JPH03284329A - Ceramic membraneous filter and production thereof - Google Patents

Ceramic membraneous filter and production thereof

Info

Publication number
JPH03284329A
JPH03284329A JP8525490A JP8525490A JPH03284329A JP H03284329 A JPH03284329 A JP H03284329A JP 8525490 A JP8525490 A JP 8525490A JP 8525490 A JP8525490 A JP 8525490A JP H03284329 A JPH03284329 A JP H03284329A
Authority
JP
Japan
Prior art keywords
intermediate layer
ceramic
slurry
particle size
support
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP8525490A
Other languages
Japanese (ja)
Inventor
Muneyuki Iwabuchi
宗之 岩渕
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NGK Insulators Ltd
Original Assignee
NGK Insulators Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NGK Insulators Ltd filed Critical NGK Insulators Ltd
Priority to JP8525490A priority Critical patent/JPH03284329A/en
Publication of JPH03284329A publication Critical patent/JPH03284329A/en
Pending legal-status Critical Current

Links

Landscapes

  • Separation Using Semi-Permeable Membranes (AREA)

Abstract

PURPOSE:To obtain a ceramic membraneous filter having high filtering efficiency by forming a middle layer with a ceramic material made of particles having a prescribed particle size range classified by elutriation as starting material. CONSTITUTION:At least one side of a porous substrate is coated with a porous middle layer having a smaller average pore diameter than the substrate and one side of the middle layer is coated with a filter membrane having a smaller average pore diameter than the middle layer to obtain a ceramic membraneous filter. The middle layer is formed with a slurry of a ceramic material made of particles having a prescribed particle size range classified by elutriation as starting material.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は限外濾過膜、精密濾過膜等として使用されるセ
ラミック膜フィルタに関する。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to a ceramic membrane filter used as an ultrafiltration membrane, a precision filtration membrane, etc.

(従来技術) 各種の分野に使用される濾過膜において、機械的強度、
耐熱性および耐蝕性に優れたものとしてセラミック膜フ
ィルタがある。かかるセラミック膜フィルタにおいては
、被処理流体の流通抵抗を可能なかぎり小さくするため
、細孔径の大きな多孔質支持体の少な(とも−側面に薄
層の濾過膜を固着した複層構造のものが一般であり、上
記濾過膜は被処理流体の種類によって適宜選定される。
(Prior art) In filtration membranes used in various fields, mechanical strength,
Ceramic membrane filters have excellent heat resistance and corrosion resistance. In order to reduce the flow resistance of the fluid to be treated as much as possible, such ceramic membrane filters have a small number of porous supports with large pores (both have a multilayer structure with a thin filtration membrane fixed to the side surface). Generally speaking, the above-mentioned filtration membrane is appropriately selected depending on the type of fluid to be treated.

本発明が対象とする限外濾過膜、精密濾過膜等に適用さ
れるセラミック膜フィルタにおいては、上記濾過膜とし
て平均細孔径が100OA以下の範囲にあるものが選定
される。
In the ceramic membrane filter applied to ultrafiltration membranes, precision filtration membranes, etc. targeted by the present invention, a membrane having an average pore diameter of 100 OA or less is selected as the filtration membrane.

しかして、平均細孔径が100OA以下という微細孔径
の濾過膜を成膜するには、i!@過膜の平均細孔径の2
〜5倍程度の粒径を有する微粒子のセラミック原料のス
ラリーが用いられるが、かかるスラリー中の微粒子の粒
径が極めて小さいことから、多孔質支持体の少くとも一
側面に同支持体より平均細孔径の小さい多孔質中間層を
形成して、同中間層の一側面に上記した濾過膜を成膜さ
れることが多い。
Therefore, in order to form a filtration membrane with an average pore size of 100 OA or less, i! @2 of the average pore diameter of the membrane
A slurry of ceramic raw material with fine particles having a particle size of ~5 times as large is used, but since the particle size of the fine particles in this slurry is extremely small, at least one side of the porous support is coated with an average finer particle than that of the support. In many cases, a porous intermediate layer with a small pore size is formed, and the above-mentioned filtration membrane is formed on one side of the intermediate layer.

(発明が解決しようとする課題) ところで、セラミック原料を構成する粒子群は広い粒度
分布を有していて、中間層の原料として所定の平均粒径
のセラミック原料を用いても小径側の粒子群の影響で所
定の透過性を有する中間層を形成することが難しく、ま
た大径側の粒子群の影響で濾過膜を成膜するのに適した
中間層を形成することが難しい。このため、粒度分布の
シャープなセラミック原料を用いることが好ましいが、
このようなセラミック原料は高価であって経済的に不利
である。従って、本発明の目的はかかる問題に対処する
ことにある。
(Problem to be Solved by the Invention) Incidentally, the particle groups constituting the ceramic raw material have a wide particle size distribution, and even if a ceramic raw material with a predetermined average particle size is used as the raw material for the intermediate layer, the particle groups on the small diameter side It is difficult to form an intermediate layer having a predetermined permeability due to the influence of the particles, and it is also difficult to form an intermediate layer suitable for forming a filtration membrane due to the influence of the large-diameter particle group. For this reason, it is preferable to use ceramic raw materials with a sharp particle size distribution.
Such ceramic raw materials are expensive and economically disadvantageous. It is therefore an object of the present invention to address such problems.

(課題を解決するための手段) 本発明はセラミック膜フィルタおよびその製造方法に関
するもので、その第1の発明は、多孔質支持体の少くと
も一側面に同支持体より平均細孔径の小さい多孔質中間
層を備えるとともに、同中間層の一側面に同中間層より
平均細孔径の小さい濾過膜を備えたセラミック膜フィル
タであり、前記中間層が水簸分級された所定範囲の粒径
の粒子からなるセラミック材料を原料としていることを
特徴とするものであり、また第2の発明は当該セラミッ
ク膜フィルタの製造方法であり、前記中間層を水簸分級
されて得られる所定範囲の粒径の粒子からなるスラリー
を用いて形成することを特徴とするものである。
(Means for Solving the Problems) The present invention relates to a ceramic membrane filter and a method for manufacturing the same, and a first aspect of the present invention is to provide a porous support with pores on at least one side thereof having a smaller average pore diameter than that of the support. The ceramic membrane filter is a ceramic membrane filter comprising a quality intermediate layer and a filtration membrane having a smaller average pore size than the intermediate layer on one side of the intermediate layer, and the intermediate layer contains elutriated particles having a particle size within a predetermined range. The second invention is a method for manufacturing the ceramic membrane filter, in which the intermediate layer is classified by elutriation and has a particle size within a predetermined range. It is characterized in that it is formed using a slurry made of particles.

本発明において、多孔質支持体は無機質粒子例えばアル
ミナ、ジルコニア、チタニア系のセラミック、ホウケイ
酸ガラス等のガラス、ニッケル等の金属、炭素の焼結体
からなるパイプ状、モノリス状、ハニカム状、ブレート
状のもので、単層マたは2層以上の複層構造のものであ
る。多孔質支持体は被処理流体の透通時の流通抵抗が可
能なかぎり小さいもので、平均細孔径が数μ■〜数10
0μ璽程度のものである。
In the present invention, the porous support is a pipe, monolith, honeycomb, or plate made of inorganic particles such as alumina, zirconia, titania ceramics, glass such as borosilicate glass, metal such as nickel, or a sintered body of carbon. It has a single-layer structure or a multi-layer structure of two or more layers. The porous support has the lowest possible flow resistance when the fluid to be treated passes through it, and has an average pore diameter of several μ■ to several tens of micrometers.
It is about 0μ in size.

本発明において、中間層はセラミyり質の多孔質層であ
ってアルミナ、ジルコニア、チタニア、シリカ等のスラ
リーを多孔質支持体の少なくとも一側面にコーティング
して焼結させたものである。
In the present invention, the intermediate layer is a porous layer made of ceramic material, and is obtained by coating at least one side of a porous support with a slurry of alumina, zirconia, titania, silica, etc. and sintering the slurry.

中間層はその一側面に濾過膜が成膜される関係上、上記
した多孔質支持体の平均細孔径より小さい平均細孔径を
有していることが必要であり、中間層の平均細孔径は0
1μ■〜数10p m程度のものである。
Since a filtration membrane is formed on one side of the intermediate layer, it is necessary to have an average pore diameter smaller than the average pore diameter of the porous support described above, and the average pore diameter of the intermediate layer is 0
It is about 1 μm to several tens of micrometers.

また、かかる中間層は多孔質支持体と同様単層または2
層以上の複層構造のものであり、単層の場合には中間層
それ自体が、また複層構造の場合には少なくとも多孔質
支持体側の層(第1中間層)が水簸分級された所定範囲
の粒径の粒子からなるセラミック材料を原料とするもの
で、水簸分級されて得られたスラリーが使用される。
In addition, such an intermediate layer may be a single layer or two layers similar to the porous support.
It has a multilayer structure with more than one layer, and in the case of a single layer, the intermediate layer itself, and in the case of a multilayer structure, at least the layer on the porous support side (first intermediate layer) has been subjected to elutriation classification. The raw material is a ceramic material consisting of particles with a particle size within a predetermined range, and a slurry obtained by elutriation classification is used.

本発明において、濾過膜はその平均細孔径が1八〜1.
000 Aときわめて小さい範囲の細孔径を有するもの
であり、中間層の一側面にスラリーまたはゾル液を用い
て成膜されたアルミナ、ジルコニア、チタニア、シリカ
等の薄膜を焼成してなるものである。
In the present invention, the filtration membrane has an average pore diameter of 18 to 1.
It has a pore diameter in the extremely small range of 000 A, and is made by firing a thin film of alumina, zirconia, titania, silica, etc., which is formed on one side of the intermediate layer using a slurry or sol solution. .

本発明において用いる水簸分級はそれ自体としては公知
であり、セラミックの粗原料を分散剤、解膠剤を用いて
スラリー状として容器に所定時間静置し、その後容器の
上下方向の所定範囲にあるスラリー 沈澱物を取出すこ
とにより、所定範囲の粒径の粒子からなるセラミック材
料を得る。
The elutriation classification used in the present invention is known per se, in which crude ceramic raw materials are made into a slurry using a dispersant and a deflocculant and left in a container for a predetermined period of time. By removing a certain slurry precipitate, a ceramic material consisting of particles with a predetermined range of particle sizes is obtained.

(発明の作用・効果) 本発明に係るセラミック膜フィルタにおいては、中間層
が所定範囲の粒径の粒子からなるセラミック材料にて構
成されかつ凝集粒子が取除かれているため、中間層の細
孔径はその平均細孔径を中心とする狭い範囲の分布状態
となり、所定の透過性を有しかつ濾過膜に対する成膜性
のよい中間層が形成され、かかる中間層に起因して濾過
性能に優れかつ膜面が平滑なセラミック膜フィルタが得
られる。
(Operations and Effects of the Invention) In the ceramic membrane filter according to the present invention, since the intermediate layer is made of a ceramic material consisting of particles having a particle size within a predetermined range and agglomerated particles are removed, fine particles in the intermediate layer are formed. The pore size is distributed in a narrow range centered on the average pore size, and an intermediate layer is formed that has a predetermined permeability and has good film formation properties for the filtration membrane, and due to this intermediate layer, it has excellent filtration performance. Moreover, a ceramic membrane filter with a smooth membrane surface can be obtained.

また、中間層は一般にスラリーを用いて形成されるため
、中間層の形成にはセラミック材料のスラリーを調製す
る工程は不可欠であり、かかる調製工程において水簸分
級を行うことができることから、水簸分級により得られ
るffL度分重分布い範囲の原料は予め粒度分布の狭い
範囲の微粒末状にw4製される原料に比較して廉価であ
って、経済的にも極めて有利である。
In addition, since the intermediate layer is generally formed using a slurry, the process of preparing a slurry of ceramic material is essential for forming the intermediate layer, and elutriation classification can be performed in this preparation process. The raw material with a wide range of ffL weight distribution obtained by classification is cheaper than the raw material which is prepared in advance into the form of fine powder with a narrow particle size distribution, and is extremely economically advantageous.

(実施例) 本実施例においては、多孔質支持体としてモノリス構造
の支持体を採用し、同支持体の各内孔周面に第1中間層
を形成しさらに同中間層の周面に第2中間層を形成し、
この第2中間層の局面に濾過膜を形成してなるセラミッ
ク膜フィルタについて例示する。なお、これらの各中間
層および濾過膜はセラミック原料のスラリーをコーティ
ングすることにより形成されている。
(Example) In this example, a support with a monolithic structure is adopted as the porous support, a first intermediate layer is formed on the circumferential surface of each inner hole of the support, and a first intermediate layer is further formed on the circumferential surface of the intermediate layer. 2 form an intermediate layer,
A ceramic membrane filter in which a filtration membrane is formed on the surface of the second intermediate layer will be exemplified. Note that each of these intermediate layers and filtration membranes are formed by coating a slurry of ceramic raw materials.

(1)コーティング装置 スラリーのコーティングには第1図に示すコーティング
装置を用いた。当該コーティング装置は特開昭61−2
38315号公報に示された装置に類似するもので、圧
力容器11内に筒状の多孔質支持体A(中間層を備えた
ものを含む)の保持機構10aを収容してなる。保持機
構10aは上下一対の支持板12a、12bと複数の連
結ポル)13a、13b・・・とを備え、これらの連結
ボルト13a、13b・・・にて両支持板12a。
(1) Coating device A coating device shown in FIG. 1 was used for coating the slurry. The coating equipment is disclosed in Japanese Patent Application Laid-Open No. 61-2
This device is similar to the device shown in Japanese Patent No. 38315, and includes a holding mechanism 10a for a cylindrical porous support A (including one provided with an intermediate layer) in a pressure vessel 11. The holding mechanism 10a includes a pair of upper and lower support plates 12a, 12b and a plurality of connecting bolts 13a, 13b, . . . , and these connecting bolts 13a, 13b, .

12bを互いに連結することにより、支持体Aが両支持
板12a、12bにて挟持される。下側支持板】28に
はコーテイング液を収容するタンク14に接続する供給
バイブ15aが接続されており、同バイブ158は支持
体Aの下端部にて開口し供給ポンプ15bの駆動により
タンク14内のコーテイング液を支持体Aに供給する。
By connecting the support plates 12b to each other, the support body A is held between both support plates 12a and 12b. A supply vibrator 15a that connects to the tank 14 containing the coating liquid is connected to the lower support plate 28, and the vibrator 158 opens at the lower end of the support A and enters the tank 14 by driving the supply pump 15b. A coating liquid is supplied to support A.

なお、供給バイブ15aには排出バイブ15cが接続さ
れており、同バイブ15cはコーティング作業終了後支
持体A内のコーテイング液をタンク14内に排出する。
A discharge vibrator 15c is connected to the supply vibrator 15a, and the discharge vibrator 15c discharges the coating liquid in the support A into the tank 14 after the coating operation is completed.

一方、上側支持板12bにはタンク14上に臨む流出バ
イブ16aが接続されており、同バイブ16aは支持体
Aの上端部に開口し支持体Aからオーバフローするコー
テイング液をタンク14内へ還流させる。また、圧力容
器11の一側上部には真空ポンプ17aに接続した排気
バイブ17bが接続され、真空ポンプ17aの駆動によ
り圧力容器ll内が所望の圧力に減圧される。圧力容器
11の一側には水量計17cが取付けられており、同水
量計17cはコーティング作業時支持体Aを透過して圧
力容器11内に流出する水量を表示する。
On the other hand, an outflow vibrator 16a facing above the tank 14 is connected to the upper support plate 12b, and the vibrator 16a opens at the upper end of the support A and allows the coating liquid overflowing from the support A to flow back into the tank 14. . Further, an exhaust vibrator 17b connected to a vacuum pump 17a is connected to the upper part of one side of the pressure vessel 11, and the pressure inside the pressure vessel 11 is reduced to a desired pressure by driving the vacuum pump 17a. A water meter 17c is attached to one side of the pressure vessel 11, and the water meter 17c indicates the amount of water that passes through the support A and flows into the pressure vessel 11 during the coating operation.

当該コーティング装置1oにおいては、流出バイブ16
aが有する絞り弁16t+を全開にした状態にてポンプ
15bを駆動してコーテイング液を支持体A内に供給し
、コーテイング液が支持体Aの上端部に達した時点で真
空ポンプ17aを駆動させて圧力容器11内を減圧にす
るとともに、絞り弁16bを所定量絞ってコーテイング
液を支持体A内を加圧状態で上方へ循環させる。これに
より、支持体Aの内外側に圧力差が生じ、この圧力差に
よりコーテイング液中の水分が支持体Aを透過して圧力
容器11内に流出し、この間コーティング液中の中間層
または濾過膜成分が支持体Aの内周面に担持される。な
お、コーティング層または膜の厚ろは圧力容器11内に
流出する水量に比例するため、水量計17cにて表示さ
れる水量に基づいて厚みが調整される。厚みが所定の厚
さになった時点で、供給ポンプ15bを停止した後絞り
弁16bを全開とし、かつ排水バイブ15Cが有する開
閉弁15dを開放し、その後減圧脱水を数分間行い真空
ポンプ17aの駆動を停止させる。
In the coating apparatus 1o, the outflow vibrator 16
The coating liquid is supplied into the support body A by driving the pump 15b with the throttle valve 16t+ of the unit a fully open, and when the coating liquid reaches the upper end of the support body A, the vacuum pump 17a is driven. The pressure inside the pressure vessel 11 is reduced, and the throttle valve 16b is throttled by a predetermined amount to circulate the coating liquid upwardly within the support A under pressure. This creates a pressure difference between the inside and outside of the support A, and due to this pressure difference, moisture in the coating liquid permeates through the support A and flows into the pressure vessel 11. During this time, the intermediate layer or filtration membrane in the coating liquid Components are supported on the inner circumferential surface of support A. Note that since the thickness of the coating layer or membrane is proportional to the amount of water flowing into the pressure vessel 11, the thickness is adjusted based on the amount of water displayed by the water meter 17c. When the thickness reaches a predetermined thickness, the supply pump 15b is stopped, the throttle valve 16b is fully opened, and the on-off valve 15d of the drainage vibrator 15C is opened, and dehydration is then carried out for several minutes under reduced pressure, and the vacuum pump 17a is opened. Stop the drive.

これにより、支持体A内のコーテイング液が排出バイブ
15cを通してタンク14内へ排出され、コーティング
作業が終了する。
As a result, the coating liquid in the support body A is discharged into the tank 14 through the discharge vibrator 15c, and the coating operation is completed.

なお、本実施例においてはかかるコーティング法を動加
圧真空法と称する。
In this example, this coating method is referred to as a dynamic pressure vacuum method.

(2)多孔質支持体A 多孔質支持体Aは外径30龍、長さ1000++mの外
形形状を有するとともに、直径4+niで長さ方向に並
列して延びる19本の内孔を有するモノリス構造を有す
るもので、平均粒径30μmのアルミナを主成分とする
押出成形物の焼結体であって、最大気孔径7μ菌を有す
る。
(2) Porous support A Porous support A has an external shape with an outer diameter of 30mm and a length of 1000++m, and has a monolithic structure with 19 inner holes with a diameter of 4+ni extending in parallel in the length direction. It is a sintered body of an extruded product mainly composed of alumina with an average particle size of 30 μm, and has a maximum pore size of 7 μm.

(3)木節分級 粗原料であるセラミック粉末に水分および分散剤である
ポリカルボン酸アンモニウムをそれぞれ所定量添加して
ボールミルにて混合し、所定の容器内にて希釈して攪拌
した後当該希釈液を所定時間静置し、その後容器内の底
部より所定高さ上方の位置から上方側の液(上液)と、
当該位置から下方側の沈澱物とに分離して取出す。
(3) Moisture and ammonium polycarboxylate, which is a dispersant, are added in predetermined amounts to the ceramic powder that is the raw material for Kibushi classification, mixed in a ball mill, diluted in a predetermined container, stirred, and then diluted. The liquid is allowed to stand for a predetermined period of time, and then the upper liquid (upper liquid) from a predetermined height above the bottom of the container,
The precipitate is separated from the lower part from this position and taken out.

(4)中間層B 本実施例では中間層Bとして第1中間層b1と第2中間
層b2との2層構造とし、第1中間層b1の原料として
本節分級された沈澱物を採用した。
(4) Intermediate layer B In this example, the intermediate layer B has a two-layer structure of the first intermediate layer b1 and the second intermediate layer b2, and the precipitate classified in this section is used as the raw material for the first intermediate layer b1.

第1中間層b1: 平均粒径4μ■のAl2O3粉末を粗原料とし、分散剤
であるポリカルボン酸アンモニウム0.5wt%含ム粗
含料粗原料301t70wt%とからなるスラリーを調
製し、これを十分に攪拌した後各時間静置した。得られ
た上液または沈澱物を用いてこれに固形分に対して焼結
助剤であるTi02(平均粒径□1μm)を0、3vt
%添加して混合する。これを原料として水分95冒t%
からなるスラリーを調製した。得られた各スラリーを用
いて動加圧真空法にて多孔質支持体Aの各内孔周面にコ
ーティングし、乾燥後1500 ”Cにて焼成して膜厚
170μmの第1中間層す、を形成した。得られた多孔
質支持体Aと第1中間層b1一体の積層体の特性を別表
に示す。
First intermediate layer b1: A slurry was prepared using Al2O3 powder with an average particle size of 4μ as a crude raw material and 301t70wt% of a crude raw material containing 0.5wt% of ammonium polycarboxylate as a dispersant. After thorough stirring, the mixture was allowed to stand for each hour. Using the obtained supernatant liquid or precipitate, 0.3vt of Ti02 (average particle size □1 μm), which is a sintering aid, was added to the solid content.
% and mix. Using this as a raw material, the water content is 95%
A slurry consisting of was prepared. Each slurry obtained was coated on the circumferential surface of each inner hole of the porous support A using a dynamic pressure vacuum method, and after drying, it was fired at 1500"C to form a first intermediate layer having a thickness of 170 μm. The properties of the resulting laminate of the porous support A and the first intermediate layer b1 are shown in the attached table.

なお、動加圧真空法においてはコーティングに先立って
支持体を水中で3時間煮沸して脱泡し、また圧力容器1
1内の真空度を730mmHg 〜740++mHg。
In addition, in the dynamic pressure vacuum method, the support is boiled in water for 3 hours to defoam before coating, and the pressure vessel 1 is
The degree of vacuum inside 1 is 730mmHg to 740++mHg.

スラリーの支持体の内周面に対する液圧を2kg/cm
2.その流動接触時間を1分20秒間とするとともに、
スラリー排出後上記真空下でS分間減圧脱水している。
The liquid pressure of the slurry against the inner peripheral surface of the support is 2 kg/cm.
2. The fluid contact time is 1 minute 20 seconds, and
After discharging the slurry, it was dehydrated under reduced pressure for S minutes under the vacuum described above.

以下の動加圧真空法においても同様である。The same applies to the dynamic pressure vacuum method described below.

第2中間層b2: 平均粒径05μmで純度99.5vt%Al+03粉末
に解ぺ剤としてポリカルボン酸アンモニウム0.5vt
%、粘結剤としてポリアクリル酸4豐t%を加え、水分
95vt%のスラリーを調製し、このスラリーを水液分
級することなく第1中間層b1の内周面に動加圧真空法
にてコーティングした。次いで、これを乾燥後1500
℃にて焼成して平均細孔径02μ■、膜厚5゜μmの第
2中間1 b 2を形成した。得られた多孔質支持体A
、第1中間層b1および第2中間層b2−体の積層体の
特性を別表に示す。
Second intermediate layer b2: average particle size of 05 μm, purity of 99.5vt% Al+03 powder, and 0.5vt of ammonium polycarboxylate as a peptizer.
%, and 4 t% of polyacrylic acid as a binder was added to prepare a slurry with a moisture content of 95 t%, and this slurry was applied to the inner circumferential surface of the first intermediate layer b1 by a dynamic pressure vacuum method without aqueous classification. It was coated. Next, after drying this, 1500
C. to form a second intermediate layer 1b2 having an average pore diameter of 02 .mu.m and a film thickness of 5.mu.m. Obtained porous support A
, the characteristics of the laminate of the first intermediate layer b1 and the second intermediate layer b2 are shown in the attached table.

なお、本実施例において第2中開層b2を形成するのは
以下の理由による。すなわち、第1中間層b1の平均細
孔径的1μ■が後述するd過膜に使用するスラリーの平
均vL径〈0.2μ■より大きいため、濾過膜の成膜性
を同上させることと、当該ai5膜にて形成されるかも
しれない平均細孔径に比較してきわめて大きな細孔、ク
ラックを一側面にて閉鎖するためである。
The reason for forming the second middle open layer b2 in this example is as follows. That is, since the average pore diameter of 1μ■ of the first intermediate layer b1 is larger than the average vL diameter <0.2μ■ of the slurry used for the d-filtration membrane described later, it is possible to improve the film formability of the filtration membrane. This is to close pores and cracks on one side that are extremely large compared to the average pore diameter that may be formed in the ai5 film.

(5)濾過膜 平均粒径〈02μlのTiO2粉末を粗原料とし、分散
剤であるポリカルボン酸アンモニウムを4wt%含む粗
原料2vt%と水98wt%とからなるスラリーを調製
し、これを十分に攪拌した後20時間静置し、得られた
上演を用いて水分99.2vt%のスラリーとした。こ
のスラリーを用いて動加圧真空法にて第2中間層b2の
周面にコーティングし、乾燥後8oo″Cにて焼成して
平均細孔径O,OSμ■、膜厚5μ璽の濾過膜を形成し
た。
(5) Using TiO2 powder with an average particle size of filtration membrane <02μl as a crude raw material, prepare a slurry consisting of 2vt% of the raw material containing 4wt% of ammonium polycarboxylate as a dispersant and 98wt% of water, and thoroughly After stirring, the mixture was allowed to stand for 20 hours, and the resulting slurry was used to prepare a slurry with a moisture content of 99.2 vt%. This slurry was coated on the circumferential surface of the second intermediate layer b2 using a dynamic pressure vacuum method, and after drying, it was fired at 8oo''C to form a filtration membrane with an average pore diameter of O, OSμ, and a film thickness of 5μ. Formed.

(6)セラミック膜フィルタの特性 被処理液として分画分子量23万のデキストランの10
00pp++溶液を用い、この被処理液を各セラミック
膜フィルタを備えた濾過器に循環供給し、循環流速2m
7sec、  g圧1kg/cm2で60分間クロスフ
ロー濾過を行い、下記式にて阻止率(%)を算出すると
ともに透i5液量を算出し1  さらに各セラミック膜
フィルタを純水にて液圧2kg/cm2で60分間逆洗
して再生を行った後上記と同様クロスフロー濾過を行い
、阻止率および透過液量を算出した。
(6) Characteristics of ceramic membrane filter Dextran with a molecular weight cut-off of 230,000 is used as the liquid to be treated.
Using a 00pp++ solution, this treated liquid was circulated and supplied to a filter equipped with each ceramic membrane filter, and the circulation flow rate was 2 m.
Cross-flow filtration was performed for 7 seconds at a pressure of 1 kg/cm2 for 60 minutes, and the rejection rate (%) was calculated using the formula below, as well as the amount of permeable i5 liquid. /cm2 for 60 minutes for regeneration, and then cross-flow filtration was performed in the same manner as above, and the rejection rate and amount of permeated liquid were calculated.

注*; 液中のデキストラン量をTOC測定装置を用い
て全オルガニックカーボン量を測定 (7)各特性の測定 平均粒径: 株式会社島津製作所製セディグラフにて測
定(平均粒径・50%径) 平均細孔径:水中発泡法にて測定 膜表面粗さ二Ra・・・10点平均粗さ、Rz・・・中
心線平均粗さ (8)考察 各セラミック膜フィルタにおいては別表から明らかなよ
うに、水筆分級のされているスラリーを使用したものN
O31〜N010のうち、粗原料の平均粒径4.0μ■
(NO,11は粗原料のスラリーを使用)に近似する平
均粒径を有する適正に水筆分級されたものNo、 3〜
N015のものは、デキストランの阻止率は粗原料のス
ラリーを使用したNO,11のものと変わりがなく、か
つ透過液量が著しく多い。このことは、N013〜NO
5のセラミック膜フィルタが濾過効率の高いフィルタで
あることを意味している。NO33NO07およびNO
,11に使用したスラリー中の粒子の粒度分布を第2図
のグラフに示す。
Note *: Measure the amount of dextran in the liquid using a TOC measuring device (7) Measurement average particle size of each characteristic: Measured with Sedigraph manufactured by Shimadzu Corporation (average particle size 50% Diameter) Average pore diameter: Measured by underwater foaming method Membrane surface roughness 2 Ra... 10 point average roughness, Rz... Center line average roughness (8) Discussion For each ceramic membrane filter, it is clear from the attached table. N
Among O31 to N010, the average particle size of the crude raw material is 4.0 μ■
(No. 11 uses a slurry of crude raw materials) Properly classified with a water brush and has an average particle size similar to No. 3 to
In case of N015, the dextran rejection rate is the same as that of NO,11 which uses a slurry of crude raw material, and the amount of permeate is significantly large. This is true for N013~NO
This means that the ceramic membrane filter of No. 5 is a filter with high filtration efficiency. NO33NO07 and NO
The particle size distribution of the particles in the slurry used in Example No. 11 is shown in the graph of FIG.

(以下余白) / /(Margin below) / /

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はスラリーをコーティングするためのコーティン
グ装置の概略構成図、第2図はスラリー中の粒子の粒度
分布を示すグラフである。 符  号  の  説  明 10・・・コーティング装置、11・・・圧力容器、1
2a、12b・・・支持板、14・・・タンク、15b
・・・供給ポンプ、 17a・・・真空ポンプ。
FIG. 1 is a schematic diagram of a coating apparatus for coating slurry, and FIG. 2 is a graph showing the particle size distribution of particles in the slurry. Explanation of symbols 10...Coating device, 11...Pressure vessel, 1
2a, 12b... Support plate, 14... Tank, 15b
... Supply pump, 17a... Vacuum pump.

Claims (2)

【特許請求の範囲】[Claims] (1)多孔質支持体の少くとも一側面に同支持体より平
均細孔径の小さい多孔質中間層を備えるとともに、同中
間層の一側面に同中間層より平均細孔径の小さい濾過膜
を備えたセラミック膜フィルタであり、前記中間層が水
簸分級された所定範囲の粒径の粒子からなるセラミック
材料を原料としていることを特徴とするセラミック膜フ
ィルタ。
(1) At least one side of a porous support is provided with a porous intermediate layer having an average pore diameter smaller than that of the support, and one side of the intermediate layer is provided with a filtration membrane having an average pore diameter smaller than that of the intermediate layer. 1. A ceramic membrane filter characterized in that the intermediate layer is made of a ceramic material made of elutriated particles having a particle size within a predetermined range.
(2)第1項に記載のセラミック膜フィルタの製造方法
であり、前記中間層を水簸分級された所定範囲の粒径の
粒子からなるセラミック材料のスラリーにて形成するこ
とを特徴とするセラミック膜フィルタの製造方法。
(2) A method for manufacturing a ceramic membrane filter according to item 1, characterized in that the intermediate layer is formed from a slurry of a ceramic material made of elutriated particles having a particle size within a predetermined range. Method for manufacturing membrane filters.
JP8525490A 1990-03-30 1990-03-30 Ceramic membraneous filter and production thereof Pending JPH03284329A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8525490A JPH03284329A (en) 1990-03-30 1990-03-30 Ceramic membraneous filter and production thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8525490A JPH03284329A (en) 1990-03-30 1990-03-30 Ceramic membraneous filter and production thereof

Publications (1)

Publication Number Publication Date
JPH03284329A true JPH03284329A (en) 1991-12-16

Family

ID=13853439

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8525490A Pending JPH03284329A (en) 1990-03-30 1990-03-30 Ceramic membraneous filter and production thereof

Country Status (1)

Country Link
JP (1) JPH03284329A (en)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2000000662A1 (en) * 1998-06-30 2000-01-06 Imperial College Of Science, Technology And Medicine Material deposition
WO2000045944A1 (en) * 1999-02-01 2000-08-10 Ngk Insulators, Ltd. Method for manufacturing filter having ceramic porous film as separating film
WO2000045945A1 (en) * 1999-02-01 2000-08-10 Ngk Insulators, Ltd. Method for manufacturing filter having ceramic porous film as separating film
JP2002018715A (en) * 2000-06-30 2002-01-22 Kurita Water Ind Ltd Abrasive recovery device
JP2003080041A (en) * 2001-09-13 2003-03-18 Ngk Insulators Ltd Porous filter, water purifying device equipped with the filter and method for manufacturing the filter
JP2006263517A (en) * 2005-03-22 2006-10-05 Ngk Insulators Ltd Ceramic filter and its manufacturing method
DE10015614B4 (en) * 2000-03-29 2009-02-19 Ceramtec Ag Porous sintered body with porous layer on the surface and process for its preparation and its uses
JP2009226339A (en) * 2008-03-24 2009-10-08 Ngk Insulators Ltd Ceramic filter and its manufacturing method
JP2009240871A (en) * 2008-03-28 2009-10-22 Ngk Insulators Ltd Ceramic filter and its manufacturing method
JPWO2008010452A1 (en) * 2006-07-20 2009-12-17 日本碍子株式会社 Ceramic filter
JP2012045483A (en) * 2010-08-26 2012-03-08 Mitsubishi Chemicals Corp Method of producing porous support/zeolite membrane composite
JP2013212982A (en) * 2013-05-31 2013-10-17 Ngk Insulators Ltd Ceramic filter and method for producing the same

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS51129077A (en) * 1975-04-30 1976-11-10 Chubu Jidoki Kk Article handling apparatus
JPS5467977A (en) * 1977-11-10 1979-05-31 Columbia Machine Apparatus for arranging and acculating nonnrigidity article
JPH01299607A (en) * 1988-05-27 1989-12-04 Ngk Insulators Ltd Inorganic porous membrane
JPH0231823A (en) * 1988-07-19 1990-02-01 Ngk Insulators Ltd Production of inorganic porous film

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS51129077A (en) * 1975-04-30 1976-11-10 Chubu Jidoki Kk Article handling apparatus
JPS5467977A (en) * 1977-11-10 1979-05-31 Columbia Machine Apparatus for arranging and acculating nonnrigidity article
JPH01299607A (en) * 1988-05-27 1989-12-04 Ngk Insulators Ltd Inorganic porous membrane
JPH0231823A (en) * 1988-07-19 1990-02-01 Ngk Insulators Ltd Production of inorganic porous film

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2000000662A1 (en) * 1998-06-30 2000-01-06 Imperial College Of Science, Technology And Medicine Material deposition
WO2000045944A1 (en) * 1999-02-01 2000-08-10 Ngk Insulators, Ltd. Method for manufacturing filter having ceramic porous film as separating film
WO2000045945A1 (en) * 1999-02-01 2000-08-10 Ngk Insulators, Ltd. Method for manufacturing filter having ceramic porous film as separating film
US6479099B1 (en) 1999-02-01 2002-11-12 Ngk Insulators, Ltd. Method for manufacturing filter having ceramic porous film as separating film
US6509060B1 (en) 1999-02-01 2003-01-21 Ngk Insulators, Ltd. Method for manufacturing filter having ceramic porous film as separating film
DE10015614B4 (en) * 2000-03-29 2009-02-19 Ceramtec Ag Porous sintered body with porous layer on the surface and process for its preparation and its uses
JP2002018715A (en) * 2000-06-30 2002-01-22 Kurita Water Ind Ltd Abrasive recovery device
JP2003080041A (en) * 2001-09-13 2003-03-18 Ngk Insulators Ltd Porous filter, water purifying device equipped with the filter and method for manufacturing the filter
JP2006263517A (en) * 2005-03-22 2006-10-05 Ngk Insulators Ltd Ceramic filter and its manufacturing method
JPWO2008010452A1 (en) * 2006-07-20 2009-12-17 日本碍子株式会社 Ceramic filter
JP2009226339A (en) * 2008-03-24 2009-10-08 Ngk Insulators Ltd Ceramic filter and its manufacturing method
JP2009240871A (en) * 2008-03-28 2009-10-22 Ngk Insulators Ltd Ceramic filter and its manufacturing method
JP2012045483A (en) * 2010-08-26 2012-03-08 Mitsubishi Chemicals Corp Method of producing porous support/zeolite membrane composite
JP2013212982A (en) * 2013-05-31 2013-10-17 Ngk Insulators Ltd Ceramic filter and method for producing the same

Similar Documents

Publication Publication Date Title
CA1325389C (en) Sintered coating for porous metallic filter surfaces
US9512041B2 (en) Ceramic membranes
US7767257B2 (en) Method for preparing a porous inorganic coating on a porous support using certain pore formers
CN105792918B (en) Ceramic filter
Van Gestel et al. ZrO2 and TiO2 membranes for nanofiltration and pervaporation: Part 1. Preparation and characterization of a corrosion-resistant ZrO2 nanofiltration membrane with a MWCO< 300
US5223318A (en) Titania substrates and fabrication
EP2689828A1 (en) Honeycomb-shaped ceramic separation-membrane structure
JPH0378130B2 (en)
JPS61238315A (en) Preparation of double-layered filter
JPH03284329A (en) Ceramic membraneous filter and production thereof
Okubo et al. Preparation of a sol-gel derived thin membrane on a porous ceramic hollow fiber by the filtration technique
CN115090122A (en) Ceramic membrane with alumina whisker film layer structure and preparation method and application thereof
JPH03267129A (en) Ceramic membrane filter
US6773601B2 (en) Method for the removal of particulate matter from aqueous suspension
JP2007254222A (en) Porous ceramic film, ceramic filter and its manufacturing method
Foorginezhad et al. Preparation of low-cost ceramic membranes using Persian natural clay and their application for dye clarification
WO1991012879A1 (en) Inorganic membranes and a process for making inorganic membranes
JPH03284328A (en) Ceramic membraneous filter and production thereof
JPH0243928A (en) Inorganic porous membrane
JPS6351914A (en) Ceramic filter
Thomas et al. Inorganic ultrafiltration membranes prepared by a combination of anodic film and sol-gel technologies
JPS58205504A (en) Heat resistant porous film
JP2002274967A (en) Gamma alumina porous body, method for manufacturing the same and fluid separation filter by using the same
Cot et al. Preparation and application of inorganic membranes
JP6417355B2 (en) Monolith type separation membrane structure