JP2008161799A - Manufacturing method of ceramic filter - Google Patents

Manufacturing method of ceramic filter Download PDF

Info

Publication number
JP2008161799A
JP2008161799A JP2006353895A JP2006353895A JP2008161799A JP 2008161799 A JP2008161799 A JP 2008161799A JP 2006353895 A JP2006353895 A JP 2006353895A JP 2006353895 A JP2006353895 A JP 2006353895A JP 2008161799 A JP2008161799 A JP 2008161799A
Authority
JP
Japan
Prior art keywords
porous support
film
ceramic filter
hole
forming slurry
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2006353895A
Other languages
Japanese (ja)
Other versions
JP5088862B2 (en
Inventor
Masanori Katsu
正則 勝
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NGK Insulators Ltd
Original Assignee
NGK Insulators Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NGK Insulators Ltd filed Critical NGK Insulators Ltd
Priority to JP2006353895A priority Critical patent/JP5088862B2/en
Publication of JP2008161799A publication Critical patent/JP2008161799A/en
Application granted granted Critical
Publication of JP5088862B2 publication Critical patent/JP5088862B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Filtering Materials (AREA)
  • Devices For Post-Treatments, Processing, Supply, Discharge, And Other Processes (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a manufacturing method of a ceramic filter which can form a filter membrane with uniform membrane thickness across the entire length of the ceramic filter. <P>SOLUTION: This manufacturing method is to manufacture the ceramic filter with the filter membrane formed on the inner wall surface of each through hole 3 of a long porous support 4 having one or more through holes 3 reaching from one end surface 1 to the other end surface 2, both being opposed to each other. The porous support 4 is set sideways inside a vacuum chamber 10 and the outer peripheral surface 5 of the porous support 4 is vacuum-sucked while feeding a membrane-forming slurry into each through hole 3 from one end surface 1 to the other end surface 2. Thus, the membrane is formed by stacking a membrane forming substance contained in the membrane forming slurry on the inner wall surface of each through hole 3, and thereafter, draining, drying and calcining the surplus slurry. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、下水処理や上水処理、工業用などの技術分野において液体、気体のろ過に用いられるセラミックフィルタの製造方法に関するものである。   The present invention relates to a method for producing a ceramic filter used for liquid and gas filtration in technical fields such as sewage treatment, clean water treatment, and industrial use.

セラミックフィルタは物理的強度、化学的強度、耐久性等に優れるため、従来から下水処理や上水処理、工業用などの技術分野において広く用いられている。多くの場合、ろ過精度とろ過流量をともに向上させるために、セラミック製の多孔質支持体に形成された流路の内壁面に、セラミック製のろ過膜を形成した構造が採用されており、特に円柱状または角柱状の多孔質支持体に一方の端面から他方の端面まで達する1以上の貫通孔を形成し、これらの貫通孔をろ過される液体の流路とし、各貫通孔の内壁面をろ過面としたチューブ構造あるいはモノリス構造のセラミックフィルタが一般的である。   Ceramic filters are widely used in technical fields such as sewage treatment, water treatment, and industrial use because they are excellent in physical strength, chemical strength, durability, and the like. In many cases, in order to improve both the filtration accuracy and the filtration flow rate, a structure in which a ceramic filtration membrane is formed on the inner wall surface of the flow path formed in the ceramic porous support is adopted. One or more through-holes reaching from one end surface to the other end surface are formed in a cylindrical or prismatic porous support, and these through-holes are used as liquid channels to be filtered. A ceramic filter having a tube structure or a monolith structure as a filtering surface is generally used.

このようなセラミックフィルタを製造するには、特許文献1に示されるように、貫通孔が形成された多孔質支持体を真空チャンバの内部に直立させて行うろ過製膜方法が知られている。この方法は、膜形成物質を含んだ製膜スラリーを多孔質支持体の下側から貫通孔の内部に送液して内部に充満させたうえ、真空チャンバ内部を減圧して製膜スラリーを多孔質支持体の外周面側に吸引し、製膜スラリー中の膜形成物質を各貫通孔の内壁面に堆積させる方法である。所定量の膜形成物質が堆積した後に多孔質支持体中の余剰の製膜スラリーを下側に排泥し、乾燥・焼成を行う。   In order to manufacture such a ceramic filter, as shown in Patent Document 1, a filtration film-forming method is known in which a porous support body in which a through-hole is formed is erected inside a vacuum chamber. In this method, a film-forming slurry containing a film-forming substance is fed into the through hole from the lower side of the porous support to fill the inside, and the vacuum chamber is decompressed to make the film-forming slurry porous. In this method, the film-forming substance in the film-forming slurry is deposited on the inner wall surface of each through-hole. After a predetermined amount of the film-forming substance is deposited, excess film-forming slurry in the porous support is drained downward, and dried and fired.

このようなろ過製膜方法は、多孔質支持体の貫通孔全体に製膜スラリーを充満させ易く、ピンホールのない製膜が可能であり、また多孔質支持体の下側への排泥が容易であるために、セラミックフィルタを製造するためのスタンダードな方法となっている。しかし近年になってろ過能力の増大のためにセラミックフィルタの長さが800mmを越える長尺となってきたため、多孔質支持体の貫通孔に充満された製膜スラリーの上部と下部とのヘッド差が大きくなり、下部のろ過膜の厚みが上部のろ過膜の厚みに比べて10μm以上も厚くなるという問題を生じてきた。なお、長さが500mm未満のセラミックフィルタではヘッド差も小さく、上下の膜厚差も数μmである。   Such a filtration film-forming method makes it easy to fill the entire through-hole of the porous support with the film-forming slurry, enables film formation without any pinholes, and eliminates sludge on the lower side of the porous support. Due to its simplicity, it has become a standard method for manufacturing ceramic filters. However, in recent years, the length of the ceramic filter has become longer than 800 mm due to an increase in filtration capacity, so the head difference between the upper and lower portions of the film-forming slurry filled in the through holes of the porous support is low. As a result, the thickness of the lower filtration membrane becomes 10 μm or more thicker than that of the upper filtration membrane. In the case of a ceramic filter having a length of less than 500 mm, the head difference is small and the film thickness difference between the upper and lower sides is several μm.

このような多孔質支持体の上部と下部とでろ過膜の厚さが異なるセラミックフィルタでは、実使用時に膜厚の薄い部分のろ過量が多く、厚い部分のろ過量が少なくなり、ろ過の不均一が生じる。また逆洗を行う場合にも、膜厚の薄い部分は圧損が低いために逆洗水が集中し、逆洗が均一に行われないという問題を招く。   In such a ceramic filter in which the thickness of the filtration membrane is different between the upper and lower parts of the porous support, the amount of filtration at the thin portion is large during actual use, the amount of filtration at the thick portion is small, and filtration is not effective. Uniformity occurs. Also, when backwashing is performed, the pressure loss is low in the thin portion, so that the backwash water is concentrated and the backwashing is not performed uniformly.

更に、膜厚の薄い部分はろ過流量が多い半面、ろ過精度が低下する恐れがあり、この問題を回避するために全体の膜厚を厚めに設定すると透水量が減少したり、流路の孔径が小さくなって逆洗時にケーキの排出が行いにくくなるなどの問題が発生する。   In addition, the thin part has a large filtration flow rate, but the filtration accuracy may be reduced. To avoid this problem, setting the overall film thickness to a large value will reduce the amount of water permeation or the pore diameter of the channel. This causes problems such as decreasing the size of the cake and making it difficult to discharge the cake during backwashing.

そこで、最初の製膜を行った後に多孔質支持体の上下を反転させ、再度製膜を行うことによって上下の膜厚差を減少させる方法も検討されたが、従来の何倍もの工数を必要とすることとなるため、量産品の製造には不適当であった。
特公昭63−66566号公報
Therefore, after the first film formation, a method of reducing the difference between the upper and lower film thickness by reversing the upper and lower sides of the porous support and performing the film formation again was studied, but it requires many times as many steps as before. Therefore, it was unsuitable for manufacturing mass-produced products.
Japanese Patent Publication No. 63-66566

本発明は上記した従来の問題点を解決し、セラミックフィルタが800mm以上の長尺品である場合にも、ろ過製膜方法によってセラミックフィルタの全長にわたり均一な膜厚のろ過膜を形成することができるセラミックフィルタの製造方法を提供することを目的とするものである。   The present invention solves the above-mentioned conventional problems, and even when the ceramic filter is a long product having a length of 800 mm or more, it is possible to form a filtration membrane having a uniform film thickness over the entire length of the ceramic filter by the filtration film-forming method. An object of the present invention is to provide a method for producing a ceramic filter.

上記の課題を解決するためになされた本発明は、円柱状または角柱状であって対向する一方の端面から他方の端面まで達する1以上の貫通孔を備えた多孔質支持体と、各貫通孔の内壁面に形成されたろ過膜とを備えたセラミックフィルタを製造する方法であって、長尺の多孔質支持体を真空チャンバの内部に横置きし、製膜スラリーを一方の端面から他方の端面に向かって各貫通孔の内部に送液しながら、多孔質支持体の外周面を真空吸引して製膜スラリー中の膜形成物質を各貫通孔の内壁面に堆積させて製膜を行い、その後に余剰の製膜スラリーを排泥したうえ、全体を乾燥・焼成することを特徴とするものである。   In order to solve the above-mentioned problems, the present invention provides a porous support having one or more through-holes that are cylindrical or prismatic and extend from one end face to the other end face, and each through-hole. A ceramic filter having a filtration membrane formed on the inner wall surface of the substrate, wherein a long porous support is horizontally placed inside a vacuum chamber, and a membrane-forming slurry is passed from one end surface to the other. While feeding liquid to the inside of each through-hole toward the end surface, the outer peripheral surface of the porous support is vacuum-sucked to deposit a film-forming substance in the film-forming slurry on the inner wall surface of each through-hole to form a film. Then, after surplus film-forming slurry is discharged, the whole is dried and fired.

なお、本発明のセラミックフィルタの製造方法においては、真空チャンバの内部で、多孔質支持体をその貫通孔に平行な軸線の回りに回転させながら製膜を行うことができる。また、真空チャンバの内部に横置きされる多孔質支持体の水平面に対する角度を、−30°〜+30°の範囲内とすることが好ましい。また、余剰の製膜スラリーを排泥する際に、一方の端面から多孔質支持体の内部をエアブローすることができ、余剰の製膜スラリーを排泥する際にのみ、多孔質支持体を傾斜させることができる。上記の多孔質支持体は、貫通孔が1つのチューブ構造であっても、複数の貫通孔を備えたモノリス構造であってもよい。   In the method for producing a ceramic filter of the present invention, film formation can be performed while rotating the porous support around an axis parallel to the through-hole inside the vacuum chamber. Moreover, it is preferable that the angle with respect to the horizontal surface of the porous support body placed horizontally inside the vacuum chamber is within a range of −30 ° to + 30 °. In addition, when the excess film-forming slurry is discharged, the inside of the porous support can be blown from one end face, and the porous support is inclined only when the excess film-forming slurry is discharged. Can be made. The porous support may have a tube structure with one through hole or a monolith structure with a plurality of through holes.

本発明のセラミックフィルタの製造方法によれば、長尺の多孔質支持体を真空チャンバの内部に横置きし、製膜スラリーを一方の端面から他方の端面に向かって各貫通孔の内部に送液しながら、多孔質支持体の外周面を真空吸引して製膜スラリー中の膜形成物質を各貫通孔の内壁面に堆積させて製膜を行うので、多孔質支持体の軸線方向にはヘッド差は発生せず、長さが800mm以上である長尺の多孔質支持体に対しても、1回の製膜によって均等な膜厚のろ過膜を形成することが可能となる。   According to the method for producing a ceramic filter of the present invention, a long porous support is horizontally placed inside a vacuum chamber, and a film-forming slurry is sent from one end face to the other end face into each through hole. While the liquid is being drawn, the outer peripheral surface of the porous support is vacuum-sucked to deposit the film-forming substance in the film-forming slurry on the inner wall surface of each through-hole. A head difference does not occur, and even a long porous support having a length of 800 mm or more can form a filtration membrane having a uniform film thickness by a single film formation.

なお、本発明のセラミックフィルタの製造方法によれば、多孔質支持体を真空チャンバの内部に横置きして製膜を行うので、貫通孔に平行な軸線方向にはヘッド差は発生しないが、ミクロ的には半径方向に微小なヘッド差が発生する。そこで請求項2の発明のように真空チャンバの内部で、多孔質支持体をその貫通孔に平行な軸線の回りに回転させながら製膜を行えば、半径方向の膜厚差も解消することができる。ただし回転速度を高めると遠心力が発生し、外周側の膜厚が厚くなる傾向を生ずるので、10rpm以下の低速回転とすることが好ましい。   According to the method for producing a ceramic filter of the present invention, since the porous support is horizontally placed inside the vacuum chamber to form a film, no head difference occurs in the axial direction parallel to the through hole. Microscopically, a slight head difference occurs in the radial direction. Therefore, if the film is formed while rotating the porous support around the axis parallel to the through-hole in the vacuum chamber as in the invention of claim 2, the difference in thickness in the radial direction can be eliminated. it can. However, if the rotational speed is increased, centrifugal force is generated, and the film thickness on the outer peripheral side tends to increase. Therefore, it is preferable that the rotational speed is 10 rpm or less.

本発明のセラミックフィルタの製造方法は、多孔質支持体を真空チャンバの内部に横置きして製膜を行う方法であり、ろ過膜も膜厚差をなくすためには、多孔質支持体の貫通孔に平行な軸線を水平とすることが好ましい。しかし完全に水平な状態では余剰の製膜スラリーを貫通孔の内部から排泥する作業が従来の縦置き法に比較して行いにくくなるので、請求項3に記載のように、製膜時に多孔質支持体を水平面に対して±30°の範囲内で傾斜させることができる。この程度の傾斜であれば膜厚差は数μm程度であり、大きな問題とはならず、しかも排泥が容易となる。   The method for producing a ceramic filter of the present invention is a method in which a porous support is horizontally placed inside a vacuum chamber to form a film. In order to eliminate the difference in film thickness of the filtration membrane, the porous support is penetrated. The axis parallel to the hole is preferably horizontal. However, in a completely horizontal state, the operation of draining excess film-forming slurry from the inside of the through-hole becomes difficult to perform as compared with the conventional vertical placement method. The quality support can be tilted within a range of ± 30 ° with respect to the horizontal plane. With this degree of inclination, the difference in film thickness is about a few μm, which is not a big problem, and it is easy to drain mud.

このように本発明のセラミックフィルタの製造方法は、多孔質支持体を真空チャンバの内部に横置きして製膜を行う方法であるから、縦置きした場合に比較して速やかな排泥を行いにくい。そこで請求項4のように、排泥時には一方の端面から多孔質支持体の内部をエアブローする方法を採用することができる。エアブローを行えばごく短時間で排泥が完了し、生産性を向上させることが可能となる。また請求項5のように、製膜は水平支持状態で行い、余剰の製膜スラリーを排泥する際にのみ多孔質支持体を傾斜させるようにすれば、膜厚差を生ずることなく排泥を促進することができる。   As described above, the method for producing a ceramic filter of the present invention is a method in which a porous support is horizontally placed inside a vacuum chamber to form a film. Hateful. Therefore, a method of air-blowing the inside of the porous support from one end face at the time of drainage can be adopted as in claim 4. If air blow is performed, mud discharge is completed in a very short time, and productivity can be improved. Further, as in claim 5, if the film formation is performed in a horizontal support state and the porous support is inclined only when the excess film forming slurry is discharged, the mud is discharged without causing a difference in film thickness. Can be promoted.

以下に本発明の実施形態を説明する。本発明の方法によって製造されるセラミックフィルタの一例を図1に示す。この図1のセラミックフィルタは、一方の端面1から他方の端面2まで達する多数の貫通孔3を備えた円柱形状である。その直径は例えば100mm,長さは1000mmである。多孔質支持体4に形成された各貫通孔3の内壁面にろ過膜を形成し、各貫通孔3を原水の流路として膜ろ過を行い、ろ過水をセラミックフィルタの外周面5から取り出す使用法が普通である。   Embodiments of the present invention will be described below. An example of a ceramic filter manufactured by the method of the present invention is shown in FIG. The ceramic filter of FIG. 1 has a cylindrical shape having a large number of through holes 3 extending from one end surface 1 to the other end surface 2. The diameter is, for example, 100 mm, and the length is 1000 mm. Use in which a filtration membrane is formed on the inner wall surface of each through-hole 3 formed in the porous support 4, membrane filtration is performed using each through-hole 3 as a raw water flow path, and filtered water is taken out from the outer peripheral surface 5 of the ceramic filter. The law is normal.

図2に、本発明に用いる装置の概要を示す。図2において、10は横長の真空チャンバであり、その左右両端に多孔質支持体4の両端部を外周から保持する筒状ホルダ11、12が設けられている。多孔質支持体4は真空チャンバ10の内部で横置きされ、両端部をOリング21等によってシールされた状態で筒状ホルダ11、12に保持される。図2では多孔質支持体4はその軸線を水平として筒状ホルダ11、12間に保持されているが、前述したように水平面に対して±30°の範囲内で傾斜させることができる。傾斜させる場合には、この実施形態では右側の筒状ホルダ11を下側として傾斜させる。   FIG. 2 shows an outline of the apparatus used in the present invention. In FIG. 2, 10 is a horizontally long vacuum chamber, and cylindrical holders 11 and 12 for holding both ends of the porous support 4 from the outer periphery are provided on both left and right ends thereof. The porous support 4 is horizontally placed inside the vacuum chamber 10 and is held by the cylindrical holders 11 and 12 with both ends sealed by an O-ring 21 or the like. In FIG. 2, the porous support 4 is held between the cylindrical holders 11 and 12 with the axis thereof being horizontal, but can be inclined within a range of ± 30 ° with respect to the horizontal plane as described above. In the case of inclining, in this embodiment, the right cylindrical holder 11 is inclined downward.

この実施形態では筒状ホルダ11、12は固定ヘッダ13、14に対して回転可能であり、モータ15によって筒状ホルダ11を回転させると、多孔質支持体4の他端を保持する筒状ホルダ12も追従して回転できるようになっている。真空チャンバ10の上部にはバルブV4を介して真空ポンプ16が接続されており、真空チャンバ10の内部を減圧することができる。   In this embodiment, the cylindrical holders 11 and 12 are rotatable with respect to the fixed headers 13 and 14. When the cylindrical holder 11 is rotated by the motor 15, the cylindrical holder that holds the other end of the porous support 4. 12 can also follow and rotate. A vacuum pump 16 is connected to the upper portion of the vacuum chamber 10 via a valve V4, and the inside of the vacuum chamber 10 can be decompressed.

17は製膜スラリータンクであり、製膜スラリーが収納されている。製膜スラリーとしては、膜形成物質となるセラミック粒子を水等の分散媒体中に分散し、必要に応じて焼結助剤、有機バインダ、pH調整剤、界面活性剤等を添加したスラリーが用いられる。セラミック粒子の粒径はフィルタの使用用途により選択され、例えば1〜5μm程度である。また多孔質支持体4を構成するセラミック粒子のサイズも選択された膜形成物質となるセラミック粒子に応じて選択され、例えば10〜50μmである。これらのセラミック粒子の材質は特に限定されるものではなく、例えばアルミナ、ムライト、コージエライト、炭化珪素などを使用することができる。   A film forming slurry tank 17 stores the film forming slurry. As a film-forming slurry, a slurry in which ceramic particles as a film-forming substance are dispersed in a dispersion medium such as water and a sintering aid, an organic binder, a pH adjuster, a surfactant, etc. are added as necessary is used. It is done. The particle size of the ceramic particles is selected depending on the intended use of the filter and is, for example, about 1 to 5 μm. The size of the ceramic particles constituting the porous support 4 is also selected according to the selected ceramic particles as the film-forming substance, and is, for example, 10 to 50 μm. The material of these ceramic particles is not particularly limited, and for example, alumina, mullite, cordierite, silicon carbide and the like can be used.

18は送液ポンプであって、製膜スラリータンク17内の製膜スラリーをバルブV1を通じて筒状ホルダ11に送り、多孔質支持体4の一方の端面1から各貫通孔3の内部に送液することができる。多孔質支持体4の他方の端面2から流出した製膜スラリーは筒状ホルダ12、バルブV7、返送配管19を経由して製膜スラリータンク17に戻る。   Reference numeral 18 denotes a liquid feed pump, which sends the film-forming slurry in the film-forming slurry tank 17 to the cylindrical holder 11 through the valve V1, and sends the liquid from one end face 1 of the porous support 4 to the inside of each through hole 3. can do. The film-forming slurry that has flowed out from the other end face 2 of the porous support 4 returns to the film-forming slurry tank 17 via the cylindrical holder 12, the valve V7, and the return pipe 19.

なお、20は真空チャンバ10の下部に設置されたろ過排水タンクであり、その上部空間は破線で示すようにバルブV4を介して真空ポンプ16に接続されている。バルブV4に隣接配置されたバルブV5は真空チャンバ10の内部を外気と連通させるためのバルブである。また、固定ヘッダ14に設けられたバルブV6は排泥時にエアブローを行うためのバルブである。   In addition, 20 is a filtration drainage tank installed in the lower part of the vacuum chamber 10, The upper space is connected to the vacuum pump 16 via the valve | bulb V4 as shown with a broken line. A valve V5 disposed adjacent to the valve V4 is a valve for communicating the inside of the vacuum chamber 10 with the outside air. Further, a valve V6 provided in the fixed header 14 is a valve for performing air blow at the time of discharging mud.

以下に、本発明のセラミックフィルタの製造方法を説明する。
先ず、多数の貫通孔3を備えた多孔質支持体4を、図2に示すように真空チャンバ10の内部に横置き状態でセットし、バルブV4を閉じたまま真空ポンプ16をオンとする。そしてモータ15によって筒状ホルダ11を回転させ、多孔質支持体4を軸線の回りに回転させる。
Below, the manufacturing method of the ceramic filter of this invention is demonstrated.
First, as shown in FIG. 2, the porous support 4 provided with a large number of through-holes 3 is set in the horizontal state inside the vacuum chamber 10, and the vacuum pump 16 is turned on while the valve V4 is closed. And the cylindrical holder 11 is rotated with the motor 15, and the porous support body 4 is rotated around an axis line.

また、バルブV1とバルブV7を開くとともに送液ポンプ18を作動させ、製膜スラリータンク17内の製膜スラリーを多孔質支持体4の一方の端面から他方の端面に向かって各貫通孔3の内部に送液する。このときバルブV2は閉じておく。多孔質支持体4の内部を通過した製膜スラリーは返送配管19を経由して製膜スラリータンク17に戻るので、製膜スラリーは多孔質支持体4の内部と製膜スラリータンク17との間を循環することとなる。   Further, the valve V1 and the valve V7 are opened and the liquid feed pump 18 is operated, so that the film-forming slurry in the film-forming slurry tank 17 flows from one end face of the porous support 4 to the other end face of each through-hole 3. Deliver liquid inside. At this time, the valve V2 is closed. Since the film-forming slurry that has passed through the inside of the porous support 4 returns to the film-forming slurry tank 17 via the return pipe 19, the film-forming slurry is between the inside of the porous support 4 and the film-forming slurry tank 17. Will be circulated.

製膜スラリーが多孔質支持体4の各貫通孔3の内部に充満したら、バルブV4を開いて真空チャンバ10の内部を減圧する。製膜スラリーは各貫通孔3の内部から多孔質支持体4の外周面5に向かって吸引され、製膜スラリー中の固形分である膜形成物質は各貫通孔3の内壁面に堆積する。一方、製膜スラリー中の液体分である水分等は多孔質支持体4の外周面5から排出され、バルブV3を経由してろ過排水タンク20に集められる。このようにして所定時間、例えば2〜3分の製膜を行い、ろ過排水が規定量に達したときに送液ポンプ18を停止し、バルブV1を閉じる。   When the film-forming slurry fills the inside of each through-hole 3 of the porous support 4, the valve V4 is opened and the inside of the vacuum chamber 10 is decompressed. The film-forming slurry is sucked from the inside of each through-hole 3 toward the outer peripheral surface 5 of the porous support 4, and the film-forming substance that is a solid content in the film-forming slurry is deposited on the inner wall surface of each through-hole 3. On the other hand, moisture or the like, which is a liquid component in the film-forming slurry, is discharged from the outer peripheral surface 5 of the porous support 4 and collected in the filtration drainage tank 20 via the valve V3. In this way, film formation is performed for a predetermined time, for example, for 2 to 3 minutes. When the filtered wastewater reaches a specified amount, the liquid feed pump 18 is stopped and the valve V1 is closed.

その後、バルブV2を開いて放置すると各貫通孔3の内部から余剰の製膜スラリーがろ過排水タンク20内に排泥される。しかし多孔質支持体4が水平に設置され、そのままでは排泥が進行しない場合には、バルブV7を閉じ、バルブV6を開いて一方の端面から多孔質支持体4の内部にエアブローBを吹込み、強制排泥する。その後にバルブV7を開き、バルブV6を閉じる。なお、製膜作業中は多孔質支持体4を水平に設置し、排泥作業時に真空チャンバ10ごと全体を必要角度起こして、排泥を促進するようにしてもよい。   Thereafter, when the valve V2 is opened and left, surplus film-forming slurry is discharged from the inside of each through-hole 3 into the filtration drainage tank 20. However, when the porous support 4 is installed horizontally and the mud does not proceed as it is, the valve V7 is closed, the valve V6 is opened, and the air blow B is blown into the porous support 4 from one end face. , Forced to drain. Thereafter, the valve V7 is opened and the valve V6 is closed. Note that the porous support 4 may be installed horizontally during the film forming operation, and the entire vacuum chamber 10 may be raised at a necessary angle during the mud discharge operation to promote the mud discharge.

このように本発明では多孔質支持体4を横置きして製膜を行うので、軸線方向の部位によってヘッド差が発生せず、全長にわたりほぼ均等な膜厚のろ過膜が形成される。またこの実施形態のように、多孔質支持体4を遠心力を発生させない速度でゆるやかに回転させながら製膜作業を行うことにより、多孔質支持体4の半径方向の膜厚差も無くすることができる。余剰の製膜スラリーの排泥を終了後、バルブV4を閉じ、バルブV5を開いて真空チャンバ10の内部を大気圧に戻したうえ、多孔質支持体4を外部に取り出し、定法により乾燥・焼成してセラミックフィルタを得る。   As described above, in the present invention, the porous support 4 is horizontally placed to form a film, so that a head difference does not occur depending on the position in the axial direction, and a substantially uniform film thickness is formed over the entire length. Further, as in this embodiment, the film forming operation is performed while gently rotating the porous support 4 at a speed that does not generate centrifugal force, thereby eliminating the difference in film thickness in the radial direction of the porous support 4. Can do. After draining the excess film-forming slurry, the valve V4 is closed and the valve V5 is opened to return the interior of the vacuum chamber 10 to atmospheric pressure, and the porous support 4 is taken out to the outside, followed by drying and firing by a conventional method. Thus, a ceramic filter is obtained.

本発明方法により製造されたセラミックフィルタは、長さが800mm以上である長尺品である場合にも全長にわたり均等な膜厚のろ過膜が形成されたものとなり、実験によれば長さが1000mmである場合にも、最大膜厚差は3μm以下となる。従って、従来法により製造されたセラミックフィルタのような、ろ過膜の膜厚差に起因するろ過の不均一や逆洗不良を防止することができる。   The ceramic filter manufactured by the method of the present invention has a filter membrane having a uniform film thickness over the entire length even when the ceramic filter is a long product having a length of 800 mm or more. In this case, the maximum film thickness difference is 3 μm or less. Accordingly, it is possible to prevent uneven filtration and poor backwashing caused by a difference in the thickness of the filtration membrane, such as a ceramic filter manufactured by a conventional method.

セラミックフィルタの一例を示す斜視図である。It is a perspective view which shows an example of a ceramic filter. 本発明に用いる装置の概要を示す断面図である。It is sectional drawing which shows the outline | summary of the apparatus used for this invention.

符号の説明Explanation of symbols

1 一方の端面
2 他方の端面
3 貫通孔
4 多孔質支持体
5 外周面
10 真空チャンバ
11 筒状ホルダ
12 筒状ホルダ
13 固定ヘッダ
14 固定ヘッダ
15 モータ
16 真空ポンプ
17 製膜スラリータンク
18 送液ポンプ
19 返送配管
20 ろ過排水タンク
21 Oリング
DESCRIPTION OF SYMBOLS 1 One end surface 2 The other end surface 3 Through-hole 4 Porous support body 5 Outer peripheral surface 10 Vacuum chamber 11 Tubular holder 12 Tubular holder 13 Fixed header 14 Fixed header 15 Motor 16 Vacuum pump 17 Film-forming slurry tank 18 Liquid feeding pump 19 Return pipe 20 Filtration drain tank 21 O-ring

Claims (6)

円柱状または角柱状であって対向する一方の端面から他方の端面まで達する1以上の貫通孔を備えた多孔質支持体と、各貫通孔の内壁面に形成されたろ過膜とを備えたセラミックフィルタを製造する方法であって、長尺の多孔質支持体を真空チャンバの内部に横置きし、製膜スラリーを一方の端面から他方の端面に向かって各貫通孔の内部に送液しながら、多孔質支持体の外周面を真空吸引して製膜スラリー中の膜形成物質を各貫通孔の内壁面に堆積させて製膜を行い、その後に余剰の製膜スラリーを排泥したうえ、全体を乾燥・焼成することを特徴とするセラミックフィルタの製造方法。   A ceramic comprising a porous support having one or more through-holes that are cylindrical or prismatic and extend from one end face to the other end face, and a filtration membrane formed on the inner wall surface of each through-hole A method of manufacturing a filter, in which a long porous support is placed horizontally in a vacuum chamber, and a film-forming slurry is fed from one end face toward the other end face into each through hole. In addition, the outer peripheral surface of the porous support is vacuum-sucked to deposit a film-forming substance in the film-forming slurry on the inner wall surface of each through-hole to form a film, and then the excess film-forming slurry is drained, A method for producing a ceramic filter, wherein the whole is dried and fired. 真空チャンバの内部で、多孔質支持体をその貫通孔に平行な軸線の回りに回転させながら製膜を行うことを特徴とする請求項1記載のセラミックフィルタの製造方法。   2. The method for producing a ceramic filter according to claim 1, wherein the film formation is performed while rotating the porous support around an axis parallel to the through hole inside the vacuum chamber. 真空チャンバの内部に横置きされる多孔質支持体の水平面に対する角度を、−30°〜+30°の範囲内とすることを特徴とする請求項1または2記載のセラミックフィルタの製造方法。   3. The method for producing a ceramic filter according to claim 1, wherein an angle of the porous support placed horizontally inside the vacuum chamber with respect to a horizontal plane is within a range of −30 ° to + 30 °. 余剰の製膜スラリーを排泥する際に、一方の端面から多孔質支持体の内部をエアブローすることを特徴とする請求項3記載のセラミックフィルタの製造方法。   4. The method for producing a ceramic filter according to claim 3, wherein when the excess film-forming slurry is discharged, the inside of the porous support is blown from one end face. 余剰の製膜スラリーを排泥する際にのみ、多孔質支持体を傾斜させることを特徴とする請求項1〜4のいずれかに記載のセラミックフィルタの製造方法。   The method for producing a ceramic filter according to any one of claims 1 to 4, wherein the porous support is inclined only when the excess film-forming slurry is discharged. 多孔質支持体が複数の貫通孔を備えたものであることを特徴とする請求項1〜5のいずれかに記載のセラミックフィルタの製造方法。   The method for producing a ceramic filter according to claim 1, wherein the porous support has a plurality of through holes.
JP2006353895A 2006-12-28 2006-12-28 Manufacturing method of ceramic filter Expired - Fee Related JP5088862B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006353895A JP5088862B2 (en) 2006-12-28 2006-12-28 Manufacturing method of ceramic filter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006353895A JP5088862B2 (en) 2006-12-28 2006-12-28 Manufacturing method of ceramic filter

Publications (2)

Publication Number Publication Date
JP2008161799A true JP2008161799A (en) 2008-07-17
JP5088862B2 JP5088862B2 (en) 2012-12-05

Family

ID=39691976

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006353895A Expired - Fee Related JP5088862B2 (en) 2006-12-28 2006-12-28 Manufacturing method of ceramic filter

Country Status (1)

Country Link
JP (1) JP5088862B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2013136869A1 (en) * 2012-03-16 2015-08-03 日本碍子株式会社 Separation membrane production method, separation membrane complex production method, and separation membrane complex
WO2020189770A1 (en) * 2019-03-20 2020-09-24 日立金属株式会社 Coating device and coating method for water treatment filter
KR20220043638A (en) * 2020-09-29 2022-04-05 주식회사 셀코스 Surface treatment method for ceramic filter component and filter using the same

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5077411A (en) * 1973-11-13 1975-06-24
JPS61238315A (en) * 1985-04-12 1986-10-23 Ngk Insulators Ltd Preparation of double-layered filter
JPS61238305A (en) * 1985-04-17 1986-10-23 Ngk Insulators Ltd Preparation of tubular double-layered filter
JPH11267426A (en) * 1998-03-23 1999-10-05 Toshiba Ceramics Co Ltd Production of ceramics filter
JP2002253915A (en) * 2001-02-28 2002-09-10 Ngk Insulators Ltd Method for manufacturing filter with ceramic porous membrane as separation membrane

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5077411A (en) * 1973-11-13 1975-06-24
JPS61238315A (en) * 1985-04-12 1986-10-23 Ngk Insulators Ltd Preparation of double-layered filter
JPS61238305A (en) * 1985-04-17 1986-10-23 Ngk Insulators Ltd Preparation of tubular double-layered filter
JPH11267426A (en) * 1998-03-23 1999-10-05 Toshiba Ceramics Co Ltd Production of ceramics filter
JP2002253915A (en) * 2001-02-28 2002-09-10 Ngk Insulators Ltd Method for manufacturing filter with ceramic porous membrane as separation membrane

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2013136869A1 (en) * 2012-03-16 2015-08-03 日本碍子株式会社 Separation membrane production method, separation membrane complex production method, and separation membrane complex
WO2020189770A1 (en) * 2019-03-20 2020-09-24 日立金属株式会社 Coating device and coating method for water treatment filter
JPWO2020189770A1 (en) * 2019-03-20 2021-11-18 日立金属株式会社 Water treatment filter coating equipment and coating method
JP7036275B2 (en) 2019-03-20 2022-03-15 日立金属株式会社 Water treatment filter coating equipment and coating method
KR20220043638A (en) * 2020-09-29 2022-04-05 주식회사 셀코스 Surface treatment method for ceramic filter component and filter using the same
KR20220043870A (en) * 2020-09-29 2022-04-05 주식회사 셀코스 Surface treatment method for ceramic filter component and filter using the same
KR102385540B1 (en) * 2020-09-29 2022-04-13 주식회사 셀코스 Surface treatment method for ceramic filter component and filter using the same
KR102439254B1 (en) * 2020-09-29 2022-09-02 주식회사 셀코스 Surface treatment method for ceramic filter component and filter using the same

Also Published As

Publication number Publication date
JP5088862B2 (en) 2012-12-05

Similar Documents

Publication Publication Date Title
US8574670B2 (en) Method for membrane deposition
US7767257B2 (en) Method for preparing a porous inorganic coating on a porous support using certain pore formers
US4719058A (en) Process of producing multiple-layer filter medium
KR101440173B1 (en) Method for Preparing a Porous Inorganic Coating on a Porous Support Using Certain Pore Fillers
WO2012147534A1 (en) Method for washing ceramic filter
EP2083942A1 (en) Method of manufacturing ceramic porous membrane and method of manufacturing ceramic filter
JP2004299966A (en) Substrate for honeycomb filter and its manufacturing process, as well as honeycomb filter
JP6436974B2 (en) Monolith type separation membrane structure and method for producing monolith type separation membrane structure
JP5088862B2 (en) Manufacturing method of ceramic filter
CN100340328C (en) Membrane for tangential filtration and production method thereof
US20150157962A1 (en) Porous inorganic membranes and method of manufacture
KR102358966B1 (en) Tangential filter with a supporting element including a set of channels
JP6579281B2 (en) Adsorbing member and manufacturing method thereof
KR100858951B1 (en) Filter and method for backwashing of the filter
CN106999864B (en) Separation membrane structure and method for producing same
JP2000342920A (en) Ceramic filter
JP6553419B2 (en) Separation membrane support, separation membrane structure and separation membrane structure module
JP4519376B2 (en) Method for producing porous filter
JP2002143655A (en) Ceramic filter and producing method of ceramic filter
JP2567308B2 (en) Rotary filtration device
JP2009240871A (en) Ceramic filter and its manufacturing method
JP2500181B2 (en) Backwashing method for ceramic membrane
JP2017094310A (en) Separation treatment method of treatment object fluid
JP2009219961A (en) Manufacturing method of multilayered structure ceramic filter
JP6417355B2 (en) Monolith type separation membrane structure

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090819

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20101028

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120309

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120416

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120907

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120907

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150921

Year of fee payment: 3

R150 Certificate of patent (=grant) or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees