WO2015098386A1 - Inorganic filter - Google Patents

Inorganic filter Download PDF

Info

Publication number
WO2015098386A1
WO2015098386A1 PCT/JP2014/080909 JP2014080909W WO2015098386A1 WO 2015098386 A1 WO2015098386 A1 WO 2015098386A1 JP 2014080909 W JP2014080909 W JP 2014080909W WO 2015098386 A1 WO2015098386 A1 WO 2015098386A1
Authority
WO
WIPO (PCT)
Prior art keywords
inorganic
particle layer
filter
support
inorganic particle
Prior art date
Application number
PCT/JP2014/080909
Other languages
French (fr)
Japanese (ja)
Inventor
優介 畠中
順二 川口
Original Assignee
富士フイルム株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 富士フイルム株式会社 filed Critical 富士フイルム株式会社
Publication of WO2015098386A1 publication Critical patent/WO2015098386A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D69/00Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor
    • B01D69/10Supported membranes; Membrane supports
    • B01D69/108Inorganic support material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D39/00Filtering material for liquid or gaseous fluids
    • B01D39/14Other self-supporting filtering material ; Other filtering material
    • B01D39/20Other self-supporting filtering material ; Other filtering material of inorganic material, e.g. asbestos paper, metallic filtering material of non-woven wires
    • B01D39/2068Other inorganic materials, e.g. ceramics
    • B01D39/2072Other inorganic materials, e.g. ceramics the material being particulate or granular
    • B01D39/2075Other inorganic materials, e.g. ceramics the material being particulate or granular sintered or bonded by inorganic agents
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D69/00Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor
    • B01D69/02Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor characterised by their properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D69/00Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor
    • B01D69/10Supported membranes; Membrane supports
    • B01D69/107Organic support material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D71/00Semi-permeable membranes for separation processes or apparatus characterised by the material; Manufacturing processes specially adapted therefor
    • B01D71/02Inorganic material
    • B01D71/0213Silicon
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D71/00Semi-permeable membranes for separation processes or apparatus characterised by the material; Manufacturing processes specially adapted therefor
    • B01D71/02Inorganic material
    • B01D71/0215Silicon carbide; Silicon nitride; Silicon oxycarbide

Definitions

  • the present invention relates to an inorganic filter.
  • microfiltration and ultrafiltration technology are expanding, such as protein adsorbents, water purification, air purification, deodorization / denitration / exhaust gas exhaust structures, ozone removal, various virus removal, clean room materials, Gas separation, alkali elution, asbestos monitoring, parasite detection, IR analysis of atmospheric particles, algae analysis in rivers and seawater, red blood cell deformation test, chemotaxis / culture chamber, scanning electron microscope, radiometric analysis, exfoliated cytology
  • a filter with a precision structure is applied to separation, purification, recovery, concentration, and the like.
  • Filter materials vary depending on the application, but filters made of inorganic materials are attracting attention due to their high heat resistance and corrosion resistance.
  • Patent Document 1 describes a ceramic filter made of a ceramic porous body.
  • Patent Document 2 describes an alumina membrane filter made of an anodized aluminum film.
  • the manufacturing method of a ceramic filter as described in Patent Document 1 is a method in which a raw material mixture including particles of inorganic material is sintered at high temperature. Therefore, the handling is the same as that of pottery, and there has been a problem that it cannot be processed such as being bent into a desired shape, and is susceptible to impact such as being broken by dropping. Moreover, since the alumina membrane filter as described in Patent Document 2 basically uses a straight tubular micropore (through hole) as a filtration flow path, fine particles in the object to be processed are clogged in the micropore. There is a problem that the filtration flow rate is reduced.
  • an object of the present invention is to provide an inorganic filter that is resistant to bending and impact and that can suppress the occurrence of clogging and that is excellent in flexibility and filtration amount.
  • the present inventor has an inorganic particle layer containing an inorganic particle having an average particle diameter of 0.01 ⁇ m or more and an inorganic binder, and the inorganic binder is By using an inorganic filter that is at least one selected from the group consisting of aluminum phosphate, sodium silicate, and aluminum chloride, and the porosity of the inorganic particle layer is 10 to 70%, flexibility and filtration rate Was found to be satisfactory, and the present invention was completed. That is, this invention provides the inorganic filter of the following structures.
  • An inorganic filter that is at least one selected from the group, and the porosity of the inorganic particle layer is 10 to 70%.
  • an inorganic filter that is excellent in flexibility and filtration amount.
  • FIG. 1 It is typical sectional drawing which shows an example of suitable embodiment of the inorganic filter of this invention. It is a partial expanded sectional view which expands and shows a part of inorganic filter shown in FIG. It is typical sectional drawing which shows another example of the inorganic filter of this invention. It is typical sectional drawing which shows another example of the inorganic filter of this invention. It is typical sectional drawing which shows another example of the inorganic filter of this invention. It is typical sectional drawing which shows an example of the filter structure containing the inorganic filter of this invention.
  • the inorganic filter of the present invention has an inorganic particle layer containing an inorganic particle having an average particle diameter of 0.01 ⁇ m or more and an inorganic binder, and the inorganic binder includes aluminum phosphate, sodium silicate, and The inorganic filter is at least one selected from the group consisting of aluminum chloride and has a porosity of the inorganic particle layer of 10 to 70%.
  • the structure of the inorganic filter of this invention is demonstrated using FIG. 1 and FIG.
  • FIG. 1 is a schematic cross-sectional view showing an example of a preferred embodiment of the inorganic filter of the present invention
  • FIG. 2 is a partially enlarged cross-sectional view showing a part of FIG.
  • the inorganic filter 10 includes an inorganic particle layer 12 containing inorganic particles and an inorganic binder, and a support 14 that supports the inorganic particle layer 12.
  • the inorganic particle layer 12 is a part that functions as a filtration membrane. As shown in FIG. 2, the inorganic particle layer 12 is a layer containing inorganic particles 16 having an average particle diameter of 0.01 ⁇ m or more and an inorganic binder 18, and is laminated on the support 14. Is formed.
  • the inorganic binder 18 is at least one selected from the group consisting of aluminum phosphate, sodium silicate, and aluminum chloride. The material for the inorganic binder will be described in detail later.
  • the inorganic particle layer 12 has voids in the layer.
  • the porosity of the inorganic particle layer 12 is 10 to 70%.
  • adjacent voids communicate with each other, and a minute passage penetrating in the thickness direction of the inorganic particle layer 12 is formed. Since the inorganic particle layer 12 has a large number of such minute passages, solid particles larger than the passages can be separated from an object to be filtered in which a solid is mixed in a liquid or a gas.
  • the support 14 is a part that supports the inorganic particle layer 12, and the inorganic particle layer 12 is laminated on one main surface. As shown in FIG. 2, the support body 14 has a plurality of through passages 14a penetrating in the thickness direction.
  • the through passage 14 a is a passage for allowing the material to be filtered that has passed through the inorganic particle layer 12 to pass through the surface opposite to the inorganic particle layer 12.
  • the size of the through-passage 14a there is no particular limitation on the size of the through-passage 14a, the number of the through-passage 14a, and the like.
  • the size and the number of the through-passage 14a can be supported without suppressing the flow of the filtration object that has passed through the inorganic particle layer 12. That's fine.
  • the diameter of the through passage 14a is preferably 50 ⁇ m to 1000 ⁇ m, and the aperture ratio is preferably 20% to 80%.
  • the thickness of the support 14 is not particularly limited as long as it can properly support the inorganic particle layer and can provide the required flexibility, but is preferably 50 ⁇ m to 5000 ⁇ m.
  • filters made of inorganic materials are excellent in heat resistance and corrosion resistance.
  • a ceramic filter made of a ceramic porous body has a problem that it cannot be processed such as being bent into a desired shape, or is susceptible to impact such as being broken by dropping.
  • the alumina membrane filter basically uses a straight tubular micropore as a filtration flow path, there is a problem that fine particles in the object to be treated are easily clogged in the micropore and the filtration flow rate is reduced. there were.
  • the inorganic filter of the present invention has an inorganic particle layer containing inorganic particles having an average particle diameter of 0.01 ⁇ m or more and an inorganic binder, and the inorganic binder is aluminum phosphate. , At least one selected from the group consisting of sodium silicate and aluminum chloride, and has a structure in which the porosity of the inorganic particle layer is 10 to 70%. Since the inorganic filter of the present invention binds minute inorganic particles with an inorganic binder, it is resistant to bending, dropping, etc., and has excellent flexibility.
  • the inorganic filter of this invention adjusts the ratio of the space
  • the porosity of the inorganic particle layer is 10% or more and 70% or less.
  • the porosity may be determined by the diameter of the particles contained in the material to be filtered, the required filtration amount, etc., but from the above viewpoint, it is preferably 15% to 60%, more preferably 20% to 50%. preferable.
  • the porosity is defined to be measured by the following method.
  • First, the inorganic particle layer to be measured is accurately cut into a size of 1 mm 3 with a microtome.
  • the cut inorganic particle layer was gradually increased to a pressurization amount of 0 to 200 MPa using an Autopore IV 9500 manufactured by Shimadzu Corporation, and a diameter of 10 ⁇ 5 mm to 10 ⁇ 1 mm (10 nm to 100 ⁇ m) is measured in total.
  • the thickness of the inorganic particle layer is preferably 10 ⁇ m to 5000 ⁇ m.
  • the thickness of the inorganic particle layer is preferably 10 ⁇ m to 5000 ⁇ m.
  • the inorganic particle layer 12 is laminated on one main surface of the support 14, but the inorganic filter of the present invention is not limited thereto.
  • the inorganic particle layer 12 may be laminated on both main surfaces of the support 14. That is, the inorganic filter 20 is obtained by laminating the inorganic particle layer 12, the support 14, and the inorganic particle layer 12 in this order. Or it is good also as a structure which laminated
  • stacks an inorganic particle layer on a support body is preferable at the point which can prevent a crack etc. of an inorganic particle layer more suitably, and can improve flexibility.
  • the inorganic filter 10 shown in FIG. 1 has a configuration in which an inorganic particle layer and a support are laminated.
  • the present invention is not limited to this, and the inorganic filter layer may be filled in the through-holes of the support.
  • the inorganic filter 24 shown in FIG. 5 includes a support 14 having a large number of through holes 14b, and inorganic particle layers 12a filled in the through holes 14b.
  • the inorganic particle layer 12a is the same as the inorganic particle layer 12 except that it is formed in each through-hole 14b of the support.
  • the through hole 14b of the support 14 is for holding the inorganic particle layer 12a therein.
  • the through hole 14b is preferably 0.1 mm to 5.0 mm.
  • FIG. 6 is a schematic cross-sectional view showing an example of a filter structure having the inorganic filter and the reinforcing member of the present invention.
  • the inorganic filter 24 in the filter structure 30 shown in FIG. 6 is the inorganic filter 24 shown in FIG. 5, the description is abbreviate
  • the filter structure 30 has a configuration in which reinforcing members 32 are laminated on the main surfaces on both sides of the inorganic filter 24.
  • the reinforcing member 32 is a plate-like member having a large number of through passages 32a.
  • the through passage 32 a is a passage for supplying the material to be filtered to the inorganic filter 24, and is a passage for allowing the material to be filtered filtered by the inorganic filter 24 to pass therethrough.
  • the reinforcing member 32 is arranged on both surfaces of the inorganic filter 24 and the inorganic filter 24 is sandwiched between the reinforcing members 32, so that when the pressure is increased and the filtration operation is performed, the inorganic filter is applied by the applied pressure. 24 can be prevented from cracking.
  • the material of the reinforcing member 32 is not particularly limited as long as it can prevent cracking of the inorganic filter during the filtration operation, and various materials such as metal and non-metal can be used.
  • Specific examples of the material of the reinforcing member 32 include, for example, iron, aluminum, stainless steel, zinc, copper, brass, and titanium as the metal.
  • Examples of the resin include polypropylene, polyethylene, PET, polycarbonate, polyvinyl chloride, and CFRTP (carbon fiber composite thermoplastic resin).
  • the thickness of the reinforcing member 32 is not particularly limited as long as the inorganic filter can be prevented from cracking, but is preferably 0.1 mm to 10 mm. Moreover, there is no limitation in particular in the magnitude
  • the shape of the opening of the through passage 32a is not particularly limited, and various shapes such as a circular shape, a triangular shape, a quadrangular shape, a rhombus, a polygonal shape, an elliptical shape, and a cross shape can be used.
  • the fixing method of the inorganic filter 24 and the reinforcing member 32 is not particularly limited. For example, bonding with an adhesive, screwing, binding with the reinforcing member using the inorganic binder 18 of the inorganic filter 24, and the like. Various fixing methods are available.
  • the reinforcing members 32 are arranged on both surfaces of the inorganic filter 24, but the present invention is not limited to this, and the arrangement is made only on one main surface side of the inorganic filter 24. Also good.
  • the filter structure 30 shown in FIG. 6 has the inorganic filter 24 in which the inorganic particle layer 12a is formed in the through-hole 14b of the support 14, but is not limited thereto, and the inorganic structure of the present invention is not limited thereto. Applicable to any filter.
  • the material of the support that the inorganic filter of the present invention has is not particularly limited, and various materials such as metal and nonmetal can be used.
  • the material of the support may be appropriately selected according to the purpose of use and the object to be filtered, and from the viewpoints of heat resistance, corrosion resistance, flexibility, and the like.
  • the support may be a plate-like (film-like) member of the material formed with a large number of through passages (through-holes), or a braided wire of the material is formed in a net shape. It may be a thing (mesh).
  • the diameter of the wire is preferably 10 ⁇ m to 1000 ⁇ m.
  • the aperture ratio is preferably 20% to 80%.
  • the metal used as the material for the support include aluminum, gold, silver, copper, tantalum, niobium, titanium, hafnium, zirconium, zinc, tungsten, bismuth, and antimony.
  • aluminum (aluminum alloy) is preferable because it is excellent in workability, strength, and flexibility.
  • the resin used as the material for the support include glass, carbon, nylon, PET, PEN, acrylic, vinylon, polyolefin, and polyurethane.
  • the inorganic particle layer is a layer containing inorganic particles having an average particle diameter of 0.01 ⁇ m or more and an inorganic binder.
  • the porosity of the inorganic particle layer is 10 to 70%.
  • the inorganic particles contained in the inorganic particle layer are particles having an average particle diameter of 0.01 ⁇ m or more.
  • the kind of the inorganic particles is not particularly limited, and conventionally known oxides (for example, metal oxides), nitrides (for example, metal nitrides), hydroxides (for example, metal hydroxides), inorganic salts (For example, phosphate, carbonate, sulfate, etc.), carbide (eg, metal carbide), metal, or the like can be used.
  • the average particle diameter means an average value of the particle diameters of the inorganic particles.
  • the average particle diameter of the inorganic particles is preferably 0.01 to 100 ⁇ m, more preferably 0.05 to 100 ⁇ m, and particularly preferably 0.1 to 50 ⁇ m from the viewpoints of flexibility, filtration amount, workability, strength, and the like. .
  • the inorganic particles include aluminum oxide (alumina), aluminum nitride, boron nitride, silicon nitride, silicon oxide, silicon carbide, titanium oxide, titanium nitride, zirconium oxide, yttrium oxide, and calcium phosphate.
  • Graphite tungsten carbide, silicon parbite, aluminum hydroxide, calcium hydroxide, calcium carbonate, calcite, calcium carbonate, light calcium carbonate, heavy calcium carbonate, ultrafine calcium carbonate, gypsum, calcium sulfate, marble, Barium sulfate, barium carbonate, magnesium oxide, magnesium carbonate, magnesium hydroxide, strontium carbonate, gold, silver, aluminum, kaolin clay, calcined clay, talc, sericite, optical glass, glass beads, etc. , May be used those either alone, or in combination of two or more.
  • the inorganic particles include alumina, aluminum nitride, boron nitride, silicon oxide, silicon nitride, titanium oxide, titanium nitride, zirconium oxide, and oxidation. It is preferable to use yttrium, calcium phosphate, graphite, tungsten carbide, and silicon carbide.
  • two or more kinds of particles or two or more kinds of particles having an average particle diameter may be used in combination as the inorganic particles.
  • the strength and flexibility of the inorganic filter can be improved.
  • the shape of the inorganic particles is not particularly limited.
  • the shape is spherical, polyhedral (for example, icosahedron, dodecahedron, etc.), cubic, tetrahedral, or uneven on the surface. It may be any shape having a plurality of convex protrusions (hereinafter also referred to as “compete shape”), a plate shape, a needle shape, or the like.
  • the inorganic binder contained in the inorganic particle layer contains at least one selected from the group consisting of aluminum phosphate, sodium silicate and aluminum chloride.
  • aluminum phosphate examples include not only aluminum phosphate in a narrow sense but also aluminum metaphosphate, aluminum orthophosphate, and aluminum polyphosphate in addition to aluminum phosphate.
  • the aluminum phosphate can be obtained by reacting commercially available phosphoric acid and commercially available aluminum sulfate (or aluminum hydroxide, aluminum chloride, and a mixture thereof) in the presence of water.
  • aluminum chloride since aluminum chloride is considered to have a role of causing the reaction of aluminum hydroxide to proceed catalytically, it is preferable to add both aluminum hydroxide and aluminum chloride in the above reaction, and the amount of aluminum chloride is water. It is preferably 5 to 10% with respect to the amount of aluminum oxide.
  • a sodium hydroxide solution can be used, and aluminum sulfate may be produced by reacting sulfuric acid and alumina.
  • sodium silicate The above-mentioned sodium silicate is also called sodium silicate or water glass, and Na 2 SiO 3, which is a sodium salt of metasilicate, is commonly used. In addition, Na 4 SiO 4 , Na 2 Si 2 O 5 , Na 2 Si 4 O 9 or the like can also be used.
  • the sodium salt of metasilicic acid can be obtained by melting silicon dioxide with sodium carbonate or sodium hydroxide.
  • the aluminum chloride may be any of anhydrous aluminum chloride, aluminum chloride hexahydrate, and polyaluminum chloride (a polymer of basic aluminum chloride formed by dissolving aluminum hydroxide in hydrochloric acid).
  • the inorganic binder is preferably contained in an amount of 5 to 100 parts by mass with respect to 100 parts by mass of the inorganic particles. More preferred.
  • the inorganic particle layer may contain other compounds in addition to the inorganic binder and the inorganic particles. Examples of other compounds include a dispersant and a reaction accelerator.
  • the method for forming the inorganic particle layer is not particularly limited.
  • the coating liquid (composition) containing the inorganic particles and the inorganic binder is screen printed on the surface of the support.
  • the methods described in [0021] to [0023] of International Publication No. 2012/133173 may be used.
  • the porosity of the inorganic particle layer can be adjusted by adjusting the ratio of the inorganic particles and the inorganic binder in the coating solution. Further, when forming the inorganic particle layer, after forming a coating liquid containing the inorganic particles and the inorganic binder on the surface of the support, first, coating is performed by applying dry air at a low temperature. The proportion of voids in the inorganic particle layer after firing can also be adjusted by removing (evaporating) some of the moisture in the film, concentrating it, and then forming it by heating to a predetermined temperature and firing. can do.
  • the inorganic particle layer is formed in the through hole of the support as in the inorganic filter shown in FIG. 5, after applying the coating liquid on the support, pressure is applied from the coating liquid side to apply the coating liquid.
  • Pressure is applied from the coating liquid side to apply the coating liquid.
  • the printing liquid containing the said inorganic particle and the said inorganic binder is screen-printed on the surface of a temporary support body etc.
  • the inorganic particle layer is formed by drying, firing and curing. Then, it can form by peeling a temporary support body and an inorganic particle layer.
  • the material for the temporary support include metal substrates that do not contain aluminum such as copper, iron, and titanium, or PET, PPS, PI, PTFE, PAI, and silicon resin.
  • the viscosity of the coating solution containing the inorganic particles and the inorganic binder is preferably 100 cP to 50000 cP.
  • the inorganic particle layer can be formed on the support without the coating solution flowing down into the through path when the coating solution is applied onto the support.
  • an inorganic particle layer can be formed in a through-hole, without a coating liquid flowing down from a through-hole.
  • Example 1 As Example 1, an inorganic filter having the configuration shown in FIG. 1
  • a support A obtained by methanol degreasing of an aluminum mesh having a size of 100 ⁇ 100 mm, a mesh diameter of 100 ⁇ m, and a wire diameter of 100 ⁇ m was used.
  • the inorganic particle layer coating liquid A prepared at the following composition ratio is applied to the entire surface of one of the main surfaces of the support so that the thickness after drying and baking is 40 ⁇ m, and heated at 220 ° C. for 30 minutes. Then, drying and baking were performed to form an inorganic particle layer, and an inorganic filter was produced.
  • the inorganic binder of the inorganic particle layer obtained by baking the coating liquid A is aluminum phosphate. Moreover, when the porosity of the inorganic particle layer was measured, the porosity was 20%.
  • a binder liquid A having the following composition was prepared. ⁇ Phosphoric acid 85% (Wako Pure Chemical Industries, Ltd.) 48g ⁇ Aluminum hydroxide (Wako Pure Chemical Industries, Ltd.) 11g ⁇ Water 41g
  • Example 2 An inorganic filter was produced in the same manner as in Example 1 except that the average particle diameter of the inorganic particles was changed to 1.5 ⁇ m. When the porosity of the produced inorganic particle layer was measured, the porosity was 30%.
  • Example 3 Except for changing the average particle size of the inorganic particles to 5 ⁇ m and changing the support to a support B of an aluminum mesh (made by KURAA Co., Ltd.) having a mesh diameter of 120 ⁇ m and a wire diameter of 100 ⁇ m, the same as in Example 1. An inorganic filter was produced. When the porosity of the produced inorganic particle layer was measured, the porosity was 55%.
  • Example 4 Other than changing the inorganic particles to calcium phosphate (manufactured by Junsei Co., Ltd .: calcium hydrogen phosphate dihydrate # 84110-0401, average particle size 1.5 ⁇ m) and changing the inorganic binder to sodium silicate Produced an inorganic filter in the same manner as in Example 2. When the porosity of the produced inorganic particle layer was measured, the porosity was 20%. In addition, in order to use an inorganic binder as sodium silicate, it replaced with the binder liquid A and used the binder liquid B of the composition ratio shown below.
  • binder liquid B having the following composition was prepared. ⁇ No. 3 sodium silicate undiluted solution (Toyama Chemical Co., Ltd.) 100g ⁇ Water 10g
  • Example 5 Except that the inorganic particles were changed to zirconium oxide (manufactured by Junsei Chemical Co., Ltd .: zirconium dioxide # 53130-1501, average particle size 1.5 ⁇ m) and the inorganic binder was changed to aluminum chloride, the same procedure as in Example 2 was performed. An inorganic filter was produced. When the porosity of the produced inorganic particle layer was measured, the porosity was 35%. In addition, in order to make an inorganic binder into aluminum chloride, it replaced with the binder liquid A and used the binder liquid C of the composition ratio shown below.
  • binder liquid C having the following composition was prepared. ⁇ 35% hydrochloric acid (Wako Pure Chemical Industries, Ltd.) 80g ⁇ Aluminum hydroxide (Wako Pure Chemical Industries, Ltd.) 10g ⁇ Water 10g
  • Example 6 An inorganic filter was produced in the same manner as in Example 2 except that the support was not provided and the thickness was different. That is, the coating liquid A was coated on a temporary support so that the thickness after drying and firing was 500 ⁇ m, heated at 220 ° C. for 45 minutes, dried and fired to form an inorganic particle layer, and then inorganic The particle layer was peeled from the temporary support to produce an inorganic filter. When the porosity of the produced inorganic particle layer was measured, the porosity was 30%.
  • Example 1 An inorganic filter was produced in the same manner as in Example 2 except that the porosity was 8%.
  • Example 2 An inorganic filter was produced in the same manner as in Example 2 except that the porosity was 75%.
  • Comparative Example 3 As Comparative Example 3, a ceramic filter having an average pore diameter of 5 ⁇ m, a porosity of 9%, and a thickness of 2000 ⁇ m was prepared.
  • Comparative Example 4 As Comparative Example 4, a ceramic filter similar to Comparative Example 3 was prepared except that the average pore diameter was 1 ⁇ m and the porosity was 6%.
  • Comparative Example 5 As Comparative Example 5, a ceramic filter similar to Comparative Example 3 was prepared except that the average pore diameter was 0.2 ⁇ m and the porosity was 8%.
  • Comparative Example 6 As Comparative Example 6, an alumina membrane filter produced by the method described in Example 2 of Patent Document 2 (Japanese Patent Laid-Open No. 2009-50773) was prepared. The thickness was 30 ⁇ m, the average pore diameter was 0.06 ⁇ m, and the porosity was 30%.
  • the prepared filter was applied to an iron rod having a diameter of 10 mm and bent at 30 ° to observe whether or not breakage occurred. A was given when no cracks were observed, B was given when partly broken, and C was given when broken.
  • aqueous solution 10 g was filtered with each filter.
  • an aqueous solution 50 nm, 500 nm, and 1 ⁇ m diameter silica particles dispersed in water at a concentration of 10% by mass were used.
  • the fraction was calculated from the change in weight of the aqueous solution before and after filtration. As the fractionation rate is closer to 100%, particles in the aqueous solution are removed by the filter.
  • Example 1 From the results shown in Table 1, it has an inorganic particle layer containing inorganic particles having an average particle diameter of 0.01 ⁇ m or more and an inorganic binder, and the inorganic binder is composed of aluminum phosphate, sodium silicate and Examples 1 to 6 of the present invention, which is at least one selected from the group consisting of aluminum chloride and the porosity of the inorganic particle layer is 10 to 70%, are good results in both flexibility and clogging. I understand that. On the other hand, it can be seen that Comparative Example 1 in which the porosity of the inorganic particle layer is less than 10% is likely to be clogged because the porosity is low, and the filtration flow rate is reduced.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Inorganic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Geology (AREA)
  • Filtering Materials (AREA)
  • Separation Using Semi-Permeable Membranes (AREA)

Abstract

Provided is an inorganic filter which has resistance to bending and impact, does not undergo clogging, and has excellent flexibility and filtration capacity. The inorganic filter has an inorganic particle layer comprising inorganic particles having an average particle diameter of 0.01 μm or more and an inorganic binder, wherein the inorganic binder comprises at least one compound selected from the group consisting of aluminum phosphate, sodium silicate and aluminum chloride and the porosity of the inorganic particle layer is 10 to 70%.

Description

無機フィルターInorganic filter
 本発明は、無機フィルターに関するものである。 The present invention relates to an inorganic filter.
 近年、精密濾過および限外濾過技術の応用分野が拡大しつつあり、例えば、タンパク質吸着剤、浄水、空気清浄、脱臭・脱硝・排ガス装置用構造体、オゾン除去、各種ウイルス除去、クリーンルーム用素材、ガス分離、アルカリ溶出、アスベストのモニタリング、寄生虫の検出、大気中粒子のIR分析、河川・海水中の藻類分析、赤血球の変形テスト、ケモタキシス・培養チャンバー、走査電子顕微鏡、放射性分析、剥離細胞診、蛍光X線等の各種用途においては、分離、精製、回収、濃縮等に精密構造のフィルターが適用されている。 In recent years, the application fields of microfiltration and ultrafiltration technology are expanding, such as protein adsorbents, water purification, air purification, deodorization / denitration / exhaust gas exhaust structures, ozone removal, various virus removal, clean room materials, Gas separation, alkali elution, asbestos monitoring, parasite detection, IR analysis of atmospheric particles, algae analysis in rivers and seawater, red blood cell deformation test, chemotaxis / culture chamber, scanning electron microscope, radiometric analysis, exfoliated cytology In various applications such as fluorescent X-rays, a filter with a precision structure is applied to separation, purification, recovery, concentration, and the like.
 フィルターの材料は、その用途により様々であるが、無機素材を材料としたフィルターは、高い耐熱性、耐食性等により注目されている。
 例えば、特許文献1には、セラミック多孔体からなるセラミックフィルターが記載されている。
 また、特許文献2には、アルミニウムの陽極酸化皮膜からなるアルミナメンブレンフィルターが記載されている。
Filter materials vary depending on the application, but filters made of inorganic materials are attracting attention due to their high heat resistance and corrosion resistance.
For example, Patent Document 1 describes a ceramic filter made of a ceramic porous body.
Patent Document 2 describes an alumina membrane filter made of an anodized aluminum film.
特開2010-228949号公報JP 2010-228949 A 特開2009-50773号公報JP 2009-50773 A
 特許文献1に記載されるようなセラミックフィルターの製造方法は、無機材料の粒子等を含む原料混合物を高温焼結するものである。そのため、取扱いは陶器と同様であり、所望の形状に折り曲げる等の加工ができなかったり、落下により割れてしまうなど衝撃に弱いという問題があった。
 また、特許文献2に記載されるようなアルミナメンブレンフィルターは、基本的に直管状のマイクロポア(貫通孔)を濾過流路として利用するため、被処理物中の微粒子等がマイクロポアに目詰まりしやすく、濾過流量が低下してしまうという問題があった。
The manufacturing method of a ceramic filter as described in Patent Document 1 is a method in which a raw material mixture including particles of inorganic material is sintered at high temperature. Therefore, the handling is the same as that of pottery, and there has been a problem that it cannot be processed such as being bent into a desired shape, and is susceptible to impact such as being broken by dropping.
Moreover, since the alumina membrane filter as described in Patent Document 2 basically uses a straight tubular micropore (through hole) as a filtration flow path, fine particles in the object to be processed are clogged in the micropore. There is a problem that the filtration flow rate is reduced.
 そこで、本発明は、曲げや衝撃に強く、また、目詰まりの発生を抑制できる、可撓性および濾過量に優れた無機フィルターを提供することを課題とする。 Therefore, an object of the present invention is to provide an inorganic filter that is resistant to bending and impact and that can suppress the occurrence of clogging and that is excellent in flexibility and filtration amount.
 本発明者は、上記課題を達成すべく鋭意研究した結果、平均粒子径が0.01μm以上である無機粒子と、無機結着剤とを含有する無機粒子層を有し、無機結着剤が、リン酸アルミニウム、ケイ酸ナトリウムおよび塩化アルミニウムからなる群から選択される少なくとも1種であり、無機粒子層の空隙率が10~70%である無機フィルターを用いることにより、可撓性および濾過量が良好となることを見出し、本発明を完成させた。
 すなわち、本発明は、以下の構成の無機フィルターを提供する。
As a result of earnest research to achieve the above-mentioned problems, the present inventor has an inorganic particle layer containing an inorganic particle having an average particle diameter of 0.01 μm or more and an inorganic binder, and the inorganic binder is By using an inorganic filter that is at least one selected from the group consisting of aluminum phosphate, sodium silicate, and aluminum chloride, and the porosity of the inorganic particle layer is 10 to 70%, flexibility and filtration rate Was found to be satisfactory, and the present invention was completed.
That is, this invention provides the inorganic filter of the following structures.
 (1) 平均粒子径が0.01μm以上である無機粒子と、無機結着剤とを含有する無機粒子層を有し、無機結着剤が、リン酸アルミニウム、ケイ酸ナトリウムおよび塩化アルミニウムからなる群から選択される少なくとも1種であり、無機粒子層の空隙率が10~70%である無機フィルター。
 (2) 厚さ方向に貫通する複数の貫通孔を備える支持体を有し、無機粒子層は、支持体の貫通孔中に形成される(1)に記載の無機フィルター。
 (3) 厚さ方向に貫通する複数の通路を備える支持体を有し、無機粒子層は、支持体上に積層される(1)に記載の無機フィルター。
 (4) 支持体の両面に無機粒子層が積層される(3)に記載の無機フィルター。
 (5) 支持体の材質がアルミニウムである(2)~(4)のいずれかに記載の無機フィルター。
 (6) 無機粒子は、酸化物、窒化物、水酸化物、無機塩および炭化物からなる群から選択される少なくとも1種から構成される(1)~(5)のいずれかに記載の無機フィルター。
 (7) 無機粒子層の厚みが、10μm~5000μmである(1)~(6)のいずれかに記載の無機フィルター。
(1) It has an inorganic particle layer containing inorganic particles having an average particle diameter of 0.01 μm or more and an inorganic binder, and the inorganic binder is made of aluminum phosphate, sodium silicate and aluminum chloride. An inorganic filter that is at least one selected from the group, and the porosity of the inorganic particle layer is 10 to 70%.
(2) The inorganic filter according to (1), which includes a support including a plurality of through holes penetrating in a thickness direction, and the inorganic particle layer is formed in the through holes of the support.
(3) The inorganic filter according to (1), which includes a support including a plurality of passages penetrating in the thickness direction, and the inorganic particle layer is laminated on the support.
(4) The inorganic filter according to (3), wherein inorganic particle layers are laminated on both sides of the support.
(5) The inorganic filter according to any one of (2) to (4), wherein the support is made of aluminum.
(6) The inorganic filter according to any one of (1) to (5), wherein the inorganic particles are composed of at least one selected from the group consisting of oxides, nitrides, hydroxides, inorganic salts, and carbides. .
(7) The inorganic filter according to any one of (1) to (6), wherein the inorganic particle layer has a thickness of 10 μm to 5000 μm.
 本発明によれば、可撓性および濾過量に優れる無機フィルターを提供することができる。 According to the present invention, it is possible to provide an inorganic filter that is excellent in flexibility and filtration amount.
本発明の無機フィルターの好適な実施形態の一例を示す模式的な断面図である。It is typical sectional drawing which shows an example of suitable embodiment of the inorganic filter of this invention. 図1に示す無機フィルターの一部を拡大して示す部分拡大断面図である。It is a partial expanded sectional view which expands and shows a part of inorganic filter shown in FIG. 本発明の無機フィルターの他の一例を示す模式的な断面図である。It is typical sectional drawing which shows another example of the inorganic filter of this invention. 本発明の無機フィルターの他の一例を示す模式的な断面図である。It is typical sectional drawing which shows another example of the inorganic filter of this invention. 本発明の無機フィルターの他の一例を示す模式的な断面図である。It is typical sectional drawing which shows another example of the inorganic filter of this invention. 本発明の無機フィルターを含むフィルター構造体の一例を示す模式的な断面図である。It is typical sectional drawing which shows an example of the filter structure containing the inorganic filter of this invention.
 以下、本発明の無機フィルターについて、添付の図面に示される好適実施態様を基に、詳細に説明する。
 以下に記載する構成要件の説明は、本発明の代表的な実施態様に基づいてなされることがあるが、本発明はそのような実施態様に限定されるものではない。
 なお、本明細書において、「~」を用いて表される数値範囲は、「~」の前後に記載される数値を下限値および上限値として含む範囲を意味する。
Hereinafter, the inorganic filter of the present invention will be described in detail based on preferred embodiments shown in the accompanying drawings.
The description of the constituent elements described below may be made based on typical embodiments of the present invention, but the present invention is not limited to such embodiments.
In this specification, a numerical range expressed using “to” means a range including numerical values described before and after “to” as a lower limit value and an upper limit value.
[無機フィルター]
 本発明の無機フィルターは、平均粒子径が0.01μm以上である無機粒子と、無機結着剤とを含有する無機粒子層を有し、無機結着剤が、リン酸アルミニウム、ケイ酸ナトリウムおよび塩化アルミニウムからなる群から選択される少なくとも1種であり、無機粒子層の空隙率が10~70%である無機フィルターである。
 次に、本発明の無機フィルターの構成について、図1および図2を用いて説明する。
[Inorganic filter]
The inorganic filter of the present invention has an inorganic particle layer containing an inorganic particle having an average particle diameter of 0.01 μm or more and an inorganic binder, and the inorganic binder includes aluminum phosphate, sodium silicate, and The inorganic filter is at least one selected from the group consisting of aluminum chloride and has a porosity of the inorganic particle layer of 10 to 70%.
Next, the structure of the inorganic filter of this invention is demonstrated using FIG. 1 and FIG.
 図1は、本発明の無機フィルターの好適な実施態様の一例を示す模式的な断面図であり、図2は、図1の一部を拡大して示す部分拡大断面図である。
 図1に示すように、無機フィルター10は、無機粒子および無機結着剤とを含有する無機粒子層12と、無機粒子層12を支持する支持体14とを具備するものである。
FIG. 1 is a schematic cross-sectional view showing an example of a preferred embodiment of the inorganic filter of the present invention, and FIG. 2 is a partially enlarged cross-sectional view showing a part of FIG.
As shown in FIG. 1, the inorganic filter 10 includes an inorganic particle layer 12 containing inorganic particles and an inorganic binder, and a support 14 that supports the inorganic particle layer 12.
 無機粒子層12は、濾過膜として機能する部位である。
 図2に示すように、無機粒子層12は、平均粒子径が0.01μm以上の無機粒子16と、無機結着剤18とを含有してなる層であり、支持体14上に積層して形成されている。
 無機結着剤18は、リン酸アルミニウム、ケイ酸ナトリウムおよび塩化アルミニウムからなる群から選択される少なくとも1種である。無機結着剤の材料に関しては後に詳述する。
The inorganic particle layer 12 is a part that functions as a filtration membrane.
As shown in FIG. 2, the inorganic particle layer 12 is a layer containing inorganic particles 16 having an average particle diameter of 0.01 μm or more and an inorganic binder 18, and is laminated on the support 14. Is formed.
The inorganic binder 18 is at least one selected from the group consisting of aluminum phosphate, sodium silicate, and aluminum chloride. The material for the inorganic binder will be described in detail later.
 また、図に示すように、無機粒子層12は、その層中に空隙を有している。無機粒子層12の空隙率は、10~70%である。所定の空隙率で空隙を形成することで、隣接した空隙同士が連通し、無機粒子層12の厚み方向に貫通した微小な通路が形成される。無機粒子層12は、このような微小な通路を多数有することにより、液体または気体に固体が混ざっている被濾過物からこの通路よりも大きな固体の粒子を分離することができる。 Further, as shown in the figure, the inorganic particle layer 12 has voids in the layer. The porosity of the inorganic particle layer 12 is 10 to 70%. By forming voids at a predetermined porosity, adjacent voids communicate with each other, and a minute passage penetrating in the thickness direction of the inorganic particle layer 12 is formed. Since the inorganic particle layer 12 has a large number of such minute passages, solid particles larger than the passages can be separated from an object to be filtered in which a solid is mixed in a liquid or a gas.
 支持体14は、無機粒子層12を支持する部位であり、一方の主面に無機粒子層12が積層される。
 図2に示すように、支持体14は、厚さ方向に貫通する複数の貫通路14aを有している。貫通路14aは、無機粒子層12を通過した被濾過物を無機粒子層12とは反対側の面に通過させるための通路である。
The support 14 is a part that supports the inorganic particle layer 12, and the inorganic particle layer 12 is laminated on one main surface.
As shown in FIG. 2, the support body 14 has a plurality of through passages 14a penetrating in the thickness direction. The through passage 14 a is a passage for allowing the material to be filtered that has passed through the inorganic particle layer 12 to pass through the surface opposite to the inorganic particle layer 12.
 貫通路14aの大きさや、形成する数等には特に限定はなく、無機粒子層12を通過した被濾過物の流れを抑制せず、かつ、無機粒子層12を支持できる大きさ、数であればよい。上記観点から、貫通路14aの直径は、50μm~1000μmが好ましく、開口率は、20%~80%であるのが好ましい。 There is no particular limitation on the size of the through-passage 14a, the number of the through-passage 14a, and the like. The size and the number of the through-passage 14a can be supported without suppressing the flow of the filtration object that has passed through the inorganic particle layer 12. That's fine. From the above viewpoint, the diameter of the through passage 14a is preferably 50 μm to 1000 μm, and the aperture ratio is preferably 20% to 80%.
 また、支持体14の厚さは、無機粒子層を適正に支持でき、また、必要とされる可撓性を付与できれば、特に限定はないが、50μm~5000μmであるのが好ましい。 The thickness of the support 14 is not particularly limited as long as it can properly support the inorganic particle layer and can provide the required flexibility, but is preferably 50 μm to 5000 μm.
 前述のとおり、無機素材を材料としたフィルターは、耐熱性、耐食性等に優れている。しかしながら、セラミック多孔体からなるセラミックフィルターは、所望の形状に折り曲げる等の加工ができなかったり、落下により割れてしまうなど衝撃に弱いという問題があった。また、アルミナメンブレンフィルターは、基本的に直管状のマイクロポアを濾過流路として利用するため、被処理物中の微粒子等がマイクロポアに目詰まりしやすく、濾過流量が低下してしまうという問題があった。 As described above, filters made of inorganic materials are excellent in heat resistance and corrosion resistance. However, a ceramic filter made of a ceramic porous body has a problem that it cannot be processed such as being bent into a desired shape, or is susceptible to impact such as being broken by dropping. In addition, since the alumina membrane filter basically uses a straight tubular micropore as a filtration flow path, there is a problem that fine particles in the object to be treated are easily clogged in the micropore and the filtration flow rate is reduced. there were.
 これに対して、本発明の無機フィルターは、平均粒子径が0.01μm以上である無機粒子と、無機結着剤とを含有する無機粒子層を有し、無機結着剤が、リン酸アルミニウム、ケイ酸ナトリウムおよび塩化アルミニウムからなる群から選択される少なくとも1種であり、無機粒子層の空隙率が10~70%である構成を有する。
 本発明の無機フィルターは、無機結着剤によって、微小な無機粒子を結着しているので、曲げや落下等に強く、可撓性に優れている。また、本発明の無機フィルターは、微小な無機粒子を結着することにより生じる空隙の割合を調整して、隣接した空隙同士を連通させて、濾過のための通路としている。そのため、各通路の大きさにばらつきがあるため、目詰まりを起こしにくい。また、各空隙は、いくつかの空隙と連通するので、枝分かれした通路が形成される。そのため、通路の一か所が目詰まりしても枝分かれした他の箇所は連通状態を維持でき、目詰まりを起こしにくい。従って、目詰まりにより濾過流量が低下することを抑制でき、濾過量に優れる。
On the other hand, the inorganic filter of the present invention has an inorganic particle layer containing inorganic particles having an average particle diameter of 0.01 μm or more and an inorganic binder, and the inorganic binder is aluminum phosphate. , At least one selected from the group consisting of sodium silicate and aluminum chloride, and has a structure in which the porosity of the inorganic particle layer is 10 to 70%.
Since the inorganic filter of the present invention binds minute inorganic particles with an inorganic binder, it is resistant to bending, dropping, etc., and has excellent flexibility. Moreover, the inorganic filter of this invention adjusts the ratio of the space | gap produced by binding a fine inorganic particle, makes the adjacent space | gap communicate, and is used as the channel | path for filtration. For this reason, since the sizes of the passages vary, clogging is unlikely to occur. In addition, since each gap communicates with several gaps, a branched passage is formed. Therefore, even if one part of the passage is clogged, the other part of the branch can maintain the communication state, and clogging is difficult to occur. Therefore, it can suppress that the filtration flow volume falls by clogging, and is excellent in filtration amount.
 ここで、無機粒子層の空隙率が10%未満であると、可撓性が低下してしまい、また、目詰まりを起こしやすくなり濾過量が低下する。一方、空隙率が70%超であると、無機粒子同士の密着性が悪化し、割れやすくなるため可撓性が低下する。従って、本発明の無機フィルターの無機粒子層の空隙率は、10%以上70%以下である。
 なお、空隙率は、被濾過物に含まれる粒子の径や、必要とされる濾過量等により決定すればよいが、上記観点から、15%~60%が好ましく、20%~50%がより好ましい。
Here, when the porosity of the inorganic particle layer is less than 10%, the flexibility is lowered, and clogging is easily caused and the amount of filtration is lowered. On the other hand, when the porosity is more than 70%, the adhesion between the inorganic particles is deteriorated, and it becomes easy to break, so that the flexibility is lowered. Therefore, the porosity of the inorganic particle layer of the inorganic filter of the present invention is 10% or more and 70% or less.
The porosity may be determined by the diameter of the particles contained in the material to be filtered, the required filtration amount, etc., but from the above viewpoint, it is preferably 15% to 60%, more preferably 20% to 50%. preferable.
 なお、本発明において、空隙率とは、以下の方法により測定されるものと定義した。
 まず、測定対象の無機粒子層をミクロトームにて1mm3の大きさに正確に切削する。次いで、切削した無機粒子層を株式会社島津製作所製のオートポアIV 9500を用いて、水銀圧力を0~200MPaの加圧量まで順次増やしていき、直径10-5mm~10-1mm(10nm~100μm)の空隙を全量測定する。こうして得られた全ての空隙について、直径D(mm)と数量nから積算計算したものを空隙量X(mm3)とする。すなわち、X=Σ(πnD3/6)と計算される。
 従って、空隙率(%)は、X(mm3)÷1(mm3)×100%で算出される。
In the present invention, the porosity is defined to be measured by the following method.
First, the inorganic particle layer to be measured is accurately cut into a size of 1 mm 3 with a microtome. Next, the cut inorganic particle layer was gradually increased to a pressurization amount of 0 to 200 MPa using an Autopore IV 9500 manufactured by Shimadzu Corporation, and a diameter of 10 −5 mm to 10 −1 mm (10 nm to 100 μm) is measured in total. For all the voids thus obtained, the void amount X (mm 3 ) is calculated from the diameter D (mm) and the quantity n. That is calculated as X = Σ (πnD 3/6 ).
Accordingly, the porosity (%) is calculated by X (mm 3 ) ÷ 1 (mm 3 ) × 100%.
 また、無機粒子層の厚さは、10μm~5000μmであるのが好ましい。無機粒子層の厚さを10μm以上とすることにより、高精度に濾過を行うことができる点で好ましい。また、無機粒子層の厚さを5000μm以下とすることにより、濾過流量を多くすることができる点で好ましい。 The thickness of the inorganic particle layer is preferably 10 μm to 5000 μm. By setting the thickness of the inorganic particle layer to 10 μm or more, it is preferable in that filtration can be performed with high accuracy. Moreover, it is preferable at the point which can increase the filtration flow volume by making the thickness of an inorganic particle layer into 5000 micrometers or less.
 ここで、図1に示す例においては、支持体14の一方の主面に無機粒子層12を積層する構成としたが、本発明の無機フィルターはこれに限定はされない。例えば、図3に示す無機フィルター20のように、支持体14の両方の主面に無機粒子層12を積層する構成としてもよい。すなわち、無機フィルター20は、無機粒子層12と支持体14と無機粒子層12とをこの順に積層したものである。
 あるいは、無機粒子層の両方の主面に支持体を積層した構成としてもよい。
 あるいは、図4に示す無機フィルター22のように、無機粒子層12のみで構成される無機フィルターとしてもよい。
 なお、無機粒子層を支持体上に積層して設ける構成は、無機粒子層の割れ等をより好適に防止でき可撓性を向上できる点で好ましい。
Here, in the example shown in FIG. 1, the inorganic particle layer 12 is laminated on one main surface of the support 14, but the inorganic filter of the present invention is not limited thereto. For example, like the inorganic filter 20 shown in FIG. 3, the inorganic particle layer 12 may be laminated on both main surfaces of the support 14. That is, the inorganic filter 20 is obtained by laminating the inorganic particle layer 12, the support 14, and the inorganic particle layer 12 in this order.
Or it is good also as a structure which laminated | stacked the support body on both main surfaces of the inorganic particle layer.
Or it is good also as an inorganic filter comprised only with the inorganic particle layer 12, like the inorganic filter 22 shown in FIG.
In addition, the structure which laminates | stacks an inorganic particle layer on a support body is preferable at the point which can prevent a crack etc. of an inorganic particle layer more suitably, and can improve flexibility.
 また、図1に示す無機フィルター10は、無機粒子層と支持体とを積層する構成としたが、これに限定はされず、支持体の貫通孔の中に無機粒子層を充填した構成としてもよい。
 図5に示す無機フィルター24は、多数の貫通孔14bを有する支持体14と、この貫通孔14b中に、それぞれ充填される無機粒子層12aとを有する。
 無機粒子層12aは、支持体の各貫通孔14b中に形成される以外は、上記無機粒子層12と同様である。
In addition, the inorganic filter 10 shown in FIG. 1 has a configuration in which an inorganic particle layer and a support are laminated. However, the present invention is not limited to this, and the inorganic filter layer may be filled in the through-holes of the support. Good.
The inorganic filter 24 shown in FIG. 5 includes a support 14 having a large number of through holes 14b, and inorganic particle layers 12a filled in the through holes 14b.
The inorganic particle layer 12a is the same as the inorganic particle layer 12 except that it is formed in each through-hole 14b of the support.
 支持体14の貫通孔14bは、その内部に無機粒子層12aを保持するためのものである。貫通孔14bは、無機粒子層12aを適正に保持して濾過膜として機能させることができれば、その大きさ、形状等には特に限定はない。上記の観点から、貫通孔14bの直径は、0.1mm~5.0mmであるのが好ましい。 The through hole 14b of the support 14 is for holding the inorganic particle layer 12a therein. There are no particular limitations on the size, shape, and the like of the through hole 14b as long as the inorganic particle layer 12a can be appropriately held and function as a filtration membrane. From the above viewpoint, the diameter of the through hole 14b is preferably 0.1 mm to 5.0 mm.
 なお、本発明の無機フィルターを濾過操作に用いる際には、無機フィルターの割れ等を防止するため、無機フィルターの少なくとも一方の主面に補強部材を積層してもよい。
 図6は、本発明の無機フィルターと補強部材とを有するフィルター構造体の一例を示す模式的な断面図である。
 なお、図6に示すフィルター構造体30における無機フィルター24は、図5に示す無機フィルター24であるので、その説明は省略する。
In addition, when using the inorganic filter of this invention for filtration operation, in order to prevent a crack etc. of an inorganic filter, you may laminate | stack a reinforcement member on the at least one main surface of an inorganic filter.
FIG. 6 is a schematic cross-sectional view showing an example of a filter structure having the inorganic filter and the reinforcing member of the present invention.
In addition, since the inorganic filter 24 in the filter structure 30 shown in FIG. 6 is the inorganic filter 24 shown in FIG. 5, the description is abbreviate | omitted.
 図6に示すように、フィルター構造体30は、無機フィルター24の両側の主面に、補強部材32を積層してなる構成を有する。
 補強部材32は、多数の貫通路32aを有する板状の部材である。貫通路32aは、被濾過物を無機フィルター24に供給するための通路であり、また、無機フィルター24にて濾過した被濾過物を通過させるための通路である。
 このように、無機フィルター24の両面に補強部材32を配置して、補強部材32で無機フィルター24を挟む構成とすることで、圧力を高くして濾過操作を行う場合に、加わる圧力により無機フィルター24が割れることを防止できる。
As shown in FIG. 6, the filter structure 30 has a configuration in which reinforcing members 32 are laminated on the main surfaces on both sides of the inorganic filter 24.
The reinforcing member 32 is a plate-like member having a large number of through passages 32a. The through passage 32 a is a passage for supplying the material to be filtered to the inorganic filter 24, and is a passage for allowing the material to be filtered filtered by the inorganic filter 24 to pass therethrough.
As described above, the reinforcing member 32 is arranged on both surfaces of the inorganic filter 24 and the inorganic filter 24 is sandwiched between the reinforcing members 32, so that when the pressure is increased and the filtration operation is performed, the inorganic filter is applied by the applied pressure. 24 can be prevented from cracking.
 補強部材32の材質は、濾過操作の際の無機フィルターの割れ等を防止できれば、特に限定はなく、金属、非金属いずれの素材も各種利用可能である。補強部材32の素材としては、具体的には、例えば、金属としては、鉄、アルミニウム、ステンレス、亜鉛、銅、真鍮、チタン等が挙げられる。また、樹脂としては、ポリプロピレン、ポリエチレン、PET、ポリカーボネート、ポリ塩化ビニル、CFRTP(炭素繊維複合熱可塑性樹脂)等が挙げられる。 The material of the reinforcing member 32 is not particularly limited as long as it can prevent cracking of the inorganic filter during the filtration operation, and various materials such as metal and non-metal can be used. Specific examples of the material of the reinforcing member 32 include, for example, iron, aluminum, stainless steel, zinc, copper, brass, and titanium as the metal. Examples of the resin include polypropylene, polyethylene, PET, polycarbonate, polyvinyl chloride, and CFRTP (carbon fiber composite thermoplastic resin).
 補強部材32の厚さは、無機フィルターの割れ等を防止できれば、特に限定はないが、0.1mm~10mmが好ましい。
 また、補強部材32に形成される貫通路32aの大きさや、形成する数等には特に限定はなく、被濾過物の流れを抑制せず、かつ、無機フィルターの割れを防止できればよい。上記観点から、貫通路32aの直径は、0.35mm~20.0mmであるのが好ましく、開口率は、9~60%であるのが好ましい。
 また、貫通路32aの開口部の形状にも特に限定はなく、円形状、三角形状、四角形状、菱形、多角形状、楕円形状、十字形状等の種々の形状が利用可能である。
The thickness of the reinforcing member 32 is not particularly limited as long as the inorganic filter can be prevented from cracking, but is preferably 0.1 mm to 10 mm.
Moreover, there is no limitation in particular in the magnitude | size of the penetration path 32a formed in the reinforcement member 32, the number to form, etc., The flow of a to-be-filtered material should not be suppressed, and the crack of an inorganic filter should just be prevented. From the above viewpoint, the diameter of the through passage 32a is preferably 0.35 mm to 20.0 mm, and the aperture ratio is preferably 9 to 60%.
The shape of the opening of the through passage 32a is not particularly limited, and various shapes such as a circular shape, a triangular shape, a quadrangular shape, a rhombus, a polygonal shape, an elliptical shape, and a cross shape can be used.
 また、無機フィルター24と補強部材32との固定方法には特に限定はなく、例えば、接着剤による接着、ネジ止め、無機フィルター24の無機結着剤18を利用した補強部材との結着等の種々の固定方法が利用可能である。 The fixing method of the inorganic filter 24 and the reinforcing member 32 is not particularly limited. For example, bonding with an adhesive, screwing, binding with the reinforcing member using the inorganic binder 18 of the inorganic filter 24, and the like. Various fixing methods are available.
 なお、図6に示す例では、無機フィルター24の両面に補強部材32を配置する構成としたが、これに限定はされず、無機フィルター24のいずれか一方の主面側のみに配置する構成としてもよい。
 また、図6に示すフィルター構造体30は、支持体14の貫通孔14b中に無機粒子層12aが形成される無機フィルター24を有する構成としたが、これに限定はされず、本発明の無機フィルターいずれにも適用可能である。
In the example shown in FIG. 6, the reinforcing members 32 are arranged on both surfaces of the inorganic filter 24, but the present invention is not limited to this, and the arrangement is made only on one main surface side of the inorganic filter 24. Also good.
Further, the filter structure 30 shown in FIG. 6 has the inorganic filter 24 in which the inorganic particle layer 12a is formed in the through-hole 14b of the support 14, but is not limited thereto, and the inorganic structure of the present invention is not limited thereto. Applicable to any filter.
 次に、本発明の無機フィルターの各構成について、材料、形成方法等を説明する。 Next, materials, formation methods and the like will be described for each configuration of the inorganic filter of the present invention.
 〔支持体〕
 本発明の無機フィルターが有する支持体の材料としては特に限定されず、金属、非金属いずれの素材が各種利用可能である。上記支持体の材料は、使用目的や、濾過対象物に応じて、また、耐熱性、耐食性、可撓性等の観点から、適宜選択すればよい。
 また、上記支持体は、上記材料の板状(フィルム状)の部材に多数の貫通路(貫通孔)を形成したものであってもよいし、上記材料の線材を編みこんで網状に形成したもの(メッシュ)であってもよい。
[Support]
The material of the support that the inorganic filter of the present invention has is not particularly limited, and various materials such as metal and nonmetal can be used. The material of the support may be appropriately selected according to the purpose of use and the object to be filtered, and from the viewpoints of heat resistance, corrosion resistance, flexibility, and the like.
The support may be a plate-like (film-like) member of the material formed with a large number of through passages (through-holes), or a braided wire of the material is formed in a net shape. It may be a thing (mesh).
 上記支持体をメッシュ状とする場合には、線材の径は、10μm~1000μmであるのが好ましい。また、開口率は、20%~80%であるのが好ましい。 When the support is made into a mesh, the diameter of the wire is preferably 10 μm to 1000 μm. The aperture ratio is preferably 20% to 80%.
 上記支持体の素材として用いられる金属としては、具体的には、例えば、アルミニウム、金、銀、銅、タンタル、ニオブ、チタン、ハフニウム、ジルコニウム、亜鉛、タングステン、ビスマス、アンチモン等が挙げられる。
 中でも、加工性、強度および可撓性にも優れる理由から、アルミニウム(アルミニウム合金)であるのが好ましい。
 また、上記支持体の素材として用いられる樹脂としては、具体的には、例えば、ガラス、炭素、ナイロン、PET、PEN、アクリル、ビニロン、ポリオレフィン、ポリウレタン等が用いられる。
Specific examples of the metal used as the material for the support include aluminum, gold, silver, copper, tantalum, niobium, titanium, hafnium, zirconium, zinc, tungsten, bismuth, and antimony.
Among these, aluminum (aluminum alloy) is preferable because it is excellent in workability, strength, and flexibility.
Specific examples of the resin used as the material for the support include glass, carbon, nylon, PET, PEN, acrylic, vinylon, polyolefin, and polyurethane.
 〔無機粒子層〕
 前述のとおり、無機粒子層は、平均粒子径が0.01μm以上の無機粒子と、無機結着剤とを含有する層である。また、無機粒子層の空隙率は10~70%である。
 次に、上記無機粒子層に含まれる無機粒子および無機結着剤について詳述する。
[Inorganic particle layer]
As described above, the inorganic particle layer is a layer containing inorganic particles having an average particle diameter of 0.01 μm or more and an inorganic binder. The porosity of the inorganic particle layer is 10 to 70%.
Next, the inorganic particles and the inorganic binder contained in the inorganic particle layer will be described in detail.
 <無機粒子>
 上記無機粒子層が含有する無機粒子は、平均粒子径が0.01μm以上の粒子である。
 上記無機粒子の種類は特に限定されず、従来公知の酸化物(例えば、金属酸化物など)、窒化物(例えば、金属窒化物)、水酸化物(例えば、金属水酸化物など)、無機塩(例えば、リン酸塩、炭酸塩、硫酸塩など)、炭化物(例えば、金属炭化物)、金属などを用いることができる。
 ここで、平均粒子径とは、上記無機粒子の粒子径の平均値をいい、本発明においては、レーザー回折式粒度分布測定装置を用い、光散乱法により測定された50%体積累積径(D50)をいう。
<Inorganic particles>
The inorganic particles contained in the inorganic particle layer are particles having an average particle diameter of 0.01 μm or more.
The kind of the inorganic particles is not particularly limited, and conventionally known oxides (for example, metal oxides), nitrides (for example, metal nitrides), hydroxides (for example, metal hydroxides), inorganic salts (For example, phosphate, carbonate, sulfate, etc.), carbide (eg, metal carbide), metal, or the like can be used.
Here, the average particle diameter means an average value of the particle diameters of the inorganic particles. In the present invention, a 50% volume cumulative diameter (D50) measured by a light scattering method using a laser diffraction particle size distribution measuring device. ).
 上記無機粒子の平均粒子径は、可撓性、濾過量、加工性、強度等の観点から、0.01~100μmが好ましく、0.05~100μmがより好ましく、0.1~50μmが特に好ましい。 The average particle diameter of the inorganic particles is preferably 0.01 to 100 μm, more preferably 0.05 to 100 μm, and particularly preferably 0.1 to 50 μm from the viewpoints of flexibility, filtration amount, workability, strength, and the like. .
 上記無機粒子としては、具体的には、例えば、酸化アルミニウム(アルミナ)、窒化アルミニウム、窒化ホウ素、窒化ケイ素、酸化ケイ素、炭化ケイ素、酸化チタン、窒化チタン、酸化ジルコニウム、酸化イットリウム、カルシウムリン酸塩、グラファイト(石墨)、炭化タングステン、シリコンパーバイト、水酸化アルミニウム、水酸化カルシウム、炭酸カルシウム、方解石、カルシウムカーボネート、軽質炭酸カルシウム、重質炭酸カルシウム、極微細炭酸カルシウム、石膏、硫酸カルシウム、大理石、硫酸バリウム、炭酸バリウム、酸化マグネシウム、炭酸マグネシウム、水酸化マグネシウム、炭酸ストロンチウム、金、銀、アルミニウム、カオリンクレー、焼成クレー、タルク、セリサイト、光学ガラス、ガラスビーズ等が挙げられ、これらを1種単独で用いてもよく、2種以上を併用してもよい。 Specific examples of the inorganic particles include aluminum oxide (alumina), aluminum nitride, boron nitride, silicon nitride, silicon oxide, silicon carbide, titanium oxide, titanium nitride, zirconium oxide, yttrium oxide, and calcium phosphate. , Graphite, tungsten carbide, silicon parbite, aluminum hydroxide, calcium hydroxide, calcium carbonate, calcite, calcium carbonate, light calcium carbonate, heavy calcium carbonate, ultrafine calcium carbonate, gypsum, calcium sulfate, marble, Barium sulfate, barium carbonate, magnesium oxide, magnesium carbonate, magnesium hydroxide, strontium carbonate, gold, silver, aluminum, kaolin clay, calcined clay, talc, sericite, optical glass, glass beads, etc. , May be used those either alone, or in combination of two or more.
 本発明においては、汎用性が高いことによる粒径制御の容易性の観点から、上記無機粒子として、アルミナ、窒化アルミニウム、窒化ホウ素、酸化ケイ素、窒化ケイ素、酸化チタン、窒化チタン、酸化ジルコニウム、酸化イットリウム、カルシウムリン酸塩、グラファイト、炭化タングステン、および、シリコンカーバイトを用いることが好ましい。 In the present invention, from the viewpoint of ease of particle size control due to high versatility, the inorganic particles include alumina, aluminum nitride, boron nitride, silicon oxide, silicon nitride, titanium oxide, titanium nitride, zirconium oxide, and oxidation. It is preferable to use yttrium, calcium phosphate, graphite, tungsten carbide, and silicon carbide.
 本発明においては、上記無機粒子として、2種類以上の粒子や、2種類以上の平均粒子径を有する粒子を併用してもよい。
 種類や平均粒子径の異なる粒子を併用することにより、上記無機フィルターの強度、可撓性の向上を図ることができる。
In the present invention, two or more kinds of particles or two or more kinds of particles having an average particle diameter may be used in combination as the inorganic particles.
By using particles having different types and average particle sizes in combination, the strength and flexibility of the inorganic filter can be improved.
 また、本発明においては、上記無機粒子の形状は特に限定はされず、例えば、球状、多面体状(例えば、20面体状、12面体状等)、立方体状、4面体状、表面に凹凸状ないし凸状の突起を複数有する形状(以下、「コンペイトウ形状」ともいう。)、板状、針状等いずれであってもよい。 In the present invention, the shape of the inorganic particles is not particularly limited. For example, the shape is spherical, polyhedral (for example, icosahedron, dodecahedron, etc.), cubic, tetrahedral, or uneven on the surface. It may be any shape having a plurality of convex protrusions (hereinafter also referred to as “compete shape”), a plate shape, a needle shape, or the like.
 <無機結着剤>
 上記無機粒子層が含有する無機結着剤はリン酸アルミニウム、ケイ酸ナトリウムおよび塩化アルミニウムからなる群から選択される少なくとも1種を含むものである。
<Inorganic binder>
The inorganic binder contained in the inorganic particle layer contains at least one selected from the group consisting of aluminum phosphate, sodium silicate and aluminum chloride.
 (リン酸アルミニウム)
 上記リン酸アルミニウムは、狭義のリン酸アルミニウムだけではなく、リン酸アルミニウムの他に、例えば、メタリン酸アルミニウム、オルトリン酸アルミニウム、ポリリン酸アルミニウム等が挙げられる。
 また、上記リン酸アルミニウムとしては、市販のリン酸と市販の硫酸アルミニウム(または、水酸化アルミニウム、塩化アルミニウム、および、これらの混合物)とを水の存在下で反応させて得ることができる。さらに、塩化アルミニウムは水酸化アルミニウムの反応を触媒的に進行させる役割を有すると考えられるため、上記反応においては、水酸化アルミニウムと塩化アルミニウムの両方を添加することが好ましく、塩化アルミニウムの量が水酸化アルミニウムの量に対して、5~10%であることが好ましい。なお、反応物の中和が必要な場合は水酸化ナトリウム溶液を用いることができ、硫酸アルミニウムは、硫酸とアルミナとを反応させて製造してもよい。
(Aluminum phosphate)
Examples of the aluminum phosphate include not only aluminum phosphate in a narrow sense but also aluminum metaphosphate, aluminum orthophosphate, and aluminum polyphosphate in addition to aluminum phosphate.
The aluminum phosphate can be obtained by reacting commercially available phosphoric acid and commercially available aluminum sulfate (or aluminum hydroxide, aluminum chloride, and a mixture thereof) in the presence of water. Furthermore, since aluminum chloride is considered to have a role of causing the reaction of aluminum hydroxide to proceed catalytically, it is preferable to add both aluminum hydroxide and aluminum chloride in the above reaction, and the amount of aluminum chloride is water. It is preferably 5 to 10% with respect to the amount of aluminum oxide. When neutralization of the reactant is necessary, a sodium hydroxide solution can be used, and aluminum sulfate may be produced by reacting sulfuric acid and alumina.
 (ケイ酸ナトリウム)
 上記ケイ酸ナトリウムは、ケイ酸ソーダまたは水ガラスとも呼ばれるものであり、メタケイ酸のナトリウム塩であるNa2SiO3が一般的だが、その他に、Na4SiO4、Na2Si25、Na2Si49なども用いることができる。
 メタケイ酸のナトリウム塩は、二酸化ケイ素を炭酸ナトリウムまたは水酸化ナトリウムと融解して得ることができる。
(Sodium silicate)
The above-mentioned sodium silicate is also called sodium silicate or water glass, and Na 2 SiO 3, which is a sodium salt of metasilicate, is commonly used. In addition, Na 4 SiO 4 , Na 2 Si 2 O 5 , Na 2 Si 4 O 9 or the like can also be used.
The sodium salt of metasilicic acid can be obtained by melting silicon dioxide with sodium carbonate or sodium hydroxide.
 (塩化アルミニウム)
 上記塩化アルミニウムは、無水塩化アルミニウム、塩化アルミニウム6水和物、ポリ塩化アルミニウム(水酸化アルミニウムを塩酸に溶解させて生成する塩基性塩化アルミニウムの重合体)のいずれであってもよい。
(Aluminum chloride)
The aluminum chloride may be any of anhydrous aluminum chloride, aluminum chloride hexahydrate, and polyaluminum chloride (a polymer of basic aluminum chloride formed by dissolving aluminum hydroxide in hydrochloric acid).
 上記無機粒子層における無機結着剤および無機粒子の含有割合に関して、無機粒子100質量部に対して、無機結着剤を5~100質量部含有しているのが好ましく、10~50質量部がより好ましい。
 更に、無機粒子層には、無機結着剤および無機粒子以外に、他の化合物を含有してもよい。他の化合物としては、例えば、分散剤、反応促進剤等が挙げられる。
Regarding the content ratio of the inorganic binder and the inorganic particles in the inorganic particle layer, the inorganic binder is preferably contained in an amount of 5 to 100 parts by mass with respect to 100 parts by mass of the inorganic particles. More preferred.
Furthermore, the inorganic particle layer may contain other compounds in addition to the inorganic binder and the inorganic particles. Examples of other compounds include a dispersant and a reaction accelerator.
 <無機粒子層の形成方法>
 本発明においては、上記無機粒子層の形成方法は特に限定されず、例えば、上記支持体の表面上に、上記無機粒子と無機結着剤とを含有する塗布液(組成物)をスクリーン印刷等により塗布し、乾燥させる方法等により形成することができ、例えば、国際公開第2012/133173号の[0021]~[0023]に記載された方法等が挙げられる。
<Method for forming inorganic particle layer>
In the present invention, the method for forming the inorganic particle layer is not particularly limited. For example, the coating liquid (composition) containing the inorganic particles and the inorganic binder is screen printed on the surface of the support. For example, the methods described in [0021] to [0023] of International Publication No. 2012/133173 may be used.
 ここで、塗布液中の上記無機粒子と上記無機結着剤との割合を調整することにより、上記無機粒子層の空隙率を調整することができる。
 また、上記無機粒子層を形成する際に、上記無機粒子と上記無機結着剤とを含有する塗布液を上記支持体の表面上に形成した後に、まず、低温で乾燥風を当てて、塗膜中の水分の一部を除去(蒸発)して濃縮し、次に、所定の温度に加熱して焼成する方法等により形成することでも、焼成後の無機粒子層中の空隙の割合を調整することができる。
Here, the porosity of the inorganic particle layer can be adjusted by adjusting the ratio of the inorganic particles and the inorganic binder in the coating solution.
Further, when forming the inorganic particle layer, after forming a coating liquid containing the inorganic particles and the inorganic binder on the surface of the support, first, coating is performed by applying dry air at a low temperature. The proportion of voids in the inorganic particle layer after firing can also be adjusted by removing (evaporating) some of the moisture in the film, concentrating it, and then forming it by heating to a predetermined temperature and firing. can do.
 また、図5に示す無機フィルターのように無機粒子層を支持体の貫通孔内に形成する場合には、支持体上に塗布液を塗布した後に、塗布液側から圧力を加えて、塗布液を貫通孔中に圧入して、乾燥させることにより形成することができる。 In the case where the inorganic particle layer is formed in the through hole of the support as in the inorganic filter shown in FIG. 5, after applying the coating liquid on the support, pressure is applied from the coating liquid side to apply the coating liquid. Can be formed by press-fitting into the through hole and drying.
 また、図4に示す無機フィルターのように支持体を有さない構成とする場合には、例えば、上記無機粒子および上記無機結着剤を含む塗布液を仮支持体の表面上にスクリーン印刷等により塗布した後、乾燥・焼成して硬化させて無機粒子層を形成する。その後、仮支持体と無機粒子層とを剥離させることにより形成することができる。
 仮支持体の材料としては、例えば、銅、鉄、チタン等のアルミニウムを含まない金属基板、またはPET、PPS、PI、PTFE、PAI、シリコン樹脂が挙げられる。
Moreover, when it is set as the structure which does not have a support body like the inorganic filter shown in FIG. 4, for example, the printing liquid containing the said inorganic particle and the said inorganic binder is screen-printed on the surface of a temporary support body etc. After coating, the inorganic particle layer is formed by drying, firing and curing. Then, it can form by peeling a temporary support body and an inorganic particle layer.
Examples of the material for the temporary support include metal substrates that do not contain aluminum such as copper, iron, and titanium, or PET, PPS, PI, PTFE, PAI, and silicon resin.
 また、上記無機粒子と上記無機結着剤とを含有する塗布液の粘度は、100cP~50000cPであるのが好ましい。
 塗布液の粘度を上記範囲とすることにより、塗布液を支持体上に塗布する際に、塗布液が貫通路内に流れ落ちずに、無機粒子層を支持体上に形成することができる。
 また、無機粒子層を支持体の貫通孔内に形成する場合にも、塗布液が貫通孔から流れ落ちずに、無機粒子層を貫通孔内に形成することができる。
The viscosity of the coating solution containing the inorganic particles and the inorganic binder is preferably 100 cP to 50000 cP.
By setting the viscosity of the coating solution in the above range, the inorganic particle layer can be formed on the support without the coating solution flowing down into the through path when the coating solution is applied onto the support.
Moreover, also when forming an inorganic particle layer in the through-hole of a support body, an inorganic particle layer can be formed in a through-hole, without a coating liquid flowing down from a through-hole.
 以上、本発明の無機フィルターについて詳細に説明したが、本発明は上述の例に限定はされず、本発明の要旨を逸脱しない範囲において、各種の改良や変更を行ってもよいのは、もちろんである。 The inorganic filter of the present invention has been described in detail above. However, the present invention is not limited to the above-described example, and various improvements and modifications may be made without departing from the scope of the present invention. It is.
 以下に実施例を示して本発明を具体的に説明する。ただし、本発明はこれらに限定されない。 Hereinafter, the present invention will be specifically described with reference to examples. However, the present invention is not limited to these.
[実施例1]
 実施例1として、図1に示す構成の無機フィルターを作製した。
[Example 1]
As Example 1, an inorganic filter having the configuration shown in FIG.
 〔支持体〕
 支持体として、大きさ100×100mm、メッシュ径100μm、ワイヤ径100μmのアルミニウムメッシュ(株式会社くればあ製)をメタノール脱脂処理した支持体Aを用いた。
[Support]
As a support, a support A obtained by methanol degreasing of an aluminum mesh having a size of 100 × 100 mm, a mesh diameter of 100 μm, and a wire diameter of 100 μm (manufactured by KUBA Co., Ltd.) was used.
 〔無機粒子層〕
 下記の組成比で調製した無機粒子層の塗布液Aを、乾燥・焼成後の厚さが40μmとなるように上記支持体の一方の主面の全面に塗布し、220℃で30分間加熱し、乾燥・焼成して無機粒子層を形成し、無機フィルターを作製した。
 塗布液Aを焼成して得られる無機粒子層の無機結着剤はリン酸アルミニウムである。
 また、無機粒子層の空隙率を測定したところ、空隙率は20%であった。
[Inorganic particle layer]
The inorganic particle layer coating liquid A prepared at the following composition ratio is applied to the entire surface of one of the main surfaces of the support so that the thickness after drying and baking is 40 μm, and heated at 220 ° C. for 30 minutes. Then, drying and baking were performed to form an inorganic particle layer, and an inorganic filter was produced.
The inorganic binder of the inorganic particle layer obtained by baking the coating liquid A is aluminum phosphate.
Moreover, when the porosity of the inorganic particle layer was measured, the porosity was 20%.
 <塗布液Aの調製>
 下記組成のバインダー液Aを調製した。
 ・リン酸85% (和光純薬工業株式会社製)    48g
 ・水酸化アルミニウム(和光純薬工業株式会社製)  11g
 ・水                       41g
<Preparation of coating liquid A>
A binder liquid A having the following composition was prepared.
・ Phosphoric acid 85% (Wako Pure Chemical Industries, Ltd.) 48g
・ Aluminum hydroxide (Wako Pure Chemical Industries, Ltd.) 11g
・ Water 41g
 次いで、バインダー液Aに、無機粒子として酸化アルミニウム(昭和電工株式会社製:Al-160SG-3、平均粒子径0.1μm)を100g、添加し、撹拌することにより、塗布液Aを調製した。 Next, 100 g of aluminum oxide (manufactured by Showa Denko KK: Al-160SG-3, average particle size of 0.1 μm) as inorganic particles was added to the binder liquid A and stirred to prepare a coating liquid A.
[実施例2]
 無機粒子の平均粒子径を1.5μmに変更した以外は、実施例1と同様にして無機フィルターを作製した。
 作製した無機粒子層の空隙率を測定したところ、空隙率は30%であった。
[Example 2]
An inorganic filter was produced in the same manner as in Example 1 except that the average particle diameter of the inorganic particles was changed to 1.5 μm.
When the porosity of the produced inorganic particle layer was measured, the porosity was 30%.
[実施例3]
 無機粒子の平均粒子径を5μmに変更し、支持体をメッシュ径120μm、ワイヤ径100μmのアルミニウムメッシュ(株式会社くればあ製)の支持体Bに変更した以外は、実施例1と同様にして無機フィルターを作製した。
 作製した無機粒子層の空隙率を測定したところ、空隙率は55%であった。
[Example 3]
Except for changing the average particle size of the inorganic particles to 5 μm and changing the support to a support B of an aluminum mesh (made by KURAA Co., Ltd.) having a mesh diameter of 120 μm and a wire diameter of 100 μm, the same as in Example 1. An inorganic filter was produced.
When the porosity of the produced inorganic particle layer was measured, the porosity was 55%.
[実施例4]
 無機粒子をカルシウムリン酸塩(純正化学株式会社製:リン酸水素カルシウム二水和物#84110-0401、平均粒子径1.5μm)に変更し、無機結着剤をケイ酸ナトリウムに変更した以外は、実施例2と同様にして無機フィルターを作製した。
 作製した無機粒子層の空隙率を測定したところ、空隙率は20%であった。
 なお、無機結着剤をケイ酸ナトリウムとするため、バインダー液Aに代えて、以下に示す組成比のバインダー液Bを用いた。
[Example 4]
Other than changing the inorganic particles to calcium phosphate (manufactured by Junsei Co., Ltd .: calcium hydrogen phosphate dihydrate # 84110-0401, average particle size 1.5 μm) and changing the inorganic binder to sodium silicate Produced an inorganic filter in the same manner as in Example 2.
When the porosity of the produced inorganic particle layer was measured, the porosity was 20%.
In addition, in order to use an inorganic binder as sodium silicate, it replaced with the binder liquid A and used the binder liquid B of the composition ratio shown below.
 <バインダー液Bの調製>
 下記組成のバインダー液Bを調製した。
 ・3号ケイ酸ソーダ原液 (富山化学工業株式会社製)  100g
 ・水                         10g
<Preparation of binder liquid B>
A binder liquid B having the following composition was prepared.
・ No. 3 sodium silicate undiluted solution (Toyama Chemical Co., Ltd.) 100g
・ Water 10g
[実施例5]
 無機粒子を酸化ジルコニウム(純正化学株式会社製:二酸化ジルコニウム#53130-1501、平均粒子径1.5μm)に変更し、無機結着剤を塩化アルミニウムに変更した以外は、実施例2と同様にして無機フィルターを作製した。
 作製した無機粒子層の空隙率を測定したところ、空隙率は35%であった。
 なお、無機結着剤を塩化アルミニウムとするため、バインダー液Aに代えて、以下に示す組成比のバインダー液Cを用いた。
[Example 5]
Except that the inorganic particles were changed to zirconium oxide (manufactured by Junsei Chemical Co., Ltd .: zirconium dioxide # 53130-1501, average particle size 1.5 μm) and the inorganic binder was changed to aluminum chloride, the same procedure as in Example 2 was performed. An inorganic filter was produced.
When the porosity of the produced inorganic particle layer was measured, the porosity was 35%.
In addition, in order to make an inorganic binder into aluminum chloride, it replaced with the binder liquid A and used the binder liquid C of the composition ratio shown below.
 <バインダー液Cの調製>
 下記組成のバインダー液Cを調製した。
 ・35%塩酸    (和光純薬工業株式会社製)  80g
 ・水酸化アルミニウム(和光純薬工業株式会社製)  10g
 ・水                      10g
<Preparation of binder liquid C>
A binder liquid C having the following composition was prepared.
・ 35% hydrochloric acid (Wako Pure Chemical Industries, Ltd.) 80g
・ Aluminum hydroxide (Wako Pure Chemical Industries, Ltd.) 10g
・ Water 10g
[実施例6]
 支持体を有さず、厚さが異なる以外は、実施例2と同様にして無機フィルターを作製した。
 すなわち、塗布液Aを、乾燥・焼成後の厚さが500μmとなるように仮支持体上に塗布し、220℃で45分間加熱し、乾燥・焼成して無機粒子層を形成した後、無機粒子層を仮支持体から剥離して無機フィルターを作製した。
 作製した無機粒子層の空隙率を測定したところ、空隙率は30%であった。
[Example 6]
An inorganic filter was produced in the same manner as in Example 2 except that the support was not provided and the thickness was different.
That is, the coating liquid A was coated on a temporary support so that the thickness after drying and firing was 500 μm, heated at 220 ° C. for 45 minutes, dried and fired to form an inorganic particle layer, and then inorganic The particle layer was peeled from the temporary support to produce an inorganic filter.
When the porosity of the produced inorganic particle layer was measured, the porosity was 30%.
[比較例1]
 空隙率を8%とした以外は、実施例2と同様にして無機フィルターを作製した。
[Comparative Example 1]
An inorganic filter was produced in the same manner as in Example 2 except that the porosity was 8%.
[比較例2]
 空隙率を75%とした以外は、実施例2と同様にして無機フィルターを作製した。
[Comparative Example 2]
An inorganic filter was produced in the same manner as in Example 2 except that the porosity was 75%.
[比較例3]
 比較例3として、平均細孔径5μm、空隙率9%、厚さ2000μmのセラミックフィルターを用意した。
[Comparative Example 3]
As Comparative Example 3, a ceramic filter having an average pore diameter of 5 μm, a porosity of 9%, and a thickness of 2000 μm was prepared.
[比較例4]
 比較例4として、平均細孔径を1μm、空隙率を6%とした以外は比較例3と同様のセラミックフィルターを用意した。
[Comparative Example 4]
As Comparative Example 4, a ceramic filter similar to Comparative Example 3 was prepared except that the average pore diameter was 1 μm and the porosity was 6%.
[比較例5]
 比較例5として、平均細孔径を0.2μm、空隙率を8%とした以外は比較例3と同様のセラミックフィルターを用意した。
[Comparative Example 5]
As Comparative Example 5, a ceramic filter similar to Comparative Example 3 was prepared except that the average pore diameter was 0.2 μm and the porosity was 8%.
[比較例6]
 比較例6として、特許文献2(特開2009-50773号公報)の実施例2に記載された方法で作製されたアルミナメンブレンフィルターを用意した。
 厚さは30μm、平均細孔径は0.06μm、空隙率は30%であった。
[Comparative Example 6]
As Comparative Example 6, an alumina membrane filter produced by the method described in Example 2 of Patent Document 2 (Japanese Patent Laid-Open No. 2009-50773) was prepared.
The thickness was 30 μm, the average pore diameter was 0.06 μm, and the porosity was 30%.
 〔評価〕
 作製した無機フィルターおよび、セラミックフィルター、アルミナメンブレンフィルター(以下、まとめてフィルターという)について、以下に示す方法により、可撓性、目詰まりの有無、および、分画性を測定した。これらの結果を表1に示す。
[Evaluation]
The produced inorganic filter, ceramic filter, and alumina membrane filter (hereinafter collectively referred to as a filter) were measured for flexibility, presence or absence of clogging, and fractionation by the following methods. These results are shown in Table 1.
 <可撓性>
 作製したフィルターを直径10mmの鉄の棒に当てて、30°に折り曲げて破損が起きたか否かを観察した。割れ等が見られない場合はA、一部破損した場合はB、割れた場合はC、とした。
<Flexibility>
The prepared filter was applied to an iron rod having a diameter of 10 mm and bent at 30 ° to observe whether or not breakage occurred. A was given when no cracks were observed, B was given when partly broken, and C was given when broken.
 <分画性>
 作製したフィルターのサイズ分画性を検証するため、各フィルターで、以下の水溶液10gの濾過を実施した。
 水溶液として、50nm、500nm、1μm径のシリカ粒子を各10質量%濃度で水に分散したものを用いた。
 濾過前後の水溶液の重量変化から分画率を算出した。分画率は、100%に近いほど水溶液中の粒子がフィルターで除去されていることを示す。
<Fractionation>
In order to verify the size fractionability of the produced filter, the following aqueous solution 10 g was filtered with each filter.
As an aqueous solution, 50 nm, 500 nm, and 1 μm diameter silica particles dispersed in water at a concentration of 10% by mass were used.
The fraction was calculated from the change in weight of the aqueous solution before and after filtration. As the fractionation rate is closer to 100%, particles in the aqueous solution are removed by the filter.
 <目詰まり>
 上記分画性試験中に、フィルターの目詰まり性も評価した。濾過開始直後の1分間当たりの濾過量L1、および、濾過開始後3分後における1分間当たりの濾過量L2をそれぞれ測定し、L2/L1が95%以上の場合をA、70%以上95%未満の場合をB、70%未満の場合をCとした。
<Clogging>
During the fractionation test, the filter clogging was also evaluated. The amount of filtration L1 per minute immediately after the start of filtration and the amount of filtration L2 per minute 3 minutes after the start of filtration are measured, respectively, and when L2 / L1 is 95% or more, A, 70% or more and 95% The case of less than B was designated as B, and the case of less than 70% was designated as C.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 表1に示す結果から、平均粒子径が0.01μm以上である無機粒子と、無機結着剤とを含有する無機粒子層を有し、無機結着剤が、リン酸アルミニウム、ケイ酸ナトリウムおよび塩化アルミニウムからなる群から選択される少なくとも1種であり、無機粒子層の空隙率が10~70%である本発明の実施例1~6は、可撓性、目詰まりともに良好な結果であることがわかる。
 これに対して、無機粒子層の空隙率が10%未満の比較例1は、空隙率が低いので目詰まりが発生しやすく、濾過流量が低下することがわかる。また、無機粒子層の空隙率が70%超の比較例2は、無機粒子層同士の密着性が低下するため、割れやすくなり可撓性に劣ることがわかる。
 また、セラミックフィルターである比較例3~5は、可撓性に劣ることがわかる。また、アルミナメンブレンフィルターである比較例6は、目詰まりが発生し、濾過量に劣ることがわかる。
 また、実施例2と実施例6との対比から、支持体を有することにより、可撓性が向上し好ましいことがわかる。
 以上の結果から本発明の効果は明らかである。
From the results shown in Table 1, it has an inorganic particle layer containing inorganic particles having an average particle diameter of 0.01 μm or more and an inorganic binder, and the inorganic binder is composed of aluminum phosphate, sodium silicate and Examples 1 to 6 of the present invention, which is at least one selected from the group consisting of aluminum chloride and the porosity of the inorganic particle layer is 10 to 70%, are good results in both flexibility and clogging. I understand that.
On the other hand, it can be seen that Comparative Example 1 in which the porosity of the inorganic particle layer is less than 10% is likely to be clogged because the porosity is low, and the filtration flow rate is reduced. Moreover, since the adhesiveness of inorganic particle layers falls in the comparative example 2 with the porosity of an inorganic particle layer exceeding 70%, it turns out that it becomes easy to break and it is inferior to flexibility.
It can also be seen that Comparative Examples 3 to 5 which are ceramic filters are inferior in flexibility. Moreover, it turns out that clogging generate | occur | produces the comparative example 6 which is an alumina membrane filter, and is inferior to the filtration amount.
Further, it can be seen from the comparison between Example 2 and Example 6 that having a support improves the flexibility.
The effects of the present invention are clear from the above results.
 10、20、22、24 無機フィルター
 12、12a 無機粒子層
 14  支持体
 14a 貫通路
 14b 貫通孔
 16  無機粒子
 18  無機結着剤
 
10, 20, 22, 24 Inorganic filter 12, 12a Inorganic particle layer 14 Support 14a Through passage 14b Through hole 16 Inorganic particle 18 Inorganic binder

Claims (7)

  1.  平均粒子径が0.01μm以上である無機粒子と、無機結着剤とを含有する無機粒子層を有し、
     前記無機結着剤が、リン酸アルミニウム、ケイ酸ナトリウムおよび塩化アルミニウムからなる群から選択される少なくとも1種であり、
     前記無機粒子層の空隙率が10~70%である無機フィルター。
    Having an inorganic particle layer containing inorganic particles having an average particle diameter of 0.01 μm or more and an inorganic binder;
    The inorganic binder is at least one selected from the group consisting of aluminum phosphate, sodium silicate and aluminum chloride;
    An inorganic filter in which the porosity of the inorganic particle layer is 10 to 70%.
  2.  厚さ方向に貫通する複数の貫通孔を備える支持体を有し、
     前記無機粒子層は、前記支持体の貫通孔中に形成される請求項1に記載の無機フィルター。
    Having a support having a plurality of through holes penetrating in the thickness direction;
    The inorganic filter according to claim 1, wherein the inorganic particle layer is formed in a through hole of the support.
  3.  厚さ方向に貫通する複数の通路を備える支持体を有し、
     前記無機粒子層は、前記支持体上に積層される請求項1に記載の無機フィルター。
    A support having a plurality of passages penetrating in the thickness direction;
    The inorganic filter according to claim 1, wherein the inorganic particle layer is laminated on the support.
  4.  前記支持体の両面に前記無機粒子層が積層される請求項3に記載の無機フィルター。 The inorganic filter according to claim 3, wherein the inorganic particle layer is laminated on both surfaces of the support.
  5.  前記支持体の材質がアルミニウムである請求項2~4のいずれか1項に記載の無機フィルター。 The inorganic filter according to any one of claims 2 to 4, wherein a material of the support is aluminum.
  6.  前記無機粒子は、酸化物、窒化物、水酸化物、無機塩および炭化物からなる群から選択される少なくとも1種である請求項1~5のいずれか1項に記載の無機フィルター。 The inorganic filter according to any one of claims 1 to 5, wherein the inorganic particles are at least one selected from the group consisting of oxides, nitrides, hydroxides, inorganic salts, and carbides.
  7.  前記無機粒子層の厚みが、10μm~5000μmである請求項1~6のいずれか1項に記載の無機フィルター。
     
    The inorganic filter according to any one of claims 1 to 6, wherein the inorganic particle layer has a thickness of 10 袖 m to 5000 袖 m.
PCT/JP2014/080909 2013-12-27 2014-11-21 Inorganic filter WO2015098386A1 (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2013-272244 2013-12-27
JP2013272244 2013-12-27
JP2014027521 2014-02-17
JP2014-027521 2014-12-10

Publications (1)

Publication Number Publication Date
WO2015098386A1 true WO2015098386A1 (en) 2015-07-02

Family

ID=53478258

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/080909 WO2015098386A1 (en) 2013-12-27 2014-11-21 Inorganic filter

Country Status (2)

Country Link
TW (1) TW201532662A (en)
WO (1) WO2015098386A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11097525B1 (en) 2020-02-03 2021-08-24 Molekule, Inc. Filter media and system and method for manufacture thereof
US11596900B2 (en) 2020-08-31 2023-03-07 Molekule, Inc. Air filter and filter media thereof
US11920828B2 (en) 2017-10-17 2024-03-05 Molekule, Inc. System and method for photoelectrochemical air purification

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6268510A (en) * 1985-09-21 1987-03-28 Nitto Electric Ind Co Ltd Method for preparing ceramics filter material
JPS6467202A (en) * 1987-09-04 1989-03-13 Ngk Insulators Ltd Membrane structure for liquid filtration
JPH0231822A (en) * 1988-07-19 1990-02-01 Ngk Insulators Ltd Production of inorganic porous film
JPH05504929A (en) * 1989-10-12 1993-07-29 ソシエテ・デ・セラミック・テクニック inorganic porous membrane
WO1999001201A1 (en) * 1997-07-03 1999-01-14 Takasago Thermal Engineering Co., Ltd. Air-cleaning filtre, method of producing the same, and high-level cleaning device
JPH11114332A (en) * 1997-10-08 1999-04-27 Akechi Ceramics Kk Production of antibacterial ceramic filter
JP2004188395A (en) * 2002-12-13 2004-07-08 Canon Inc Fluid control device and its production method
JP2009240871A (en) * 2008-03-28 2009-10-22 Ngk Insulators Ltd Ceramic filter and its manufacturing method
JP2012513555A (en) * 2008-12-23 2012-06-14 サン−ゴバン サントル ドゥ ルシェルシェ エ デトゥードゥ ユーロペン Filtration structure having an inlet face and an outlet face with different filling materials

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6268510A (en) * 1985-09-21 1987-03-28 Nitto Electric Ind Co Ltd Method for preparing ceramics filter material
JPS6467202A (en) * 1987-09-04 1989-03-13 Ngk Insulators Ltd Membrane structure for liquid filtration
JPH0231822A (en) * 1988-07-19 1990-02-01 Ngk Insulators Ltd Production of inorganic porous film
JPH05504929A (en) * 1989-10-12 1993-07-29 ソシエテ・デ・セラミック・テクニック inorganic porous membrane
WO1999001201A1 (en) * 1997-07-03 1999-01-14 Takasago Thermal Engineering Co., Ltd. Air-cleaning filtre, method of producing the same, and high-level cleaning device
JPH11114332A (en) * 1997-10-08 1999-04-27 Akechi Ceramics Kk Production of antibacterial ceramic filter
JP2004188395A (en) * 2002-12-13 2004-07-08 Canon Inc Fluid control device and its production method
JP2009240871A (en) * 2008-03-28 2009-10-22 Ngk Insulators Ltd Ceramic filter and its manufacturing method
JP2012513555A (en) * 2008-12-23 2012-06-14 サン−ゴバン サントル ドゥ ルシェルシェ エ デトゥードゥ ユーロペン Filtration structure having an inlet face and an outlet face with different filling materials

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11920828B2 (en) 2017-10-17 2024-03-05 Molekule, Inc. System and method for photoelectrochemical air purification
US11097525B1 (en) 2020-02-03 2021-08-24 Molekule, Inc. Filter media and system and method for manufacture thereof
US11596900B2 (en) 2020-08-31 2023-03-07 Molekule, Inc. Air filter and filter media thereof

Also Published As

Publication number Publication date
TW201532662A (en) 2015-09-01

Similar Documents

Publication Publication Date Title
JP5937569B2 (en) Separation membrane structure made of honeycomb-shaped ceramic
Harabi et al. A new and economic approach to fabricate resistant porous membrane supports using kaolin and CaCO3
Ghouil et al. Development and characterization of tubular composite ceramic membranes using natural alumino-silicates for microfiltration applications
Harabi et al. Production of supports and filtration membranes from Algerian kaolin and limestone
JP6008943B2 (en) Honeycomb-shaped ceramic porous body, manufacturing method thereof, and honeycomb-shaped ceramic separation membrane structure
JP5369035B2 (en) Zeolite honeycomb molded body and zeolite honeycomb fired body
Gu et al. Overcoming the trade-off between water permeation and mechanical strength of ceramic membrane supports by interfacial engineering
JP6046697B2 (en) Honeycomb-shaped ceramic porous body, manufacturing method thereof, and honeycomb-shaped ceramic separation membrane structure
EP3075719B1 (en) Porous material and heat insulating film
WO2015098386A1 (en) Inorganic filter
US20170312696A1 (en) Carbon nanotube membranes
CN108883377B (en) Porous support, method for producing porous support, separation membrane structure, and method for producing separation membrane structure
Boudaira et al. Preparation and characterization of microfi ltration membranes and their supports using kaolin (DD2) and CaCO3
EP3100994A1 (en) Porous plate-shaped filler
CN109310953B (en) Filter comprising a beta-SIC based separation layer
US20160016146A1 (en) Aluminophosphate-metal oxide bonded body and production method for same
JP6349706B2 (en) Manufacturing method of ceramic filter
JP6609547B2 (en) Monolith type separation membrane structure
JP2009220039A (en) Porous film complex structure and manufacturing method of micropore in porous body
WO2016093192A1 (en) Separation membrane structure and method for manufacturing same
JP5718831B2 (en) Alkali-resistant inorganic porous material and method for producing the same
WO2006135195A1 (en) Multipurpose ceramic composition and usage thereof
WO2015115668A1 (en) Porous plate-shaped filler and thermal insulation film
JP6577866B2 (en) Monolith type separation membrane structure and manufacturing method thereof
JPWO2015163249A1 (en) Porous plate filler, method for producing the same, and heat insulating film

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14874534

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14874534

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP