワークベースの発見処理とからなる近傍ユーザ端末の発見に関する発見処理をサポートする移動通信システムにおいて用いられる基地局であって、
     前記ユーザ端末ベースの発見処理を行うことが可能な無線リソース領域を示す情報をブロードキャストによって送信する制御と、
     前記ネットワークベースの発見処理に用いられる時間・周波数リソースをユーザ端末に割り当てる制御と、
     前記ユーザ端末に割り当てられた時間・周波数リソースを示す情報を含む制御情報を前記ユーザ端末にユニキャストによって送信する制御と、を実行する制御部を備えることを特徴とする基地局。
  9.  移動通信システムにおいて用いられるユーザ端末であって、
     近傍ユーザ端末の発見のための発見信号の送信に用いることが可能な無線リソース領域を示す情報を基地局からブロードキャストによって受信する受信部と、
     前記無線リソース領域内の時間・周波数リソースを用いて前記発見信号を送信する制御を行う制御部と、を備え、
     前記制御部は、前記基地局とRRC接続中において、前記ユーザ端末に割り当てられた時間・周波数リソースを示す情報をユニキャストによって前記基地局から受信した場合には、前記ユーザ端末に割り当てられた時間・周波数リソースを用いて前記発見信号を送信する制御を行うことを特徴とするユーザ端末。
  10.  前記ユーザ端末が、発見信号を送信するために前記ユーザ端末に割り当てられた時間・周波数リソースを示す情報を前記基地局に要求することを特徴とする請求項9に記載の通信制御方法。
  11.  移動通信システムにおいて用いられる基地局であって、
     近傍ユーザ端末の発見のための発見信号の送信に用いることが可能な無線リソース領域を示す情報をブロードキャストによって送信する制御と、
     前記発見信号の送信に用いられる時間・周波数リソースをユーザ端末に割り当てる制御と、
     前記ユーザ端末とRRC接続中において、前記ユーザ端末に割り当てられた時間・周波数リソースを示す情報をユニキャストによって前記ユーザ端末に送信する制御と、を実行する制御部を備えることを特徴とする基地局。
  12.  近傍ユーザ端末の発見に関する発見処理をサポートする移動通信システムにおいて用いられるユーザ端末であって、
     無線リソース領域を示す情報を基地局からブロードキャストによって受信する受信部と、
     前記無線リソース領域内の時間・周波数リソースを自律的に用いて前記発見処理を行う制御部と、を備えることを特徴とするユーザ端末。
PCT/JP2014/081835 2013-12-02 2014-12-02 通信制御方法、ユーザ端末及び基地局 WO2015083686A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP14867634.9A EP3079441A4 (en) 2013-12-02 2014-12-02 Communication control method, user terminal, and base station
JP2015551513A JPWO2015083686A1 (ja) 2013-12-02 2014-12-02 通信制御方法、基地局、ユーザ端末及びプロセッサ
US15/168,659 US9986548B2 (en) 2013-12-02 2016-05-31 Communication control method, user terminal, and base station

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013249166 2013-12-02
JP2013-249166 2013-12-02

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US15/168,659 Continuation US9986548B2 (en) 2013-12-02 2016-05-31 Communication control method, user terminal, and base station

Publications (1)

Publication Number Publication Date
WO2015083686A1 true WO2015083686A1 (ja) 2015-06-11

Family

ID=53273448

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/081835 WO2015083686A1 (ja) 2013-12-02 2014-12-02 通信制御方法、ユーザ端末及び基地局

Country Status (4)

Country Link
US (1) US9986548B2 (ja)
EP (1) EP3079441A4 (ja)
JP (2) JPWO2015083686A1 (ja)
WO (1) WO2015083686A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016167750A (ja) * 2015-03-10 2016-09-15 株式会社Jvcケンウッド 通信端末装置、通信システム、及び通信方法
US10212758B2 (en) 2015-03-10 2019-02-19 JVC Kenwood Corporation Communication terminal device, communication system, and communication method used by workers undertaking dangerous operations

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015198490A1 (ja) * 2014-06-27 2015-12-30 富士通株式会社 通信システム、基地局及び通信端末
CN106793109B (zh) * 2016-11-11 2020-03-24 工业和信息化部电信研究院 一种移动通信的终端直通单播控制方法

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013526157A (ja) * 2010-04-15 2013-06-20 クアルコム,インコーポレイテッド ネットワーク支援型ピア発見
JP2013249166A (ja) 2012-05-31 2013-12-12 Toshiba Elevator Co Ltd 乗客コンベアの乗客検出装置

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013081433A1 (ko) * 2011-12-02 2013-06-06 엘지전자 주식회사 기기간 통신을 지원하는 무선접속시스템에서 새로운 식별자의 정의 및 이를 이용한 전송 방법 및 장치
CN104247535A (zh) * 2012-06-04 2014-12-24 诺基亚公司 蜂窝网络中设备到设备(d2d)通信的面向干扰避免的载波重用
US9867026B2 (en) * 2012-07-18 2018-01-09 Lg Electronics Inc. Method for discovering device in wireless access system and device therefor
CN103686676A (zh) * 2012-08-31 2014-03-26 中兴通讯股份有限公司 设备到设备通信系统的通信方法、装置及系统
US20160278069A1 (en) * 2013-11-29 2016-09-22 Samsung Electronics Co., Ltd Method and apparatus for application recognition qos-differentiated device-to-device communication in wireless communication system

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013526157A (ja) * 2010-04-15 2013-06-20 クアルコム,インコーポレイテッド ネットワーク支援型ピア発見
JP2013249166A (ja) 2012-05-31 2013-12-12 Toshiba Elevator Co Ltd 乗客コンベアの乗客検出装置

Non-Patent Citations (5)

* Cited by examiner, † Cited by third party
Title
"TR 22.803 V12.1.0", 3GPP TECHNICAL REPORT, March 2013 (2013-03-01)
NTT DOCOMO, INC: "Views on D2D discovery resource allocation", 3GPP TSG RAN WG1 MEETING #75, R1-135522, November 2013 (2013-11-01), pages 1 - 4, XP050751023 *
See also references of EP3079441A4
ZTE CORPORATION: "On resource allocation for D2D discovery", 3GPP TSG-RAN WG2 MEETING #84, R2-134212, November 2013 (2013-11-01), pages 1 - 5, XP050736960 *
ZTE: "Discussion on the data flow for D2D discovery", 3GPP TSG-RAN WG2 MEETING #83BIS, R2-133203, 7 October 2013 (2013-10-07), pages 1 - 7, XP055338569 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016167750A (ja) * 2015-03-10 2016-09-15 株式会社Jvcケンウッド 通信端末装置、通信システム、及び通信方法
US10212758B2 (en) 2015-03-10 2019-02-19 JVC Kenwood Corporation Communication terminal device, communication system, and communication method used by workers undertaking dangerous operations

Also Published As

Publication number Publication date
US20160278059A1 (en) 2016-09-22
JP6615729B2 (ja) 2019-12-04
EP3079441A1 (en) 2016-10-12
JP2017038383A (ja) 2017-02-16
US9986548B2 (en) 2018-05-29
EP3079441A4 (en) 2017-08-09
JPWO2015083686A1 (ja) 2017-03-16

Similar Documents

Publication Publication Date Title
JP6328132B2 (ja) 移動通信システム及びユーザ端末
JP6174213B2 (ja) ユーザ端末、プロセッサ及び基地局
JP6147844B2 (ja) 移動通信システム、基地局、ユーザ端末及びプロセッサ
JP6026549B2 (ja) 移動通信システム、基地局及びユーザ端末
US10425881B2 (en) User terminal, network apparatus, and processor
US11197220B2 (en) Radio terminal, communication device, and base station
WO2014157398A1 (ja) 通信制御方法及びプロセッサ
JP6554613B2 (ja) 通信装置
WO2014069222A1 (ja) 移動通信システム、ユーザ端末、基地局、プロセッサ及び通信制御方法
WO2015045860A1 (ja) ユーザ端末及びネットワーク装置
JP6615729B2 (ja) 通信方法、ユーザ端末及びプロセッサ
US10264557B2 (en) User terminal and processor performing D2D communication
JP2018129811A (ja) 通信方法
JP6140292B2 (ja) ネットワーク装置及びユーザ端末
WO2014192632A1 (ja) 基地局、ユーザ端末及びプロセッサ
JP6140013B2 (ja) 移動通信システム、ユーザ端末、ネットワーク装置及びプロセッサ

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14867634

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2015551513

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

REEP Request for entry into the european phase

Ref document number: 2014867634

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2014867634

Country of ref document: EP