WO2015098302A1 - 解析装置、記録媒体および解析方法 - Google Patents
解析装置、記録媒体および解析方法 Download PDFInfo
- Publication number
- WO2015098302A1 WO2015098302A1 PCT/JP2014/079387 JP2014079387W WO2015098302A1 WO 2015098302 A1 WO2015098302 A1 WO 2015098302A1 JP 2014079387 W JP2014079387 W JP 2014079387W WO 2015098302 A1 WO2015098302 A1 WO 2015098302A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- users
- play
- correlation
- user
- data
- Prior art date
Links
Images
Classifications
-
- A—HUMAN NECESSITIES
- A63—SPORTS; GAMES; AMUSEMENTS
- A63B—APPARATUS FOR PHYSICAL TRAINING, GYMNASTICS, SWIMMING, CLIMBING, OR FENCING; BALL GAMES; TRAINING EQUIPMENT
- A63B24/00—Electric or electronic controls for exercising apparatus of preceding groups; Controlling or monitoring of exercises, sportive games, training or athletic performances
- A63B24/0003—Analysing the course of a movement or motion sequences during an exercise or trainings sequence, e.g. swing for golf or tennis
- A63B24/0006—Computerised comparison for qualitative assessment of motion sequences or the course of a movement
-
- A—HUMAN NECESSITIES
- A63—SPORTS; GAMES; AMUSEMENTS
- A63B—APPARATUS FOR PHYSICAL TRAINING, GYMNASTICS, SWIMMING, CLIMBING, OR FENCING; BALL GAMES; TRAINING EQUIPMENT
- A63B24/00—Electric or electronic controls for exercising apparatus of preceding groups; Controlling or monitoring of exercises, sportive games, training or athletic performances
- A63B24/0062—Monitoring athletic performances, e.g. for determining the work of a user on an exercise apparatus, the completed jogging or cycling distance
-
- A—HUMAN NECESSITIES
- A63—SPORTS; GAMES; AMUSEMENTS
- A63B—APPARATUS FOR PHYSICAL TRAINING, GYMNASTICS, SWIMMING, CLIMBING, OR FENCING; BALL GAMES; TRAINING EQUIPMENT
- A63B60/00—Details or accessories of golf clubs, bats, rackets or the like
- A63B60/46—Measurement devices associated with golf clubs, bats, rackets or the like for measuring physical parameters relating to sporting activity, e.g. baseball bats with impact indicators or bracelets for measuring the golf swing
-
- G—PHYSICS
- G09—EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
- G09B—EDUCATIONAL OR DEMONSTRATION APPLIANCES; APPLIANCES FOR TEACHING, OR COMMUNICATING WITH, THE BLIND, DEAF OR MUTE; MODELS; PLANETARIA; GLOBES; MAPS; DIAGRAMS
- G09B19/00—Teaching not covered by other main groups of this subclass
- G09B19/003—Repetitive work cycles; Sequence of movements
- G09B19/0038—Sports
-
- A—HUMAN NECESSITIES
- A63—SPORTS; GAMES; AMUSEMENTS
- A63B—APPARATUS FOR PHYSICAL TRAINING, GYMNASTICS, SWIMMING, CLIMBING, OR FENCING; BALL GAMES; TRAINING EQUIPMENT
- A63B2220/00—Measuring of physical parameters relating to sporting activity
- A63B2220/10—Positions
- A63B2220/12—Absolute positions, e.g. by using GPS
-
- A—HUMAN NECESSITIES
- A63—SPORTS; GAMES; AMUSEMENTS
- A63B—APPARATUS FOR PHYSICAL TRAINING, GYMNASTICS, SWIMMING, CLIMBING, OR FENCING; BALL GAMES; TRAINING EQUIPMENT
- A63B2220/00—Measuring of physical parameters relating to sporting activity
- A63B2220/40—Acceleration
-
- A—HUMAN NECESSITIES
- A63—SPORTS; GAMES; AMUSEMENTS
- A63B—APPARATUS FOR PHYSICAL TRAINING, GYMNASTICS, SWIMMING, CLIMBING, OR FENCING; BALL GAMES; TRAINING EQUIPMENT
- A63B2220/00—Measuring of physical parameters relating to sporting activity
- A63B2220/64—Frequency, e.g. of vibration oscillation
-
- A—HUMAN NECESSITIES
- A63—SPORTS; GAMES; AMUSEMENTS
- A63B—APPARATUS FOR PHYSICAL TRAINING, GYMNASTICS, SWIMMING, CLIMBING, OR FENCING; BALL GAMES; TRAINING EQUIPMENT
- A63B2220/00—Measuring of physical parameters relating to sporting activity
- A63B2220/70—Measuring or simulating ambient conditions, e.g. weather, terrain or surface conditions
- A63B2220/72—Temperature
-
- A—HUMAN NECESSITIES
- A63—SPORTS; GAMES; AMUSEMENTS
- A63B—APPARATUS FOR PHYSICAL TRAINING, GYMNASTICS, SWIMMING, CLIMBING, OR FENCING; BALL GAMES; TRAINING EQUIPMENT
- A63B2220/00—Measuring of physical parameters relating to sporting activity
- A63B2220/70—Measuring or simulating ambient conditions, e.g. weather, terrain or surface conditions
- A63B2220/75—Humidity
-
- A—HUMAN NECESSITIES
- A63—SPORTS; GAMES; AMUSEMENTS
- A63B—APPARATUS FOR PHYSICAL TRAINING, GYMNASTICS, SWIMMING, CLIMBING, OR FENCING; BALL GAMES; TRAINING EQUIPMENT
- A63B2220/00—Measuring of physical parameters relating to sporting activity
- A63B2220/80—Special sensors, transducers or devices therefor
- A63B2220/803—Motion sensors
-
- A—HUMAN NECESSITIES
- A63—SPORTS; GAMES; AMUSEMENTS
- A63B—APPARATUS FOR PHYSICAL TRAINING, GYMNASTICS, SWIMMING, CLIMBING, OR FENCING; BALL GAMES; TRAINING EQUIPMENT
- A63B2220/00—Measuring of physical parameters relating to sporting activity
- A63B2220/80—Special sensors, transducers or devices therefor
- A63B2220/805—Optical or opto-electronic sensors
-
- A—HUMAN NECESSITIES
- A63—SPORTS; GAMES; AMUSEMENTS
- A63B—APPARATUS FOR PHYSICAL TRAINING, GYMNASTICS, SWIMMING, CLIMBING, OR FENCING; BALL GAMES; TRAINING EQUIPMENT
- A63B2220/00—Measuring of physical parameters relating to sporting activity
- A63B2220/80—Special sensors, transducers or devices therefor
- A63B2220/807—Photo cameras
-
- A—HUMAN NECESSITIES
- A63—SPORTS; GAMES; AMUSEMENTS
- A63B—APPARATUS FOR PHYSICAL TRAINING, GYMNASTICS, SWIMMING, CLIMBING, OR FENCING; BALL GAMES; TRAINING EQUIPMENT
- A63B2220/00—Measuring of physical parameters relating to sporting activity
- A63B2220/80—Special sensors, transducers or devices therefor
- A63B2220/83—Special sensors, transducers or devices therefor characterised by the position of the sensor
- A63B2220/833—Sensors arranged on the exercise apparatus or sports implement
-
- A—HUMAN NECESSITIES
- A63—SPORTS; GAMES; AMUSEMENTS
- A63B—APPARATUS FOR PHYSICAL TRAINING, GYMNASTICS, SWIMMING, CLIMBING, OR FENCING; BALL GAMES; TRAINING EQUIPMENT
- A63B2220/00—Measuring of physical parameters relating to sporting activity
- A63B2220/80—Special sensors, transducers or devices therefor
- A63B2220/83—Special sensors, transducers or devices therefor characterised by the position of the sensor
- A63B2220/836—Sensors arranged on the body of the user
-
- A—HUMAN NECESSITIES
- A63—SPORTS; GAMES; AMUSEMENTS
- A63B—APPARATUS FOR PHYSICAL TRAINING, GYMNASTICS, SWIMMING, CLIMBING, OR FENCING; BALL GAMES; TRAINING EQUIPMENT
- A63B2220/00—Measuring of physical parameters relating to sporting activity
- A63B2220/80—Special sensors, transducers or devices therefor
- A63B2220/89—Field sensors, e.g. radar systems
-
- A—HUMAN NECESSITIES
- A63—SPORTS; GAMES; AMUSEMENTS
- A63B—APPARATUS FOR PHYSICAL TRAINING, GYMNASTICS, SWIMMING, CLIMBING, OR FENCING; BALL GAMES; TRAINING EQUIPMENT
- A63B2225/00—Miscellaneous features of sport apparatus, devices or equipment
- A63B2225/50—Wireless data transmission, e.g. by radio transmitters or telemetry
Definitions
- This disclosure relates to an analysis apparatus, a recording medium, and an analysis method.
- the present disclosure proposes a new and improved analysis device, recording medium, and analysis method capable of analyzing data obtained from a series of sports plays as a series or set.
- an acquisition function for acquiring data indicating play events defined based on motions when a plurality of users play sports and arranged in a time interval, and the plurality of users Based on the temporal relationship of each of the play events, the calculation function for calculating the degree of correlation between the plurality of users in the section, and the relationship between the plurality of users in the section based on the degree of correlation.
- An analysis apparatus including a processor that realizes a relationship estimation function to be estimated is provided.
- the processor obtains data indicating play events that are defined based on motions when a plurality of users play sports and are arranged in a time interval; Based on the temporal relationship of the play events of each of the plurality of users, calculating the degree of correlation of the play of the plurality of users in the section, and on the basis of the degree of correlation, the plurality of users in the section And an estimation method is provided.
- data obtained from a series of sports plays can be analyzed as a series or a set.
- the following explanation is made using a specific example of sports (tennis), but the scope of application of the present technology is not limited to the exemplified sports.
- the present technology can be applied to any sport as long as a play event can be defined based on the motion of a user playing the sport.
- FIG. 1 is a diagram illustrating an example of a system configuration according to the first embodiment of the present disclosure.
- the system 10 includes a sensor device 100, a smartphone 200, and a server 300.
- the sensor device 100 is mounted on a tennis racket R.
- the sensor device 100 includes, for example, a motion sensor (for example, an acceleration sensor, a gyro sensor, a geomagnetic sensor, etc.).
- a motion sensor for example, an acceleration sensor, a gyro sensor, a geomagnetic sensor, etc.
- the sensor device 100 directly detects the motion of the racket R.
- the sensor device 100 indirectly detects the motion of the racket R. It can be said that the user's motion is detected.
- the sensor device 100 is indirectly attached to the user and detects the user's motion.
- the sensor device 100 may be attached to, for example, a user's clothes or shoes. In this case as well, the sensor device 100 directly detects the motion of clothes and shoes, but since the clothing and shoes move with the user, the sensor device can indirectly detect the motion of the user. .
- the sensor device 100 may be directly attached to the user, for example, by being wound around an arm with a band. In this case, the sensor device 100 can directly detect the user's motion. Even if the sensor device 100 directly detects a user's motion, or indirectly detects the user's motion, the sensor device 100 provides if the detected motion reflects the user's motion. Based on the detection result, it is possible to define a play event corresponding to the motion of the user playing the sport.
- the sensor device 100 may include a vibration sensor.
- the data detected by the vibration sensor can easily identify the section corresponding to the play event (for example, the section before and after the impact of the ball).
- the data detected by the vibration sensor may also be used for play event analysis in the same manner as the data detected by the motion sensor.
- the sensor device 100 may further include a sensor for acquiring environment information of a user who plays sports, such as temperature, humidity, brightness, and position. Data detected by various sensors included in the sensor device 100 is preprocessed as necessary, and then transmitted to the smartphone 200 by wireless communication such as Bluetooth (registered trademark).
- the smartphone 200 is disposed near a user who is playing sports, for example.
- the smartphone 200 receives data transmitted from the sensor device 100 through wireless communication such as Bluetooth (registered trademark), temporarily stores and processes the data as necessary, and then performs data transmission through network communication. Is transmitted to the server 300.
- the smartphone 200 may receive the result of the analysis performed by the server 300 based on the transmitted data and output it to the user via a display, a speaker, or the like. Note that the user does not have to play sports when the analysis result is output.
- the output of the analysis result may be executed by an information processing terminal used by the user, for example, various personal computers or tablet terminals, a game machine, a television, or the like other than the smartphone 200.
- the server 300 communicates with the smartphone 200 via the network, and receives data detected by various sensors included in the sensor device 100.
- the server 300 executes an analysis process using the received data, and generates various types of information regarding sports play.
- the server 300 defines a play event based on data obtained by a motion sensor and directly or indirectly indicating a motion of a user who plays a sport.
- a play event corresponds to one shot using a racket R, for example.
- a play event for example, a user's play represented by motion data can be grasped as a series of plays having a meaning such as ⁇ serve, stroke, volley,.
- an image is acquired by the imaging unit 250.
- the imaging unit 250 is realized by, for example, a camera module that combines an imaging device with an optical system such as a lens.
- the image may include a user who plays sports as a subject.
- the image acquired by the imaging unit 250 is transmitted from the transmission unit 240 to the server 300 together with the data received by the reception unit 210, for example.
- the image may be used in the analysis process in the server 300 together with the data acquired by the sensor device 100, for example, or may be incorporated in information generated by the analysis process.
- the input unit 260 includes, for example, a touch panel, hardware buttons, and / or a microphone and a camera for receiving voice input and gesture input.
- the processing unit 220 may request information from the server 300 via the transmission unit 240 according to a user operation acquired via the input unit 260.
- the server 300 includes a reception unit 310, a processing unit 320, a storage unit 330, and a transmission unit 340.
- the receiving unit 310 is realized by a communication device, and receives data transmitted from the smartphone 200 using network communication such as the Internet.
- the processing unit 320 is realized by a processor such as a CPU, and processes received data. For example, the processing unit 320 may execute an analysis process on the received data, and may further accumulate the analyzed data in the storage unit 330 or output the data via the transmission unit 340. Alternatively, the processing unit 320 may only execute accumulation and output control of data already analyzed in the smartphone 200 or the like.
- the analysis process using the data acquired by the sensor device 100 is executed by the processing unit 320 of the server 300, but the analysis process may be executed by the processing unit 220 of the smartphone 200, It may be executed by the processing unit 120 of the sensor device 100.
- the system 10 is described as including the sensor device 100, the smartphone 200, and the server 300, for example, when an analysis process is executed by the processing unit 220 of the smartphone 200, the server 300 is included in the system 10. It does not have to be included.
- the server 300 may store the information obtained by the analysis process and provide a service shared between users.
- the smartphone 10 and the server 300 may not be included in the system 10.
- the sensor device 100 may be a dedicated sensor device attached to a user or a tool, for example, or a sensor module mounted on a portable information processing terminal may function as the sensor device 100. Therefore, the sensor device 100 can be the same device as the smartphone 200.
- FIG. 3 and 4 are diagrams for describing an outline of the analysis processing according to the first embodiment of the present disclosure.
- a plurality of users (user A, user B, and user C in the illustrated example) are defined based on motions when playing sports and are temporally related.
- Data indicating play events arranged in a particular section is acquired.
- the time series 1101a of the user A play events, the time series 1101b of the user B play events, and the time series 1101c of the user C play events are acquired.
- the section P1 includes time series 1101a and 1101b of user A and user B play events.
- the play events of the user A and the user B are arranged on the time axis, respectively.
- character strings such as FHST and SRV indicate the type of play event.
- a play event is defined based on a motion of a user who plays tennis, and each play event corresponds to a tennis shot.
- FHST indicates a forehand stroke
- SRV indicates a serve.
- NS Not Swing
- the impact between the racket and the ball is detected by a vibration sensor or the like, and a series of motions corresponding to the impact is detected from the motion data, but it is determined whether it is the kind of swing. It can mean a play event that could not be done.
- the filtering processing unit 423 filters the data after the resampling processing by the resampling processing unit 421. For example, the filtering processing unit 423 removes a predetermined type of play event from the data after the resampling process. More specifically, for example, the filtering processing unit 423 may remove the play event having the NS (Not Swing) play event type illustrated in FIG. 6A and pass the data to the subsequent processing. . For example, the filtering processing unit 423 may weight a specific type of play event in the data after the resampling process.
- the relationship estimation processing unit 431 may estimate an interaction between a plurality of users.
- Interaction means each play event that occurs when each user's play interacts with each other, such as a tennis rally (during a game or practice) or play with a ball in soccer. sell.
- the play events of the users involved in the interaction occur close in time. Therefore, when interaction occurs between users, for example, when the time slot set by the time slot division processing unit 425 is relatively short in the calculation of the correlation degree in the correlation degree calculation processing unit 427 described above. Even if so, a high degree of correlation can be calculated.
- the output processing unit 430 provides a function (information providing function) that provides information based on the estimation result output by the relationship estimation processing unit 431 as described above to some or all of a plurality of users who are the objects of analysis. Can also be realized. In this case, for example, based on the request of the first user among the plurality of users, information indicating the second user (included in the plurality of users) playing with the first user is first. May be provided to other users.
- the input processing unit 410 obtains play event time-series data 411 of a plurality of users (for example, friends of the first user) who can provide such information, and the play event time-series data 411 obtained by the analysis processing unit 420.
- the analysis process is executed based on the above.
- the analysis processing unit 420 may exclude a user who is included in the play event time-series data 411 but whose time zone in which the play event has occurred does not overlap with the first user from the target of the analysis process. .
- Information generated by the output processing unit 430 based on the result of the analysis processing can be provided to the first user.
- FIG. 7 is a flowchart illustrating an example of processing according to the first embodiment of the present disclosure.
- the player of X can be a user who has requested information on the opponent to play from the system
- the group of players of Y can be friends of the user (information sharing is permitted), etc. Users.
- the resampling processing unit 421 resamples the time series data (S105).
- the filtering processing unit 423 filters the time series data X ′ and Y ′ (S107).
- the time slot division processing unit 425 divides the time series data X ′′, Y ′′ into common time slots (S109).
- the correlation degree calculation processing unit 427 executes a loop process for each time slot (S111).
- the degree of correlation between the time-series data is calculated for each time slot (S113). More specifically, for example, in each time slot, between time series data x ′′ 1 and y ′′ 1, between x ′′ 1 and y ′′ 2, ... between x ′′ 1 and y ′′ n.
- the degree of correlation can be calculated.
- the relationship estimation processing unit 431 determines whether the time series data x ′′ 1 in each time slot in S113. The degree of correlation calculated in the above is added to obtain the correlation score of each play opponent candidate, and a player whose correlation score is higher than a predetermined threshold is specified as a play opponent.
- the time slot division processing unit 425 divides the time series data X ′′, Y ′′ with two types of time slots having different lengths, and the correlation calculation processing unit 427 You may perform the loop process of S111 separately about a time slot.
- the relationship estimation processing unit 431 performs time-series data for the players whose correlation score is equal to or greater than the threshold value in the shorter time slot among the players (playing opponent candidates) of the time-series data Y.
- the player may be identified as the player who has interacted with the player of X (who was a tennis rally partner, etc.).
- the correlation score greater than or equal to the threshold is calculated in the longer time slot, no interaction has occurred with the time series data X player. You may specify as the player who was playing together.
- the second embodiment is different from the first embodiment in that a position determination unit 521 described below is provided, but the other points are the same as those in the first embodiment. The detailed description about is omitted.
- FIG. 8 is a diagram schematically illustrating a functional configuration of a processing unit of the system according to the second embodiment of the present disclosure.
- the processing unit 50 realized by a processor that executes analysis processing includes an input processing unit 410, an analysis processing unit 520, and an output processing unit 430.
- the input processing unit 410 and the output processing unit 430 are substantially the same as those described above with reference to FIG.
- the analysis processing unit 520 includes a position determination unit 521, a resampling processing unit 421, a filtering processing unit 423, a time slot division processing unit 425, and a correlation calculation processing unit 427. Note that the resampling processing unit 421, the filtering processing unit 423, the time slot division processing unit 425, and the correlation calculation processing unit 427 are substantially the same as those described above with reference to FIG.
- the sensor 110 included in the sensor device 100 includes a position sensor such as a GPS sensor, or the smartphone 200 in the vicinity of the sensor device 100 acquires position information using a GPS sensor, a Wi-Fi communication unit, or the like. It is possible to acquire position information indicating the place where the play event has occurred. Therefore, the play event time-series data 411 acquired by the input processing unit 410 can include position information indicating a place where the play event has occurred.
- the position determination unit 521 extracts a user who is a target of analysis (calculation of correlation) by the processing after the resampling processing unit 421 based on the position information. For example, the position determination unit 521 generates a play event at a position within a predetermined range from the position where the play event of the user who requested the determination of the relationship between the users (for example, the user of the time-series data X in the example of FIG. 7) has occurred. Other generated users may be extracted as analysis target users (for example, users of the time-series data Y in the example of FIG. 7).
- the position determination unit 521 By such a function of the position determination unit 521, for example, when the number of users included in the play event time-series data 411 is large, a user who is highly likely not to have a relationship between users (a user at a distant position) is selected. It can be excluded from the object of analysis, and the load of analysis processing can be reduced.
- the function of extracting users or the like having overlapping time zones in which play events have occurred can also function as a target extraction function similar to the position determination unit 521 described above.
- the position information is used for extracting the users to be analyzed, while the relationship of each user's play (whether they were playing together or interacting with each other) is estimated for the play event. Since motion data or the like is used, it is possible to estimate the relationship of each user's play with higher accuracy.
- the type of sport is not limited to tennis in the above example, and the embodiment of the present disclosure can be applied to all sports such as soccer, golf, and table tennis.
- the time slot is set to be long to some extent, it may be possible to distinguish between users playing together on the pitch and users watching outside the pitch.
- the time slot is set to be short, it may be possible to identify a user who has been interacting among users who are playing together in the pitch, for example, a user who has been holding the ball.
- FIG. 9 is a diagram illustrating an example of a hardware configuration of the sensor device according to the embodiment of the present disclosure.
- a sensor device 100 includes a sensor 101, a CPU (Central Processing Unit) 103, a ROM (Read Only Memory) 105, a RAM (Random Access Memory) 107, a user interface 109, and an external storage device. 111, a communication device 113, and an output device 115. These elements are connected to each other by, for example, a bus.
- a bus for example, a bus.
- the sensor 101 includes, for example, an acceleration sensor, an angular velocity sensor, a vibration sensor, a geomagnetic sensor, a temperature sensor, a pressure sensor (including a push switch), or a GPS (Global Positioning System) receiver.
- the sensor 101 may include a camera (image sensor) and a microphone (sound sensor).
- the user interface 109 is an input device such as a button or a touch panel that accepts a user operation to the sensor device 100.
- the user's operation can be, for example, an instruction to start or end transmission of sensor information from the sensor device.
- the external storage device 111 stores various types of information regarding the sensor device 100.
- the external storage device 111 may store, for example, program instructions for causing the CPU 103, the ROM 105, and the RAM 107 to realize functions in software, and the data acquired by the sensor 101 may be temporarily cached. Good.
- an external storage device 111 that is resistant to impact, such as a semiconductor memory. Note that the configuration corresponding to the internal storage area (memory or external storage device) that accumulates data detected by the sensor device 100 when the smartphone 200 is not arranged in the vicinity of the user who is playing sports is described above.
- ROM 105, RAM 107, and / or external storage device 111 is described above.
- the CPU 601, the ROM 603, and the RAM 605 realize various functions in software by reading and executing program instructions recorded in the external storage device 611, for example.
- the CPU 601, the ROM 603, and the RAM 605 can realize, for example, control of the entire analysis apparatus 600 and functions of the processing unit in the functional configuration described above.
- the external storage device 611 stores various types of information related to the analysis device 600.
- the CPU 601, the ROM 603, and the RAM 605 may store program instructions for realizing functions in software, and the sensor information received by the communication device 613 is temporarily cached in the external storage device 611. Also good.
- the external storage device 611 may store analysis result logs.
- the output device 615 is configured by a device capable of visually or audibly notifying information to the user.
- the output device 615 can be, for example, a display device such as an LCD (Liquid Crystal Display), or an audio output device such as a speaker or headphones.
- the output device 615 outputs the result obtained by the processing of the analysis device 600 as a video such as text or an image, or outputs it as a sound or sound.
- each component described above may be configured using a general-purpose member, or may be configured by hardware specialized for the function of each component. Such a configuration can be appropriately changed according to the technical level at the time of implementation.
- An acquisition function for acquiring data indicating play events defined based on motions when a plurality of users play sports, and arranged in a time interval;
- a calculation function for calculating the degree of correlation of play of the plurality of users in the section based on the temporal relationship of the play events of each of the plurality of users;
- An analysis device comprising a processor that realizes a relationship estimation function for estimating a relationship between the plurality of users in the section based on the degree of correlation.
- the information providing function selects a second user among the plurality of users who has played with the first user based on a request of the first user among the plurality of users.
- the analysis apparatus according to (11), wherein information to be provided is provided to the first user.
- the processor according to any one of (1) to (12), wherein the processor further realizes a target extraction function for extracting a user who is a target for calculating the correlation degree from the plurality of users.
- Analysis device (14)
- the acquisition function acquires the data further including position information indicating a place where the play event has occurred,
- the analysis device according to (13), wherein the target extraction function extracts a user who is a target for calculating the correlation degree based on the position information.
- An acquisition function for acquiring data indicating play events defined based on motions when a plurality of users play sports and arranged in a time interval;
- a calculation function for calculating the degree of correlation of play of the plurality of users in the section based on the temporal relationship of the play events of each of the plurality of users;
- a recording medium in which a program for causing a computer to realize a relationship estimation function for estimating a relationship between the plurality of users in the section based on the degree of correlation is recorded.
Landscapes
- Business, Economics & Management (AREA)
- Engineering & Computer Science (AREA)
- Health & Medical Sciences (AREA)
- General Health & Medical Sciences (AREA)
- Physical Education & Sports Medicine (AREA)
- Entrepreneurship & Innovation (AREA)
- Physics & Mathematics (AREA)
- Educational Administration (AREA)
- Educational Technology (AREA)
- General Physics & Mathematics (AREA)
- Theoretical Computer Science (AREA)
- Management, Administration, Business Operations System, And Electronic Commerce (AREA)
Abstract
Description
1.第1の実施形態
1-1.システム構成
1-1.解析処理の概略
1-2.機能構成
1-3.処理フロー
2.第2の実施形態
3.ハードウェア構成
4.補足
(1-1.システム構成)
図1は、本開示の第1の実施形態に係るシステム構成の例を示す図である。図1を参照すると、システム10は、センサ装置100と、スマートフォン200と、サーバ300とを含む。
また、スマートフォン200は、必ずしも、スポーツをプレーしているユーザの近傍に配置されていなくてもよい。この場合、センサ装置100は、検出されたデータを内部の記憶領域(メモリまたは外部記憶装置)に蓄積しておく。例えば、スポーツのプレー後、センサ装置100とスマートフォン200とが接近したときに、Bluetooth(登録商標)などの無線通信によって、データがセンサ装置100からスマートフォン200に送信されてもよい。あるいは、スポーツのプレー後、センサ装置100とスマートフォン200とがUSBなどで有線接続されたときにデータが送信されてもよい。また、センサ装置100からスマートフォン200へのデータの受け渡しには、リムーバブル記録媒体が用いられてもよい。
図3および図4は、本開示の第1の実施形態に係る解析処理の概略について説明するための図である。図3および図4に示すように、本実施形態では、複数のユーザ(図示された例ではユーザA、ユーザBおよびユーザC)がスポーツをプレーしたときのモーションに基づいて定義され、かつ時間的な区間内に配列されたプレーイベントを示すデータが取得される。図3に示した例では、ユーザAのプレーイベントの時系列1101aと、ユーザBのプレーイベントの時系列1101bと、ユーザCのプレーイベントの時系列1101cとが取得されている。
図5は、本開示の第1の実施形態に係るシステムの処理部の機能構成を概略的に示す図である。図5を参照すると、解析処理を実行するプロセッサによって実現される処理部40は、入力処理部410と、解析処理部420と、出力処理部430とを含む。
図7は、本開示の第1の実施形態に係る処理の例を示すフローチャートである。図7を参照すると、まず、入力処理部410が、プレーヤの時系列データX=(x1)を選択する(S101)。次に、入力処理部410は、プレー相手候補の時系列データY=(y1,y2,…,yn)を選択する(S103)。ここで、上記の例のように、Xのプレーヤはシステムに対してプレー相手の情報をリクエストしたユーザでありえ、Yのプレーヤ群は当該ユーザの友人など(情報の共有が許可されている)他のユーザでありうる。
次に、本開示の第2の実施形態について説明する。第2の実施形態は、以下で説明する位置判定部521が設けられる点で上記の第1の実施形態とは異なるが、それ以外の点については第1の実施形態と同様であるため、それらについての詳細な説明は省略する。
次に、図9および図10を参照して、本開示の実施形態に係るセンサ装置および解析装置(上述した例ではセンサ装置、スマートフォンまたはサーバ)を実現するためのハードウェア構成の例について説明する。
図9は、本開示の実施形態に係るセンサ装置のハードウェア構成の例を示す図である。図9を参照すると、センサ装置100は、センサ101と、CPU(Central Processing Unit)103と、ROM(Read Only Memory)105と、RAM(Random Access Memory)107と、ユーザインターフェース109と、外部記憶装置111と、通信装置113と、出力装置115とを含みうる。これらの要素は、例えばバスによって相互に接続される。
なお、上述した、スマートフォン200がスポーツをプレーしているユーザの近傍に配置されない場合における、センサ装置100において検出されたデータを蓄積する内部の記憶領域(メモリまたは外部記憶装置)に対応する構成は、ROM105、RAM107、および/または外部記憶装置111である。
図10は、本開示の実施形態に係る解析装置のハードウェア構成の例を示す図である。解析装置600は、本開示の実施形態に係る解析装置、例えば上記で説明したスマートフォン200またはサーバ300を実現しうる。なお、上述のように、解析装置は、センサ装置100によって実現されてもよい。
本開示の実施形態は、例えば、上記で説明したような解析装置(スマートフォンなどの情報処理端末、サーバ、またはセンサ装置)、システム、解析装置またはシステムで実行される情報処理方法、解析装置を機能させるためのプログラム、およびプログラムが記録された一時的でない有形の媒体を含みうる。
(1)複数のユーザがそれぞれスポーツをプレーしたときのモーションに基づいて定義され、かつ時間的な区間内に配列されたプレーイベントを示すデータを取得する取得機能と、
前記複数のユーザのそれぞれの前記プレーイベントの時間的な関係に基づいて、前記区間における前記複数のユーザのプレーの相関度を算出する算出機能と、
前記相関度に基づいて前記区間における前記複数のユーザの関係を推定する関係推定機能と
を実現するプロセッサを備える解析装置。
(2)前記関係推定機能は、前記区間において前記複数のユーザが一緒にプレーしたか否かを推定する、前記(1)に記載の解析装置。
(3)前記関係推定機能は、前記区間において発生した前記複数のユーザの間のインタラクションを推定する、前記(2)に記載の解析装置。
(4)前記算出機能は、前記区間を複数のタイムスロットに分割し、各タイムスロット内で前記相関度を算出する、前記(1)~(3)のいずれか1項に記載の解析装置。
(5)前記関係推定機能は、前記各タイムスロットの長さが第1の閾値よりも短く、前記各タイムスロット内での前記相関度が第2の閾値よりも高い場合に、前記複数のユーザの間でインタラクションが発生したと推定する、前記(4)に記載の解析装置。
(6)前記算出機能は、前記データについて共通の時系列によるリサンプリングを実行した上で前記相関度を算出する、前記(1)~(5)のいずれか1項に記載の解析装置。
(7)前記算出機能は、前記リサンプリング後のデータをフィルタした上で前記相関度を算出する、前記(6)に記載の解析装置。
(8)前記算出機能は、前記リサンプリング後のデータの移動平均に基づいて前記相関度を算出する、前記(7)に記載の解析装置。
(9)前記算出機能は、前記リサンプリング後のデータから所定の種類のプレーイベントを除いた上で前記相関度を算出する、前記(7)または(8)に記載の解析装置。
(10)前記算出機能は、前記リサンプリング後のデータをオフセットさせた上で前記相関度を算出する、前記(6)~(9)のいずれか1項に記載の解析装置。
(11)前記プロセッサは、前記関係に基づく情報を前記複数のユーザの一部または全部に提供する情報提供機能をさらに実現する、前記(1)~(10)のいずれか1項に記載の解析装置。
(12)前記情報提供機能は、前記複数のユーザの中の第1のユーザのリクエストに基づいて、前記第1のユーザと一緒にプレーしていた前記複数のユーザの中の第2のユーザを示す情報を前記第1のユーザに提供する、前記(11)に記載の解析装置。
(13)前記プロセッサは、前記複数のユーザの中から前記相関度の算出対象になるユーザを抽出する対象抽出機能をさらに実現する、前記(1)~(12)のいずれか1項に記載の解析装置。
(14)前記取得機能は、前記プレーイベントが発生した場所を示す位置情報をさらに含む前記データを取得し、
前記対象抽出機能は、前記相関度の算出対象になるユーザを前記位置情報に基づいて抽出する、前記(13)に記載の解析装置。
(15)複数のユーザがそれぞれスポーツをプレーしたときのモーションに基づいて定義され、かつ時間的な区間内に配列されたプレーイベントを示すデータを取得する取得機能と、
前記複数のユーザのそれぞれの前記プレーイベントの時間的な関係に基づいて、前記区間における前記複数のユーザのプレーの相関度を算出する算出機能と、
前記相関度に基づいて前記区間における前記複数のユーザの関係を推定する関係推定機能と
をコンピュータに実現させるためのプログラムが記録された記録媒体。
(16)プロセッサが、
複数のユーザがそれぞれスポーツをプレーしたときのモーションに基づいて定義され、かつ時間的な区間内に配列されたプレーイベントを示すデータを取得することと、
前記複数のユーザのそれぞれの前記プレーイベントの時間的な関係に基づいて、前記区間における前記複数のユーザのプレーの相関度を算出することと、
前記相関度に基づいて前記区間における前記複数のユーザの関係を推定することと
を含む解析方法。
100 センサ装置
110 センサ
120 処理部
200 スマートフォン
210 受信部
220 処理部
300 サーバ
310 受信部
320 処理部
410 入力処理部
411 プレーイベント時系列データ
420 解析処理部
421 リサンプリング処理部
423 フィルタリング処理部
425 タイムスロット分割処理部
427 相関度算出部
430 出力処理部
431 関係推定処理
521 位置判定部
Claims (16)
- 複数のユーザがそれぞれスポーツをプレーしたときのモーションに基づいて定義され、かつ時間的な区間内に配列されたプレーイベントを示すデータを取得する取得機能と、
前記複数のユーザのそれぞれの前記プレーイベントの時間的な関係に基づいて、前記区間における前記複数のユーザのプレーの相関度を算出する算出機能と、
前記相関度に基づいて前記区間における前記複数のユーザの関係を推定する関係推定機能と
を実現するプロセッサを備える解析装置。 - 前記関係推定機能は、前記区間において前記複数のユーザが一緒にプレーしたか否かを推定する、請求項1に記載の解析装置。
- 前記関係推定機能は、前記区間において発生した前記複数のユーザの間のインタラクションを推定する、請求項2に記載の解析装置。
- 前記算出機能は、前記区間を複数のタイムスロットに分割し、各タイムスロット内で前記相関度を算出する、請求項1に記載の解析装置。
- 前記関係推定機能は、前記各タイムスロットの長さが第1の閾値よりも短く、前記各タイムスロット内での前記相関度が第2の閾値よりも高い場合に、前記複数のユーザの間でインタラクションが発生したと推定する、請求項4に記載の解析装置。
- 前記算出機能は、前記データについて共通の時系列によるリサンプリングを実行した上で前記相関度を算出する、請求項1に記載の解析装置。
- 前記算出機能は、前記リサンプリング後のデータをフィルタした上で前記相関度を算出する、請求項6に記載の解析装置。
- 前記算出機能は、前記リサンプリング後のデータの移動平均に基づいて前記相関度を算出する、請求項7に記載の解析装置。
- 前記算出機能は、前記リサンプリング後のデータから所定の種類のプレーイベントを除いた上で前記相関度を算出する、請求項7に記載の解析装置。
- 前記算出機能は、前記リサンプリング後のデータをオフセットさせた上で前記相関度を算出する、請求項6に記載の解析装置。
- 前記プロセッサは、前記関係に基づく情報を前記複数のユーザの一部または全部に提供する情報提供機能をさらに実現する、請求項1に記載の解析装置。
- 前記情報提供機能は、前記複数のユーザの中の第1のユーザのリクエストに基づいて、前記第1のユーザと一緒にプレーしていた前記複数のユーザの中の第2のユーザを示す情報を前記第1のユーザに提供する、請求項11に記載の解析装置。
- 前記プロセッサは、前記複数のユーザの中から前記相関度の算出対象になるユーザを抽出する対象抽出機能をさらに実現する、請求項1に記載の解析装置。
- 前記取得機能は、前記プレーイベントが発生した場所を示す位置情報をさらに含む前記データを取得し、
前記対象抽出機能は、前記相関度の算出対象になるユーザを前記位置情報に基づいて抽出する、請求項13に記載の解析装置。 - 複数のユーザがそれぞれスポーツをプレーしたときのモーションに基づいて定義され、かつ時間的な区間内に配列されたプレーイベントを示すデータを取得する取得機能と、
前記複数のユーザのそれぞれの前記プレーイベントの時間的な関係に基づいて、前記区間における前記複数のユーザのプレーの相関度を算出する算出機能と、
前記相関度に基づいて前記区間における前記複数のユーザの関係を推定する関係推定機能と
をコンピュータに実現させるためのプログラムが記録された記録媒体。 - プロセッサが、
複数のユーザがそれぞれスポーツをプレーしたときのモーションに基づいて定義され、かつ時間的な区間内に配列されたプレーイベントを示すデータを取得することと、
前記複数のユーザのそれぞれの前記プレーイベントの時間的な関係に基づいて、前記区間における前記複数のユーザのプレーの相関度を算出することと、
前記相関度に基づいて前記区間における前記複数のユーザの関係を推定することと
を含む解析方法。
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2015554649A JP6459979B2 (ja) | 2013-12-27 | 2014-11-06 | 解析装置、記録媒体および解析方法 |
US15/104,680 US10569135B2 (en) | 2013-12-27 | 2014-11-06 | Analysis device, recording medium, and analysis method |
EP14873274.6A EP3088059A4 (en) | 2013-12-27 | 2014-11-06 | Analysis device, recording medium, and analysis method |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2013273517 | 2013-12-27 | ||
JP2013-273517 | 2013-12-27 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2015098302A1 true WO2015098302A1 (ja) | 2015-07-02 |
Family
ID=53478180
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2014/079387 WO2015098302A1 (ja) | 2013-12-27 | 2014-11-06 | 解析装置、記録媒体および解析方法 |
Country Status (4)
Country | Link |
---|---|
US (1) | US10569135B2 (ja) |
EP (1) | EP3088059A4 (ja) |
JP (1) | JP6459979B2 (ja) |
WO (1) | WO2015098302A1 (ja) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2019004927A (ja) * | 2017-06-20 | 2019-01-17 | カシオ計算機株式会社 | 電子機器、リズム情報報知方法及びプログラム |
JP2021149451A (ja) * | 2020-03-18 | 2021-09-27 | ヤフー株式会社 | 判定装置、判定方法、および判定プログラム |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2015069124A1 (en) * | 2013-11-08 | 2015-05-14 | Performance Lab Technologies Limited | Automated prescription of activity based on physical activity data |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2012510876A (ja) * | 2008-12-05 | 2012-05-17 | ナイキ インターナショナル リミテッド | チーム競技環境における運動パフォーマンスモニタリングのシステムおよび方法 |
US20120277890A1 (en) * | 2011-04-29 | 2012-11-01 | Zheng Han | Method of Ball Game Motion Recognition, Apparatus for the same, and motion assisting device |
JP2012254205A (ja) | 2011-06-09 | 2012-12-27 | Seiko Epson Corp | スイング分析装置、スイング分析プログラム、および記録媒体 |
US20130053190A1 (en) * | 2011-08-29 | 2013-02-28 | Icuemotion, Llc | Racket sport inertial sensor motion tracking and analysis |
Family Cites Families (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP1163935A1 (en) * | 1999-01-29 | 2001-12-19 | Scale Inc. | Time-series data processing device and method |
GB2455313B (en) * | 2007-12-04 | 2012-06-13 | Sony Corp | Apparatus and method for estimating orientation |
WO2010111705A2 (en) * | 2009-03-27 | 2010-09-30 | Infomotion Sports Technologies, Inc. | Monitoring of physical training events |
US20100281108A1 (en) * | 2009-05-01 | 2010-11-04 | Cohen Ronald H | Provision of Content Correlated with Events |
EP2539837A4 (en) * | 2010-02-24 | 2016-05-25 | Jonathan Edward Bell Ackland | CLASSIFICATION SYSTEM AND METHOD |
WO2012112903A2 (en) * | 2011-02-17 | 2012-08-23 | Nike International Ltd. | Location mapping |
JP5994306B2 (ja) * | 2012-03-15 | 2016-09-21 | ソニー株式会社 | 情報処理装置、情報処理システムおよびプログラム |
JP6439235B2 (ja) * | 2012-08-10 | 2018-12-19 | カシオ計算機株式会社 | 情報報知装置、情報報知方法及びプログラム |
US9881206B2 (en) * | 2013-04-09 | 2018-01-30 | Sstatzz Oy | Sports monitoring system and method |
-
2014
- 2014-11-06 EP EP14873274.6A patent/EP3088059A4/en not_active Ceased
- 2014-11-06 JP JP2015554649A patent/JP6459979B2/ja active Active
- 2014-11-06 WO PCT/JP2014/079387 patent/WO2015098302A1/ja active Application Filing
- 2014-11-06 US US15/104,680 patent/US10569135B2/en active Active
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2012510876A (ja) * | 2008-12-05 | 2012-05-17 | ナイキ インターナショナル リミテッド | チーム競技環境における運動パフォーマンスモニタリングのシステムおよび方法 |
US20120277890A1 (en) * | 2011-04-29 | 2012-11-01 | Zheng Han | Method of Ball Game Motion Recognition, Apparatus for the same, and motion assisting device |
JP2012254205A (ja) | 2011-06-09 | 2012-12-27 | Seiko Epson Corp | スイング分析装置、スイング分析プログラム、および記録媒体 |
US20130053190A1 (en) * | 2011-08-29 | 2013-02-28 | Icuemotion, Llc | Racket sport inertial sensor motion tracking and analysis |
Non-Patent Citations (2)
Title |
---|
D. CONNAGHAN ET AL.: "Toward Next Generation Coaching Tools for Court Based Racquet Sports", PROCEEDINGS OF THE 20TH ACM INTERNATIONAL CONFERENCE ON MULTIMEDIA, 2012, pages 1089 - 1092, XP055353862, DOI: 10.1145/2393347.2396390 * |
See also references of EP3088059A4 |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2019004927A (ja) * | 2017-06-20 | 2019-01-17 | カシオ計算機株式会社 | 電子機器、リズム情報報知方法及びプログラム |
JP2021149451A (ja) * | 2020-03-18 | 2021-09-27 | ヤフー株式会社 | 判定装置、判定方法、および判定プログラム |
JP7225155B2 (ja) | 2020-03-18 | 2023-02-20 | ヤフー株式会社 | 判定装置、判定方法、および判定プログラム |
Also Published As
Publication number | Publication date |
---|---|
JP6459979B2 (ja) | 2019-01-30 |
US20160310788A1 (en) | 2016-10-27 |
EP3088059A1 (en) | 2016-11-02 |
JPWO2015098302A1 (ja) | 2017-03-23 |
US10569135B2 (en) | 2020-02-25 |
EP3088059A4 (en) | 2017-08-09 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US10769796B2 (en) | Information processing apparatus, information processing method and recording medium | |
EP3060317B1 (en) | Information processing device, recording medium, and information processing method | |
JP6458739B2 (ja) | 解析装置、記録媒体および解析方法 | |
US20160225410A1 (en) | Action camera content management system | |
US20170312574A1 (en) | Information processing device, information processing method, and program | |
US10441847B2 (en) | Framework, devices, and methodologies configured to enable gamification via sensor-based monitoring of physically performed skills, including location-specific gamification | |
JP6354461B2 (ja) | フィードバック提供方法、システム、および解析装置 | |
JP2013188426A (ja) | 情報処理装置、情報処理システムおよびプログラム | |
EP3087364B1 (en) | Analysis apparatus, recording medium, and analysis method | |
JP6447515B2 (ja) | 情報処理装置、記録媒体および情報処理方法 | |
JP6459979B2 (ja) | 解析装置、記録媒体および解析方法 | |
JP2017093803A (ja) | 評価プログラム、評価方法及び評価装置 | |
JP6432523B2 (ja) | 解析装置、記録媒体および解析方法 | |
WO2015098303A1 (ja) | 解析装置、記録媒体および解析方法 | |
KR101485821B1 (ko) | 사용자 모션을 이용한 원격 컨트롤 모듈 및 방법 | |
JP2023025490A (ja) | 情報処理装置、情報処理方法及びプログラム | |
WO2015098301A1 (ja) | 解析装置、記録媒体および解析方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 14873274 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2015554649 Country of ref document: JP Kind code of ref document: A |
|
REEP | Request for entry into the european phase |
Ref document number: 2014873274 Country of ref document: EP |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2014873274 Country of ref document: EP |
|
WWE | Wipo information: entry into national phase |
Ref document number: 15104680 Country of ref document: US |
|
NENP | Non-entry into the national phase |
Ref country code: DE |