WO2015098474A1 - Serum uric acid-reducing agent having rice protein as active ingredient - Google Patents

Serum uric acid-reducing agent having rice protein as active ingredient Download PDF

Info

Publication number
WO2015098474A1
WO2015098474A1 PCT/JP2014/082385 JP2014082385W WO2015098474A1 WO 2015098474 A1 WO2015098474 A1 WO 2015098474A1 JP 2014082385 W JP2014082385 W JP 2014082385W WO 2015098474 A1 WO2015098474 A1 WO 2015098474A1
Authority
WO
WIPO (PCT)
Prior art keywords
uric acid
protein
rice
serum uric
rice endosperm
Prior art date
Application number
PCT/JP2014/082385
Other languages
French (fr)
Japanese (ja)
Inventor
斎藤 亮彦
康宏 細島
基二 門脇
真敏 久保田
幹夫 藤井
葉月 近藤
Original Assignee
亀田製菓株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 亀田製菓株式会社 filed Critical 亀田製菓株式会社
Priority to JP2015554716A priority Critical patent/JP6088071B2/en
Publication of WO2015098474A1 publication Critical patent/WO2015098474A1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K36/00Medicinal preparations of undetermined constitution containing material from algae, lichens, fungi or plants, or derivatives thereof, e.g. traditional herbal medicines
    • A61K36/18Magnoliophyta (angiosperms)
    • A61K36/88Liliopsida (monocotyledons)
    • A61K36/899Poaceae or Gramineae (Grass family), e.g. bamboo, corn or sugar cane
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P13/00Drugs for disorders of the urinary system
    • A61P13/12Drugs for disorders of the urinary system of the kidneys
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P19/00Drugs for skeletal disorders
    • A61P19/06Antigout agents, e.g. antihyperuricemic or uricosuric agents
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P43/00Drugs for specific purposes, not provided for in groups A61P1/00-A61P41/00
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P9/00Drugs for disorders of the cardiovascular system
    • A61P9/10Drugs for disorders of the cardiovascular system for treating ischaemic or atherosclerotic diseases, e.g. antianginal drugs, coronary vasodilators, drugs for myocardial infarction, retinopathy, cerebrovascula insufficiency, renal arteriosclerosis

Definitions

  • the present invention relates to a serum uric acid lowering agent containing a protein extracted from polished rice as an active ingredient.
  • Uric acid is the final metabolite of purines in humans, and is produced by the degradation of ATP and metabolism of nucleic acids in food, and finally excreted in urine.
  • the production and excretion of uric acid is balanced, but if the balance is lost due to an increase in production or a decrease in excretion, and the serum uric acid level exceeds 7 mg / dl, it is defined as hyperuricemia. If it continues, it is said that the risk of gout attacks is high. Hyperuricemia was once a rare disease in Japan, but the number of patients has increased year by year due to factors such as westernization of diet and increased alcohol intake, and the current number of patients is estimated to reach more than 10 million. Has been.
  • hyperuricemia not only causes gout but also causes gout kidneys and may increase the risk of cardiovascular and cerebrovascular disorders.
  • Treatment of hyperuricemia is mainly dietary and exercise therapy in patients without gout attacks or complications. However, it is not easy to continue dietary restrictions and exercise such as avoiding high-pudding diets.
  • allopurinol a uric acid production inhibitor, and benzbromarone, a uric acid excretion promoter
  • allopurinol is required to be administered with caution because it may cause side effects in patients with renal impairment, and uric acid excretion-promoting drugs have been pointed out risks such as urinary calculi. Therefore, if there is a food material that has the effect of lowering the blood uric acid level and can be easily taken into a normal meal, it can be a very useful prevention / treatment method for gout attacks and hyperuricemia-related diseases.
  • the main components of proteins contained in rice endosperm are easily digestible glutelin, globulin, albumin and indigestible prolamin.
  • heat-resistant amylase is allowed to act on polished rice or rice flour, and the remaining protein is recovered as a precipitate (enzyme-treated rice protein).
  • a method alkaline-extracted rice protein in which protein extracted by adding an alkaline solution is acid-precipitated and recovered is known. It has been reported that the protein utilization efficiency as a nutrient is significantly higher in the latter than in the former, and the protein utilization efficiency is comparable to casein (Non-patent Document 1).
  • An object of the present invention is to provide a serum uric acid lowering agent, a food and a medicine which have a blood uric acid level lowering action and can be taken on a daily basis.
  • Another object of the present invention is to reduce the risk of diseases that can be taken on a daily basis and suppress gout attacks, renal diseases, cardiovascular disorders and cerebrovascular disorders caused by monocyte chemotactic protein-1, Another object is to provide a monocyte chemotactic protein-1 expression-lowering agent and a high-density lipoprotein cholesterol enhancer.
  • alkali-extracted rice protein has an effect of lowering human serum uric acid level, and have completed the present invention.
  • intake of rice protein increases high-density lipoprotein cholesterol (HDL-cholesterol) in the blood, and monocyte chemotactic protein-1 (MCP-1), which is one of inflammatory chemokines. ) was found to decrease the blood concentration.
  • HDL-cholesterol high-density lipoprotein cholesterol
  • MCP-1 monocyte chemotactic protein-1
  • the present invention is a serum uric acid lowering agent containing rice endosperm protein as an active ingredient, and also decreases monocyte chemotactic protein (MCP) -1 induced by uric acid or high density lipoprotein cholesterol (HDL- It is an agent for reducing the risk of gout attacks associated with hyperuricemia, renal diseases such as gout kidney, and cardiovascular / cerebrovascular disorder through the reduction of MCP-1 induced by an increase in cholesterol.
  • MCP monocyte chemotactic protein
  • the present invention includes a serum uric acid lowering agent having a serum uric acid level lowering action as described above, and an agent for reducing the risk of renal diseases such as gout attacks, gouty kidneys, and cardiovascular / cerebrovascular disorders through the reduction of MCP-1. , Pharmaceutical or food.
  • the rice endosperm protein is obtained by drying a protein recovered by extraction from rice endosperm with an alkali and then precipitation with an acid.
  • MCP-1 is involved in the induction of various inflammations such as obesity, diabetes, cardiovascular disorders, diabetic nephropathy and diabetic retinitis (Panee et al., Cytokine Vol. 60, 1-12). (2012)). It is also known that blood MCP-1 levels are higher in patients with hyperuricemia than those with normal uric acid levels, and uric acid induces production of MCP-1 (Kanellis et al., Hypertension No. 1). 41, 1287-1293 (2003), Grainger et al., Rheumatology (Oxford) 52, 1018-1102 (2013)).
  • HDL-cholesterol has also been reported to suppress the production of MCP-1 induced by uric acid (Acan et al., Arthritis Res Ther, Vol. 12, R23 (2010)). Ingestion of rice protein not only lowers serum uric acid level but also suppresses uric acid-induced MCP-1 production directly or through an increase in HDL-cholesterol, leading to gout, gouty kidney and cardiovascular disorders This contributes to lower risk.
  • the serum uric acid lowering agent of the present invention is expected to be highly safe due to abundant dietary experience in rice, and since it can lower serum uric acid level by daily intake, it prevents hyperuricemia and gout ⁇ It is extremely effective for treatment.
  • rice endosperm protein a composition containing rice protein alkali-extracted from rice endosperm is abbreviated as “rice endosperm protein”.
  • Rice endosperm protein can be extracted with alkali using rice endosperm such as polished rice or rice flour as a raw material.
  • rice endosperm such as polished rice or rice flour as a raw material.
  • polished rice a part of protein is extracted by immersing it in an alkaline solution.
  • the soaked rice is pulverized by wet grinding or the like, the protein contained in the rice tissue is also extracted, so that the recovery rate can be increased.
  • rice flour protein is extracted with high efficiency by immersing it in an alkaline solution for 1 hour to 1 day.
  • the concentration of alkali used for extraction is preferably 0.1% to 2%, more preferably 0.15 to 0.25%. Since the protein solution to be extracted contains a large amount of alkali-soluble fiber, it is preferably removed using a sieve or a filter cloth having a fine mesh. By adjusting the pH to 5 to 6 by adding an acid such as hydrochloric acid to the protein solution, the aggregated protein can be recovered as a precipitate. If the protein solution is pre-heated to about 50 ° C and then neutralized, protein aggregates can be obtained even at pH 7, and if this is heated to 80 ° C or higher, the aggregates grow even larger. At least protein aggregates can be efficiently recovered by filtration using a sieve or filter press.
  • a rice endosperm protein can be obtained by appropriately washing the recovered protein aggregate and drying it using airflow drying, fluidized bed drying, freeze drying, or the like. By heating at the time of neutralization, swollen protein aggregates are obtained. By drying the aggregates, rice endosperm proteins having superior water retention and touch compared to the case without heating can be obtained, and can be used for a wider range of applications. Can be used.
  • the rice endosperm protein in the present invention may be used alone as a serum uric acid lowering agent, disease risk reducing agent, monocyte chemotactic protein-1 expression reducing agent, or high-density lipoprotein cholesterol enhancer.
  • Endosperm protein may be used as an active ingredient together with excipients and food materials.
  • the processed food containing the rice endosperm protein composition can be used for beverages, baked goods, jelly-like foods, soups, porridges, and the like. In particular, it is preferable to use it for chewable tablets together with excipients, for baked confectionery, or for beverages / soups with starchy thickness, because rice endosperm protein can be processed with good texture.
  • the dose is appropriately determined in consideration of factors such as the patient's age, weight, symptoms, and the processed form of rice endosperm protein.
  • a daily intake of 0.5 to 20 g, more preferably 3 to 10 g of pure protein is good.
  • 3 to 10 g of pure protein is continuously ingested per day, it is expected that a serum uric acid level lowering effect appears in about 2 weeks to 6 months.
  • Food and pharmaceuticals containing the serum uric acid lowering agent, disease risk reducing agent, monocyte chemotactic protein-1 expression reducing agent, or high-density lipoprotein cholesterol enhancing agent of the present invention
  • other ingredients that have uric acid production inhibitory effects or uric acid excretion promoting effects may be used together Also good.
  • a sufficient quantity is desirable with respect to the effective amount of each component.
  • the form of the drug is not particularly limited, but is preferably a form that can be administered orally.
  • Example 1 Preparation of Rice Endosperm Protein for Clinical Test and Test Food Production
  • 25 kg of Koshihikari rice flour (purchased from Niigata Flour Milling Co., Ltd.) was suspended in 100 L of 0.2% sodium hydroxide solution and left overnight.
  • the above suspension was supplied to a centrifuge “H-130I” manufactured by Kokusan Co., Ltd. at a flow rate of about 5 L / min.
  • the rotation speed was 1,400 rpm.
  • the centrifugal supernatant flowing out was collected and centrifuged again under the same conditions to obtain a protein extract from which the starch granules were removed.
  • the extract was passed through a 285 mesh (aperture 53 ⁇ m) sieve to remove the fibrous material.
  • This solution was heated to 50 ° C., and 6N hydrochloric acid was added to adjust the pH to 7.0.
  • the solution was incubated at 80 ° C. for 30 minutes to grow a large protein aggregate. After cooling this, the protein was recovered on a sieve using a 285 mesh sieve.
  • the protein was suspended in about 50 L of water and subjected to the same sieving treatment, and this operation was repeated three times to wash the protein with water.
  • the obtained wet protein was squeezed into a squeezed bag to remove moisture, and then freeze-dried. The same operation was repeated 10 times to obtain about 7.5 kg of rice endosperm protein preparation.
  • Example 2 A test meal for clinical trials was produced using the rice endosperm protein preparation (see Table 1). The formulation was determined so that 1 g of the test food contained 5 g of rice endosperm protein as a pure protein.
  • a clinical trial was conducted to ingest rice endosperm protein in patients diagnosed with metabolic syndrome with the approval of the Ethics Committee.
  • the clinical trial was a 4 week + 4 week crossover format.
  • the subjects were divided into two groups and fed either a test meal containing rice endosperm protein or a control test meal in which rice endosperm protein was replaced with casein. After the completion of the test for the first 4 weeks, there was a 3 day suspension period, after which the test meal was replaced and the test continued for another 4 weeks.
  • Table 1 shows the composition of each of the test meals containing rice endosperm protein and casein.
  • test meal 5 g as a rice endosperm protein pure product
  • test meal was filled in an aluminum wrapping material, and this was dissolved in water or hot water twice a day for drinking. Instructions were given to continue the normal diet during the test period, and the test meal was added to the foods normally consumed.
  • Subjects were those who met the following criteria.
  • Selection criteria 1) Patients diagnosed with metabolic syndrome 2) Those who understand the purpose (including data use) and who have obtained document consent
  • Exclusion criteria 1) Serious in heart, kidney, liver, etc. 2) Severe infections, before and after surgery, severe trauma 3) Food allergies 4) Others who are inadequate for research participation by medical doctor
  • the average serum uric acid level of subjects who participated in this clinical study was 6.38 mg / dL, which is lower than the standard value for hyperuricemia of 7.0 mg / dL. Nonetheless, a tendency to decrease serum uric acid levels was suggested, suggesting that rice endosperm protein has a preventive effect as well as a curative effect on hyperuricemia.
  • Table 4 shows the results of the crossover analysis that included the latter half of the test. As in the first half, a significant decrease in uric acid, a decrease in MCP-1 levels, and a significant increase in HDL-cholesterol were observed due to rice protein intake.
  • Example 3 Under the approval of the Ethics Committee, a clinical trial was conducted to ingest rice endosperm protein in 9 maintenance dialysis patients (3 men and 6 women). Each subject drank the test meal (Example 2) containing rice endosperm protein in water or hot water once a day for 2 weeks. During the study period, instruction was given to continue the normal diet, and the test meal was added in addition to the food that was normally consumed.
  • Serum uric acid levels were measured from blood collected at the start of the test and 2 weeks after the intake of rice endosperm protein. The results are shown in Table 5.
  • the test subjects were excluded from the analysis target and analyzed by 9 subjects.
  • the mean value of serum uric acid at the second week after ingestion was compared with the value at the start, it decreased from 8.00 mg / dL to 7.09 mg / dL, and this difference was significant at the 5% level on both sides. .
  • Example 3 Compared to Example 3, in this example, although the amount of rice endosperm protein intake and the intake period were both small, the decrease in the uric acid level was 0.91 mg / dL on average in this example. It was. This suggests that the effect of lowering the uric acid level of rice endosperm protein appears more prominently in cases where the uric acid level is high. Moreover, since the test subject is a maintenance dialysis patient, uric acid excretion by urine does not occur. Therefore, it was suggested that a mechanism other than the promotion of uric acid excretion into urine is acting on the serum uric acid level lowering effect of rice endosperm protein.
  • Example 4 Under the approval of the Ethics Committee, 8 test subjects with high serum uric acid levels (6.0 to 8.0 mg / dL) were given jelly-like test foods with the composition shown in Table 6 once a day. Ingested weekly. The test meals were taken daily after breakfast, and during the test period, they were instructed to limit excessive exercise, saving food and overeating that greatly deviated from the daily range. On the day before the test day, alcohol is prohibited, meals should be finished by 10:00 pm, and no food or drink will be instructed after that. On the day of the test day, after waking up, the test will be fasted until the end of the test. Yes), I visited the hospital in the morning and confirmed that I had fasted for more than 8 hours from the previous night, and then received an examination. Blood and urine were collected at the visit, and hematological tests, blood biochemical tests including uric acid, and urinalysis were performed.
  • Example 5 Under the approval of the Ethics Committee, 13 test subjects with high serum uric acid levels (7.0-9.0 mg / dL) were given a powdery test food with the composition shown in Table 8 once a day. Ingested weekly. The test meals were taken daily after breakfast, and during the test period, they were instructed to limit excessive exercise, saving food and overeating that greatly deviated from the daily range.
  • the uric acid level at 4 and 8 weeks was significantly lower than before intake, and the analysis of the top 7 urinary uric acid levels was 4
  • the blood uric acid levels at weeks and 8 weeks were significantly lower than those before ingestion.

Landscapes

  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Chemical & Material Sciences (AREA)
  • Veterinary Medicine (AREA)
  • Medicinal Chemistry (AREA)
  • Public Health (AREA)
  • General Health & Medical Sciences (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Chemistry (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • General Chemical & Material Sciences (AREA)
  • Natural Medicines & Medicinal Plants (AREA)
  • Urology & Nephrology (AREA)
  • Vascular Medicine (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Cardiology (AREA)
  • Alternative & Traditional Medicine (AREA)
  • Biotechnology (AREA)
  • Botany (AREA)
  • Medical Informatics (AREA)
  • Microbiology (AREA)
  • Mycology (AREA)
  • Epidemiology (AREA)
  • Pain & Pain Management (AREA)
  • Rheumatology (AREA)
  • Physical Education & Sports Medicine (AREA)
  • Medicines Containing Plant Substances (AREA)
  • Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)
  • Coloring Foods And Improving Nutritive Qualities (AREA)
  • Non-Alcoholic Beverages (AREA)

Abstract

With increases in westernization of diet and alcohol consumption, the number of patients with hyperuricemia is increasing year by year. Although uric acid production-inhibiting drugs, uric acid excretion-promoting agents, etc. are being implemented, concern about side effects in those with renal dysfunction and risks of urolithiasis, etc. have become problematic. A material that has uric acid-reducing effects and can be taken daily was desired. It has been found that rice endosperm protein has human serum uric acid-reducing effects. Because serum uric acid-reducing agents having rice endosperm protein as an active ingredient are derived from rice and anticipated to be very safe and are able to reduce serum uric acid levels by daily ingestion thereof, said serum uric acid-reducing agents are effective for prevention/treatment of hyperuricemia and gout.

Description

米タンパク質を有効成分とする血清尿酸低下剤Serum uric acid lowering agent containing rice protein as active ingredient
 本発明は、精白米から抽出されたタンパク質を有効成分とする血清尿酸低下剤に関する。 The present invention relates to a serum uric acid lowering agent containing a protein extracted from polished rice as an active ingredient.
 尿酸は、ヒトにおいてプリン体の最終代謝産物であり、ATPの分解や食物中の核酸の代謝で産生され、最終的に尿中に排泄される。通常、尿酸の産生と排出は均衡しているが、産生量の増加や排出量の減少などの理由で均衡が崩れ血清尿酸値が7mg/dlを超えると高尿酸血症と定義され、この状態が続くと痛風の発作が起きるリスクが高いとされている。高尿酸血症はかつて日本では稀な病気であったが、食生活の欧米化やアルコール摂取量の増加といった要因によって患者数は年々増加し、現在の患者数は1000万人以上に達すると推定されている。高尿酸血症は痛風の原因となるだけではなく、痛風腎の原因となることや、心血管・脳血管障害のリスクを上げる可能性があることが指摘されている。高尿酸血症の治療は、痛風発作や合併症を伴わない患者においては食事療法・運動療法が中心となっている。しかし、高プリン食を避ける等の食事制限や運動を継続して行うことは容易なことではない。 Uric acid is the final metabolite of purines in humans, and is produced by the degradation of ATP and metabolism of nucleic acids in food, and finally excreted in urine. Usually, the production and excretion of uric acid is balanced, but if the balance is lost due to an increase in production or a decrease in excretion, and the serum uric acid level exceeds 7 mg / dl, it is defined as hyperuricemia. If it continues, it is said that the risk of gout attacks is high. Hyperuricemia was once a rare disease in Japan, but the number of patients has increased year by year due to factors such as westernization of diet and increased alcohol intake, and the current number of patients is estimated to reach more than 10 million. Has been. It has been pointed out that hyperuricemia not only causes gout but also causes gout kidneys and may increase the risk of cardiovascular and cerebrovascular disorders. Treatment of hyperuricemia is mainly dietary and exercise therapy in patients without gout attacks or complications. However, it is not easy to continue dietary restrictions and exercise such as avoiding high-pudding diets.
 また、これまでに、血清尿酸値を低下させる薬剤として、尿酸産生抑制薬のアロプリノールや、尿酸排出促進剤のベンズブロマロンなどが実用化されている。しかし、アロプリノールは腎障害を併発している例では副作用のおそれから投与に慎重を要し、尿酸排出促進薬には尿路結石などのリスクが指摘されている。したがって、血中尿酸値を降下させる作用を持ち、普段の食事に簡便にとりいれることができる食品素材があれば、痛風発作や高尿酸血症関連疾患に対する極めて有用な予防・治療法になり得る。 In addition, so far, allopurinol, a uric acid production inhibitor, and benzbromarone, a uric acid excretion promoter, have been put to practical use as agents that lower serum uric acid levels. However, allopurinol is required to be administered with caution because it may cause side effects in patients with renal impairment, and uric acid excretion-promoting drugs have been pointed out risks such as urinary calculi. Therefore, if there is a food material that has the effect of lowering the blood uric acid level and can be easily taken into a normal meal, it can be a very useful prevention / treatment method for gout attacks and hyperuricemia-related diseases.
 同様のニーズは、尿酸により誘導される単球走化性タンパク質-1による痛風発作、腎疾患、心血管障害および脳血管障害といった疾病についても存在する。 Similar needs exist for diseases such as gout attacks, renal disease, cardiovascular and cerebrovascular disorders caused by monocyte chemotactic protein-1 induced by uric acid.
 ところで、米胚乳に含まれるタンパク質の主要成分は、易消化性のグルテリン、グロブリン、アルブミンと、難消化性のプロラミンである。米胚乳から抽出されるタンパク質組成物を製造する方法としては、精白米や米粉に耐熱性アミラーゼを作用させ、残存するタンパク質を沈殿として回収する方法(酵素処理米タンパク質)と、精白米や米粉にアルカリ溶液を加えて抽出されるタンパク質を酸沈殿させ、これを回収する方法(アルカリ抽出米タンパク質)が公知である。栄養素としてのタンパク質利用効率は前者に比べて後者で有意に高く、タンパク質利用効率がカゼインに匹敵することが報告されている(非特許文献1)。 By the way, the main components of proteins contained in rice endosperm are easily digestible glutelin, globulin, albumin and indigestible prolamin. As a method of producing a protein composition extracted from rice endosperm, heat-resistant amylase is allowed to act on polished rice or rice flour, and the remaining protein is recovered as a precipitate (enzyme-treated rice protein), A method (alkaline-extracted rice protein) in which protein extracted by adding an alkaline solution is acid-precipitated and recovered is known. It has been reported that the protein utilization efficiency as a nutrient is significantly higher in the latter than in the former, and the protein utilization efficiency is comparable to casein (Non-patent Document 1).
 本発明の目的は、血中尿酸値降下作用を持ち、日常的に摂取することができる血清尿酸低下剤、食品および医薬品を提供することにある。 An object of the present invention is to provide a serum uric acid lowering agent, a food and a medicine which have a blood uric acid level lowering action and can be taken on a daily basis.
 また、本発明の目的は、日常的に摂取することができる、単球走化性タンパク質-1を原因とする痛風発作、腎疾患、心血管障害および脳血管障害を抑制する疾病リスク低減剤、単球走化性タンパク質-1発現低下剤、並びに高密度リポタンパク質コレステロール亢進剤を提供することにもある。 Another object of the present invention is to reduce the risk of diseases that can be taken on a daily basis and suppress gout attacks, renal diseases, cardiovascular disorders and cerebrovascular disorders caused by monocyte chemotactic protein-1, Another object is to provide a monocyte chemotactic protein-1 expression-lowering agent and a high-density lipoprotein cholesterol enhancer.
 本発明者らは上記の課題を解決すべく種々の検討を重ねた結果、アルカリ抽出米タンパク質にヒトの血清尿酸値を降下させる効果があることを見出し、本発明を完成させるに至った。また、米タンパク質の摂取が血中の高密度リポタンパク質コレステロール(HDL-コレステロール)を上昇させ、炎症性ケモカインの1種である単球走化性タンパク質-1(Monocyte Chemoattractive Protein-1;MCP-1)の血中濃度を減少させることを見出した。 As a result of various studies to solve the above problems, the present inventors have found that alkali-extracted rice protein has an effect of lowering human serum uric acid level, and have completed the present invention. In addition, intake of rice protein increases high-density lipoprotein cholesterol (HDL-cholesterol) in the blood, and monocyte chemotactic protein-1 (MCP-1), which is one of inflammatory chemokines. ) Was found to decrease the blood concentration.
 すなわち本発明は、米胚乳タンパク質を有効成分とする、血清尿酸低下剤であり、また尿酸により誘導される単球走化性タンパク質(MCP)-1の低下または、高密度リポタンパク質コレステロール(HDL-コレステロール)の上昇により誘導されるMCP-1の低下を介して、高尿酸血症に伴う痛風発作、痛風腎等の腎疾患、心血管・脳血管障害リスクの低下剤である。 That is, the present invention is a serum uric acid lowering agent containing rice endosperm protein as an active ingredient, and also decreases monocyte chemotactic protein (MCP) -1 induced by uric acid or high density lipoprotein cholesterol (HDL- It is an agent for reducing the risk of gout attacks associated with hyperuricemia, renal diseases such as gout kidney, and cardiovascular / cerebrovascular disorder through the reduction of MCP-1 induced by an increase in cholesterol.
 さらに、本発明は上記の血清尿酸値降下作用を持つ血清尿酸低下剤並びにMCP-1の低下を介した、痛風発作、痛風腎等の腎疾患、心血管・脳血管障害リスクの低下剤を含む、医薬品または食品である。 Furthermore, the present invention includes a serum uric acid lowering agent having a serum uric acid level lowering action as described above, and an agent for reducing the risk of renal diseases such as gout attacks, gouty kidneys, and cardiovascular / cerebrovascular disorders through the reduction of MCP-1. , Pharmaceutical or food.
 好ましくは、米胚乳タンパク質は、米胚乳よりアルカリにて抽出後に酸で沈殿することで回収されるタンパク質を乾燥させたものである。 Preferably, the rice endosperm protein is obtained by drying a protein recovered by extraction from rice endosperm with an alkali and then precipitation with an acid.
 肥満、糖尿病、心血管障害、糖尿病性腎症や糖尿病性網膜炎等の各種炎症の誘導にはMCP-1が関与することが知られている(Paneeら、Cytokine 第60巻、1-12頁(2012))。また血中のMCP-1レベルは尿酸値が正常な人と比べて高尿酸血症患者で高く、尿酸がMCP-1の産生を誘導していることも知られている(Kanellisら、Hypertension 第41巻、1287-1293頁(2003)、Graingerら、Rheumatology(Oxford) 第52巻、1018-1021頁(2013))。またHDL-コレステロールは尿酸により誘導されるMCP-1の産生を抑制することが報告されている(Acanuら、Arthritis Res Ther 第12巻、R23(2010))。
 米タンパク質の摂取は単に血清尿酸値を低下させるのみならず、尿酸により誘導されるMCP-1の産生を直接的にまたはHDL-コレステロールの上昇を介して抑制し、痛風や痛風腎、心血管障害等のリスク低下に貢献する。
 本発明の血清尿酸低下剤は米の食経験の豊富さから高い安全性が期待され、日常的に摂取することにより血清尿酸値を低下させることができるために、高尿酸血症や痛風の予防・治療に極めて有効である。
It is known that MCP-1 is involved in the induction of various inflammations such as obesity, diabetes, cardiovascular disorders, diabetic nephropathy and diabetic retinitis (Panee et al., Cytokine Vol. 60, 1-12). (2012)). It is also known that blood MCP-1 levels are higher in patients with hyperuricemia than those with normal uric acid levels, and uric acid induces production of MCP-1 (Kanellis et al., Hypertension No. 1). 41, 1287-1293 (2003), Grainger et al., Rheumatology (Oxford) 52, 1018-1102 (2013)). HDL-cholesterol has also been reported to suppress the production of MCP-1 induced by uric acid (Acan et al., Arthritis Res Ther, Vol. 12, R23 (2010)).
Ingestion of rice protein not only lowers serum uric acid level but also suppresses uric acid-induced MCP-1 production directly or through an increase in HDL-cholesterol, leading to gout, gouty kidney and cardiovascular disorders This contributes to lower risk.
The serum uric acid lowering agent of the present invention is expected to be highly safe due to abundant dietary experience in rice, and since it can lower serum uric acid level by daily intake, it prevents hyperuricemia and gout・ It is extremely effective for treatment.
米タンパク質の摂取に伴う血中尿酸値の変化(血中尿酸値上位6名の層別解析)を示す図であり、*印は摂取前の値と比較して危険率5%で有意であることを示す。It is a figure which shows the change of the blood uric acid level accompanying the intake of rice protein (stratified analysis of the blood uric acid value top 6 persons), * mark is significant at 5% of the risk rate compared with the value before ingestion. It shows that. 米タンパク質の摂取に伴う血中尿酸値の変化(尿中尿酸/クレアチニン比上位7名の層別解析)を示す図であり、*及び**は摂取前の値と比較してそれぞれ危険率5%及び1%で有意であることを示す。It is a figure which shows the change of the blood uric acid level accompanying the intake of rice protein (stratification analysis of the top 7 urine uric acid / creatinine ratios), and * and ** are respectively a risk factor 5 compared with the value before ingestion. % And 1% are significant.
 以下、米胚乳よりアルカリ抽出された米タンパク質を含む組成物を略して、「米胚乳タンパク質」と称する。タンパク質抽出に用いる米の品種はどのようなものであってもよい。米胚乳タンパク質は、精白米または米粉等の米胚乳部分を原料としてアルカリにより抽出することができる。精白米を用いる場合には、それをアルカリ溶液に浸漬することでタンパク質の一部が抽出される。浸漬した米を湿式磨砕等により粉砕すると、米の組織中に含まれるタンパク質も抽出されるため、回収率を高めることができる。米粉を用いる場合には、アルカリ溶液中に1時間~1昼夜浸漬することでタンパク質が高効率で抽出される。 Hereinafter, a composition containing rice protein alkali-extracted from rice endosperm is abbreviated as “rice endosperm protein”. Any variety of rice may be used for protein extraction. Rice endosperm protein can be extracted with alkali using rice endosperm such as polished rice or rice flour as a raw material. When using polished rice, a part of protein is extracted by immersing it in an alkaline solution. When the soaked rice is pulverized by wet grinding or the like, the protein contained in the rice tissue is also extracted, so that the recovery rate can be increased. When using rice flour, protein is extracted with high efficiency by immersing it in an alkaline solution for 1 hour to 1 day.
 抽出に用いるアルカリの濃度は0.1%~2%であることが好ましく、より好ましくは0.15~0.25%である。抽出されるタンパク質溶液にはアルカリ可溶性の繊維質が多量に含まれていることから、これを目開きの細かい篩や濾布等を用いて除去することが好ましい。タンパク質溶液に塩酸等の酸を加えてpH5~6に調整することにより、凝集するタンパク質を沈殿として回収することができる。タンパク質溶液をあらかじめ50℃程度に加熱した後に中和する場合にはpH7でもタンパク質の凝集体が得られ、またこれを80℃以上に加熱すると凝集体がさらに大きく成長することから、遠心分離を行わずとも篩やフィルタープレス等の濾過によりタンパク質の凝集体を効率良く回収することができる。回収されるタンパク質凝集体を適宜水洗し、これを気流乾燥、流動層乾燥、凍結乾燥等を用いて乾燥することで、米胚乳タンパク質を得ることができる。中和時に加熱を行うことにより、膨潤したタンパク質凝集物が得られ、この凝集物を乾燥することにより、加熱しない場合に比べて保水性や舌触りに優れた米胚乳タンパク質が得られ、より広い用途に利用することができる。 The concentration of alkali used for extraction is preferably 0.1% to 2%, more preferably 0.15 to 0.25%. Since the protein solution to be extracted contains a large amount of alkali-soluble fiber, it is preferably removed using a sieve or a filter cloth having a fine mesh. By adjusting the pH to 5 to 6 by adding an acid such as hydrochloric acid to the protein solution, the aggregated protein can be recovered as a precipitate. If the protein solution is pre-heated to about 50 ° C and then neutralized, protein aggregates can be obtained even at pH 7, and if this is heated to 80 ° C or higher, the aggregates grow even larger. At least protein aggregates can be efficiently recovered by filtration using a sieve or filter press. A rice endosperm protein can be obtained by appropriately washing the recovered protein aggregate and drying it using airflow drying, fluidized bed drying, freeze drying, or the like. By heating at the time of neutralization, swollen protein aggregates are obtained. By drying the aggregates, rice endosperm proteins having superior water retention and touch compared to the case without heating can be obtained, and can be used for a wider range of applications. Can be used.
 本発明における米胚乳タンパク質は、それのみで血清尿酸値降下剤、疾病リスク低減剤、単球走化性タンパク質-1発現低下剤、又は高密度リポタンパク質コレステロール亢進剤として用いてもよいが、米胚乳タンパク質を有効成分として賦形剤や食品素材とともに加工して用いてもよい。米胚乳タンパク質組成物を配合した加工食品としては、飲料、焼き菓子、ゼリー状食品、スープ類、お粥等への利用が可能である。特に、賦形剤とともにチュアブル錠に用いる、焼き菓子に用いる、あるいはデンプン質のとろみをつけた飲料・スープに用いる場合が、米胚乳タンパク質を食感良く加工できるため好ましい。 The rice endosperm protein in the present invention may be used alone as a serum uric acid lowering agent, disease risk reducing agent, monocyte chemotactic protein-1 expression reducing agent, or high-density lipoprotein cholesterol enhancer. Endosperm protein may be used as an active ingredient together with excipients and food materials. The processed food containing the rice endosperm protein composition can be used for beverages, baked goods, jelly-like foods, soups, porridges, and the like. In particular, it is preferable to use it for chewable tablets together with excipients, for baked confectionery, or for beverages / soups with starchy thickness, because rice endosperm protein can be processed with good texture.
 本発明において、その用量は、患者の年齢・体重・症状・米胚乳タンパク質の加工形態などの要因を考慮して適宜決定されることが望ましい。好ましくは、1日あたり純タンパク質として0.5~20g、さらに好ましくは3~10gの摂取が良い。1日あたり純タンパク質として3~10gを摂取し続けた場合、2週間~6ヵ月程度で血清尿酸値降下効果が表れることが期待される。 In the present invention, it is desirable that the dose is appropriately determined in consideration of factors such as the patient's age, weight, symptoms, and the processed form of rice endosperm protein. Preferably, a daily intake of 0.5 to 20 g, more preferably 3 to 10 g of pure protein is good. When 3 to 10 g of pure protein is continuously ingested per day, it is expected that a serum uric acid level lowering effect appears in about 2 weeks to 6 months.
 本発明の血清尿酸値降下剤、疾病リスク低減剤、単球走化性タンパク質-1発現低下剤、又は高密度リポタンパク質コレステロール亢進剤を含有する食品、医薬品(特に高尿酸血症、痛風、痛風腎、心血管、脳血管障害の1以上の治療又は予防用医薬品)を調製する際、他の尿酸産生抑制効果を持つ成分や尿酸排出促進効果を持つ成分を併せて用いても、用いなくてもよい。併せて用いる成分や混合比に特に制限はないが、それぞれの成分の有効量に対して十分な量が望ましい。なお、医薬品の形態は特に限定されないが、経口投与可能な形態であることが好ましい。 Food and pharmaceuticals (especially hyperuricemia, gout, gout) containing the serum uric acid lowering agent, disease risk reducing agent, monocyte chemotactic protein-1 expression reducing agent, or high-density lipoprotein cholesterol enhancing agent of the present invention When preparing one or more medicinal products for the treatment or prevention of kidney, cardiovascular, or cerebrovascular disorder), other ingredients that have uric acid production inhibitory effects or uric acid excretion promoting effects may be used together Also good. Although there is no restriction | limiting in particular in the component and mixing ratio used together, A sufficient quantity is desirable with respect to the effective amount of each component. The form of the drug is not particularly limited, but is preferably a form that can be administered orally.
 <実施例1> 臨床試験用米胚乳タンパク質の調製と試験食製造
 25kgのコシヒカリ米粉(新潟製粉株式会社より購入)を100Lの0.2%水酸化ナトリウム溶液に懸濁し、一夜放置した。コクサン社製遠心分離機「H-130I」に上記懸濁液を約5L/分の流速で給液した。回転数は1,400rpmとした。流出する遠心上清を集め、これを再度同一条件にて遠心分離を行うことにより澱粉粒が除去されたタンパク質抽出液を得た。この抽出液を285メッシュ(目開き53μm)の篩を通過させることにより繊維質を除去した。この液を50℃に加熱し、6N塩酸を添加してpHを7.0に調整した。この液を80℃で30分保温することによりタンパク質の凝集体を大きく成長させ、これを冷却した後に285メッシュの篩を用いて篩上としてタンパク質を回収した。タンパク質を約50Lの水に懸濁して同様の篩処理を行い、この操作を3回繰り返してタンパク質の水洗を行った。得られた湿タンパク質は絞り袋に入れて圧搾することにより水分を除去し、その後凍結乾燥した。同様の操作を10回反復し、約7.5kgの米胚乳タンパク質標品を得た。
Example 1 Preparation of Rice Endosperm Protein for Clinical Test and Test Food Production 25 kg of Koshihikari rice flour (purchased from Niigata Flour Milling Co., Ltd.) was suspended in 100 L of 0.2% sodium hydroxide solution and left overnight. The above suspension was supplied to a centrifuge “H-130I” manufactured by Kokusan Co., Ltd. at a flow rate of about 5 L / min. The rotation speed was 1,400 rpm. The centrifugal supernatant flowing out was collected and centrifuged again under the same conditions to obtain a protein extract from which the starch granules were removed. The extract was passed through a 285 mesh (aperture 53 μm) sieve to remove the fibrous material. This solution was heated to 50 ° C., and 6N hydrochloric acid was added to adjust the pH to 7.0. The solution was incubated at 80 ° C. for 30 minutes to grow a large protein aggregate. After cooling this, the protein was recovered on a sieve using a 285 mesh sieve. The protein was suspended in about 50 L of water and subjected to the same sieving treatment, and this operation was repeated three times to wash the protein with water. The obtained wet protein was squeezed into a squeezed bag to remove moisture, and then freeze-dried. The same operation was repeated 10 times to obtain about 7.5 kg of rice endosperm protein preparation.
 <実施例2>
 米胚乳タンパク質標品を用いて臨床試験用試験食を製造した(表1参照)。本試験食品1包には純タンパク質として5gの米胚乳タンパク質が含まれるよう、配合を決定した。
<Example 2>
A test meal for clinical trials was produced using the rice endosperm protein preparation (see Table 1). The formulation was determined so that 1 g of the test food contained 5 g of rice endosperm protein as a pure protein.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 倫理委員会の承認のもとでメタボリックシンドロームと診断された患者を対象に、米胚乳タンパク質を摂取させる臨床試験を実施した。臨床試験は4週間+4週間のクロスオーバー形式とした。被験者を2群に分け、米胚乳タンパク質配合の試験食または米胚乳タンパク質をカゼインに置き換えた対照試験食を摂取させた。前半4週間の試験終了後、3日間の中止期間をおき、その後試験食を入れ替えてさらに4週間試験を続行した。米胚乳タンパク質配合およびカゼイン配合の試験食それぞれの組成を表1に示す。試験食は11gずつ(米胚乳タンパク質純品としては5g)アルミ包材に充填し、これを1日2回水または湯に溶いて飲用させた。試験期間中は通常の食生活を継続するように指導し、試験食は通常摂取している食品に追加する形とした。 A clinical trial was conducted to ingest rice endosperm protein in patients diagnosed with metabolic syndrome with the approval of the Ethics Committee. The clinical trial was a 4 week + 4 week crossover format. The subjects were divided into two groups and fed either a test meal containing rice endosperm protein or a control test meal in which rice endosperm protein was replaced with casein. After the completion of the test for the first 4 weeks, there was a 3 day suspension period, after which the test meal was replaced and the test continued for another 4 weeks. Table 1 shows the composition of each of the test meals containing rice endosperm protein and casein. Each 11 g of the test meal (5 g as a rice endosperm protein pure product) was filled in an aluminum wrapping material, and this was dissolved in water or hot water twice a day for drinking. Instructions were given to continue the normal diet during the test period, and the test meal was added to the foods normally consumed.
 被験者は以下の基準に合致する者とした。
(I)選択基準
 1)メタボリックシンドロームと診断された患者
 2)趣旨を理解し(データ使用を含む)、文書同意が得られた者
(II)除外基準
 1)心、腎、肝臓などに重篤な疾患のある者
 2)重症感染症、手術前後、重篤な外傷のある者
 3)食物アレルギーを有する者
 4)その他、担当医が医学的根拠から研究参画に不適切とした者
Subjects were those who met the following criteria.
(I) Selection criteria 1) Patients diagnosed with metabolic syndrome 2) Those who understand the purpose (including data use) and who have obtained document consent (II) Exclusion criteria 1) Serious in heart, kidney, liver, etc. 2) Severe infections, before and after surgery, severe trauma 3) Food allergies 4) Others who are inadequate for research participation by medical doctor
 メタボリックシンドロームと診断された男性24名が被験者となり、12名ずつ2群に分け、試験を実施した。被験者のうち除外された6名を除く18名(各群9名ずつ)が試験を完遂し、解析の対象になった。試験開始時(ベースライン)における測定値を表2に示した。 Twenty-four men diagnosed with metabolic syndrome became subjects, and the test was conducted in 12 groups divided into 2 groups. 18 subjects (9 in each group), excluding 6 excluded from the subjects, completed the study and were analyzed. The measured values at the start of the test (baseline) are shown in Table 2.
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
 試験開始時、試験食摂取開始後4週目、8週目の合計3回、採血を行い血清尿酸値、脂質代謝マーカー、腎機能マーカーの値を調べた。表2に結果を記載した通り、クロスオーバー試験の前半期間(4週間)において、米胚乳タンパク質摂取群では血清尿酸値の低下傾向(-0.40mg/dL)が認められた。一方で、カゼイン摂取群では血清尿酸値がやや上昇(+0.17mg/dL)していた。初期値から4週間目の血清尿酸値の変化量を両群で比較すると、両側5%の水準で有意な差があった。本臨床試験に参加した被験者の血清尿酸値の平均は6.38mg/dLであり、高尿酸血症の基準値である7.0mg/dLを下回っている。それにもかかわらず血清尿酸値の低下傾向がみられたことから、米胚乳タンパク質は高尿酸血症に対して治癒的な効果だけでなく予防的な効果をも持つことが示唆された。 At the start of the test, blood was collected for a total of 3 times in the 4th and 8th weeks after the start of the test meal intake, and the values of serum uric acid level, lipid metabolism marker, and renal function marker were examined. As shown in Table 2, in the first half period (4 weeks) of the crossover test, a decrease in serum uric acid level (−0.40 mg / dL) was observed in the rice endosperm protein intake group. On the other hand, the serum uric acid level slightly increased (+0.17 mg / dL) in the casein intake group. When the amount of change in serum uric acid level after 4 weeks from the initial value was compared between the two groups, there was a significant difference at the 5% level on both sides. The average serum uric acid level of subjects who participated in this clinical study was 6.38 mg / dL, which is lower than the standard value for hyperuricemia of 7.0 mg / dL. Nonetheless, a tendency to decrease serum uric acid levels was suggested, suggesting that rice endosperm protein has a preventive effect as well as a curative effect on hyperuricemia.
 同様に、MCP-1について解析した結果、米タンパク質摂取群で若干の減少を示したのに対してカゼイン摂取群では有意な上昇が認められ、変化量の群間比較では両側5%水準で有意であった。逆にHDL-コレステロールは米タンパク質群で上昇傾向を示したのに対してカゼイン群で若干の低下を示し、変化量の群間比較では5%水準で有意となった。総コレステロールやLDL-コレステロール、中性脂肪の値には両群ともに顕著な変動は認められなかった。 Similarly, analysis of MCP-1 showed a slight decrease in the rice protein intake group, while a significant increase was observed in the casein intake group, and the change between groups was significant at the 5% level on both sides. Met. On the other hand, HDL-cholesterol showed an upward trend in the rice protein group, but showed a slight decrease in the casein group, and became significant at the 5% level in comparison between the groups. No significant changes were observed in the values of total cholesterol, LDL-cholesterol, and neutral fat in both groups.
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
 試験後半のデータを含めて解析したクロスオーバー解析の結果を表4に示した。前半と同様に米タンパク質摂取による尿酸の有意な低下、MCP-1レベルの低下、並びにHDL-コレステロールの有意な上昇が認められた。 Table 4 shows the results of the crossover analysis that included the latter half of the test. As in the first half, a significant decrease in uric acid, a decrease in MCP-1 levels, and a significant increase in HDL-cholesterol were observed due to rice protein intake.
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000004
 <実施例3>
 倫理委員会の承認のもとで、維持透析患者9名(男性3名・女性6名)を対象に米胚乳タンパク質を摂取させる臨床試験を実施した。各被験者は、米胚乳タンパク質を含む試験食(実施例2)を2週間に亘り、1日1回水または湯に溶いて飲用した。試験期間中は通常の食生活を継続するように指導し、試験食は通常摂取している食品に追加する形で摂取させた。
<Example 3>
Under the approval of the Ethics Committee, a clinical trial was conducted to ingest rice endosperm protein in 9 maintenance dialysis patients (3 men and 6 women). Each subject drank the test meal (Example 2) containing rice endosperm protein in water or hot water once a day for 2 weeks. During the study period, instruction was given to continue the normal diet, and the test meal was added in addition to the food that was normally consumed.
 被験者として、全身状態が安定した低栄養傾向のある成人の維持血液透析患者をリクルートした。選択基準は、血清アルブミン値が3.8mg/dl以下を示して低栄養傾向が認められ、かつ本臨床試験の趣旨を理解し文書による同意が得られた者(性別不問)であること、にした。心臓、肝臓等に重篤な疾患のある者、重症感染症、手術前後、重篤な外傷のある者、食物アレルギーを有する者、その他、担当医が研究参画に不適切と判断した者は除外した。 As subjects, we recruited adult maintenance hemodialysis patients with a general condition and a tendency toward malnutrition. The criteria for selection are those with a serum albumin level of 3.8 mg / dl or less, a tendency toward malnutrition, and an understanding of the purpose of this clinical trial and written consent (gender-independent). did. Excludes persons with serious diseases in the heart, liver, etc., severe infections, before and after surgery, persons with severe trauma, persons with food allergies, and other persons judged inappropriate by the attending physician. did.
 試験開始時および米胚乳タンパク質摂取2週間目に採取した血液から、血清尿酸値を測定した。その結果を表5に示す。なお、2番の被験者は試験期間中の感冒により試験食を5日間摂取しなかったため、解析対象からは除外し、9名での解析を行った。摂取2週間目の血清尿酸値の平均値を開始時の数値と比較すると、8.00mg/dLから7.09mg/dLに低下しており、この差は両側5%の水準で有意であった。 Serum uric acid levels were measured from blood collected at the start of the test and 2 weeks after the intake of rice endosperm protein. The results are shown in Table 5. In addition, since the 2nd test subject did not ingest the test meal for 5 days due to the common cold during the test period, the test subjects were excluded from the analysis target and analyzed by 9 subjects. When the mean value of serum uric acid at the second week after ingestion was compared with the value at the start, it decreased from 8.00 mg / dL to 7.09 mg / dL, and this difference was significant at the 5% level on both sides. .
 実施例3と比較して、本例では米胚乳タンパク質の摂取量、摂取期間ともに少ないにもかかわらず、本例の方が尿酸値の低下量が平均0.91mg/dLと顕著な結果となった。これは、米胚乳タンパク質の尿酸値低下効果は、尿酸値が高い事例でより顕著にあらわれることを示唆するものである。また、本試験の被験者は維持透析患者であるため、尿による尿酸の排出が起こらない。したがって、米胚乳タンパク質の血清尿酸値低下効果には、尿酸の尿中への排出促進以外のメカニズムが働いていることが示唆された。 Compared to Example 3, in this example, although the amount of rice endosperm protein intake and the intake period were both small, the decrease in the uric acid level was 0.91 mg / dL on average in this example. It was. This suggests that the effect of lowering the uric acid level of rice endosperm protein appears more prominently in cases where the uric acid level is high. Moreover, since the test subject is a maintenance dialysis patient, uric acid excretion by urine does not occur. Therefore, it was suggested that a mechanism other than the promotion of uric acid excretion into urine is acting on the serum uric acid level lowering effect of rice endosperm protein.
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000005
<実施例4>
 倫理委員会の承認のもとに、血清尿酸値が高め(6.0~8.0mg/dL)の被験者男性8名に対して表6に示す組成のゼリー状試験食品を1日1回4週間摂取させた。試験食は毎日朝食後に摂取するものとし、試験期間中は日常範囲を大きく逸脱する過度な運動、節食や過食を制限するよう指導した。また検査日の前日は、禁酒し、食事は夜10時までに終えて、以降は飲食しないように指導するとともに、 検査日の当日は、起床後は検査終了まで絶食とし(水を飲むことは可)、午前中に来院させて、前夜から8時間以上絶食したことを確認したうえで、検査を受けさせた。来院時に採血及び採尿を行い、血液学的検査、尿酸を含む血液生化学的検査、尿検査を行った。
<Example 4>
Under the approval of the Ethics Committee, 8 test subjects with high serum uric acid levels (6.0 to 8.0 mg / dL) were given jelly-like test foods with the composition shown in Table 6 once a day. Ingested weekly. The test meals were taken daily after breakfast, and during the test period, they were instructed to limit excessive exercise, saving food and overeating that greatly deviated from the daily range. On the day before the test day, alcohol is prohibited, meals should be finished by 10:00 pm, and no food or drink will be instructed after that. On the day of the test day, after waking up, the test will be fasted until the end of the test. Yes), I visited the hospital in the morning and confirmed that I had fasted for more than 8 hours from the previous night, and then received an examination. Blood and urine were collected at the visit, and hematological tests, blood biochemical tests including uric acid, and urinalysis were performed.
 表7に結果を示した通り、米胚乳タンパク質を毎日5g摂取することにより、尿酸値は平均で0.33mg/dL低下した。また尿酸値の低下は摂取前の尿酸値が高めの人ほど顕著であった。 As shown in Table 7, when 5 g of rice endosperm protein was ingested daily, the uric acid value decreased by 0.33 mg / dL on average. The decrease in uric acid level was more pronounced in people with higher uric acid levels prior to ingestion.
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000007
Figure JPOXMLDOC01-appb-T000007
<実施例5>
 倫理委員会の承認のもとに、血清尿酸値が高め(7.0~9.0mg/dL)の被験者男性13名に対して表8に示す組成の粉末状試験食品を1日1回8週間摂取させた。試験食は毎日朝食後に摂取するものとし、試験期間中は日常範囲を大きく逸脱する過度な運動、節食や過食を制限するよう指導した。また検査日の前日は、禁酒し、食事は夜10時までに終えて、以降は飲食しないように指導するとともに、検査日の当日は、起床後は検査終了まで絶食とし(水をのむことは可)、午前中に来院させて、前夜から8時間以上絶食したことを確認したうえで、検査を受けさせた。来院時に採血及び採尿を行い、血液学的検査、尿酸を含む血液生化学的検査、尿検査を行った。
<Example 5>
Under the approval of the Ethics Committee, 13 test subjects with high serum uric acid levels (7.0-9.0 mg / dL) were given a powdery test food with the composition shown in Table 8 once a day. Ingested weekly. The test meals were taken daily after breakfast, and during the test period, they were instructed to limit excessive exercise, saving food and overeating that greatly deviated from the daily range. Also, the day before the test day, alcohol is prohibited, meals are finished by 10:00 pm, and after that, instructions are given not to eat or drink, and on the day of the test day, after waking up, fast until the end of the test (please water) I was allowed to come to the hospital in the morning, and after having confirmed that I had fasted for more than 8 hours from the previous night, I was tested. Blood and urine were collected at the visit, and hematological tests, blood biochemical tests including uric acid, and urinalysis were performed.
Figure JPOXMLDOC01-appb-T000008
Figure JPOXMLDOC01-appb-T000008
 表9に結果を示した通り、米胚乳タンパク質を毎日5g以上摂取することにより、尿酸値は4週目において平均で0.20mg/dL、8週目においては平均値で0.22mg/dL低下した。尿酸値の低下は摂取前の尿酸値が高めの人ほど顕著であり、また尿中尿酸値(クレアチニン補正値)が高い人ほど顕著であったため、層別解析を行った。その結果を図1及び図2に示した。血中尿酸値の上位6名での解析では摂取前と比較して4週目及び8週目の尿酸値が有意に低下しており、また尿中尿酸値の上位7名での解析でも4週目及び8週目の血中尿酸値が摂取前の値と比較して有意に低下していた。 As shown in Table 9, when 5 g or more of rice endosperm protein was ingested daily, the uric acid level decreased by an average of 0.20 mg / dL at the 4th week and by an average of 0.22 mg / dL at the 8th week did. A decrease in uric acid level was more noticeable in people with higher uric acid levels before ingestion, and in people with higher urinary uric acid levels (creatinine correction values), a stratified analysis was performed. The results are shown in FIG. 1 and FIG. In the analysis of the top 6 blood uric acid levels, the uric acid level at 4 and 8 weeks was significantly lower than before intake, and the analysis of the top 7 urinary uric acid levels was 4 The blood uric acid levels at weeks and 8 weeks were significantly lower than those before ingestion.
Figure JPOXMLDOC01-appb-T000009
Figure JPOXMLDOC01-appb-T000009
 これらの解析結果より、米胚乳タンパク質は、毎日5g以上摂取することにより、血中尿酸値が高い人またはクレアチニン補正した尿中尿酸値が高い人の血中尿酸値を有意に低下させることがわかる。 These analysis results show that rice endosperm protein significantly lowers blood uric acid levels in people with high blood uric acid levels or those with high urinary uric acid levels corrected for creatinine by ingesting 5 g or more daily. .

Claims (7)

  1.  米胚乳タンパク質を有効成分とする血清尿酸低下剤。 Serum uric acid lowering agent containing rice endosperm protein as an active ingredient.
  2.  前記米胚乳タンパク質は、米胚乳よりアルカリで抽出後に酸で沈殿させたタンパク質を乾燥させたものである請求項1に記載の血清尿酸低下剤。 The serum uric acid lowering agent according to claim 1, wherein the rice endosperm protein is obtained by drying a protein extracted from an alkali from rice endosperm and then precipitated with an acid.
  3.  請求項1又は2に記載の血清尿酸低下剤を含む医薬品。 A pharmaceutical comprising the serum uric acid lowering agent according to claim 1 or 2.
  4.  米胚乳タンパク質を有効成分とし、尿酸により誘導される単球走化性タンパク質-1の発現を低下させ、痛風発作、腎疾患、心血管障害および脳血管障害を抑制する疾病リスク低減剤。 A disease risk reducing agent that uses rice endosperm protein as an active ingredient, reduces the expression of monocyte chemotactic protein-1 induced by uric acid, and suppresses gout attacks, renal diseases, cardiovascular disorders, and cerebrovascular disorders.
  5.  尿酸により誘導される単球走化性タンパク質-1の発現低下が高密度リポタンパク質コレステロールの上昇に伴う作用である請求項4の疾病リスク低減剤。 5. The disease risk reducing agent according to claim 4, wherein the decrease in monocyte chemotactic protein-1 expression induced by uric acid is an action accompanying an increase in high density lipoprotein cholesterol.
  6.  米胚乳タンパク質を有効成分とする単球走化性タンパク質-1発現低下剤。 Monocyte chemotactic protein-1 expression lowering agent containing rice endosperm protein as an active ingredient.
  7.  米胚乳タンパク質を有効成分とする高密度リポタンパク質コレステロール亢進剤。 A high-density lipoprotein cholesterol enhancer containing rice endosperm protein as an active ingredient.
PCT/JP2014/082385 2013-12-24 2014-12-08 Serum uric acid-reducing agent having rice protein as active ingredient WO2015098474A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015554716A JP6088071B2 (en) 2013-12-24 2014-12-08 Serum uric acid lowering agent containing rice protein as active ingredient

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013-265887 2013-12-24
JP2013265887A JP2016172693A (en) 2013-12-24 2013-12-24 Serum urate-lowering agent containing rice protein as active ingredient

Publications (1)

Publication Number Publication Date
WO2015098474A1 true WO2015098474A1 (en) 2015-07-02

Family

ID=53478339

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/082385 WO2015098474A1 (en) 2013-12-24 2014-12-08 Serum uric acid-reducing agent having rice protein as active ingredient

Country Status (2)

Country Link
JP (2) JP2016172693A (en)
WO (1) WO2015098474A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017186289A (en) * 2016-04-08 2017-10-12 亀田製菓株式会社 Serum uric acid-lowering agent and production method thereof, and method for screening candidate substance that enhances serum uric acid-lowering effect of rice endosperm protein
JP2017203002A (en) * 2016-05-11 2017-11-16 亀田製菓株式会社 Glp-1 secretion promoting composition and method for producing the same

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005046724A1 (en) * 2003-11-14 2005-05-26 Human Cell Systems, Inc. Remedy/preventive for vascular disorders and hypertension and method of screening the same
JP2006273840A (en) * 2005-03-02 2006-10-12 Kameda Seika Co Ltd Rice protein composition and its use
JP2011184313A (en) * 2010-03-04 2011-09-22 Kyushu Univ Use of phytoglobulin for treatment of arteriosclerosis

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005046724A1 (en) * 2003-11-14 2005-05-26 Human Cell Systems, Inc. Remedy/preventive for vascular disorders and hypertension and method of screening the same
JP2006273840A (en) * 2005-03-02 2006-10-12 Kameda Seika Co Ltd Rice protein composition and its use
JP2011184313A (en) * 2010-03-04 2011-09-22 Kyushu Univ Use of phytoglobulin for treatment of arteriosclerosis

Non-Patent Citations (5)

* Cited by examiner, † Cited by third party
Title
IWAO ONO: "Konyosankessho to Jinshogai ni Kansuru Update", KONYOSANKETSUSHO TO TSUFU, vol. 19, no. 2, 2011, pages 115 - 20 *
MASAHIKO KATO ET AL.: "Tsufu Q&A Kekkan Naihi ni Hatsugen shiteiru URAT1 niwa Doiu Igi ga arunodeshoka", KONYOSANKETSUSHO TO TSUFU, vol. 17, no. 2, 2009, pages 178, 9 *
REIKO WATANABE ET AL., ANNUAL REPORT/ THE IIJIMA MEMORIAL FOUNDATION FOR PROMOTION OF FOOD SCIENCE AND TECHNOLOGY, 2012, pages 330 - 5 *
YANG, L ET AL.: "Hypocholesterolemic effect of rice protein is due to regulating hepatic cholesterol metabolism in adult rats", G ENE, vol. 512, no. 2, pages 470 - 6 *
YANG, L ET AL.: "Rice protein improves oxidative stress by regulating glutathione metabolism and attenuating oxidative damage to lipids and proteins in rats", LIFE SCI, vol. 91, no. 11-12, pages 389 - 94 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017186289A (en) * 2016-04-08 2017-10-12 亀田製菓株式会社 Serum uric acid-lowering agent and production method thereof, and method for screening candidate substance that enhances serum uric acid-lowering effect of rice endosperm protein
JP2017203002A (en) * 2016-05-11 2017-11-16 亀田製菓株式会社 Glp-1 secretion promoting composition and method for producing the same

Also Published As

Publication number Publication date
JPWO2015098474A1 (en) 2017-03-23
JP2016172693A (en) 2016-09-29
JP6088071B2 (en) 2017-03-01

Similar Documents

Publication Publication Date Title
CN103238897B (en) Composite plant solid drink suitable for diabetic patients
US6291533B1 (en) Dietary supplements for each specific blood type
CN106605908A (en) Fully nutritional formula product with special medical purposes for liver diseases
JP2005068060A (en) Pharmaceutical composition containing lactoferrin and method for producing processed food containing lactoferrin
WO2012034498A1 (en) Product of functional health food that enhances organ immunity
JP6088071B2 (en) Serum uric acid lowering agent containing rice protein as active ingredient
US11044930B2 (en) Composition comprising cinnamon extract
CN109620948A (en) The full nature cell Opsonizing method of high lithemia/gout
CN109400750A (en) A kind of preparation method of avenabeta glucosan
JP5955236B2 (en) Blood cresol lowering agent
CN104352539B (en) The extracting method of achyranthes aspera extract
CN108420890B (en) Composition with blood fat reducing effect and preparation method thereof
CN102389562A (en) Traditional Chinese medicine composition for treating indigestion in children
KR101383155B1 (en) The food composition for patients containing dietary fiber
JP6139150B2 (en) Protein nutritional composition
CN106310017B (en) Traditional Chinese medicine granule for treating diffuse interstitial pulmonary fibrosis lung and kidney qi deficiency syndrome
CN101444598A (en) Traditional Chinese medicine composition for treating uremia and preparation method and use thereof
WO2021152400A1 (en) Compositions comprising pig stomach mucins and uses thereof
JP5019708B2 (en) Composition for the treatment and prevention of diabetes
WO2022048634A1 (en) Preparation method for anti-inflammatory and kidney-protecting clam peptide and application of clam peptide
CN107260854A (en) Zhizhukuanzhong capsule and preparation method thereof
CN116210900B (en) Plant polyphenol sustained-release composition for regulating xanthine oxidase activity and accurate nutrient and preparation method thereof
JP6970955B2 (en) Obesity and / or obesity-related nephropathy preventive composition for early childhood administration, obesity and / or obesity-related nephropathy preventive drug for childhood administration, foods, and methods for preventing obesity and / or obesity-related nephropathy.
TWI691334B (en) Internally taken compositions, preparations, and uses
JP5305577B2 (en) Composition for preventing / treating diabetic disease and functional food for preventing / ameliorating diabetic disease

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14875878

Country of ref document: EP

Kind code of ref document: A1

DPE1 Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101)
ENP Entry into the national phase

Ref document number: 2015554716

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14875878

Country of ref document: EP

Kind code of ref document: A1