JP2009240871A - Ceramic filter and its manufacturing method - Google Patents

Ceramic filter and its manufacturing method Download PDF

Info

Publication number
JP2009240871A
JP2009240871A JP2008088475A JP2008088475A JP2009240871A JP 2009240871 A JP2009240871 A JP 2009240871A JP 2008088475 A JP2008088475 A JP 2008088475A JP 2008088475 A JP2008088475 A JP 2008088475A JP 2009240871 A JP2009240871 A JP 2009240871A
Authority
JP
Japan
Prior art keywords
particles
base material
average particle
particle diameter
gap filling
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2008088475A
Other languages
Japanese (ja)
Inventor
Masahiro Wakita
昌宏 脇田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NGK Insulators Ltd
Original Assignee
NGK Insulators Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NGK Insulators Ltd filed Critical NGK Insulators Ltd
Priority to JP2008088475A priority Critical patent/JP2009240871A/en
Publication of JP2009240871A publication Critical patent/JP2009240871A/en
Pending legal-status Critical Current

Links

Landscapes

  • Separation Using Semi-Permeable Membranes (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a ceramic filter which is equipped with an NF membrane or a UF membrane and can reduce the number of calcination times to reduce manufacturing cost, and a method of manufacturing this ceramic filter. <P>SOLUTION: The ceramic filter comprises a substrate 111 obtained by sintering substrate particles Q<SB>ij</SB>having an average particle diameter of 2-60 μm, and a gap filling layer 141 embedded to a certain depth from the upper part of the substrate 111 and filling gaps between the substrate particles Q<SB>ij</SB>with gap filling particles Q<SB>rs</SB>having an average particle diameter 1/10-1/7 times that of the substrate particles Q<SB>ij</SB>. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、ナノ濾過膜(NF膜)又は限外濾過膜(UF膜)を有するセラミックフィルタ、及びこのセラミックフィルタの製造方法に関する。   The present invention relates to a ceramic filter having a nanofiltration membrane (NF membrane) or an ultrafiltration membrane (UF membrane), and a method for producing the ceramic filter.

従来から、多孔質基材からなるセラミックエレメントに限外濾過膜(UF膜)を成膜する方法は種々のものが知られている。例えば、柱状形状をなし、この柱状形状の両端面間を軸方向に貫通する複数の流路を有するレンコン状、又は蜂の巣状の一体構造(モノリス)のセラミックエレメントでは、複数の流路のそれぞれの内表面にクロスフロー濾過により、UF膜を形成する方法が知られている(特許文献1〜2を参照)。   Conventionally, various methods for forming an ultrafiltration membrane (UF membrane) on a ceramic element made of a porous substrate are known. For example, in a ceramic element having a columnar shape and having a plurality of flow paths that axially penetrate between both end faces of the columnar shape, or a honeycomb-shaped integrated structure (monolith), each of the plurality of flow paths A method of forming a UF membrane on the inner surface by crossflow filtration is known (see Patent Documents 1 and 2).

国際純正・応用化学連合(IUPAC)の定義によると、0.1μmより大きい粒子や高分子を阻止する濾過膜が「精密濾過膜(MF膜)」、0.1μm〜2nmの範囲の粒子や高分子を阻止する濾過膜が「限外濾過膜(UF膜)」、2nmより小さい程度の粒子や高分子を阻止する濾過膜が「ナノ濾過膜(NF膜)」であり、微細な細孔径を有するフィルタの開発が進められている。しかしながら、細孔径が0.05μm以下のセラミックフィルタになると、セラミック粒子による成形が困難となり、現状では、0.05μm以下の微細な細孔径を実現するためには、複雑な構造と工程が必要である。   According to the definition of the International Union of Pure and Applied Chemistry (IUPAC), filtration membranes that block particles and polymers larger than 0.1 μm are “microfiltration membranes (MF membranes)”, particles in the range of 0.1 μm to 2 nm and high Filter membranes that block molecules are “ultrafiltration membranes (UF membranes)”, and filtration membranes that block particles and polymers that are smaller than 2 nm are “nanofiltration membranes (NF membranes)”. The development of filters is ongoing. However, if the ceramic filter has a pore size of 0.05 μm or less, molding with ceramic particles becomes difficult, and at present, a complicated structure and process are required to achieve a fine pore size of 0.05 μm or less. is there.

図9では、粒径10μmのMF膜となる多孔質基材の表面上に粒径1μmの第1UF膜が中間層として形成され、この中間層の上に粒径0.1μmの第2UF膜を膜層として形成した状態を模式的に示している。図9に示す複層構造の場合、粒径10μmのMF膜となる基材の成形をした後、基材の乾燥をし、その後基材の焼成をし、更に、基材に対し中間層として、粒径1μmの第1UF膜の成膜をし、第1UF膜の乾燥をした後第1UF膜の焼成をし、更に、第1UF膜に対し膜層として、粒径0.1μmの第2UF膜の成膜をし、第2UF膜の乾燥をした後第2UF膜の焼成をするというように焼成回数が増えるため、製造コストが高くなる問題がある。粒子径が均一であれば、粒子間の間隙は、理論上粒子径の1/6〜1/7になるので、粒径0.1μmでは、NF膜は実現できない。   In FIG. 9, a first UF film having a particle diameter of 1 μm is formed as an intermediate layer on the surface of a porous substrate to be an MF film having a particle diameter of 10 μm, and a second UF film having a particle diameter of 0.1 μm is formed on the intermediate layer. The state formed as a film layer is shown typically. In the case of the multilayer structure shown in FIG. 9, after forming the base material to be an MF film having a particle size of 10 μm, the base material is dried, and then the base material is fired, and further, as an intermediate layer with respect to the base material. The first UF film having a particle diameter of 1 μm is formed, the first UF film is dried, and then the first UF film is fired. Further, the second UF film having a particle diameter of 0.1 μm is formed as a film layer on the first UF film. Since the number of firings is increased, such as the second UF film is fired after the second UF film is dried, there is a problem that the manufacturing cost increases. If the particle diameter is uniform, the gap between the particles is theoretically 1/6 to 1/7 of the particle diameter, and therefore an NF film cannot be realized with a particle diameter of 0.1 μm.

図10に示すように、粒子径を順次小さくする傾斜法も知られているが、傾斜法では粒子の調合が難しいという問題がある。
特開平3−267129号公報 特開昭61−238315号公報
As shown in FIG. 10, there is known a gradient method in which the particle diameter is successively reduced, but there is a problem that it is difficult to prepare particles by the gradient method.
JP-A-3-267129 JP-A 61-238315

本発明は、焼成回数の低減が可能で製造コストを低減できる、NF膜若しくはUF膜を備えたセラミックフィルタ、及びこのセラミックフィルタの製造方法を提供することを目的とする。   An object of this invention is to provide the ceramic filter provided with the NF film | membrane or UF film | membrane which can reduce the frequency | count of baking and can reduce manufacturing cost, and the manufacturing method of this ceramic filter.

上記目的を達成するために、本発明の第1の態様は、(イ)平均粒子径2〜60μmの基材粒子を焼結した基材と、(ロ)基材の上部から一定深さに埋め込まれ、基材粒子がなす間隙に、基材粒子の平均粒子径の1/10〜1/7の平均粒子径を有する間隙充填粒子を充填した間隙充填層とを備えるセラミックフィルタであることを要旨とする。   In order to achieve the above object, the first aspect of the present invention includes (a) a base material obtained by sintering base material particles having an average particle diameter of 2 to 60 μm, and (b) a constant depth from the upper part of the base material. It is a ceramic filter provided with a gap filling layer filled with gap filling particles having an average particle diameter of 1/10 to 1/7 of the average particle diameter of the base particles in the gap formed by the base particles. The gist.

本発明の第2の態様は、(イ)クロスフロー濾過法により、平均粒子径2〜60μmの基材粒子を焼結した基材の表面に、基材粒子の平均粒子径の1/10〜1/7の平均粒子径を有する間隙充填粒子を含む成膜コート液を付着させ、基材の表面から基材の内部に浸透させ、間隙充填粒子を基材粒子がなす間隙に充填する付着・充填工程と、(ロ)この付着・充填工程の後、基材の内部に浸透した成膜コート液を乾燥させる乾燥工程と、(ハ)この乾燥工程の後、間隙充填粒子と基材粒子を焼成して、基材の上部から一定深さに、基材粒子がなす間隙に間隙充填粒子が充填した間隙充填層を形成する焼成工程とを含むセラミックフィルタの製造方法であることを要旨とする。   In the second aspect of the present invention, (i) the surface of the base material obtained by sintering the base particles having an average particle diameter of 2 to 60 μm by the cross-flow filtration method is 1/10 to the average particle diameter of the base particles. A film-forming coating liquid containing gap filling particles having an average particle diameter of 1/7 is adhered and penetrated into the inside of the substrate from the surface of the substrate, and the gap filling particles are filled into the gaps formed by the substrate particles. (B) a drying step for drying the film-forming coating solution that has penetrated into the base material after the adhesion / filling step; and (c) after the drying step, the gap filling particles and the base material particles are separated. And a firing process for forming a gap filling layer in which gap filling particles are filled in gaps formed by base material particles at a certain depth from above the base material. .

本発明によれば、焼成回数の低減が可能で製造コストを低減できる、NF膜若しくはUF膜を備えたセラミックフィルタ、及びこのセラミックフィルタの製造方法を提供することができる。   ADVANTAGE OF THE INVENTION According to this invention, the frequency | count of baking can be reduced and the manufacturing cost can be provided, The ceramic filter provided with the NF film | membrane or UF film | membrane, and the manufacturing method of this ceramic filter can be provided.

次に、図面を参照して、本発明の実施の形態を説明する。以下の図面の記載において、同一又は類似の部分には同一又は類似の符号を付している。但し、図面は模式的なものであり、厚みと平面寸法との関係、各層の厚みの比率等は現実のものとは異なることに留意すべきである。したがって、具体的な厚みや寸法は以下の説明を参酌して判断すべきものである。又、図面相互間においても互いの寸法の関係や比率が異なる部分が含まれていることは勿論である。   Next, embodiments of the present invention will be described with reference to the drawings. In the following description of the drawings, the same or similar parts are denoted by the same or similar reference numerals. However, it should be noted that the drawings are schematic, and the relationship between the thickness and the planar dimensions, the ratio of the thickness of each layer, and the like are different from the actual ones. Therefore, specific thicknesses and dimensions should be determined in consideration of the following description. Moreover, it is a matter of course that portions having different dimensional relationships and ratios are included between the drawings.

又、以下に示す本発明の実施の形態は、本発明の技術的思想を具体化するための装置や方法を例示するものであって、本発明の技術的思想は、構成部品の材質、形状、構造、配置等を下記のものに特定するものでない。本発明の技術的思想は、特許請求の範囲に記載された技術的範囲内において、種々の変更を加えることができる。   The following embodiments of the present invention exemplify apparatuses and methods for embodying the technical idea of the present invention. The technical idea of the present invention is based on the material and shape of component parts. The structure, arrangement, etc. are not specified below. The technical idea of the present invention can be variously modified within the technical scope described in the claims.

(セラミックフィルタ)
図2に本発明の実施の形態に係るセラミックフィルタの製造方法によって得られた間隙充填層を用いたセラミックフィルタ11fの一例を説明する。
(Ceramic filter)
FIG. 2 illustrates an example of the ceramic filter 11f using the gap filling layer obtained by the method for manufacturing a ceramic filter according to the embodiment of the present invention.

本発明の実施の形態に係るセラミックフィルタ11fは、隔壁114により画成され軸方向の流体通路を形成する複数の流路(セル)113を有するレンコン状の一体構造(モノリス)を成している。本発明の実施の形態に係るセラミックフィルタ11fでは、流路(セル)113は円形断面を有する。   The ceramic filter 11f according to the embodiment of the present invention has a lotus-like monolithic structure (monolith) having a plurality of flow paths (cells) 113 that are defined by partition walls 114 and form axial fluid passages. . In the ceramic filter 11f according to the embodiment of the present invention, the flow path (cell) 113 has a circular cross section.

図3は、セラミックフィルタ11fの長手方向に沿った断面図の一部拡大図であり、モノリス構造の基材111にレンコン状に設けられた流路(セル)113の内壁に沿って、基材111の表面から上部の一定深さまでに間隙充填層141が埋め込まれている。   FIG. 3 is a partially enlarged view of a cross-sectional view taken along the longitudinal direction of the ceramic filter 11f. Along the inner wall of a flow path (cell) 113 provided in a lotus shape on the base material 111 having a monolith structure, FIG. A gap filling layer 141 is embedded from the surface of 111 to a certain upper depth.

流路(セル)113は、六角断面や四角形断面を有するように形成しても良い。図2に示すような構造によれば、例えば、混合体を入口側端面から流路(セル)113に導入すると、その混合体を構成する一方が、流路(セル)113内壁に形成された間隙充填層141において分離され、多孔質の隔壁114を透過してセラミックフィルタ11fの最外壁から排出されるため、混合体を分離することができる。つまり、セラミックフィルタ11fを構成するの基材111の表面から基材111の上部の一定深さまでに形成された(埋め込まれた)間隙充填層141は、分離膜として利用することができる。 The flow path (cell) 113 may be formed to have a hexagonal cross section or a square cross section. According to the structure shown in FIG. 2, for example, when the mixture is introduced into the flow channel (cell) 113 from the end surface on the inlet side, one of the mixture is formed on the inner wall of the flow channel (cell) 113. Since it is separated in the gap filling layer 141 and passes through the porous partition wall 114 and is discharged from the outermost wall of the ceramic filter 11f, the mixture can be separated. That is, the gap filling layer 141 formed (embedded) from the surface of the base material 111 constituting the ceramic filter 11f to a certain depth above the base material 111 can be used as a separation membrane.

図1は、平均粒子径D1の基材粒子Qijからなる基材111の間隙に、平均粒子径D2の間隙充填粒子Qrsが充填された状態を示す模式的な断面図である。基材粒子Qijの平均粒子径は2〜60μmの範囲で任意に選択可能である。基材粒子Qijの平均粒子径を60μm以上としてもよいが、フィルタとしての分離性能が低下するので、本発明の効果が顕著ではなくなる点で好ましくない。基材粒子Qijの平均粒子径を2μm以下とすることも理論上可能ではあるが、後述するように、間隙充填粒子Qrsの平均粒子径を基材粒子Qijの平均粒子径の1/10〜1/7に選ぶことを考慮すると、工業的な意味で、現状では困難性を増す。しかし、そのような困難性が克服できれば、基材粒子Qijの平均粒子径が2μmであっても構わない。 FIG. 1 is a schematic cross-sectional view showing a state in which gap filling particles Q rs having an average particle diameter D 2 are filled in gaps in a substrate 111 made of base particles Q ij having an average particle diameter D 1 . The average particle diameter of the base particle Q ij can be arbitrarily selected within the range of 2 to 60 μm. The average particle diameter of the base particle Q ij may be 60 μm or more, but the separation performance as a filter is lowered, which is not preferable in that the effect of the present invention is not significant. Although it is theoretically possible to set the average particle size of the base particle Q ij to 2 μm or less, as will be described later, the average particle size of the gap filling particles Q rs is set to 1 / of the average particle size of the base particle Q ij. In consideration of selecting 10 to 1/7, in an industrial sense, difficulty increases at present. However, if such difficulty can be overcome, the average particle diameter of the base particles Q ij may be 2 μm.

冒頭で述べたように、もし基材111を構成する基材粒子Qijの粒子径が均一であれば、基材粒子Qijの間の間隙dは、理論上:
d=1/6D1〜1/7D1 ……(1)
になるので、D2<dとすれば間隙充填粒子Qrsを基材111に充填できる。
As mentioned at the beginning, if the particle diameter of the substrate particles Q ij constituting the substrate 111 is uniform, the gap d between the substrate particles Q ij is theoretically:
d = 1 / 6D 1 to 1 / 7D 1 (1)
Therefore, if D 2 <d, the base material 111 can be filled with the gap filling particles Q rs .

しかしながら、現実には、基材111を構成する基材粒子Qij及び間隙充填粒子Qrsには、それぞれ図4に示すように粒径分布がある。図4に示すように、微粒子の粒径分布は多くの場合、対数正規分布でほぼ近似できる。図4では頻度分布の極大値であるモード径dmodが、累積頻度50%となる平均粒径(メディアン径)D50と等しいと仮定しているが、現実にはdmod=D50ではないことが多い。又、平均粒子径D50が同じであっても、図4(a)に示す粒度分布の標準偏差σ2は図4(b)に示す粒度分布の標準偏差σ1よりも大きい。このため、又図4(a)に示す粒度分布では0.1μm〜0.7−1μmの広い範囲にわたり粒径が分布しているが、図4(b)に示す粒度分布では、0.2μm〜0.6μmの図4(a)に示す粒度分布より狭い範囲の粒度分布となっている。基材粒子Qij及び間隙充填粒子Qrsの粒度分布、即ち、標準偏差を考慮すると、基材粒子Qijの平均粒子径の1/10〜1/7の平均粒子径を有する間隙充填粒子Qrsを用いることが好ましい。 However, in reality, the base material particles Q ij and the gap filling particles Q rs constituting the base material 111 each have a particle size distribution as shown in FIG. As shown in FIG. 4, the particle size distribution of the fine particles can be approximated by a lognormal distribution in many cases. In FIG. 4, it is assumed that the mode diameter d mod which is the maximum value of the frequency distribution is equal to the average particle diameter (median diameter) D 50 at which the cumulative frequency is 50%, but in reality, d mod = D 50 is not satisfied. There are many cases. Even if the average particle diameter D 50 is the same, the standard deviation σ 2 of the particle size distribution shown in FIG. 4A is larger than the standard deviation σ 1 of the particle size distribution shown in FIG. Therefore, in the particle size distribution shown in FIG. 4A, the particle size is distributed over a wide range of 0.1 μm to 0.7-1 μm, but in the particle size distribution shown in FIG. The particle size distribution is narrower than the particle size distribution shown in FIG. Considering the particle size distribution of the base particle Q ij and the gap filling particle Q rs , that is, the standard deviation, the gap filling particle Q having an average particle diameter of 1/10 to 1/7 of the average particle diameter of the base particle Q ij It is preferable to use rs .

表1は、本発明の実施の形態に係るセラミックフィルタの基材111を構成する基材粒子Qijの平均粒子径D1及び基材粒子Qijが提供する平均細孔径d1、間隙充填粒子Qrsの平均粒子径D2及び、平均粒子径D1の基材粒子Qijからなる基材111の間隙に平均粒子径D2の間隙充填粒子Qrsを充填して構成したフィルタ(濾過膜)の平均細孔径d2を、実施例1及び実施例2についてそれぞれ示す。
Table 1 is an average pore diameter d 1, gap filling particles having an average particle diameter D 1 and substrate particles Q ij of substrate particles Q ij constituting the substrate 111 of the ceramic filter according to an embodiment of the present invention provides the average particle diameter D 2 and Q rs, filter constituted by filling the gap filler particles Q rs an average particle diameter D 2 in a gap between the substrate 111 made of base material particles Q ij an average particle diameter D 1 (filtration membrane ) Average pore diameter d 2 is shown for Example 1 and Example 2, respectively.

実施例1においては、基材粒子Qijの平均粒子径D1=2.5μm、平均細孔径d1=0.8μm、間隙充填粒子Qrsの平均粒子径D2=0.29μm、フィルタ(濾過膜)の平均細孔径d2=0.02μmとなっていることが分かる。一方、実施例2においては、基材粒子Qijの平均粒子径D1=47μm、平均細孔径d1=10μm、間隙充填粒子Qrsの平均粒子径D2=5.7μm、フィルタ(濾過膜)の平均細孔径d2=0.15μmとなっていることが分かる。ここで、平均粒子径D1,D2はレーザー回折を利用した光散乱式の粒度分布測定装置で測定し、累積頻度50%となる平均粒径(メディアン径)D50を、平均粒子径として、表1に表記している(したがって、本明細書の「平均粒子径」は、光散乱式の粒度分布測定装置で測定したメディアン径D50を意味するものとする。)。平均粒子径D1,D2の具体的な測定装置は、HORIBA社製、LA−910型のレーザー回折/散乱式粒度分布測定装置である。一方、平均細孔径d1,d2の測定は、島津製作所社製、オートポア9200型の水銀ポロシメーターにより、水銀圧入法で測定した。 In Example 1, the average particle diameter D 1 of the base particle Q ij = 2.5 μm, the average pore diameter d 1 = 0.8 μm, the average particle diameter D 2 of the gap filling particles Q rs = 0.29 μm, the filter ( It can be seen that the average pore diameter d 2 of the filtration membrane) is 0.02 μm. On the other hand, in Example 2, the average particle diameter D 1 of the base particle Q ij = 47 μm, the average pore diameter d 1 = 10 μm, the average particle diameter D 2 of the gap filling particles Q rs = 5.7 μm, and the filter (filtration membrane) ) Average pore diameter d 2 = 0.15 μm. Here, the average particle diameters D 1 and D 2 are measured by a light scattering type particle size distribution measuring apparatus using laser diffraction, and an average particle diameter (median diameter) D 50 that has a cumulative frequency of 50% is defined as an average particle diameter. In Table 1, the “average particle diameter” means the median diameter D 50 measured with a light scattering type particle size distribution measuring device. A specific measuring device for the average particle diameters D 1 and D 2 is a LA-910 type laser diffraction / scattering type particle size distribution measuring device manufactured by HORIBA. On the other hand, the average pore diameters d 1 and d 2 were measured by a mercury intrusion method using an auto pore 9200 type mercury porosimeter manufactured by Shimadzu Corporation.

図5の実線は、実施例1に用いた間隙充填粒子Qrsの粒径分布を示す。平均粒子径D2=0.29μmの対数正規分布になっていることが分かるが、本発明の実施の形態に係る粒度調製により、標準偏差σ1=0.1μm程度になっており、破線で示した従来の粒度調製法による標準タイプの標準偏差σ2=0.25μm程度よりも小さく、粒度分布範囲が狭くなっていることが分かる。従来の粒度調製法による標準タイプの標準偏差σ2は、平均粒子径と同程度乃至60〜70%であるが、本発明の実施の形態に係る粒度調製により、標準偏差σ1が平均粒子径の40%以下、好ましくは35%以下程度にできることが分かる。標準偏差σ1の下限は、現実的には5%程度になるが、理想的には5%以下であってもよい。 The solid line in FIG. 5 shows the particle size distribution of the gap-filling particles Q rs used in Example 1. Although it can be seen that the logarithmic normal distribution has an average particle diameter D 2 = 0.29 μm, the standard deviation σ 1 is about 0.1 μm due to the particle size adjustment according to the embodiment of the present invention. It can be seen that the standard type standard deviation σ 2 by the conventional particle size preparation method shown is smaller than about 0.25 μm, and the particle size distribution range is narrow. The standard deviation σ 2 of the standard type according to the conventional particle size preparation method is about the same as the average particle size or 60 to 70%, but the standard deviation σ 1 is the average particle size by the particle size preparation according to the embodiment of the present invention. It can be seen that it can be reduced to 40% or less, preferably about 35% or less. The lower limit of the standard deviation σ 1 is actually about 5%, but may ideally be 5% or less.

図6の実線は、実施例2に用いた間隙充填粒子Qrsの粒径分布を示す。平均粒子径D2=5.7μmの対数正規分布になっていることが分かるが、本発明の実施の形態に係る粒度調製により、標準偏差σ1=1μm程度になっており、破線で示した従来の粒度調製法による標準タイプの標準偏差σ2=4μm程度よりも小さく、粒度分布範囲が狭くなっていることが分かる。従来の粒度調製法による標準タイプの標準偏差σ2は、平均粒子径と同程度乃至60〜70%であるが、本発明の実施の形態に係る粒度調製により、標準偏差σ1が平均粒子径の20%以下程度にできることが分かる。 The solid line in FIG. 6 shows the particle size distribution of the gap filling particles Q rs used in Example 2. Although it can be seen that the logarithmic normal distribution has an average particle diameter D 2 = 5.7 μm, the standard deviation σ 1 = 1 μm is obtained by the particle size adjustment according to the embodiment of the present invention, which is indicated by a broken line. It can be seen that the standard type standard deviation σ 2 by the conventional particle size preparation method is smaller than about 4 μm, and the particle size distribution range is narrow. The standard deviation σ 2 of the standard type according to the conventional particle size preparation method is about the same as the average particle size or 60 to 70%, but the standard deviation σ 1 is the average particle size by the particle size preparation according to the embodiment of the present invention. It can be seen that it can be reduced to about 20% or less.

図7の実線は、実施例1に用いた基材111を構成する基材粒子Qijの粒径分布を示す。平均粒子径D1=2.5μmの対数正規分布になっていることが分かるが、本発明の実施の形態に係る粒度調製により、標準偏差σ1=0.5μm程度になっており、破線で示した従来の粒度調製法による標準タイプの標準偏差σ2=1。5μm程度よりも小さく、粒度分布範囲が狭くなっており、これにより平均細孔径d1=0.8μmの均一な間隙が提供できることが分かる。従来の粒度調製法による標準タイプの標準偏差σ2は、平均粒子径と同程度乃至60〜70%であるが、本発明の実施の形態に係る粒度調製により、標準偏差σ1が平均粒子径の30%以下程度にできることが分かる。実施例2に用いた基材111を構成する基材粒子Qijの粒径分布は、図示を省略したが、同様に、本発明の実施の形態に係る粒度調製により、従来の粒度調製法による標準タイプの粒度分布範囲が狭くなっており、これにより平均細孔径d1=10μmの均一な間隙が提供できる。 The solid line in FIG. 7 shows the particle size distribution of the base material particles Q ij constituting the base material 111 used in Example 1. Although it can be seen that the logarithmic normal distribution has an average particle diameter D 1 = 2.5 μm, the standard deviation σ 1 is about 0.5 μm by the particle size adjustment according to the embodiment of the present invention. Standard type standard deviation σ 2 = 1 by the conventional particle size preparation method shown is smaller than about 5 μm and the particle size distribution range is narrow, thereby providing a uniform gap with an average pore diameter d 1 = 0.8 μm. I understand that I can do it. The standard deviation σ 2 of the standard type according to the conventional particle size preparation method is about the same as the average particle size or 60 to 70%, but the standard deviation σ 1 is the average particle size by the particle size preparation according to the embodiment of the present invention. It can be seen that it can be reduced to about 30% or less. Although the particle size distribution of the base material particles Q ij constituting the base material 111 used in Example 2 is not shown, similarly, by the particle size adjustment according to the embodiment of the present invention, according to the conventional particle size preparation method. The standard type particle size distribution range is narrow, thereby providing a uniform gap with an average pore diameter d 1 = 10 μm.

本発明の実施の形態に係るセラミックフィルタによれば、表1に示すように、複層構造(図9参照。)や傾斜法(図10参照。)を用いずに、簡単な構造で、NF膜やUF膜が実現できることが分かる。構造が簡単なため、焼成回数の低減が可能で製造コストを低減できる。又、同一材料が使用可能なので、自己焼結が可能であり、耐蝕性が向上するという技術的効果も得られる。   According to the ceramic filter according to the embodiment of the present invention, as shown in Table 1, an NF can be obtained with a simple structure without using a multilayer structure (see FIG. 9) or a gradient method (see FIG. 10). It can be seen that a membrane or a UF membrane can be realized. Since the structure is simple, the number of firings can be reduced and the manufacturing cost can be reduced. Moreover, since the same material can be used, self-sintering is possible, and the technical effect that corrosion resistance is improved is also obtained.

セラミックフィルタ11fの本体となる基材111は、押出し成形等により多孔質材料からなるレンコン形状型フィルタエレメントとして形成されており、多孔質材料としては、耐食性と温度変化による濾過部の細孔径の変化が少ない点や充分な強度が得られる点から、例えば、アルミナを用いることができるが、アルミナ以外にコーディエライト、ムライト、炭化珪素等のセラミックス材料を使用することもできる。   The base material 111 serving as the main body of the ceramic filter 11f is formed as a lotus-shaped filter element made of a porous material by extrusion molding or the like. As the porous material, the corrosion resistance and the change in the pore diameter of the filtration portion due to the temperature change are included. For example, alumina can be used from the viewpoint of a small amount and sufficient strength, but ceramic materials such as cordierite, mullite, and silicon carbide can also be used in addition to alumina.

(クロスフロー濾過装置)
本発明の実施の形態に係るセラミックフィルタの製造方法に用いるクロスフロー濾過装置は、図8に示すように、基材111を収納する成膜チャンバー12と、成膜チャンバー12の上流側となる底部フランジ123bに接続された上流側配管21aと、成膜チャンバー12の下流側となる上部フランジ123aに接続された循環液配管21eと、循環液配管21eにT分岐して接続されるエヤー抜きバルブ18及びリターン配管21fと、成膜チャンバー12の底部フランジ123bから分岐した第1減圧配管21gと、第1減圧配管21gに接続された真空トラップ16と、真空トラップ16に接続された第2減圧配管21h、第2減圧配管21hに接続された真空ポンプと、上流側配管21aにT分岐して接続されるドレイン配管21d及び供給配管21bと、ドレイン配管21dに接続されたドレインバルブ13と、供給配管21bに接続された循環ポンプ14と、循環ポンプ14に接続されたタンク配管21cと、タンク配管21cに接続された循環タンク15とを備える。循環ポンプ14により、成膜コート液は底部フランジ123bからからフランジ123aに送液され、循環液配管21e及びリターン配管21fを介して、成膜コート液が循環タンク15に戻る。この循環を行いながら、第1減圧配管21g、真空トラップ16及び第2減圧配管21hを介して、真空ポンプ17で真空吸引する。真空トラップ16に一定量の基材111を濾過した成膜コート液が貯まったら、循環ポンプ14を停止し、ドレインバルブ13を開けて、上流側配管21a及びドレイン配管21dを介して、成膜コート液を排出する。真空ポンプ17による吸引を停止しても、残圧で余分に濾過されてしまうので、真空トラップ16に一定量の成膜コート液が貯まった時点で、基材111の1次側(循環側)の成膜コート液を排出する。基材111の1次側の成膜コート液を排出させた後、ドレインバルブ13を閉じ、基材111の2次側(濾過側)を真空で保持する。
(Cross flow filtration device)
As shown in FIG. 8, the cross-flow filtration device used in the method for manufacturing a ceramic filter according to the embodiment of the present invention includes a film forming chamber 12 that houses a base material 111 and a bottom portion that is upstream of the film forming chamber 12. An upstream pipe 21a connected to the flange 123b, a circulating liquid pipe 21e connected to the upper flange 123a on the downstream side of the film forming chamber 12, and an air vent valve 18 connected to the circulating liquid pipe 21e in a T-branch manner. And the return pipe 21f, the first decompression pipe 21g branched from the bottom flange 123b of the film forming chamber 12, the vacuum trap 16 connected to the first decompression pipe 21g, and the second decompression pipe 21h connected to the vacuum trap 16. , A vacuum pump connected to the second decompression pipe 21h, and a drain pipe 21 connected to the upstream side pipe 21a by T-branching. And a supply pipe 21b, a drain valve 13 connected to the drain pipe 21d, a circulation pump 14 connected to the supply pipe 21b, a tank pipe 21c connected to the circulation pump 14, and a circulation connected to the tank pipe 21c. A tank 15. The film forming coating liquid is fed from the bottom flange 123b to the flange 123a by the circulation pump 14, and the film forming coating liquid returns to the circulation tank 15 through the circulation liquid pipe 21e and the return pipe 21f. While performing this circulation, vacuum suction is performed by the vacuum pump 17 through the first decompression pipe 21g, the vacuum trap 16, and the second decompression pipe 21h. When a predetermined amount of the film-forming coating solution obtained by filtering the substrate 111 is stored in the vacuum trap 16, the circulation pump 14 is stopped, the drain valve 13 is opened, and the film-forming coating liquid is passed through the upstream pipe 21a and the drain pipe 21d. Drain the liquid. Even if the suction by the vacuum pump 17 is stopped, it is filtered excessively with the residual pressure, so when a certain amount of the film-forming coating solution is stored in the vacuum trap 16, the primary side (circulation side) of the base 111 is obtained. The film-forming coating solution is discharged. After the film forming coating solution on the primary side of the substrate 111 is discharged, the drain valve 13 is closed, and the secondary side (filtration side) of the substrate 111 is held in vacuum.

成膜チャンバー12は基材111を収納する円筒型の収納ケースであり、成膜チャンバー12の上部には円筒型の上部エレメント保持リング122aが、成膜チャンバー12の下部には円筒型の下部エレメント保持リング122bが設けられている。基材111の釉薬シール112aは、O−リング121aにより上部エレメント保持リング122aにより真空密閉状態で固定され、基材111の釉薬シール112bは、O−リング121bにより下部エレメント保持リング122bにより真空密閉状態で固定される。循環液配管21eには流量計F1が設けられ、成膜コート液を送液する際の線速(送液速度)を監視し、制御する。又、成膜チャンバー122の上部には、圧力計P1が接続され、成膜コート液を送液する際の圧力を監視し、制御する。   The film forming chamber 12 is a cylindrical storage case for storing the base material 111. A cylindrical upper element holding ring 122 a is provided above the film forming chamber 12, and a cylindrical lower element is provided below the film forming chamber 12. A retaining ring 122b is provided. The glaze seal 112a of the base material 111 is fixed in a vacuum sealed state by an upper element holding ring 122a by an O-ring 121a, and the glaze seal 112b of the base material 111 is vacuum-sealed by a lower element holding ring 122b by an O-ring 121b. It is fixed with. The circulating fluid pipe 21e is provided with a flow meter F1, and monitors and controls the linear speed (liquid feeding speed) when the film forming coating liquid is fed. Further, a pressure gauge P1 is connected to the upper part of the film forming chamber 122 to monitor and control the pressure when the film forming coating liquid is fed.

クロスフロー濾過時の真空圧、線速及び時間を調整することにより、図3に示した間隙充填層141の基材111の表面からの浸透深さが調製可能である。   The penetration depth from the surface of the base material 111 of the gap filling layer 141 shown in FIG. 3 can be adjusted by adjusting the vacuum pressure, the linear velocity and the time during the cross flow filtration.

(セラミックフィルタの製造方法の概略)
以下に、本発明の実施の形態に係るセラミックフィルタの製造方法の概略を説明する。なお、以下に述べるセラミックフィルタの製造方法は、一例であり、この変形例を含めて、これ以外の種々の製造方法により、実現可能であることは勿論である:
(イ)先ず、モノリス基材を押出し成形で形成する。例えば、粗粒アルミナとアルミニウム金属とを混合した乾式混合物を、アルミナ玉石を用いたトロンメル混合粉砕器で粒度調製をする。更に、押出しを容易にするために、例えばステアリン酸等の潤滑物質を加えても良く、押出し加工品に強度を与え、未焼結体の取り扱いを容易にするために有機結合剤を添加しても良い。そして、例えば、ステアリン酸/エタノール溶液を、水/エチレングリコール/ポリビニルアルコール溶液に加えて攪拌して調製した液体成分を乾式成分に加えた混合物のバッチを、押出し加工機内へ供給し、例えば長さ1000mm、直径30mmの円柱形状をなし、その内部を軸方向に貫通するレンコン状の孔が37個開いたモノリス型の基材111を押出し成形する。
(Outline of ceramic filter manufacturing method)
Below, the outline of the manufacturing method of the ceramic filter which concerns on embodiment of this invention is demonstrated. The method for manufacturing a ceramic filter described below is an example, and it is needless to say that the method can be realized by various other manufacturing methods including this modification example:
(A) First, a monolith substrate is formed by extrusion molding. For example, the particle size of a dry mixture obtained by mixing coarse-grained alumina and aluminum metal is adjusted with a trommel mixed pulverizer using alumina cobblestone. In addition, a lubricant such as stearic acid may be added to facilitate extrusion, and an organic binder may be added to impart strength to the extruded product and facilitate handling of the green body. Also good. For example, a batch of a mixture in which a liquid component prepared by adding a stearic acid / ethanol solution to a water / ethylene glycol / polyvinyl alcohol solution and stirring is added to a dry component is fed into an extruder, for example, length A monolithic base material 111 having a cylindrical shape of 1000 mm and a diameter of 30 mm and having 37 lotus-like holes penetrating the inside in the axial direction is extruded.

(ロ)次に、押出し成形された基材111を少なくとも24時間にわたり徐々に乾燥させ、更に、周期的に秤量することにより、質量が一定に維持されるまで乾燥を維持する。   (B) Next, the extruded base material 111 is gradually dried over at least 24 hours, and further periodically weighed to maintain the drying until the mass is kept constant.

(ハ)更に、乾燥させた基材111を焼成炉に投入し、120℃/h〜200℃/hで1425〜1625℃の焼成温度まで昇温し、焼成温度で12〜24時間保持し、120℃/h〜200℃/hで降温する。   (C) Furthermore, the dried base material 111 is put into a firing furnace, heated to a firing temperature of 1425 to 1625 ° C. at 120 ° C./h to 200 ° C./h, and held at the firing temperature for 12 to 24 hours, The temperature is lowered at 120 ° C./h to 200 ° C./h.

(ニ)一方、粗粒アルミナと純水及び有機バインダーを所定の割合で混合後、アルミナ玉石を用いたトロンメル混合粉砕機で粒度調整する。粒度調整後の成膜原料を所定の水分濃度まで希釈しセラミックゾルからなる成膜コート液を作製する。成膜コート液には、基材粒子の平均粒子径の1/10〜1/7の平均粒子径を有する間隙充填粒子が粒度調整されて含まれる。   (D) On the other hand, after mixing coarse alumina, pure water and an organic binder at a predetermined ratio, the particle size is adjusted with a trommel mixing and grinding machine using alumina cobblestone. The film forming raw material after the particle size adjustment is diluted to a predetermined moisture concentration to prepare a film forming coating solution made of ceramic sol. The film-forming coating liquid contains gap-filled particles having an average particle diameter of 1/10 to 1/7 of the average particle diameter of the base particles after particle size adjustment.

(ホ)そして、成膜コート液をクロスフロー濾過法により基材111の流路(セル)113の内壁の表面に露出した基材111の上に付着させるために、基材111を図8に示すクロスフロー濾過装置の成膜チャンバー12内に垂直方向に立てて設置する。クロスフロー濾過は、クロスフロー濾過装置の成膜チャンバー12内に設置した基材111に下から上に送液する。送液速度は、例えば、φ3×37穴の基材111の場合であれば、1L/分で循環させる(線速0.06m/s)ように流量計F1で制御する。循環液(成膜コート液)の循環を行いながら、基材111の2次側(濾過側)から第1減圧配管21g、真空トラップ16及び第2減圧配管21hを介して、真空ポンプ17で真空吸引する。真空吸引により、基材111の表面に、基材粒子の平均粒子径の1/10〜1/7の平均粒子径を有する間隙充填粒子を含む成膜コート液が付着し、更に、基材111の表面から基材111の内部に浸透し、間隙充填粒子が基材粒子がなす間隙に充填される。真空圧は圧力計P1を用いて0.08MPa以上とし、例えば、長さ1m(膜面積0.35m2)の基材111の場合、真空トラップ16に70〜100mL程度濾過液(成膜コート液)が貯まったら、真空ポンプ17を停止し(実際には、真空ポンプ17を動作させながら、第2減圧配管21h中に設けたストップバルブ(図示省略)を閉じれば良い。)、基材111の循環液(成膜コート液)をドレインバルブ13を開けて、上流側配管21a及びドレイン配管21dを介して排出する。真空ポンプ17による吸引を停止しても、残圧で余分に濾過されてしまうので、30〜50mL程度濾過液(成膜コート液)が貯まった時点で、基材111の1次側(循環側)の循環液(成膜コート液)をドレインバルブ13を開けて、排出する。基材111の1次側(循環側)の循環液(成膜コート液)を排出させた後、ドレインバルブ13を閉じ、真空ポンプ17を再度動作させ(実際には、真空ポンプ17を動作したまま維持しておき、第2減圧配管21h中に設けたストップバルブ(図示省略)を開ければ良い。)、基材111の2次側(濾過側)の真空保持を約10分間行う。基材111の真空保持が終了した後に、基材111をクロスフロー濾過装置から取出す。 (E) Then, in order to deposit the film-forming coating liquid on the base material 111 exposed on the surface of the inner wall of the flow path (cell) 113 of the base material 111 by the cross-flow filtration method, the base material 111 is shown in FIG. It is installed vertically in the film forming chamber 12 of the crossflow filtration apparatus shown. In the cross flow filtration, the liquid is fed from the bottom up to the base material 111 installed in the film forming chamber 12 of the cross flow filtration apparatus. For example, in the case of the substrate 111 having a diameter of 3 × 37 holes, the liquid feeding speed is controlled by the flow meter F1 so as to circulate at 1 L / min (linear speed 0.06 m / s). While circulating the circulating liquid (film forming coating liquid), the vacuum is pumped by the vacuum pump 17 from the secondary side (filtration side) of the substrate 111 through the first pressure reducing pipe 21g, the vacuum trap 16 and the second pressure reducing pipe 21h. Suction. By vacuum suction, a film-forming coating liquid containing gap filling particles having an average particle diameter of 1/10 to 1/7 of the average particle diameter of the substrate particles adheres to the surface of the substrate 111. The base material 111 penetrates into the inside of the substrate 111, and the gap filling particles are filled in the gaps formed by the base material particles. The vacuum pressure is set to 0.08 MPa or more using the pressure gauge P1. For example, in the case of the substrate 111 having a length of 1 m (membrane area 0.35 m 2 ), about 70 to 100 mL of filtrate (film-forming coating solution) is placed in the vacuum trap 16. ) Is stored, the vacuum pump 17 is stopped (actually, a stop valve (not shown) provided in the second decompression pipe 21h may be closed while the vacuum pump 17 is operated), and the base 111 is removed. The circulating fluid (film formation coating solution) is discharged through the upstream piping 21a and the drain piping 21d by opening the drain valve 13. Even if the suction by the vacuum pump 17 is stopped, it is filtered excessively by the residual pressure. Therefore, when about 30 to 50 mL of filtrate (film formation coating solution) is accumulated, the primary side (circulation side) of the substrate 111 ) Is discharged by opening the drain valve 13. After the primary side (circulation side) circulating liquid (film forming coating liquid) of the substrate 111 was discharged, the drain valve 13 was closed and the vacuum pump 17 was operated again (actually, the vacuum pump 17 was operated). The stop valve (not shown) provided in the second pressure-reducing pipe 21h may be opened, and the secondary side (filtration side) of the base material 111 is vacuum-held for about 10 minutes. After the vacuum holding of the base material 111 is completed, the base material 111 is taken out from the cross flow filtration device.

(ヘ)クロスフロー濾過装置から基材111を取出し、基材111の残液を拭い取った後、基材111を乾燥機(恒温槽)に収納し、乾燥機(恒温槽)を用いた乾燥処理を実施して、基材の内部に浸透した成膜コート液を乾燥させる。乾燥処理は、25〜60℃、湿度45〜55%、好ましくは湿度48〜52%に乾燥機の内部を制御して、20〜30時間行う。   (F) After removing the base material 111 from the cross flow filtration device and wiping off the remaining liquid of the base material 111, the base material 111 is housed in a dryer (constant temperature bath) and dried using a dryer (constant temperature bath). The treatment is carried out to dry the film forming coating solution that has penetrated into the inside of the substrate. The drying treatment is performed for 20 to 30 hours by controlling the inside of the dryer at 25 to 60 ° C. and a humidity of 45 to 55%, preferably a humidity of 48 to 52%.

(ト)乾燥処理の終了後、100〜300℃/hの速度で1850〜1950℃の焼成温度まで基材111を昇温し、焼成温度において基材111を保持時間を45分〜3時間、好ましくは1〜2.5時間程度保持して、間隙充填粒子と基材粒子を焼成した後、100〜300℃/hで基材111を室温まで冷却して基材111を得る。即ち、図3に示すように、基材111の上部から一定深さ(所定の浸透深さ)の表面近傍に、間隙充填層141が形成される(埋め込まれる。)。   (G) After completion of the drying treatment, the temperature of the base material 111 is increased to a firing temperature of 1850 to 1950 ° C. at a rate of 100 to 300 ° C./h, and the holding time of the base material 111 is 45 minutes to 3 hours at the firing temperature. Preferably, the gap filling particles and the base material particles are fired by holding for about 1 to 2.5 hours, and then the base material 111 is cooled to room temperature at 100 to 300 ° C./h to obtain the base material 111. That is, as shown in FIG. 3, the gap filling layer 141 is formed (embedded) in the vicinity of the surface of a certain depth (predetermined penetration depth) from the top of the base material 111.

なお、上記のクロスフロー濾過時の真空圧、線速は一例であり、クロスフロー濾過時の真空圧、線速及び時間を調整することにより、間隙充填層141の基材111の表面からの浸透深さが調製可能である。   In addition, the vacuum pressure and linear velocity at the time of the cross flow filtration described above are examples, and the penetration of the gap filling layer 141 from the surface of the base material 111 by adjusting the vacuum pressure, the linear velocity and the time at the time of cross flow filtration. The depth can be adjusted.

(その他の実施の形態)
上記のように、本発明は上記の実施の形態によって記載したが、この開示の一部をなす論述及び図面は本発明を限定するものであると理解すべきではない。この開示から当業者には様々な代替実施の形態、実施例及び運用技術が明らかとなろう。したがって、本発明の技術的範囲は上記の説明から妥当な特許請求の範囲に係る発明特定事項によってのみ定められるものである。
(Other embodiments)
As described above, the present invention has been described according to the above-described embodiments. However, it should not be understood that the description and drawings constituting a part of this disclosure limit the present invention. From this disclosure, various alternative embodiments, examples, and operational techniques will be apparent to those skilled in the art. Accordingly, the technical scope of the present invention is defined only by the invention specifying matters according to the scope of claims reasonable from the above description.

本発明の実施の形態に係るセラミックフィルタにおいて、基材の間隙に、基材を構成する基材粒子よりも平均粒子径の小さな間隙充填粒子が充填されたミクロな構造を説明する模式的な拡大断面図である。The ceramic filter which concerns on embodiment of this invention WHEREIN: The typical expansion explaining the micro structure where the gap | interval of the base material was filled with the space | gap filling particle | grains with an average particle diameter smaller than the base material particle | grains which comprise a base material. It is sectional drawing. 本発明の実施の形態に係るセラミックフィルタの概略構造を説明する鳥瞰図である。It is a bird's-eye view explaining the schematic structure of the ceramic filter which concerns on embodiment of this invention. 本発明の実施の形態に係るセラミックフィルタの長手方向に沿った断面の一部拡大図であり、モノリス構造の基材にレンコン状に設けられた流路(セル)の内壁の上部に間隙充填層が埋め込まれた構造を模式的に示している。FIG. 4 is a partially enlarged view of a cross section along the longitudinal direction of the ceramic filter according to the embodiment of the present invention, and a gap filling layer on an upper wall of a flow path (cell) provided in a lotus shape on a base material of a monolith structure The structure with embedded is schematically shown. 微粒子の粒径分布は多くの場合、対数正規分布でほぼ近似できることを示す図であり、平均粒子径が同じであっても、図4(a)に示す粒度分布の標準偏差が、図4(b)に示す粒度分布の標準偏差よりも大きいことを示している。In many cases, the particle size distribution of the fine particles can be approximated by a logarithmic normal distribution. Even if the average particle size is the same, the standard deviation of the particle size distribution shown in FIG. It shows that it is larger than the standard deviation of the particle size distribution shown in b). 実線で示した実施例1に用いた間隙充填粒子の粒径分布の標準偏差が、平均粒子径がほぼ等しい、破線で示した従来の粒度調製法による標準タイプの標準偏差よりも小さく、粒度分布範囲が狭くなっていることを説明する図である。The standard deviation of the particle size distribution of the gap-filled particles used in Example 1 indicated by the solid line is smaller than the standard deviation of the standard type by the conventional particle size preparation method indicated by the broken line, which is approximately equal to the average particle size, and the particle size distribution It is a figure explaining that the range is narrow. 実線で示した実施例2に用いた間隙充填粒子の粒径分布の標準偏差が、平均粒子径がほぼ等しい、破線で示した従来の粒度調製法による標準タイプの標準偏差よりも小さく、粒度分布範囲が狭くなっていることを説明する図である。The standard deviation of the particle size distribution of the gap-filled particles used in Example 2 shown by the solid line is smaller than the standard deviation of the standard type by the conventional particle size preparation method shown by the broken line, the average particle size being almost equal, and the particle size distribution It is a figure explaining that the range is narrow. 実線で示した実施例1に用いた基材を構成する基材粒子の粒径分布の標準偏差が、平均粒子径が等しい、破線で示した従来の粒度調製法による標準タイプの標準偏差よりも小さく、粒度分布範囲が狭くなっていることを説明する図である。The standard deviation of the particle size distribution of the base material particles constituting the base material used in Example 1 indicated by the solid line is equal to the standard deviation of the standard type by the conventional particle size preparation method indicated by the broken line, with the same average particle diameter. It is a figure explaining that it is small and the particle size distribution range is narrow. 本発明の実施の形態に係るセラミックフィルタの製造方法に用いるクロスフロー濾過装置の概略を説明する模式図である。It is a schematic diagram explaining the outline of the crossflow filtration apparatus used for the manufacturing method of the ceramic filter which concerns on embodiment of this invention. 従来技術の説明として、粒径10μmのMF膜となる多孔質基材の表面上に粒径1μmの第1UF膜が中間層として形成され、この中間層の上に粒径0.1μmの第2UF膜を膜層として形成した状態を模式的に示す図である。As an explanation of the prior art, a first UF film having a particle diameter of 1 μm is formed as an intermediate layer on the surface of a porous substrate that becomes an MF film having a particle diameter of 10 μm, and a second UF having a particle diameter of 0.1 μm is formed on the intermediate layer. It is a figure which shows typically the state which formed the film | membrane as a film layer. 従来技術の説明として、粒子径を順次小さくする傾斜法を説明する模式図である。It is a schematic diagram explaining the inclination method which makes a particle diameter small sequentially as description of a prior art.

符号の説明Explanation of symbols

11f…セラミックフィルタ
12…成膜チャンバー
13…ドレインバルブ
14…循環ポンプ
15…循環タンク
16…真空トラップ
17…真空ポンプ
18…エヤー抜きバルブ
21a…上流側配管
21b…供給配管
21c…タンク配管
21d…ドレイン配管
21e…循環液配管
21f…リターン配管
21g…第1減圧配管
21h…第2減圧配管
111…基材
112a,112b…釉薬シール
114…隔壁
121a,121b…O−リング
122…成膜チャンバー
122a…上部エレメント保持リング
122b…下部エレメント保持リング
123a…フランジ
123a…上部フランジ
123b…底部フランジ
141…間隙充填層
F1…流量計
P1…圧力計
11f ... Ceramic filter 12 ... Deposition chamber 13 ... Drain valve 14 ... Circulation pump 15 ... Circulation tank 16 ... Vacuum trap 17 ... Vacuum pump 18 ... Air vent valve 21a ... Upstream piping 21b ... Supply piping 21c ... Tank piping 21d ... Drain Piping 21e ... Circulating fluid piping 21f ... Return piping 21g ... 1st decompression piping 21h ... 2nd decompression piping 111 ... Base material 112a, 112b ... Glaze seal 114 ... Partition 121a, 121b ... O-ring 122 ... Deposition chamber 122a ... Upper part Element retaining ring 122b ... Lower element retaining ring 123a ... Flange 123a ... Upper flange 123b ... Bottom flange 141 ... Gap filling layer F1 ... Flow meter P1 ... Pressure gauge

Claims (8)

平均粒子径2〜60μmの基材粒子を焼結した基材と、
前記基材の上部から一定深さに埋め込まれ、前記基材粒子がなす間隙に、前記基材粒子の平均粒子径の1/10〜1/7の平均粒子径を有する間隙充填粒子を充填した間隙充填層
とを備えることを特徴とするセラミックフィルタ。
A base material obtained by sintering base material particles having an average particle diameter of 2 to 60 μm;
A gap filling particle having an average particle diameter of 1/10 to 1/7 of the average particle diameter of the base material particles was filled in the gap formed by the base material particles at a certain depth from the top of the base material. A ceramic filter comprising a gap filling layer.
対数正規分布における、前記基材粒子の標準偏差が、前記基材粒子の平均粒子径の5〜40%であることを特徴とする請求項1に記載のセラミックフィルタ。   2. The ceramic filter according to claim 1, wherein a standard deviation of the base particles in a log normal distribution is 5 to 40% of an average particle diameter of the base particles. 対数正規分布における、前記間隙充填粒子の標準偏差が、前記間隙充填粒子の平均粒子径の5〜40%であることを特徴とする請求項1又は2に記載のセラミックフィルタ。   3. The ceramic filter according to claim 1, wherein a standard deviation of the gap filling particles in a lognormal distribution is 5 to 40% of an average particle diameter of the gap filling particles. 前記基材が、柱状形状をなし、前記柱状形状の両端面間を軸方向に貫通する複数の流路を備え、前記間隙充填層は前記複数の流路のそれぞれの内壁に沿って設けられていることを特徴とする請求項1〜3のいずれか1項に記載のセラミックフィルタ。   The base material has a columnar shape and includes a plurality of flow paths that penetrate between both end faces of the columnar shape in the axial direction, and the gap filling layer is provided along each inner wall of the plurality of flow paths. The ceramic filter according to any one of claims 1 to 3, wherein the ceramic filter is provided. クロスフロー濾過法により、平均粒子径2〜60μmの基材粒子を焼結した基材の表面に、前記基材粒子の平均粒子径の1/10〜1/7の平均粒子径を有する間隙充填粒子を含む成膜コート液を付着させ、前記基材の表面から前記基材の内部に浸透させ、前記間隙充填粒子を前記基材粒子がなす間隙に充填する付着・充填工程と、
該付着・充填工程の後、前記基材の内部に浸透した前記成膜コート液を乾燥させる乾燥工程と、
該乾燥工程の後、前記間隙充填粒子と前記基材粒子を焼成して、前記基材の上部から一定深さに、前記基材粒子がなす間隙に前記間隙充填粒子が充填した間隙充填層を形成する焼成工程
とを含むことを特徴とするセラミックフィルタの製造方法。
Filling the surface of a base material obtained by sintering base particles having an average particle diameter of 2 to 60 μm by a cross-flow filtration method with an average particle diameter of 1/10 to 1/7 of the average particle diameter of the base particles An adhesion / filling step of adhering a film-forming coating liquid containing particles, penetrating from the surface of the base material into the base material, and filling the gap filling particles into gaps formed by the base material particles;
After the adhesion / filling step, a drying step of drying the film-forming coating solution that has penetrated into the base material;
After the drying step, the gap filling particles and the base material particles are fired to form a gap filling layer in which the gap filling particles are filled in a gap formed by the base material particles at a certain depth from the upper part of the base material. A method for producing a ceramic filter, comprising: a firing step to be formed.
対数正規分布における、前記基材粒子の標準偏差が、前記基材粒子の平均粒子径の5〜40%であることを特徴とする請求項5に記載のセラミックフィルタの製造方法。   6. The method for producing a ceramic filter according to claim 5, wherein a standard deviation of the base particles in a log normal distribution is 5 to 40% of an average particle diameter of the base particles. 前記成膜コート液は、対数正規分布における、前記間隙充填粒子の標準偏差が、前記間隙充填粒子の平均粒子径の5〜40%となるように、前記間隙充填粒子の粒度調製をして調合されることを特徴とする請求項5又は6に記載のセラミックフィルタの製造方法。   The film-forming coating solution is prepared by adjusting the particle size of the gap filling particles so that the standard deviation of the gap filling particles in the logarithmic normal distribution is 5 to 40% of the average particle diameter of the gap filling particles. The method for producing a ceramic filter according to claim 5 or 6, wherein: 前記基材が、柱状形状をなし、前記柱状形状の両端面間を軸方向に貫通する複数の流路を備え、前記成膜コート液が前記複数の流路のそれぞれの内壁から前記基材の内部に浸透し、前記間隙充填層が前記複数の流路のそれぞれの内壁に沿って形成されることを特徴とする請求項5〜7のいずれか1項に記載のセラミックフィルタの製造方法。   The base material has a columnar shape, and includes a plurality of flow paths that penetrate axially between both end faces of the columnar shape, and the film-forming coating liquid is formed on the base material from the inner walls of the plurality of flow paths. The method for manufacturing a ceramic filter according to any one of claims 5 to 7, wherein the gap filling layer penetrates inside and is formed along inner walls of the plurality of flow paths.
JP2008088475A 2008-03-28 2008-03-28 Ceramic filter and its manufacturing method Pending JP2009240871A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008088475A JP2009240871A (en) 2008-03-28 2008-03-28 Ceramic filter and its manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008088475A JP2009240871A (en) 2008-03-28 2008-03-28 Ceramic filter and its manufacturing method

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2013116506A Division JP2013212982A (en) 2013-05-31 2013-05-31 Ceramic filter and method for producing the same

Publications (1)

Publication Number Publication Date
JP2009240871A true JP2009240871A (en) 2009-10-22

Family

ID=41303417

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008088475A Pending JP2009240871A (en) 2008-03-28 2008-03-28 Ceramic filter and its manufacturing method

Country Status (1)

Country Link
JP (1) JP2009240871A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015098386A1 (en) * 2013-12-27 2015-07-02 富士フイルム株式会社 Inorganic filter
KR101881922B1 (en) * 2017-06-27 2018-07-26 한국과학기술원 Method and apparatus for producing ceramics nano filtration membrane, operation method of computer apparatus for controlling filtration coating process

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0398626A (en) * 1989-09-13 1991-04-24 Ngk Insulators Ltd Inorganic porous membrane and its preparation
JPH03267129A (en) * 1990-03-16 1991-11-28 Ngk Insulators Ltd Ceramic membrane filter
JPH03284329A (en) * 1990-03-30 1991-12-16 Ngk Insulators Ltd Ceramic membraneous filter and production thereof

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0398626A (en) * 1989-09-13 1991-04-24 Ngk Insulators Ltd Inorganic porous membrane and its preparation
JPH03267129A (en) * 1990-03-16 1991-11-28 Ngk Insulators Ltd Ceramic membrane filter
JPH03284329A (en) * 1990-03-30 1991-12-16 Ngk Insulators Ltd Ceramic membraneous filter and production thereof

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015098386A1 (en) * 2013-12-27 2015-07-02 富士フイルム株式会社 Inorganic filter
KR101881922B1 (en) * 2017-06-27 2018-07-26 한국과학기술원 Method and apparatus for producing ceramics nano filtration membrane, operation method of computer apparatus for controlling filtration coating process

Similar Documents

Publication Publication Date Title
EP2061597B1 (en) Method and apparatus for membrane deposition
EP2274066B9 (en) A ceramic dead-end filter, a filter system and method of filtering
JP6228923B2 (en) Ceramic separation membrane structure and repair method thereof
CN105792918B (en) Ceramic filter
US20160121272A1 (en) Inorganic membrane filter and methods thereof
JP5438507B2 (en) Manufacturing method of ceramic filter
WO2009119292A1 (en) Ceramic filter
EP2832430B1 (en) Honeycomb shaped porous ceramic body, manufacturing method for same, and honeycomb shaped ceramic separation membrane structure
WO2012147534A1 (en) Method for washing ceramic filter
JP2004299966A (en) Substrate for honeycomb filter and its manufacturing process, as well as honeycomb filter
JP4800646B2 (en) Ceramic filter and manufacturing method thereof
JP2023011761A (en) ceramic membrane filter
KR102358966B1 (en) Tangential filter with a supporting element including a set of channels
JP2001340718A (en) Base material for honeycomb filter and its manufacturing method
JP2009240871A (en) Ceramic filter and its manufacturing method
JP2013212982A (en) Ceramic filter and method for producing the same
US20180361321A1 (en) Monolithic filter
JP5033670B2 (en) Manufacturing method of ceramic filter
JP2008161799A (en) Manufacturing method of ceramic filter
JP2009226306A (en) Ceramic filter and manufacturing method of nanofiltration membrane
CN108290123B (en) Method for repairing separation membrane and method for manufacturing separation membrane structure
JP7392853B2 (en) Adsorption member and its manufacturing method
JP2009226339A (en) Ceramic filter and its manufacturing method
JP4960287B2 (en) Method for producing nanofiltration membrane
WO2016051910A1 (en) Process for producing separation membrane structure

Legal Events

Date Code Title Description
RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20090715

A621 Written request for application examination

Effective date: 20101119

Free format text: JAPANESE INTERMEDIATE CODE: A621

A977 Report on retrieval

Effective date: 20110921

Free format text: JAPANESE INTERMEDIATE CODE: A971007

A131 Notification of reasons for refusal

Effective date: 20121204

Free format text: JAPANESE INTERMEDIATE CODE: A131

A521 Written amendment

Effective date: 20130125

Free format text: JAPANESE INTERMEDIATE CODE: A523

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20130305