JP2017094310A - Separation treatment method of treatment object fluid - Google Patents

Separation treatment method of treatment object fluid Download PDF

Info

Publication number
JP2017094310A
JP2017094310A JP2015231780A JP2015231780A JP2017094310A JP 2017094310 A JP2017094310 A JP 2017094310A JP 2015231780 A JP2015231780 A JP 2015231780A JP 2015231780 A JP2015231780 A JP 2015231780A JP 2017094310 A JP2017094310 A JP 2017094310A
Authority
JP
Japan
Prior art keywords
separation membrane
separation
fluid
membrane
flow path
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2015231780A
Other languages
Japanese (ja)
Inventor
小泉 洋
Hiroshi Koizumi
洋 小泉
洋一郎 水谷
Yoichiro Mizutani
洋一郎 水谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Niterra Co Ltd
Original Assignee
NGK Spark Plug Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NGK Spark Plug Co Ltd filed Critical NGK Spark Plug Co Ltd
Priority to JP2015231780A priority Critical patent/JP2017094310A/en
Publication of JP2017094310A publication Critical patent/JP2017094310A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To provide a separation treatment method of a treatment object fluid capable of effectively restraining fouling (membrane blocking-up) of a separation membrane, and capable of enhancing separation treatment efficiency of the treatment object fluid.SOLUTION: A separation treatment method of a treatment object fluid uses a separation membrane structure 11 having a porous columnar base material 21, a plurality of cells 32 formed by penetrating in the axial direction through the base material 21 and a separation membrane 22 provided on an inner wall surface 321 of the cells 32. In the respective cells 32 of the separation membrane structure 11, a flow passage 33 for circulating the treatment object fluid A is formed on the inside of the separation membrane 22. A flow passage diameter of the flow passage 33 is 1.5 mm or less. When executing separation treatment of the treatment object fluid A, the treatment object fluid A is circulated in the flow passage 33 of the separation membrane structure 11 under a condition of film surface linear velocity of 6 m/s or more.SELECTED DRAWING: Figure 1

Description

本発明は、被処理流体の分離処理方法に関する。   The present invention relates to a separation processing method for a fluid to be processed.

従来、固液分離等に用いる分離膜構造体が知られている(特許文献1参照)。分離膜構造体は、多孔質である柱状の基材と、その基材を軸方向に貫通して形成された複数のセルと、セルの内壁面に設けられた分離膜とを備えている。分離膜構造体の各セルにおいて、分離膜の内側には、被処理流体を流通させる流路が形成されている。   Conventionally, a separation membrane structure used for solid-liquid separation or the like is known (see Patent Document 1). The separation membrane structure includes a porous columnar base material, a plurality of cells formed through the base material in the axial direction, and a separation membrane provided on the inner wall surface of the cell. In each cell of the separation membrane structure, a flow path for flowing a fluid to be processed is formed inside the separation membrane.

特開平10−109022号公報Japanese Patent Laid-Open No. 10-109022

しかしながら、分離膜構造体を用いて被処理流体の分離処理を長時間行うと、被処理流体に含まれる固形物等が分離膜の表面に付着し、分離膜のファウリング(膜閉塞)が生じる。従来、分離膜構造体のセルの内径を小さくする等、構造的な面で様々な対策が行われているが、分離膜のファウリングを十分に抑制できるとは言えなかった。また、分離処理の条件については、十分な検討が行われているとは言えなかった。   However, when the separation process of the fluid to be treated is performed for a long time using the separation membrane structure, solid matter contained in the fluid to be treated adheres to the surface of the separation membrane, and the fouling (membrane clogging) of the separation membrane occurs. . Conventionally, various measures have been taken in terms of structure, such as reducing the inner diameter of the cell of the separation membrane structure, but it cannot be said that fouling of the separation membrane can be sufficiently suppressed. Moreover, it cannot be said that sufficient examination has been made on the conditions for the separation treatment.

本発明は、かかる背景に鑑みてなされたものであり、分離膜のファウリング(膜閉塞)を効果的に抑制でき、被処理流体の分離処理効率を高めることができる被処理流体の分離処理方法を提供する。   The present invention has been made in view of such a background, and is capable of effectively suppressing fouling (membrane clogging) of a separation membrane and increasing the separation treatment efficiency of the treatment fluid. I will provide a.

本発明の一の態様は、多孔質である柱状の基材と、基材を軸方向に貫通して形成された複数のセルと、セルの内壁面に設けられた分離膜と、を備えた分離膜構造体を用いた被処理流体の分離処理方法であって、分離膜構造体の各セルにおいて、分離膜の内側には、被処理流体を流通させる流路が形成され、流路の流路径は、1.5mm以下であり、被処理流体の分離処理を行う際、分離膜構造体の流路内に、膜面線速6m/s以上の条件で被処理流体を流通させる。   One aspect of the present invention includes a porous columnar base material, a plurality of cells formed through the base material in the axial direction, and a separation membrane provided on an inner wall surface of the cell. A separation treatment method for a fluid to be treated using a separation membrane structure, wherein a flow path for flowing the treatment fluid is formed inside the separation membrane in each cell of the separation membrane structure, The path diameter is 1.5 mm or less, and when performing the separation treatment of the fluid to be treated, the fluid to be treated is circulated in the flow path of the separation membrane structure under the condition of a membrane surface linear velocity of 6 m / s or more.

上記被処理流体の分離処理方法によれば、分離膜構造体の流路の流路径を1.5mm以下とし、膜面線速を6m/s以上として被処理流体の分離処理を行う。そのため、被処理流体が分離膜構造体の流路内を流通する際に、流路の内壁面(分離膜の表面)に作用するせん断応力を大きくすることができ、分離膜の表面に固形物等が付着しにくくなると共に、分離膜の表面に付着した固形物等をこそぎ取る力が強くなる。   According to the separation process method of the fluid to be treated, the separation treatment of the fluid to be treated is performed by setting the flow path diameter of the separation membrane structure to 1.5 mm or less and the linear velocity of the membrane surface to 6 m / s or more. Therefore, when the fluid to be treated flows through the flow path of the separation membrane structure, the shear stress acting on the inner wall surface (the surface of the separation membrane) of the flow path can be increased, and solid matter is formed on the surface of the separation membrane. Etc. become difficult to adhere, and the force to scrape off the solid matter adhering to the surface of the separation membrane becomes stronger.

これにより、分離膜の表面に付着する固形物等に起因する分離膜のファウリング(膜閉塞)を効果的に抑制でき、被処理流体の分離処理効率を高めることができる。すなわち、被処理流体が流通する流路の流路径と膜面線速とを上記特定の範囲にすることで、上述の効果を得ることができる。   Thereby, the fouling (membrane clogging) of the separation membrane due to the solid matter or the like adhering to the surface of the separation membrane can be effectively suppressed, and the separation processing efficiency of the fluid to be treated can be increased. That is, the above-described effects can be obtained by setting the flow path diameter and the membrane surface linear velocity of the flow path through which the fluid to be processed is in the specific range.

上記被処理流体の分離処理方法において、分離膜構造体の流路の流路径は、1.5mm以下である。流路の流路径が1.5mmを超える場合には、被処理流体が流路内を流通する際に、流路の内壁面(分離膜の表面)に作用するせん断応力が小さくなるため、分離膜のファウリングを抑制する効果を十分に得られない。   In the separation treatment method of the fluid to be treated, the flow path diameter of the flow path of the separation membrane structure is 1.5 mm or less. When the flow path diameter of the flow path exceeds 1.5 mm, the shear stress acting on the inner wall surface of the flow path (the surface of the separation membrane) is reduced when the fluid to be treated flows through the flow path. The effect of suppressing fouling of the film cannot be obtained sufficiently.

一方、流路の流路径を小さくしすぎると、圧力損失が大きくなり、被処理流体の速度(流速)が遅くなるため、固形分率が高い被処理流体、高粘度の被処理流体等の分離処理が困難となるおそれがある。したがって、被処理流体の性状に合わせて、被処理流体の分離処理が良好に行えるように、流路の流路径を設定すればよい。流路の流路径は、0.3mm以上であることが好ましい。   On the other hand, if the flow path diameter is too small, the pressure loss increases and the speed (flow velocity) of the fluid to be treated becomes slow, so that the fluid to be treated with a high solid content, the fluid to be treated with high viscosity, etc. are separated. Processing may be difficult. Therefore, the flow path diameter of the flow path may be set in accordance with the properties of the fluid to be processed so that the separation process of the fluid to be processed can be performed satisfactorily. The channel diameter of the channel is preferably 0.3 mm or more.

ここで、流路の流路径(内径)とは、流路の断面が円形状の場合にはその直径をいい、流路の断面が楕円形状、多角形状等の場合にはその水力直径をいう。水力直径(Hydraulic Diameter)とは、等価水力直径をいい、ある開口の断面と等価な円管の直径のことである。等価水力直径は、一般的に4S/L(S:開口平面積)、L:開口長(開口の周の長さ)で表される。   Here, the flow path diameter (inner diameter) of the flow path means the diameter when the cross section of the flow path is circular, and the hydraulic diameter when the cross section of the flow path is elliptical or polygonal. . The hydraulic diameter is an equivalent hydraulic diameter, and is a diameter of a circular tube equivalent to a cross section of a certain opening. The equivalent hydraulic diameter is generally expressed by 4S / L (S: opening area), L: opening length (periphery length of opening).

また、流路の断面形状は、特に限定されるものではなく、例えば、円形状、楕円形状、多角形状(三角形状、四角形状、六角形状等)等とすることができる。分離膜のファウリングを抑制する効果を高くするためには、流路の断面形状をファウリングが起こりやすい角部を有しない断面形状、例えば円形状とすることが好ましい。   In addition, the cross-sectional shape of the flow path is not particularly limited, and may be, for example, a circular shape, an elliptical shape, a polygonal shape (triangular shape, quadrangular shape, hexagonal shape, etc.) and the like. In order to increase the effect of suppressing fouling of the separation membrane, the cross-sectional shape of the flow path is preferably a cross-sectional shape that does not have corners where fouling easily occurs, for example, a circular shape.

また、流路の数は、特に限定されるものではない。流路の数が多ければ被処理流体の分離処理をより効率的に行うことができるが、分離膜構造体の成形後、流路間にクラック等が発生する可能性が高くなるため、分離膜構造体の成形困難性を考慮して流路の数を設定すればよい。   Moreover, the number of flow paths is not particularly limited. If the number of flow paths is large, the separation treatment of the fluid to be treated can be performed more efficiently. However, after the separation membrane structure is formed, there is a high possibility that cracks or the like will occur between the flow paths. The number of flow paths may be set in consideration of the difficulty in forming the structure.

上記被処理流体の分離処理方法において、被処理流体の分離処理を行う際、分離膜構造体の流路内に、膜面線速6m/s以上の条件で被処理流体を流通させる。被処理流体の膜面線速が6m/s未満の場合には、被処理流体が流路内を流通する際に、流路の内壁面(分離膜の表面)に作用するせん断応力が小さくなるため、分離膜のファウリングを抑制する効果を十分に得られない。   In the separation processing method of the fluid to be treated, when the separation treatment of the fluid to be treated is performed, the fluid to be treated is circulated in the flow path of the separation membrane structure under the condition of a membrane surface linear velocity of 6 m / s or more. When the membrane surface linear velocity of the fluid to be treated is less than 6 m / s, the shear stress acting on the inner wall surface (the surface of the separation membrane) of the passage becomes small when the fluid to be treated flows in the passage. Therefore, the effect of suppressing fouling of the separation membrane cannot be obtained sufficiently.

一方、被処理流体の膜面線速を速くしすぎると、被処理流体の分離処理性能(効率)が低下するおそれがある。したがって、被処理流体の分離処理が良好に行えるように、被処理流体の膜面線速を設定すればよい。ここで、被処理流体の膜面線速とは、分離膜構造体に対する被処理流体の流量を各流路の断面積の合計値で除した値をいう。   On the other hand, if the film surface linear velocity of the fluid to be treated is too high, the separation processing performance (efficiency) of the fluid to be treated may be reduced. Therefore, the film surface linear velocity of the fluid to be processed may be set so that the fluid to be processed can be satisfactorily separated. Here, the membrane surface linear velocity of the fluid to be treated refers to a value obtained by dividing the flow rate of the fluid to be treated with respect to the separation membrane structure by the total cross-sectional area of each flow path.

上記被処理流体の分離処理方法において、被処理流体の分離処理を行う際、分離膜の表面(膜面)に作用する圧力が低ければ低いほど、分離膜の表面に固形物等が付着しにくくなり、分離膜のファウリングが起こりにくくなる。したがって、例えば、分離膜の膜間差圧を0.5MPa以下とすることが好ましい。   In the separation treatment method of the fluid to be treated, when the separation treatment of the fluid to be treated is performed, the lower the pressure acting on the surface (membrane surface) of the separation membrane, the less solid matter or the like adheres to the surface of the separation membrane. Thus, fouling of the separation membrane is less likely to occur. Therefore, for example, the transmembrane pressure difference of the separation membrane is preferably 0.5 MPa or less.

上記被処理流体の分離処理方法において、分離膜は、固液分離用の分離膜であってもよい。固液分離用の分離膜は、ファウリングを起こしやすい。そのため、分離膜のファウリングを抑制する効果をより有効に発揮することができる。なお、固液分離用の分離膜とは、例えば、固形物を含んだ被処理流体を分離するための分離膜である。   In the separation method of the fluid to be treated, the separation membrane may be a separation membrane for solid-liquid separation. A separation membrane for solid-liquid separation tends to cause fouling. Therefore, the effect of suppressing fouling of the separation membrane can be exhibited more effectively. Note that the separation membrane for solid-liquid separation is, for example, a separation membrane for separating a fluid to be treated containing solid matter.

また、分離膜は、ナノろ過膜、限外ろ過膜及び精密ろ過膜から選択される1種以上のろ過膜を含んでいてもよい。この場合には、被処理流体の分離処理を良好に行いながら、各種の分離膜に対して、分離膜のファウリングを抑制する効果を十分に得ることができる。   Moreover, the separation membrane may include one or more types of filtration membranes selected from nanofiltration membranes, ultrafiltration membranes, and microfiltration membranes. In this case, the effect of suppressing fouling of the separation membrane can be sufficiently obtained for various types of separation membranes while performing the separation treatment of the fluid to be treated satisfactorily.

ここで、ナノろ過膜(NF膜:Nanofiltration Membrane)とは、細孔の大きさ(細孔径)が例えば1〜2nmの分離膜である。ナノろ過膜は、例えば、中〜高分子量有機物、多価イオン等の通過を阻止する膜として用いられる。ナノろ過膜の用途としては、例えば、中〜高分子量有機物の濃縮、硬水の軟水化、有害物質の除去等が挙げられる。   Here, the nanofiltration membrane (NF membrane: Nanofiltration Membrane) is a separation membrane having a pore size (pore diameter) of, for example, 1 to 2 nm. The nanofiltration membrane is used, for example, as a membrane that prevents passage of medium to high molecular weight organic substances, multivalent ions, and the like. Applications of the nanofiltration membrane include, for example, concentration of medium to high molecular weight organic substances, softening of hard water, removal of harmful substances, and the like.

また、限界ろ過膜(UF膜:Ultrafiltration Membrane)とは、細孔の大きさ(細孔径)が例えば0.001〜0.05μmの分離膜である。限界ろ過膜は、例えば、分子量数百〜数百万程度の有機物、エマルジョン、菌、ウィルス、蛋白質等の通過を阻止する膜として用いられる。限界ろ過膜の用途としては、例えば、蛋白質の除去、エマルジョンの除去、CMP排水処理等が挙げられる。   Moreover, the ultrafiltration membrane (UF membrane: Ultrafiltration Membrane) is a separation membrane having a pore size (pore diameter) of, for example, 0.001 to 0.05 μm. The ultrafiltration membrane is used, for example, as a membrane that prevents passage of organic substances, emulsions, fungi, viruses, proteins, and the like having a molecular weight of several hundreds to several millions. Applications of the ultrafiltration membrane include, for example, protein removal, emulsion removal, and CMP wastewater treatment.

また、精密ろ過膜(MF膜:Microfiltration Membrane)とは、細孔の大きさ(細孔径)が例えば0.05〜10μmの分離膜である。精密ろ過膜は、例えば、バクテリア、菌、コロイド、粒子等の通過を阻止する膜として用いられる。精密ろ過膜の用途としては、例えば、ポリマー触媒除去、菌体除去、研磨廃液処理、上下水の浄化施設での浄化処理等が挙げられる。   The microfiltration membrane (MF membrane: Microfiltration Membrane) is a separation membrane having a pore size (pore diameter) of, for example, 0.05 to 10 μm. The microfiltration membrane is used, for example, as a membrane that blocks passage of bacteria, fungi, colloids, particles, and the like. Applications of the microfiltration membrane include, for example, polymer catalyst removal, microbial cell removal, polishing waste liquid treatment, purification treatment in water and sewage purification facilities, and the like.

分離膜構造体モジュールの構造を示す断面説明図である。It is sectional explanatory drawing which shows the structure of a separation membrane structure module. 分離膜構造体を示す斜視図である。It is a perspective view which shows a separation membrane structure. 図2のIII−III線矢視断面図である。FIG. 3 is a cross-sectional view taken along line III-III in FIG. 2. セル周辺を拡大して示す断面図である。It is sectional drawing which expands and shows the cell periphery. 実験例2の分離膜構造体(基材)の断面を示す断面図である。It is sectional drawing which shows the cross section of the separation membrane structure (base material) of Experimental example 2. FIG. 実験例3の分離膜構造体(基材)の断面を示す断面図である。It is sectional drawing which shows the cross section of the separation membrane structure (base material) of Experimental example 3. FIG. 実験例4の分離膜構造体(基材)の断面を示す断面図である。It is sectional drawing which shows the cross section of the separation membrane structure (base material) of Experimental example 4.

以下、本発明の実施形態を図面と共に説明する。
(実施形態1)
本実施形態の被処理流体の分離処理方法は、図1に示すように、多孔質である柱状の基材21と、基材21を軸方向に貫通して形成された複数のセル32と、セル32の内壁面321に設けられた分離膜22と、を備えた分離膜構造体11を用いる。以下、分離膜構造体11及びそれを備えた分離膜構造体モジュール1について詳細に説明する。
Hereinafter, embodiments of the present invention will be described with reference to the drawings.
(Embodiment 1)
As shown in FIG. 1, the separation process method of the fluid to be treated according to the present embodiment includes a porous columnar base material 21, and a plurality of cells 32 formed through the base material 21 in the axial direction. The separation membrane structure 11 including the separation membrane 22 provided on the inner wall surface 321 of the cell 32 is used. Hereinafter, the separation membrane structure 11 and the separation membrane structure module 1 including the same will be described in detail.

図1に示すように、分離膜構造体モジュール1は、分離膜構造体11と、分離膜構造体11を内部に収容する筐体12とを備えている。筐体12及び筐体12内の構造については後述する。   As shown in FIG. 1, the separation membrane structure module 1 includes a separation membrane structure 11 and a housing 12 that houses the separation membrane structure 11 therein. The housing 12 and the structure inside the housing 12 will be described later.

図1、図2に示すように、分離膜構造体11は、基材21と、分離膜22と、第1シール層23と、第2シール層24とを備えている。円柱状に形成された基材21は、軸方向の一端面である円形状の第1端面211と、軸方向の他端面である円形状の第2端面212と、外周面213とを有する。本実施形態では、基材21は、分離膜支持体31と、中間層34(後述する図4)とを備えている。   As shown in FIGS. 1 and 2, the separation membrane structure 11 includes a base material 21, a separation membrane 22, a first seal layer 23, and a second seal layer 24. The base material 21 formed in a columnar shape has a circular first end surface 211 that is one end surface in the axial direction, a circular second end surface 212 that is the other end surface in the axial direction, and an outer peripheral surface 213. In the present embodiment, the base material 21 includes a separation membrane support 31 and an intermediate layer 34 (FIG. 4 to be described later).

図1〜図4に示すように、分離膜支持体31は、直径30mm、全長約1000mmの円柱状に形成されたアルミナ製の多孔質体である。分離膜支持体31には、複数の連通孔311が設けられている。各連通孔311は、分離膜支持体31の軸方向の両端面を貫通(連通)するように、分離膜支持体31の軸方向に沿って形成されている。   As shown in FIGS. 1 to 4, the separation membrane support 31 is a porous body made of alumina formed in a cylindrical shape having a diameter of 30 mm and a total length of about 1000 mm. The separation membrane support 31 is provided with a plurality of communication holes 311. Each communication hole 311 is formed along the axial direction of the separation membrane support 31 so as to penetrate (communicate with) both end surfaces of the separation membrane support 31 in the axial direction.

分離膜支持体31の連通孔311の内壁面312には、分離膜22の下地となる中間層34が設けられている。中間層34は、多孔質のアルミナにより構成されている。中間層34の平均厚みは100μmである。なお、図1〜図3では、中間層34の図示を省略した。   On the inner wall surface 312 of the communication hole 311 of the separation membrane support 31, an intermediate layer 34 serving as a base for the separation membrane 22 is provided. The intermediate layer 34 is made of porous alumina. The average thickness of the intermediate layer 34 is 100 μm. In addition, illustration of the intermediate | middle layer 34 was abbreviate | omitted in FIGS. 1-3.

中間層34の内側には、セル32が形成されている。すなわち、セル32は、中間層34の内側に形成された空間である。各セル32は、基材21の軸方向の両端面(第1端面211、第2端面212)を貫通(連通)するように、分離膜支持体31の軸方向に沿って形成されている。基材21の軸方向に直交する断面には、127個のセル32が同心円状に配置されている。セル32の断面形状は円形状である。   A cell 32 is formed inside the intermediate layer 34. That is, the cell 32 is a space formed inside the intermediate layer 34. Each cell 32 is formed along the axial direction of the separation membrane support 31 so as to penetrate (communicate with) both end surfaces (first end surface 211 and second end surface 212) of the base material 21 in the axial direction. 127 cells 32 are arranged concentrically in a cross section orthogonal to the axial direction of the base material 21. The cross-sectional shape of the cell 32 is circular.

分離膜22は、基材21のセル32の内壁面321に設けられている。分離膜22は、分離膜支持体31及び中間層34よりも細孔径が小さい微細孔を多数有するアルミナ製の多孔質膜である。分離膜22は、細孔径が0.05〜10μmの精密ろ過膜(MF膜)である。分離膜22は、固形物を含んだ被処理流体Aを固形物とその他の成分とに分離するための固液分離用の分離膜である。分離膜22は、基材21のセル32内(具体的には後述する流路33内)を流通する被処理流体Aを分離処理(ろ過)する。なお、図2、図3では、分離膜22の図示を省略した。   The separation membrane 22 is provided on the inner wall surface 321 of the cell 32 of the base material 21. The separation membrane 22 is an alumina porous membrane having a large number of fine pores having smaller pore diameters than the separation membrane support 31 and the intermediate layer 34. The separation membrane 22 is a microfiltration membrane (MF membrane) having a pore diameter of 0.05 to 10 μm. The separation membrane 22 is a separation membrane for solid-liquid separation for separating the fluid A to be processed containing solid matter into solid matter and other components. The separation membrane 22 separates (filters) the fluid A to be processed flowing in the cell 32 of the base material 21 (specifically, in a flow path 33 described later). 2 and 3, the illustration of the separation membrane 22 is omitted.

各セル32において、分離膜22の内側には、被処理流体Aを流通させる流路33が形成されている。すなわち、流路33は、各セル32の内壁面321に設けられた分離膜22の内側に形成された空間である。流路33の断面形状は円形状である。流路33の流路径Bは、1.5mm以下である。本実施形態において、流路33の流路径B(図4)は、1.24mmである。流路33の流路径Bは、セル32の内径をC、分離膜22の膜厚をDとした場合、B=C−2×Dの式で表される。   In each cell 32, a flow path 33 through which the fluid A to be processed is circulated is formed inside the separation membrane 22. That is, the flow path 33 is a space formed inside the separation membrane 22 provided on the inner wall surface 321 of each cell 32. The cross-sectional shape of the flow path 33 is circular. The channel diameter B of the channel 33 is 1.5 mm or less. In the present embodiment, the channel diameter B (FIG. 4) of the channel 33 is 1.24 mm. The flow path diameter B of the flow path 33 is expressed by the equation B = C−2 × D, where C is the inner diameter of the cell 32 and D is the thickness of the separation membrane 22.

図1、図2に示すように、第1シール層23は、基材21の第1端面211と、分離膜22の第1端面211近傍と、基材21の外周面213の第1端面211近傍とを被覆している。第1シール層23は、基材21の第1端面211から連続して、基材21の外周面213及び分離膜22の表面に形成されている。   As shown in FIGS. 1 and 2, the first seal layer 23 includes the first end surface 211 of the base material 21, the vicinity of the first end surface 211 of the separation membrane 22, and the first end surface 211 of the outer peripheral surface 213 of the base material 21. The neighborhood is covered. The first sealing layer 23 is formed on the outer peripheral surface 213 of the base material 21 and the surface of the separation membrane 22 continuously from the first end surface 211 of the base material 21.

第2シール層24は、基材21の第2端面212と、分離膜22の第2端面212近傍と、基材21の外周面213の第2端面212近傍とを被覆している。第2シール層24は、基材21の第2端面212から連続して、基材21の外周面213及び分離膜22の表面に形成されている。   The second seal layer 24 covers the second end surface 212 of the base material 21, the vicinity of the second end surface 212 of the separation membrane 22, and the vicinity of the second end surface 212 of the outer peripheral surface 213 of the base material 21. The second seal layer 24 is formed on the outer peripheral surface 213 of the base material 21 and the surface of the separation membrane 22 continuously from the second end surface 212 of the base material 21.

第1シール層23及び第2シール層24を構成する材料は、被処理流体Aが分離膜22を通過せずに多孔質体である基材21内を通って漏洩することを防止できれば、特に限定されない。第1シール層23及び第2シール層24は、基材21及び分離膜22の細孔内に侵入しており、基材21及び分離膜22との密着性を高めている。   If the material which comprises the 1st seal layer 23 and the 2nd seal layer 24 can prevent the to-be-processed fluid A from leaking through the inside of the base material 21 which is a porous body without passing the separation membrane 22, it will be especially. It is not limited. The first seal layer 23 and the second seal layer 24 penetrate into the pores of the base material 21 and the separation membrane 22, and enhance the adhesion with the base material 21 and the separation membrane 22.

図1に示すように、分離膜構造体モジュール1における筐体12は、内部に分離膜構造体11を収容する空間を有する中空の金属製容器である。筐体12は、被処理流体Aを導入する導入口131と、被処理流体Aが分離膜構造体11によって濃縮された濃縮液A1を排出する排出口132と、被処理流体Aが分離膜構造体11によってろ過されたろ過液A2を回収する第1回収口133及び第2回収口134とを有する。   As shown in FIG. 1, the housing 12 in the separation membrane structure module 1 is a hollow metal container having a space for accommodating the separation membrane structure 11 therein. The casing 12 includes an inlet 131 for introducing the processing fluid A, a discharge port 132 for discharging the concentrate A1 obtained by concentrating the processing fluid A by the separation membrane structure 11, and a processing fluid A including the separation membrane structure. The first recovery port 133 and the second recovery port 134 for recovering the filtrate A2 filtered by the body 11 are provided.

分離膜構造体11における基材21の外周面213に設けられた第1シール層23上には、Oリング141が取り付けられている。このOリング141を介して環状の金属製の遮断部材142が基材21の第1端面211側に嵌設されている。基材21の外周面213に設けられた第2シール層24上には、Oリング151が取り付けられている。このOリング151を介して環状の金属製の遮断部材152が基材21の第2端面212側に嵌設されている。分離膜構造体11は、筐体12の内壁面と金属製の遮断部材142、152との間にOリング143、153を介して、筐体12内に収容されている。   An O-ring 141 is attached on the first seal layer 23 provided on the outer peripheral surface 213 of the base material 21 in the separation membrane structure 11. An annular metal blocking member 142 is fitted on the first end surface 211 side of the base member 21 through the O-ring 141. An O-ring 151 is attached on the second seal layer 24 provided on the outer peripheral surface 213 of the base material 21. An annular metal blocking member 152 is fitted on the second end face 212 side of the base member 21 through the O-ring 151. The separation membrane structure 11 is housed in the housing 12 via O-rings 143 and 153 between the inner wall surface of the housing 12 and the metal blocking members 142 and 152.

分離膜構造体11を内部に収容した筐体12内には、基材21の第1端面211と筐体12の内壁面とで囲まれた第1空間161と、基材21の第2端面212と筐体12の内壁面とで囲まれた第2空間162と、基材21の外周面213と筐体12の内壁面とで囲まれた第3空間163とが形成されている。第1空間161、第2空間162及び第3空間163は、それぞれ密閉性が保たれている。   In the housing 12 in which the separation membrane structure 11 is housed, a first space 161 surrounded by the first end surface 211 of the base material 21 and the inner wall surface of the housing 12, and a second end surface of the base material 21. A second space 162 surrounded by 212 and the inner wall surface of the housing 12 and a third space 163 surrounded by the outer peripheral surface 213 of the base material 21 and the inner wall surface of the housing 12 are formed. The first space 161, the second space 162, and the third space 163 are each kept hermetically sealed.

次に、分離膜構造体11の製造方法について説明する。
<分離膜支持体作製工程>
この工程では、分離膜支持体31を作製した。具体的には、所定量のアルミナ粉末、メチルセルロース、水、潤滑剤等をミキサーで混合・混練し、押出成形用坏土を得た。そして、押出成形機を用いて、外径(直径)30mm、複数の連通孔311を有する分離膜支持体31の前駆体を成形した。その後、温風乾燥機で乾燥を行い、焼成前の成形体を得た。
Next, a method for manufacturing the separation membrane structure 11 will be described.
<Separation membrane support production process>
In this step, the separation membrane support 31 was produced. Specifically, a predetermined amount of alumina powder, methylcellulose, water, lubricant, and the like were mixed and kneaded with a mixer to obtain a clay for extrusion molding. And the precursor of the separation membrane support 31 which has an outer diameter (diameter) 30 mm and the some communication hole 311 was shape | molded using the extrusion molding machine. Then, it dried with the warm air dryer, and the molded object before baking was obtained.

次いで、焼成前の成形体を大気雰囲気下で焼成し、分離膜支持体31を得た。そして、焼成後の分離膜支持体31の両端部を切除・研磨し、全長1000mmとなるように分離膜支持体31の寸法を整えた。これにより、分離膜支持体31を得た。   Next, the molded body before firing was fired in an air atmosphere to obtain a separation membrane support 31. Then, both ends of the baked separation membrane support 31 were excised and polished, and the dimensions of the separation membrane support 31 were adjusted so that the total length was 1000 mm. Thereby, the separation membrane support 31 was obtained.

<中間層形成工程>
この工程では、分離膜支持体31の連通孔311の内壁面312に、分離能を有する分離膜22の下地となる中間層34を形成した。具体的には、所定量のアルミナ粉末、分散剤、水等を混合用ポットに投入し、回転架台上で粉砕混合を行った。そして、所定量の有機バインダを投入してさらに混合し、アルミナスラリーを得た。
<Intermediate layer forming step>
In this step, the intermediate layer 34 serving as the base of the separation membrane 22 having separation ability was formed on the inner wall surface 312 of the communication hole 311 of the separation membrane support 31. Specifically, a predetermined amount of alumina powder, a dispersant, water, and the like were put into a mixing pot and pulverized and mixed on a rotating frame. A predetermined amount of an organic binder was added and further mixed to obtain an alumina slurry.

次いで、アルミナスラリー中に分離膜支持体31を浸漬し、各セル32内にアルミナスラリーを接触させて成膜を行った。このとき、分離膜支持体31の側面にマスキングを施した。その後、アルミナスラリー中から分離膜支持体31を引き上げ、温風乾燥機で乾燥した。乾燥後の分離膜支持体31を大気雰囲気下で焼成し、中間層34の焼き付けを行った。これにより、分離膜支持体31の連通孔311の内壁面312に、中間層34を形成し、分離膜支持体31及び中間層34を有する基材21を得た。   Next, the separation membrane support 31 was immersed in the alumina slurry, and the alumina slurry was brought into contact with each cell 32 to form a film. At this time, the side surface of the separation membrane support 31 was masked. Thereafter, the separation membrane support 31 was pulled up from the alumina slurry and dried with a hot air dryer. The separation membrane support 31 after drying was fired in an air atmosphere, and the intermediate layer 34 was baked. As a result, the intermediate layer 34 was formed on the inner wall surface 312 of the communication hole 311 of the separation membrane support 31, and the base material 21 having the separation membrane support 31 and the intermediate layer 34 was obtained.

<分離膜成膜工程>
この工程では、中間層34上に、分離能を有する分離膜22を成膜した。具体的には、アルミナ粉末、分散剤、水等を混合用ポットに投入し、回転架台上で粉砕混合を行った。そして、所定量の有機バインダを投入してさらに混合し、アルミナスラリーを得た。
<Separation membrane deposition process>
In this step, the separation film 22 having separation ability was formed on the intermediate layer 34. Specifically, alumina powder, a dispersant, water, and the like were put into a mixing pot, and pulverized and mixed on a rotating frame. A predetermined amount of an organic binder was added and further mixed to obtain an alumina slurry.

次いで、アルミナスラリー中に基材21を浸漬し、各セル32内にアルミナスラリーを接触させて成膜を行った。このとき、基材21の側面にマスキングを施した。その後、アルミナスラリー中から基材21を引き上げ、温風乾燥機で乾燥した。乾燥後の基材21を大気雰囲気下で焼成し、分離膜22の焼き付けを行った。これにより、中間層34上に、分離膜22を成膜した。   Next, the base material 21 was immersed in the alumina slurry, and the alumina slurry was brought into contact with each cell 32 to form a film. At this time, the side surface of the base material 21 was masked. Then, the base material 21 was pulled up from the alumina slurry and dried with a hot air dryer. The dried base material 21 was baked in an air atmosphere, and the separation membrane 22 was baked. Thereby, the separation membrane 22 was formed on the intermediate layer 34.

<端面シール工程>
この工程では、基材21の両端面(第1端面211、第2端面212)及びその近傍に、第1シール層23及び第2シール層24を形成した。具体的には、基材21の両端部を除いた外周部をマスキングし、分離膜22を形成した基材21の両端部をガラス釉薬スラリー中に浸漬し、基材21の両端面(第1端面211、第2端面212)及びその近傍をコーティングした。そして、温風乾燥機で乾燥した。その後、大気雰囲気下で釉薬部の焼き付けを行った。これにより、基材21の両端面及びその近傍に、第1シール層23及び第2シール層24を形成した。
<End face sealing process>
In this step, the first seal layer 23 and the second seal layer 24 were formed on both end surfaces (first end surface 211, second end surface 212) of the base material 21 and in the vicinity thereof. Specifically, the outer peripheral portion excluding both end portions of the base material 21 is masked, both end portions of the base material 21 on which the separation membrane 22 is formed are immersed in a glass glaze slurry, and both end surfaces of the base material 21 (first The end surface 211, the second end surface 212) and the vicinity thereof were coated. And it dried with the warm air dryer. Thereafter, the glaze part was baked in an air atmosphere. Thereby, the 1st sealing layer 23 and the 2nd sealing layer 24 were formed in the both end surfaces of the base material 21, and its vicinity.

以上により、図1〜図4に示すような、基材21(分離膜支持体31、複数のセル32、複数の流路33、中間層34)と、分離膜22と、第1シール層23と、第2シール層24とを備えた分離膜構造体11を得た。   1 to 4, the base material 21 (the separation membrane support 31, the plurality of cells 32, the plurality of flow paths 33, the intermediate layer 34), the separation membrane 22, and the first seal layer 23 are obtained. And the separation membrane structure 11 provided with the 2nd seal layer 24 was obtained.

次に、本実施形態の被処理流体の分離処理方法について説明する。
本実施形態の被処理流体の分離処理方法は、図1〜図4に示す分離膜構造体11を用いる。分離膜構造体11の各セル32において、分離膜22の内側には、被処理流体Aを流通させる流路33が形成され、流路33の流路径は、1.5mm以下である。そして、被処理流体Aの分離処理を行う際、分離膜構造体11の流路33内に、膜面線速6m/s以上の条件で被処理流体Aを流通させる。以下、この被処理流体の分離処理方法について詳細に説明する。
Next, a separation processing method for a fluid to be processed according to this embodiment will be described.
The separation process method of the fluid to be treated according to the present embodiment uses the separation membrane structure 11 shown in FIGS. In each cell 32 of the separation membrane structure 11, a flow path 33 for flowing the fluid A to be processed is formed inside the separation membrane 22, and the flow path diameter of the flow path 33 is 1.5 mm or less. And when performing the separation process of the to-be-processed fluid A, the to-be-processed fluid A is distribute | circulated in the flow path 33 of the separation membrane structure 11 on the conditions whose film surface linear velocity is 6 m / s or more. Hereinafter, the separation processing method for the fluid to be processed will be described in detail.

まず、図1に示すように、被処理流体Aを分離膜構造体モジュール1の筐体12の導入口131から筐体12の第1空間161に導入する。そして、被処理流体Aを分離膜構造体11の流路33内に膜面線速6m/s以上の条件で流通させ、いわゆるクロスフローろ過方式によって、被処理流体Aを分離処理(ろ過)する。具体的には、固形物を含んだ被処理流体Aを固形物とその他の成分とに分離する。   First, as shown in FIG. 1, the fluid A to be processed is introduced into the first space 161 of the casing 12 from the inlet 131 of the casing 12 of the separation membrane structure module 1. And the to-be-processed fluid A is distribute | circulated in the flow path 33 of the separation membrane structure 11 on the conditions whose film surface linear velocity is 6 m / s or more, and the to-be-processed fluid A is isolate | separated (filtered) by what is called a cross flow filtration system. . Specifically, the to-be-processed fluid A containing a solid substance is isolate | separated into a solid substance and another component.

分離膜構造体11の流路33内を流通する被処理流体Aは、分離膜22を通過可能な成分(固形物以外のその他の成分)だけが分離膜22を通過する。分離膜22を通過したろ過液A2は、基材21の内部を通過し、基材21の外周面213から筐体12の第3空間163に流出した後、第1回収口133及び第2回収口134から回収される。一方、分離膜構造体11を通過して濃縮された濃縮液A1は、筐体12の第2空間162に流出した後、排出口132から排出される。   In the fluid A to be processed that flows in the flow path 33 of the separation membrane structure 11, only components that can pass through the separation membrane 22 (other components other than solids) pass through the separation membrane 22. The filtrate A2 that has passed through the separation membrane 22 passes through the inside of the base material 21, flows out from the outer peripheral surface 213 of the base material 21 into the third space 163 of the housing 12, and then the first recovery port 133 and the second recovery port. It is recovered from the mouth 134. On the other hand, the concentrated liquid A <b> 1 concentrated through the separation membrane structure 11 flows out into the second space 162 of the housing 12 and is then discharged from the discharge port 132.

次に、本実施形態の被処理流体の分離処理方法における作用効果について説明する。
本実施形態の被処理流体の分離処理方法によれば、分離膜構造体11の流路33の流路径Bを1.5mm以下とし、膜面線速を6m/s以上として被処理流体Aの分離処理を行う。そのため、被処理流体Aが分離膜構造体11の流路33内を流通する際に、流路33の内壁面、つまり分離膜22の表面に作用するせん断応力を大きくすることができ、分離膜22の表面に付着した固形物等をこそぎ取る力が強くなる。
Next, functions and effects of the separation processing method for a fluid to be processed according to this embodiment will be described.
According to the separation treatment method of the fluid to be treated of this embodiment, the flow path diameter B of the separation membrane structure 11 is set to 1.5 mm or less, and the membrane surface linear velocity is set to 6 m / s or more. Perform separation processing. Therefore, when the fluid A to be processed flows through the flow path 33 of the separation membrane structure 11, the shear stress acting on the inner wall surface of the flow path 33, that is, the surface of the separation film 22, can be increased. The force which scrapes off the solid substance adhering to the surface of 22 becomes strong.

これにより、分離膜22の表面に付着する固形物等に起因する分離膜22のファウリング(膜閉塞)を効果的に抑制でき、被処理流体Aの分離処理効率を高めることができる。すなわち、被処理流体Aが流通する流路33の流路径Bと膜面線速とを上記特定の範囲にすることで、上述の効果を得ることができる。   Thereby, the fouling (membrane clogging) of the separation membrane 22 due to the solid matter or the like adhering to the surface of the separation membrane 22 can be effectively suppressed, and the separation processing efficiency of the fluid A to be treated can be increased. That is, the above-described effect can be obtained by setting the flow path diameter B and the membrane surface linear velocity of the flow path 33 through which the fluid A to be treated flows to the specific range.

また、本実施形態において、分離膜22は、固液分離用の分離膜である。固液分離用の分離膜は、ファウリングを起こしやすい。そのため、分離膜22のファウリングを抑制する効果をより有効に発揮することができる。   In the present embodiment, the separation membrane 22 is a solid-liquid separation membrane. A separation membrane for solid-liquid separation tends to cause fouling. Therefore, the effect of suppressing fouling of the separation membrane 22 can be exhibited more effectively.

また、分離膜22は、精密ろ過膜(MF膜)である。そのため、分離膜22によって被処理流体Aの分離処理(ろ過)を良好に行いながら、分離膜22のファウリングを抑制する効果を十分に得ることができる。   The separation membrane 22 is a microfiltration membrane (MF membrane). Therefore, the effect of suppressing fouling of the separation membrane 22 can be sufficiently obtained while the separation treatment (filtration) of the fluid A to be treated is favorably performed by the separation membrane 22.

このように、本実施形態の被処理流体の分離処理方法によれば、被処理流体Aが流通する流路33の流路径Bと膜面線速とを上記特定の範囲にすることで、分離膜22のファウリング(膜閉塞)を効果的に抑制でき、被処理流体Aの分離処理効率を高めることができる。   As described above, according to the separation processing method of the fluid to be processed according to the present embodiment, the flow path diameter B and the membrane surface linear velocity of the flow path 33 through which the fluid A to be processed flow are within the specific range, thereby separating the fluid. The fouling (membrane clogging) of the membrane 22 can be effectively suppressed, and the separation processing efficiency of the fluid A can be increased.

(実験例)
本実験例では、本発明の被処理流体の分離処理方法について、その効果を調べた。具体的には、複数の分離膜構造体(実験例1〜4)を準備し、各分離膜構造体に対してモデル液を用いたろ過テストを行い、ファウリング(膜閉塞)を評価した。
(Experimental example)
In this experimental example, the effect of the separation processing method of the fluid to be processed according to the present invention was examined. Specifically, a plurality of separation membrane structures (Experimental Examples 1 to 4) were prepared, and a filtration test using a model solution was performed on each separation membrane structure to evaluate fouling (membrane clogging).

実験例1の分離膜構造体は、上述した図1〜図4に示すように、実施形態1の分離膜構造体11であり、セル32の数は127個、流路33の流路径は1.24mmである。
実験例2の分離膜構造体は、図5に示すように、上述の実施形態1と基本的な構成が同じ分離膜構造体11であり、セル32の数が91個、流路33の流路径が1.44mmである。
The separation membrane structure of Experimental Example 1 is the separation membrane structure 11 of Embodiment 1 as shown in FIGS. 1 to 4 described above. The number of cells 32 is 127, and the flow path diameter of the flow path 33 is 1. .24 mm.
As shown in FIG. 5, the separation membrane structure of Experimental Example 2 is the separation membrane structure 11 having the same basic configuration as that of the first embodiment, and has 91 cells 32 and a flow path 33. The path diameter is 1.44 mm.

実験例3の分離膜構造体は、図6に示すように、上述の実施形態1と基本的な構成が同じ分離膜構造体911であり、セル32の数は91個、流路33の流路径は1.84mmである。   As shown in FIG. 6, the separation membrane structure of Experimental Example 3 is a separation membrane structure 911 having the same basic configuration as that of the first embodiment described above, the number of cells 32 is 91, and the flow rate of the flow path 33 is The path diameter is 1.84 mm.

実験例4の分離膜構造体は、図7に示すように、上述の実施形態1と基本的な構成が同じ分離膜構造体911であり、セル32の数が37個、流路33の流路径が2.84mmである。   As shown in FIG. 7, the separation membrane structure of Experimental Example 4 is a separation membrane structure 911 having the same basic configuration as that of the first embodiment, and has 37 cells 32 and a flow path 33. The path diameter is 2.84 mm.

<ファウリング(膜閉塞)評価>
各分離膜構造体に対して、モデル液(被処理流体)を用いたろ過テストを実施した。具体的には、実施形態1と同様の分離膜構造体モジュールに分離膜構造体を取り付け、その分離膜構造体に対して供給タンクからモデル液を供給し、クロスフローろ過方式でろ過を行った。なお、分離膜構造体(分離膜)を通過した濃縮液及びろ過液は、再び供給タンクに戻る配管系とし、供給タンクから供給されるモデル液の濃度は、常に一定となるようにした。モデル液としては、脱脂粉乳粉末を水で溶解した液を用いた。ろ過条件は、分離膜の膜間差圧を0.2MPa、モデル液の膜面線速を4〜7m/s、モデル液の液温25℃とした。
<Evaluation of fouling (membrane occlusion)>
A filtration test using a model liquid (processed fluid) was performed on each separation membrane structure. Specifically, the separation membrane structure was attached to the same separation membrane structure module as in the first embodiment, the model liquid was supplied from the supply tank to the separation membrane structure, and filtration was performed by a crossflow filtration method. . Note that the concentrated solution and filtrate that passed through the separation membrane structure (separation membrane) were made into a piping system that returned to the supply tank again, so that the concentration of the model solution supplied from the supply tank was always constant. As a model solution, a solution obtained by dissolving skim milk powder with water was used. Filtration conditions were such that the transmembrane differential pressure of the separation membrane was 0.2 MPa, the membrane surface linear velocity of the model liquid was 4 to 7 m / s, and the liquid temperature of the model liquid was 25 ° C.

クロスフローろ過方式で2時間ろ過を行った後、純水を用いて分離膜構造体を洗浄した。洗浄条件は、分離膜の膜間差圧を0MPa、純水の膜面線速を2m/sとした。洗浄後、分離膜構造体モジュールから分離膜構造体を取り出し、80℃の温風乾燥機中で2時間乾燥を行った。乾燥後に分離膜構造体の質量を測定し、ろ過テスト前の質量に対して増加分を算出した。この増加分をファウリングに寄与する固形物分の質量とみなし、0.1%以上の質量増加があったか否かでファウリングの有無を判定した。すなわち、質量増加が0.1%未満の場合をファウリング無し(○)、質量増加が0.1%以上の場合をファウリング有り(×)とした。   After performing filtration for 2 hours by a cross flow filtration method, the separation membrane structure was washed with pure water. The cleaning conditions were such that the transmembrane differential pressure of the separation membrane was 0 MPa, and the membrane surface speed of pure water was 2 m / s. After washing, the separation membrane structure was taken out from the separation membrane structure module and dried in a hot air dryer at 80 ° C. for 2 hours. After drying, the mass of the separation membrane structure was measured, and the increment was calculated relative to the mass before the filtration test. This increase was regarded as the mass of solid matter contributing to fouling, and the presence or absence of fouling was determined by whether or not there was a mass increase of 0.1% or more. That is, when the mass increase was less than 0.1%, no fouling was indicated (O), and when the mass increase was 0.1% or more, fouling was indicated (X).


表1からわかるように、実験例1、2は、分離膜構造体の流路の流路径が1.5mm以下であるため、モデル液(被処理流体)の膜面線速を6m/s以上とすることにより、ファウリング(膜閉塞)を抑制する効果が十分に得られることがわかった。   As can be seen from Table 1, in Experimental Examples 1 and 2, since the flow path diameter of the separation membrane structure is 1.5 mm or less, the film surface linear velocity of the model liquid (processed fluid) is 6 m / s or more. It was found that the effect of suppressing fouling (membrane occlusion) can be sufficiently obtained.

一方、実験例3、4は、分離膜構造体の流路の流路径が1.5mmを超えるため、モデル液(被処理流体)の膜面線速を6m/s以上にしたとしても、ファウリング(膜閉塞)を抑制する効果が得られないことがわかった。   On the other hand, in Experimental Examples 3 and 4, since the flow path diameter of the separation membrane structure exceeds 1.5 mm, even if the film surface linear velocity of the model liquid (processed fluid) is set to 6 m / s or more, the Fau It turned out that the effect which suppresses a ring (film | membrane obstruction | occlusion) is not acquired.

以上の結果から、本発明の被処理流体の分離処理方法は、分離膜構造体の流路の流路径を1.5mm以下とし、被処理流体の膜面線速を6m/s以上とすることにより、ファウリング(膜閉塞)を効果的に抑制できることがわかった。   From the above results, in the separation treatment method for a fluid to be treated according to the present invention, the flow passage diameter of the separation membrane structure is 1.5 mm or less, and the film surface linear velocity of the treatment fluid is 6 m / s or more. Thus, it was found that fouling (membrane occlusion) can be effectively suppressed.

(その他の実施形態)
本発明は、上述の実施形態に何ら限定されるものではなく、本発明を逸脱しない範囲において種々の態様で実施しうることはいうまでもない。
(Other embodiments)
It goes without saying that the present invention is not limited to the above-described embodiment, and can be implemented in various modes without departing from the present invention.

(1)上述の実施形態では、基材21の断面形状が円形状であるが、基材21の断面形状はこれに限定されるものではなく、例えば、楕円形状、多角形状(三角形状、四角形状、六角形状等)等であってもよい。   (1) In the above-described embodiment, the cross-sectional shape of the base material 21 is circular, but the cross-sectional shape of the base material 21 is not limited to this. For example, an elliptical shape, a polygonal shape (triangular shape, square shape) Shape, hexagonal shape, etc.).

(2)上述の実施形態では、基材21としてアルミナ製の多孔質体を用いたが、基材21を構成する材料は、これに限定されるものではなく、例えば、ムライト、チタニア、ジルコニア等のセラミックであってもよいし、ステンレス、チタン等の金属材料であってもよい。   (2) In the above-described embodiment, the porous body made of alumina is used as the base material 21, but the material constituting the base material 21 is not limited to this, and for example, mullite, titania, zirconia, etc. It may be a ceramic or a metal material such as stainless steel or titanium.

(3)上述の実施形態では、セル32及び流路33の断面形状が円形状であるが、セル32及び流路33の断面形状はこれに限定されるものではなく、例えば、楕円形状、多角形状(三角形状、四角形状、六角形状等)等であってもよい。   (3) In the above-described embodiment, the cross-sectional shapes of the cell 32 and the flow path 33 are circular. However, the cross-sectional shape of the cell 32 and the flow path 33 is not limited to this, and may be, for example, an elliptical shape or a polygonal shape. It may be a shape (triangular, quadrangular, hexagonal, etc.).

(4)上述の実施形態では、分離膜22としてアルミナ製の多孔質膜を用いたが、分離膜22を構成する材料は、これに限定されるものではなく、例えば、ムライト、チタニア、ジルコニア、ゼオライト、パラジウム、カーボン、アモルファスシリカ、MOF(金属有機構造体)等であってもよい。   (4) In the above-described embodiment, the porous membrane made of alumina is used as the separation membrane 22, but the material constituting the separation membrane 22 is not limited to this, and for example, mullite, titania, zirconia, It may be zeolite, palladium, carbon, amorphous silica, MOF (metal organic structure) or the like.

(5)上述の実施形態では、分離膜22として固液分離用の分離膜を用いたが、他の用途の分離膜を用いてもよい。
(6)上述の実施形態では、分離膜22として精密ろ過膜(MF膜)を用いたが、ナノろ過膜(NF)、限外ろ過膜(UF)等の他のろ過膜を用いてもよい。
(5) In the above-described embodiment, the separation membrane for solid-liquid separation is used as the separation membrane 22. However, a separation membrane for other uses may be used.
(6) Although the microfiltration membrane (MF membrane) is used as the separation membrane 22 in the above-described embodiment, other filtration membranes such as a nanofiltration membrane (NF) and an ultrafiltration membrane (UF) may be used. .

(7)上述の実施形態では、分離膜22が1層で構成されているが、複数層で構成されていてもよい。また、中間層34を1層設けているが、複数層設けてもよい。
(8)上述の実施形態では、分離膜支持体31と中間層34とにより基材21を構成したが、分離膜支持体31のみで基材21を構成してもよい。すなわち、分離膜支持体31と分離膜22との間に中間層34を設けたが、このような中間層34を設けない構成としてもよい。この場合、分離膜支持体31の連通孔311が「セル」となり、連通孔311の内壁面312が「セルの内壁面」となる。
(7) In the above-described embodiment, the separation membrane 22 is composed of one layer, but may be composed of a plurality of layers. Further, although one intermediate layer 34 is provided, a plurality of layers may be provided.
(8) In the above-described embodiment, the base material 21 is configured by the separation membrane support 31 and the intermediate layer 34, but the base material 21 may be configured by only the separation membrane support 31. That is, the intermediate layer 34 is provided between the separation membrane support 31 and the separation membrane 22, but such an intermediate layer 34 may not be provided. In this case, the communication hole 311 of the separation membrane support 31 is a “cell”, and the inner wall surface 312 of the communication hole 311 is a “cell inner wall surface”.

11…分離膜構造体
21…基材
22…分離膜
32…セル
321…内壁面(セルの内壁面)
33…流路
A…被処理流体
DESCRIPTION OF SYMBOLS 11 ... Separation membrane structure 21 ... Base material 22 ... Separation membrane 32 ... Cell 321 ... Inner wall surface (inner wall surface of cell)
33 ... Flow path A ... Processed fluid

Claims (3)

多孔質である柱状の基材と、該基材を軸方向に貫通して形成された複数のセルと、該セルの内壁面に設けられた分離膜と、を備えた分離膜構造体を用いた被処理流体の分離処理方法であって、
前記分離膜構造体の前記各セルにおいて、前記分離膜の内側には、前記被処理流体を流通させる流路が形成され、該流路の流路径は、1.5mm以下であり、
前記被処理流体の分離処理を行う際、前記分離膜構造体の前記流路内に、膜面線速6m/s以上の条件で前記被処理流体を流通させることを特徴とする被処理流体の分離処理方法。
A separation membrane structure comprising a porous columnar substrate, a plurality of cells formed through the substrate in the axial direction, and a separation membrane provided on the inner wall surface of the cell is used. A method for separating the fluid to be treated,
In each cell of the separation membrane structure, a flow path for circulating the fluid to be treated is formed inside the separation membrane, and the flow path diameter of the flow path is 1.5 mm or less,
When performing the separation process of the fluid to be treated, the fluid to be treated is circulated in the flow path of the separation membrane structure under a condition of a film surface linear velocity of 6 m / s or more. Separation processing method.
前記分離膜は、固液分離用の分離膜であることを特徴とする請求項1に記載の被処理流体の分離処理方法。   The method for separating a fluid to be treated according to claim 1, wherein the separation membrane is a separation membrane for solid-liquid separation. 前記分離膜は、ナノろ過膜、限外ろ過膜及び精密ろ過膜から選択される1種以上のろ過膜を含むことを特徴とする請求項1又は2に記載の被処理流体の分離処理方法。   The said separation membrane contains the 1 or more types of filtration membrane selected from a nanofiltration membrane, an ultrafiltration membrane, and a microfiltration membrane, The separation processing method of the to-be-processed fluid of Claim 1 or 2 characterized by the above-mentioned.
JP2015231780A 2015-11-27 2015-11-27 Separation treatment method of treatment object fluid Pending JP2017094310A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015231780A JP2017094310A (en) 2015-11-27 2015-11-27 Separation treatment method of treatment object fluid

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015231780A JP2017094310A (en) 2015-11-27 2015-11-27 Separation treatment method of treatment object fluid

Publications (1)

Publication Number Publication Date
JP2017094310A true JP2017094310A (en) 2017-06-01

Family

ID=58805125

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015231780A Pending JP2017094310A (en) 2015-11-27 2015-11-27 Separation treatment method of treatment object fluid

Country Status (1)

Country Link
JP (1) JP2017094310A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019150816A (en) * 2018-02-28 2019-09-12 京セラ株式会社 Porous structure and porous body with separation membrane using the same

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04132796A (en) * 1990-09-26 1992-05-07 Mitsubishi Kakoki Kaisha Ltd Production of vegetable oil
JPH11221449A (en) * 1998-02-04 1999-08-17 Nitto Denko Corp Fluid transporting conduit and membrane element for the conduit
JP2003183019A (en) * 2001-12-18 2003-07-03 Catalysts & Chem Ind Co Ltd Method for filtering and separating zeolite
JP2014046286A (en) * 2012-08-31 2014-03-17 Ngk Insulators Ltd Strength inspection method of monolith type separation membrane structure

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04132796A (en) * 1990-09-26 1992-05-07 Mitsubishi Kakoki Kaisha Ltd Production of vegetable oil
JPH11221449A (en) * 1998-02-04 1999-08-17 Nitto Denko Corp Fluid transporting conduit and membrane element for the conduit
JP2003183019A (en) * 2001-12-18 2003-07-03 Catalysts & Chem Ind Co Ltd Method for filtering and separating zeolite
JP2014046286A (en) * 2012-08-31 2014-03-17 Ngk Insulators Ltd Strength inspection method of monolith type separation membrane structure

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019150816A (en) * 2018-02-28 2019-09-12 京セラ株式会社 Porous structure and porous body with separation membrane using the same
JP7182482B2 (en) 2018-02-28 2022-12-02 京セラ株式会社 Porous structure and porous body with separation membrane using the same

Similar Documents

Publication Publication Date Title
JP6060074B2 (en) Cleaning method of ceramic filter
WO2006080482A1 (en) Method for manufacturing module having selectively permeable membrane and module having selectively permeable membrane
US10391455B2 (en) Filtration and emulsification device
CN101785973B (en) Ultrafiltration and microfiltration membrane assembly for tubular composite membrane
JP2009526639A (en) Waste liquid purification method
JP2019503841A (en) Fluid cleaning apparatus, system, and method using silicon carbide membrane
WO2018235901A1 (en) Filtration membrane module and filtration method
EP3107644A1 (en) Filtration apparatus with multiple hollow fibre membrane bundles for inside-out filtration
JP5614644B2 (en) Membrane filtration method
JP2015006654A (en) Filter device and immersion type filtration method using the same
JP2000140585A (en) Operation of membrane separation apparatus, and membrane separation apparatus
JP2017094310A (en) Separation treatment method of treatment object fluid
Wang et al. Understand the basics of membrane filtration
EP3563928B1 (en) Hollow fiber membrane for filtration of liquids
JP2017056371A (en) Operation method of filtration apparatus
WO2015124492A1 (en) Filtration element
JP2007237053A (en) Filter and its backwashing method
JPWO2019027047A1 (en) Adsorbing member and manufacturing method thereof
KR20180114820A (en) Antifouling Hollow fiber membrane module, Method for preparing the same and Uses thereof
JP6553419B2 (en) Separation membrane support, separation membrane structure and separation membrane structure module
JP2004275906A (en) Ceramic filter
WO2014192416A1 (en) Filtration device and filtration method using same
JP2008062119A (en) Filter medium, its manufacturing method, filtration treatment device, and filtration treatment method
JP2021526970A (en) Filtration system and how to filter water
JP2015123436A (en) Water treatment method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180508

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20181226

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190108

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20190723