WO2015099235A1 - 극저손실 광섬유 - Google Patents

극저손실 광섬유 Download PDF

Info

Publication number
WO2015099235A1
WO2015099235A1 PCT/KR2014/000284 KR2014000284W WO2015099235A1 WO 2015099235 A1 WO2015099235 A1 WO 2015099235A1 KR 2014000284 W KR2014000284 W KR 2014000284W WO 2015099235 A1 WO2015099235 A1 WO 2015099235A1
Authority
WO
WIPO (PCT)
Prior art keywords
optical fiber
refractive index
wavelength
loss
less
Prior art date
Application number
PCT/KR2014/000284
Other languages
English (en)
French (fr)
Inventor
오치환
오성국
곽나은
홍은유
박종길
윤지훈
Original Assignee
대한광통신 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 대한광통신 주식회사 filed Critical 대한광통신 주식회사
Priority to US15/105,634 priority Critical patent/US9726815B2/en
Priority to PCT/KR2014/012906 priority patent/WO2015099489A1/ko
Publication of WO2015099235A1 publication Critical patent/WO2015099235A1/ko

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/02Optical fibres with cladding with or without a coating
    • G02B6/028Optical fibres with cladding with or without a coating with core or cladding having graded refractive index
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/02Optical fibres with cladding with or without a coating
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B37/00Manufacture or treatment of flakes, fibres, or filaments from softened glass, minerals, or slags
    • C03B37/01Manufacture of glass fibres or filaments
    • C03B37/02Manufacture of glass fibres or filaments by drawing or extruding, e.g. direct drawing of molten glass from nozzles; Cooling fins therefor
    • C03B37/0203Cooling non-optical fibres drawn or extruded from bushings, nozzles or orifices
    • C03B37/0213Cooling non-optical fibres drawn or extruded from bushings, nozzles or orifices by forced gas cooling, i.e. blowing or suction
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B37/00Manufacture or treatment of flakes, fibres, or filaments from softened glass, minerals, or slags
    • C03B37/01Manufacture of glass fibres or filaments
    • C03B37/02Manufacture of glass fibres or filaments by drawing or extruding, e.g. direct drawing of molten glass from nozzles; Cooling fins therefor
    • C03B37/025Manufacture of glass fibres or filaments by drawing or extruding, e.g. direct drawing of molten glass from nozzles; Cooling fins therefor from reheated softened tubes, rods, fibres or filaments, e.g. drawing fibres from preforms
    • C03B37/0253Controlling or regulating
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B37/00Manufacture or treatment of flakes, fibres, or filaments from softened glass, minerals, or slags
    • C03B37/01Manufacture of glass fibres or filaments
    • C03B37/02Manufacture of glass fibres or filaments by drawing or extruding, e.g. direct drawing of molten glass from nozzles; Cooling fins therefor
    • C03B37/025Manufacture of glass fibres or filaments by drawing or extruding, e.g. direct drawing of molten glass from nozzles; Cooling fins therefor from reheated softened tubes, rods, fibres or filaments, e.g. drawing fibres from preforms
    • C03B37/027Fibres composed of different sorts of glass, e.g. glass optical fibres
    • C03B37/02718Thermal treatment of the fibre during the drawing process, e.g. cooling
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/02Optical fibres with cladding with or without a coating
    • G02B6/036Optical fibres with cladding with or without a coating core or cladding comprising multiple layers
    • G02B6/03616Optical fibres characterised both by the number of different refractive index layers around the central core segment, i.e. around the innermost high index core layer, and their relative refractive index difference
    • G02B6/03622Optical fibres characterised both by the number of different refractive index layers around the central core segment, i.e. around the innermost high index core layer, and their relative refractive index difference having 2 layers only
    • G02B6/03627Optical fibres characterised both by the number of different refractive index layers around the central core segment, i.e. around the innermost high index core layer, and their relative refractive index difference having 2 layers only arranged - +
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B2201/00Type of glass produced
    • C03B2201/06Doped silica-based glasses
    • C03B2201/30Doped silica-based glasses doped with metals, e.g. Ga, Sn, Sb, Pb or Bi
    • C03B2201/31Doped silica-based glasses doped with metals, e.g. Ga, Sn, Sb, Pb or Bi doped with germanium
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B2203/00Fibre product details, e.g. structure, shape
    • C03B2203/10Internal structure or shape details
    • C03B2203/22Radial profile of refractive index, composition or softening point
    • C03B2203/24Single mode [SM or monomode]

Definitions

  • the present invention relates to an ultra low loss optical fiber, and more particularly, to an ultra low loss optical fiber having extremely low light loss and bending loss in the wavelength band of 1260 nm to 1625 nm.
  • the relay distance can be extended, which greatly reduces the cost of constructing the optical communication system.
  • the above-mentioned optical fiber loss is caused by Rayleigh scattering due to density non-uniformity in the glassy material, Brillouin scattering caused by the optical signal and the material inside the optical fiber shaking minutely, causing the refractive index to be changed slightly.
  • the incident optical signal is due to Raman scattering caused by interaction with molecular vibrations in the glass, infrared absorption, and the like.
  • Patent Publication No. 10-2013-0116010 discloses an optical fiber that reduces the transmission loss due to Rayleigh scattering of the optical fiber without damaging the bending loss, but the optical fiber of this patent has a problem that the optical loss is not sufficiently reduced. .
  • an object of the present invention is to provide an ultra low loss optical fiber having extremely low light loss and bending loss in the wavelength band of 1260 nm to 1625 nm.
  • the ultra low loss optical fiber according to an embodiment of the present invention is positioned at the center of the optical fiber, the core part having the maximum refractive index in the optical fiber, and disposed outside the core part, and the lowest in the optical fiber.
  • the refractive index difference ⁇ + is 0.0040 to 0.0055
  • the relative refractive index difference ⁇ between the refractive index of the inner cladding portion and the refractive index of the outer cladding portion is preferably ⁇ 0.0010 to ⁇ 0.0003.
  • the optical fiber has an optical loss of 0.324 dB / km or less at a wavelength of 1310 nm, an optical loss of 0.320 dB / km or less at a wavelength of 1383 nm, and optical loss at a wavelength of 1550 nm. It is preferable that it is 0.184 dB / km or less, and light loss is 0.200 dB / km or less in 1625 nm wavelength.
  • the bending loss when the optical fiber is wound around a mandrel having a diameter of 20 mm once is 0.75 dB or less at a wavelength of 1550 nm, and 1.50 dB at a wavelength of 1625 nm.
  • the bending loss when the optical fiber is wound 10 times on a mandrel having a diameter of 30 mm is preferably 0.25 dB or less at a wavelength of 1550 nm, and 1.00 dB or less at a wavelength of 1625 nm.
  • the zero dispersion of the optical fiber has a zero dispersion of 1300 nm to 1320 nm
  • the cutoff wavelength of the optical fiber is 1150 nm to 1330 nm
  • the optical fiber has a 1310 nm wavelength. It is preferable that the mode field diameter is in the range of 8.8 ⁇ m to 9.6 ⁇ m.
  • the ratio (D / d) of the radius of the core portion and the radius of the inner cladding portion is preferably 3.5 to 5.5.
  • Ultra low loss optical fiber according to an embodiment of the present invention can extremely lower the optical loss and bending loss in the wavelength band of 1260 nm ⁇ 1625 nm.
  • FIG. 1 is a view showing a refractive index profile of an extremely low loss optical fiber according to an embodiment of the present invention.
  • Ultra low loss optical fiber is located in the center of the optical fiber, as shown in Figure 1, the core portion 110 having the maximum refractive index in the optical fiber, disposed outside the core portion 110
  • the inner cladding part 115 having the lowest refractive index in the optical fiber and the outer cladding part 115 are disposed outside the inner cladding part 115 and smaller than the refractive index of the core part 110 and greater than the refractive index of the inner cladding part 115.
  • An outer cladding portion 120 having a refractive index is included.
  • the relative refractive index difference ( ⁇ +) of the refractive index of the core portion 110 and the refractive index of the outer cladding portion 120 is 0.0040 ⁇ 0.0055, the refractive index of the inner cladding portion 115 and the outer cladding portion ( It is preferable that the relative refractive index difference (DELTA-) of the refractive index of 120 is -0.0010--0.0003.
  • the optical fiber has an optical loss of 0.324 dB / km or less at a 1310 nm wavelength, an optical loss of 0.320 dB / km or less at a 1383 nm wavelength, an optical loss of 0.184 dB / km or less at a 1550 nm wavelength, and a 1625 nm wavelength. It is desirable for the optical loss to be less than 0.200 dB / km.
  • the bending loss when the optical fiber was wound in a mandrel having a diameter of 20 mm once was 0.75 dB or less at a wavelength of 1550 nm, 1.50 dB or less at a wavelength of 1625 nm, and the optical fiber was a mand having a diameter of 30 mm. It is preferable that the bending loss when wound 10 times on a mandrel is 0.25 dB or less at 1550 nm wavelength and 1.00 dB or less at 1625 nm wavelength.
  • the zero dispersion of the optical fiber is 1300 nm to 1320 nm
  • the cutoff wavelength of the optical fiber is 1150 nm to 1330 nm
  • the optical fiber has a mode field diameter of 8.8 ⁇ m to 9.6 ⁇ m at a wavelength of 1310 nm.
  • the optical fiber preferably has a ratio (D / d) of the radius of the core portion 110 and the radius of the inner cladding portion 115 to 3.5 to 5.5.

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Optics & Photonics (AREA)
  • Manufacturing & Machinery (AREA)
  • General Physics & Mathematics (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Thermal Sciences (AREA)
  • Manufacture, Treatment Of Glass Fibers (AREA)
  • Optical Modulation, Optical Deflection, Nonlinear Optics, Optical Demodulation, Optical Logic Elements (AREA)

Abstract

본 발명은 상기 광섬유의 중심에 위치하며, 상기 광섬유 내 최대 굴절률을 갖는 코어부, 상기 코어부의 외측에 배치되며, 상기 광섬유 내 최저 굴절률을 갖는 내부 클래딩부 및 상기 내부 클래딩부의 외측에 배치되며, 상기 코어부의 굴절률보다 작고 상기 내부 클래딩부의 굴절률보다는 큰 굴절률을 갖는 외부 클래딩부를 포함하며, 상기 코어부의 굴절률과 상기 외부 클래딩부의 굴절률의 상대 굴절률차(Δ+)는 0.0040 ~ 0.0055이고, 상기 내부 클래딩부의 굴절률과 상기 외부 클래딩부의 굴절률의 상대 굴절률차(Δ-)는 -0.0010 ~ -0.0003인 극저손실 광섬유를 제공한다.

Description

극저손실 광섬유
본 발명은 극저손실 광섬유에 관한 것으로서, 보다 상세하게는 1260 nm ~ 1625 nm 파장 대역에서 극히 낮은 광손실과 구부림 손실을 동시에 갖는 극저손실 광섬유에 관한 것이다.
장거리 광통신망에서 광손실이 낮은 광섬유를 사용할 경우에 중계 거리를 연장할 수 있어 광통신 시스템 구축 비용을 크게 낮출 수 있는 장점이 있다.
상술한 광섬유 손실은 유리질 내의 밀도 불균일에 기인하는 레일리 산란(Rayleigh scattering), 광신호와 광섬유 내부 물질들이 음향적(acoustic)으로 흔들리면서 미세하게 굴절률을 변화를 야기하여 발생하는 부릴루인 산란(Brillouin scattering), 입사된 광신호가 유리질 내의 분자 진동과의 상호 작용에 의해서 발생하는 라만 산란(Raman scattering), 적외선 흡수에 기인하는 것 등이 있다.
한편, 공개 특허 10-2013-0116010에는 휨 손실을 손상시키지 않고 광섬유의 레일리 산란에 기인하는 전송 손실을 저감하는 광섬유를 개시하고 있으나, 이러한 공개 특허의 광섬유는 광손실이 충분히 저감되지 않는 문제점이 있다.
따라서 본 발명이 이루고자 하는 기술적 과제는 1260 nm ~ 1625 nm 파장 대역에서 극히 낮은 광손실과 구부림 손실을 동시에 갖는 극저손실 광섬유을 제공하는 것이다.
본 발명이 이루고자 하는 기술적 과제들은 이상에서 언급한 기술적 과제들로 제한되지 않으며, 언급되지 않은 또 다른 기술적 과제들은 아래의 기재로부터 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자에게 명확하게 이해될 수 있을 것이다.
상기와 같은 목적을 달성하기 위하여 본 발명의 일 실시예에 따른 극저손실 광섬유는 상기 광섬유의 중심에 위치하며, 상기 광섬유 내 최대 굴절률을 갖는 코어부, 상기 코어부의 외측에 배치되며, 상기 광섬유 내 최저 굴절률을 갖는 내부 클래딩부 및 상기 내부 클래딩부의 외측에 배치되며, 상기 코어부의 굴절률보다 작고 상기 내부 클래딩부의 굴절률보다는 큰 굴절률을 갖는 외부 클래딩부를 포함하며, 상기 코어부의 굴절률과 상기 외부 클래딩부의 굴절률의 상대 굴절률차(Δ+)는 0.0040 ~ 0.0055이고, 상기 내부 클래딩부의 굴절률과 상기 외부 클래딩부의 굴절률의 상대 굴절률차(Δ-)는 -0.0010 ~ -0.0003인 것이 바람직하다.
본 발명의 일 실시예에 따른 극저손실 광섬유는, 상기 광섬유가 1310 nm 파장에서 광손실이 0.324 dB/km 이하이고, 1383 nm 파장에서 광손실이 0.320 dB/km 이하이며, 1550 nm 파장에서 광손실이 0.184 dB/km 이하이고, 1625 nm 파장에서 광손실이 0.200 dB/km 이하인 것이 바람직하다.
본 발명의 일 실시예에 따른 극저손실 광섬유는, 상기 광섬유를 직경 20 mm의 맨드렐(mandrel)에 1 회 감았을 경우의 구부림 손실이 1550 nm 파장에서 0.75 dB이하이고, 1625 nm 파장에서 1.50 dB이하이며, 상기 광섬유를 직경 30 mm의 맨드렐(mandrel)에 10 회 감았을 경우의 구부림 손실이 1550 nm 파장에서 0.25 dB이하이고, 1625 nm 파장에서 1.00 dB이하인 것이 바람직하다.
본 발명의 일 실시예에 따른 극저손실 광섬유는, 상기 광섬유의 영분산값(zero dispersion)이 1300 nm ~ 1320 nm이고, 상기 광섬유의 차단 파장은 1150 nm ~ 1330 nm이며, 상기 광섬유는 1310 nm 파장에서 모드 필드 직경이 8.8 ㎛ ~ 9.6 ㎛인 것이 바람직하다.
본 발명의 일 실시예에 따른 극저손실 광섬유는, 상기 코어부의 반경과 상기 내부 클래딩부의 반경의 비(D/d)가 3.5 ~ 5.5 것이 바람직하다.
본 발명의 일 실시예에 따른 극저손실 광섬유는 1260 nm ~ 1625 nm 파장 대역에서 광손실과 구부림 손실을 동시에 극히 낮출 수 있다.
도 1은 본 발명의 일 실시예에 따른 극저손실 광섬유의 굴절률 프로파일(profile)을 나타내는 도면이다.
이하 첨부된 도면을 참조로 본 발명의 바람직한 실시 예를 상세히 설명하기로 한다. 기타 실시예들의 구체적인 사항들은 상세한 설명 및 도면들에 포함되어 있다. 본 고안의 이점 및 특징, 그리고 그것들을 달성하는 방법은 첨부되는 도면과 함께 상세하게 후술되어 있는 실시예들을 참조하면 명확해질 것이다. 명세서 전체에 걸쳐 동일 참조 부호는 동일 구성 요소를 지칭한다.
본 발명의 일 실시예에 따른 극저손실 광섬유는 도 1에 도시된 것처럼, 상기 광섬유의 중심에 위치하며, 상기 광섬유 내 최대 굴절률을 갖는 코어부(110), 상기 코어부(110)의 외측에 배치되며, 상기 광섬유 내 최저 굴절률을 갖는 내부 클래딩부(115) 및 상기 내부 클래딩부(115)의 외측에 배치되며, 상기 코어부(110)의 굴절률보다 작고 상기 내부 클래딩부(115)의 굴절률보다는 큰 굴절률을 갖는 외부 클래딩부(120)를 포함한다.
여기에서, 상기 코어부(110)의 굴절률과 상기 외부 클래딩부(120)의 굴절률의 상대 굴절률차(Δ+)는 0.0040 ~ 0.0055이고, 상기 내부 클래딩부(115)의 굴절률과 상기 외부 클래딩부(120)의 굴절률의 상대 굴절률차(Δ-)는 -0.0010 ~ -0.0003인 것이 바람직하다.
한편, 상기 광섬유는 1310 nm 파장에서 광손실이 0.324 dB/km 이하이고, 1383 nm 파장에서 광손실이 0.320 dB/km 이하이며, 1550 nm 파장에서 광손실이 0.184 dB/km 이하이고, 1625 nm 파장에서 광손실이 0.200 dB/km 이하인 것이 바람직하다.
또한, 상기 광섬유를 직경 20 mm의 맨드렐(mandrel)에 1 회 감았을 경우의 구부림 손실이 1550 nm 파장에서 0.75 dB이하이고, 1625 nm 파장에서 1.50 dB이하이며, 상기 광섬유를 직경 30 mm의 맨드렐(mandrel)에 10 회 감았을 경우의 구부림 손실이 1550 nm 파장에서 0.25 dB이하이고, 1625 nm 파장에서 1.00 dB이하인 것이 바람직하다.
한편, 상기 광섬유의 영분산값(zero dispersion)이 1300 nm ~ 1320 nm이고, 상기 광섬유의 차단 파장은 1150 nm ~ 1330 nm이며, 상기 광섬유는 1310 nm 파장에서 모드 필드 직경이 8.8 ㎛ ~ 9.6 ㎛인 것이고, 상기 광섬유는 상기 코어부(110)의 반경과 상기 내부 클래딩부(115)의 반경의 비(D/d)가 3.5 ~ 5.5인 것이 바람직하다.
이상, 본 발명을 본 발명의 원리를 예시하기 위한 바람직한 실시예와 관련하여 설명하고 도시하였지만, 본 발명은 그와 같이 도시되고 설명된 그대로의 구성 및 작용으로 한정되는 것이 아니다.
오히려, 첨부된 청구범위의 사상 및 범주를 일탈함이 없이 본 발명에 대한 다수의 변경 및 수정이 가능함을 당업자들은 잘 이해할 수 있을 것이다.
따라서, 그러한 모든 적절한 변경 및 수정과 균등물들도 본 발명의 범위에 속하는 것으로 간주되어야 할 것이다.

Claims (5)

  1. 극저손실 광섬유에 있어서,
    상기 광섬유의 중심에 위치하며, 상기 광섬유 내 최대 굴절률을 갖는 코어부;
    상기 코어부의 외측에 배치되며, 상기 광섬유 내 최저 굴절률을 갖는 내부 클래딩부; 및
    상기 내부 클래딩부의 외측에 배치되며, 상기 코어부의 굴절률보다 작고 상기 내부 클래딩부의 굴절률보다는 큰 굴절률을 갖는 외부 클래딩부를 포함하며,
    상기 코어부의 굴절률과 상기 외부 클래딩부의 굴절률의 상대 굴절률차(Δ+)는 0.0040 ~ 0.0055이고, 상기 내부 클래딩부의 굴절률과 상기 외부 클래딩부의 굴절률의 상대 굴절률차(Δ-)는 -0.0010 ~ -0.0003인 것을 특징으로 하는 극저손실 광섬유.
  2. 제1항에 있어서, 상기 광섬유는 1310 nm 파장에서 광손실이 0.324 dB/km 이하이고, 1383 nm 파장에서 광손실이 0.320 dB/km 이하이며, 1550 nm 파장에서 광손실이 0.184 dB/km 이하이고, 1625 nm 파장에서 광손실이 0.200 dB/km 이하인 것을 특징으로 하는 극저손실 광섬유.
  3. 제1항에 있어서, 상기 광섬유를 직경 20 mm의 맨드렐(mandrel)에 1 회 감았을 경우의 구부림 손실이 1550 nm 파장에서 0.75 dB이하이고, 1625 nm 파장에서 1.50 dB이하이며, 상기 광섬유를 직경 30 mm의 맨드렐(mandrel)에 10 회 감았을 경우의 구부림 손실이 1550 nm 파장에서 0.25 dB이하이고, 1625 nm 파장에서 1.00 dB이하인 것을 특징으로 하는 극저손실 광섬유.
  4. 제1항에 있어서, 상기 광섬유의 영분산값(zero dispersion)이 1300 nm ~ 1320 nm이고, 상기 광섬유의 차단 파장은 1150 nm ~ 1330 nm이며, 상기 광섬유는 1310 nm 파장에서 모드 필드 직경이 8.8 ㎛ ~ 9.6 ㎛인 것을 특징으로 하는 극저손실 광섬유.
  5. 제1항에 있어서, 상기 광섬유는 상기 코어부의 반경과 상기 내부 클래딩부의 반경의 비(D/d)가 3.5 ~ 5.5인 것을 특징으로 하는 극저손실 광섬유.
PCT/KR2014/000284 2013-12-27 2014-01-10 극저손실 광섬유 WO2015099235A1 (ko)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US15/105,634 US9726815B2 (en) 2013-12-27 2014-12-26 Ultra-low-loss optical fiber, and method and apparatus for producing same
PCT/KR2014/012906 WO2015099489A1 (ko) 2013-12-27 2014-12-26 극저손실 광섬유와 이의 제조 방법 및 장치

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2013-0164930 2013-12-27
KR20130164930 2013-12-27

Publications (1)

Publication Number Publication Date
WO2015099235A1 true WO2015099235A1 (ko) 2015-07-02

Family

ID=53479066

Family Applications (2)

Application Number Title Priority Date Filing Date
PCT/KR2014/000284 WO2015099235A1 (ko) 2013-12-27 2014-01-10 극저손실 광섬유
PCT/KR2014/012906 WO2015099489A1 (ko) 2013-12-27 2014-12-26 극저손실 광섬유와 이의 제조 방법 및 장치

Family Applications After (1)

Application Number Title Priority Date Filing Date
PCT/KR2014/012906 WO2015099489A1 (ko) 2013-12-27 2014-12-26 극저손실 광섬유와 이의 제조 방법 및 장치

Country Status (3)

Country Link
US (1) US9726815B2 (ko)
KR (1) KR101684941B1 (ko)
WO (2) WO2015099235A1 (ko)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017081796A (ja) 2015-10-29 2017-05-18 株式会社フジクラ 光ファイバの製造方法
JP6397109B2 (ja) * 2017-11-02 2018-09-26 株式会社フジクラ 光ファイバの製造方法
CN108873158B (zh) * 2018-06-27 2024-06-07 深圳金信诺高新技术股份有限公司 一种小直径光纤及其制备方法
US20220234937A1 (en) * 2021-01-22 2022-07-28 Macleon, LLC System and method of refining optical fiber
CN113542939B (zh) * 2021-07-12 2022-04-22 苏州大学 基于超低损耗光纤的多周期升级调度方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20010101071A (ko) * 1998-11-26 2001-11-14 오카야마 노리오 광 파이버 및 이를 포함하는 광 전송 시스템
KR20010101304A (ko) * 1998-12-17 2001-11-14 오카야마 노리오 광섬유
JP2006133496A (ja) * 2004-11-05 2006-05-25 Furukawa Electric Co Ltd:The 光ファイバおよびそれに用いる光ファイバ母材の製造方法

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3377164B2 (ja) * 1997-03-21 2003-02-17 住友電気工業株式会社 光ファイバ冷却装置
US6715323B1 (en) * 1997-11-21 2004-04-06 Pirelli Cavi E Sistemi S.P.A. Method and apparatus for cooling optical fibers
JP4268115B2 (ja) 2004-10-28 2009-05-27 古河電気工業株式会社 シングルモード光ファイバ

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20010101071A (ko) * 1998-11-26 2001-11-14 오카야마 노리오 광 파이버 및 이를 포함하는 광 전송 시스템
KR20010101304A (ko) * 1998-12-17 2001-11-14 오카야마 노리오 광섬유
JP2006133496A (ja) * 2004-11-05 2006-05-25 Furukawa Electric Co Ltd:The 光ファイバおよびそれに用いる光ファイバ母材の製造方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
PATRICK GARVEY: "Overview of ITU-T G.657: Characteristic of bend insensitive SMF for access networks White Paper", WP7115, April 2007 (2007-04-01) *

Also Published As

Publication number Publication date
US9726815B2 (en) 2017-08-08
KR101684941B1 (ko) 2016-12-09
WO2015099489A1 (ko) 2015-07-02
KR20150077363A (ko) 2015-07-07
US20170003444A1 (en) 2017-01-05

Similar Documents

Publication Publication Date Title
CN104169761B (zh) 低弯曲损耗光纤
WO2015099235A1 (ko) 극저손실 광섬유
AU772900B2 (en) Optical fiber and optical communication system comprising the same
EP0674193B1 (en) Dispersion compensating optical fiber and optical transmission system including such fiber
CN102449515B (zh) 多芯光纤
US7773846B2 (en) Large effective area high SBS threshold optical fiber
CN104254793A (zh) 低弯曲损耗光纤
WO2016173232A1 (zh) 低损耗少模光纤
CN102944910B (zh) 具有大有效面积的单模光纤
US10585234B2 (en) Coupled multicore optical fiber and optical transmission system including same
WO2017048827A8 (en) Low bend loss single mode optical fiber with chlorine updoped cladding
CN101900853A (zh) 单模光纤
CN102073097A (zh) 多模光纤
JP2000356724A (ja) 色分散を補償した光ファイバ
CN105209946A (zh) 低弯曲损耗光纤
EP3009868B1 (en) Optical fiber
US6810185B2 (en) Higher order mode stripping optical fiber and modules and systems utilizing the same
EP2071369A1 (en) Holey fiber
CN102768383A (zh) 一种具有大有效面积的单模光纤
EP2369377B1 (en) Optical fiber-type optical filter
CN101255006A (zh) 高带宽多模光纤生产方法
CN103207430A (zh) 一种低弯曲损耗微结构光纤
JP4015959B2 (ja) 高耐応力光ファイバ
CN101663604A (zh) 具有大有效面积的光纤
CN211401476U (zh) 一种用于全光纤高温传感器的空芯光纤

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14875536

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14875536

Country of ref document: EP

Kind code of ref document: A1