WO2015096787A1 - 气相色谱仪与离子迁移谱仪系统 - Google Patents

气相色谱仪与离子迁移谱仪系统 Download PDF

Info

Publication number
WO2015096787A1
WO2015096787A1 PCT/CN2014/095009 CN2014095009W WO2015096787A1 WO 2015096787 A1 WO2015096787 A1 WO 2015096787A1 CN 2014095009 W CN2014095009 W CN 2014095009W WO 2015096787 A1 WO2015096787 A1 WO 2015096787A1
Authority
WO
WIPO (PCT)
Prior art keywords
ion mobility
zone
mobility spectrometer
sample
ionization
Prior art date
Application number
PCT/CN2014/095009
Other languages
English (en)
French (fr)
Inventor
张清军
李元景
陈志强
马秋峰
赵自然
刘以农
刘耀红
邹湘
王燕春
王钧效
常建平
Original Assignee
同方威视技术股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 同方威视技术股份有限公司 filed Critical 同方威视技术股份有限公司
Publication of WO2015096787A1 publication Critical patent/WO2015096787A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N30/00Investigating or analysing materials by separation into components using adsorption, absorption or similar phenomena or using ion-exchange, e.g. chromatography or field flow fractionation
    • G01N30/02Column chromatography
    • G01N30/62Detectors specially adapted therefor
    • G01N30/72Mass spectrometers
    • G01N30/7206Mass spectrometers interfaced to gas chromatograph
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/62Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating the ionisation of gases, e.g. aerosols; by investigating electric discharges, e.g. emission of cathode
    • G01N27/622Ion mobility spectrometry
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/62Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating the ionisation of gases, e.g. aerosols; by investigating electric discharges, e.g. emission of cathode
    • G01N27/64Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating the ionisation of gases, e.g. aerosols; by investigating electric discharges, e.g. emission of cathode using wave or particle radiation to ionise a gas, e.g. in an ionisation chamber
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J49/00Particle spectrometers or separator tubes
    • H01J49/02Details
    • H01J49/04Arrangements for introducing or extracting samples to be analysed, e.g. vacuum locks; Arrangements for external adjustment of electron- or ion-optical components
    • H01J49/0422Arrangements for introducing or extracting samples to be analysed, e.g. vacuum locks; Arrangements for external adjustment of electron- or ion-optical components for gaseous samples

Definitions

  • Embodiments of the invention relate to a gas chromatograph and ion mobility spectrometer system.
  • Patent DE 19502674 C1 discloses a method for realizing positive and negative ions using a switching electric field. Although the purpose of both positive and negative ions is achieved, due to the switching time interval, positive and negative ions cannot be simultaneously measured, and positive and negative ion related information is lost in the measurement.
  • Patent CN201917559U discloses a gas analysis device comprising a GC and a dual mode ion mobility spectrum, although a technique for simultaneous detection of positive and negative ions of a mixture is achieved, but the disclosed gas analysis including GC and IMS, including CN201917559 U and US5811059A, is disclosed.
  • the device patents direct the GC-separated sample directly into the ionization zone.
  • the ionization source is the main functional component of IMS.
  • the ionization effect produced by different ionization sources has a very direct impact on the performance of the spectrometer.
  • the most widely used radioactive beta source emits high-energy nascent electrons ( 63 Ni: 67keV, 3 H: 18 keV), if the sample is directly introduced into the design of the ionization zone, when the sample passes near the source, it will be directly hit by the high-energy beta ray into the component ion fragments, or ionized into positively charged sample molecular ions.
  • the molecular ion fragments of the sample will cause the reaction ion peak (RIP) to increase, disturb the baseline or generate interference peaks, and reduce the resolution of the spectrometer.
  • the hard ionization source will be complicated.
  • the nearby sample molecules are ionized into positively charged molecular ions, and the positively charged sample molecular ions can react with unionized carrier gas molecules to increase the complexity of sample analysis and even disturb peak analysis, in addition to negative reaction ions.
  • the neutralization reaction was destroyed and escape detection.
  • the traditional dual-mode IMS (CN201917559U) and single-mode IMS (US5811059A) have another design defect, that is, the positive ions and negative ions generated in the ionization region fail to be entered into the reaction zone. separate.
  • the ionization source ionizes the carrier gas, it will produce positive ions (mainly (H 2 O) n H + ) and negative ions (mainly O 2 - (H 2 O) 2 ), which are generated in the same space in the ionization zone.
  • Coulomb attraction occurs between negative ions. If a repulsion voltage is not added to the ionization zone, the positive ions and negative ions (or electrons) entering the reaction zone driven by the carrier gas flow will be neutralized by collision and recombination between them.
  • This reaction zone will become a trap of positive and negative ion destruction, even if a repulsion voltage is added to the ionization zone to separate ions of different charges, and the loss caused by neutralization due to ion recombination still exists [Siegel, MW , Atmospheric pressure ionization, in Plasma Chromatography, Carr, TW, Ed., Plenum Press, New York, 1984, chap. 3, pp. 95-113.], so such a structural design will cause loss of reactive ions, thereby As the baseline signal is low, the instrument detection sensitivity decreases.
  • the present invention provides a gas chromatograph and an ion mobility spectrometer system, the gas chromatograph and ion mobility spectrometer system comprising: a gas chromatograph, an ion mobility spectrometer, the ion mobility spectrometer comprising An ionization zone for ionizing a gas such as a carrier gas to generate ions, and a reaction zone adjacent to the ionization zone, different from the ionization zone for binding ions to a sample, and a sample delivery device, the sample Conveyor unit
  • the gas chromatograph and reaction zone are connected so that the sample from the gas chromatograph is delivered directly to the reaction zone without passing through the ionization zone or bypassing the ionization zone.
  • the ion mobility spectrometer further comprises: an electrode disposed substantially between the ionization zone and the reaction zone, the electrode being capable of generating an electric field for moving positive or negative ions in ions generated in the ionization zone Go to the reaction zone.
  • the ion mobility spectrometer is a dual mode ion mobility spectrometer and includes two of the reaction zones adjacent to the ionization zone, and the ion mobility spectrometer further comprises: substantially disposed in the ionization zone Two electrodes between one of the two reaction zones and between the ionization zone and the other of the two reaction zones, the two electrodes being capable of generating an electric field for positive ions in ions generated by the ionization zone And negative ions move to the two reaction zones, respectively.
  • the electrode has a bell mouth shape.
  • the sample delivery device further comprises: a conduit for conveying the sample; and a diverter valve disposed on the conduit for regulating the amount of sample delivered to the two reaction zones.
  • the carrier gas may be air or nitrogen.
  • an ion mobility spectrometer comprising: an ionization region for ionizing a gas to generate ions, adjacent to the ionization region, different from the ionization region A reaction zone for binding ions to a sample, and a sample delivery device for delivering the sample directly to the reaction zone without passing through the ionization zone or bypassing the ionization zone.
  • the ion mobility spectrometer further comprises: an electrode disposed substantially between the ionization zone and the reaction zone, the electrode being capable of generating an electric field for moving positive or negative ions in ions generated in the ionization zone Go to the reaction zone.
  • the ion mobility spectrometer is a dual mode ion mobility spectrometer and includes two of the reaction zones adjacent to the ionization zone, and
  • the ion mobility spectrometer further includes two electrodes disposed substantially between the ionization zone and one of the two reaction zones and between the ionization zone and the other of the two reaction zones, the two electrodes capable of An electric field is generated for moving positive and negative ions in the ions generated by the ionization zone to the two reaction zones, respectively.
  • the electrode has a bell mouth shape.
  • the gas chromatograph and the ion mobility spectrometer system realize the simultaneous detection of positive and negative ions on the one hand, and establish a correlation between the positive and negative spectra, and the separation ability of some substances is better than the positive and negative mode by switching the voltage.
  • Single tube IMS On the one hand, it can avoid the generation of sample molecular ion fragments, make the map simple and easy to identify, thus more accurately detect the target molecules, effectively improve the resolving power, and then extend the application field of GC-IMS system to analyze high polarity and difficult to volatilize. And the range of thermally unstable organic macromolecular samples. On the other hand, it can overcome the defects of neutralization and destruction of positive ions and negative ions, and can effectively improve the detection sensitivity.
  • the GC-IMS system of an embodiment of the present invention combines the advantages of both GC and dual mode IMS systems.
  • GC can be a conventional separation instrument in which a gaseous sample passes through a separation column with a carrier gas, a stationary phase is provided in the separation column, and the sample components pass through the separation column through interaction with the stationary phase molecules.
  • the retention time is different, and the GC uses the retention time feature to identify the substance.
  • the retention time of the GC is on the order of minutes (minutes to tens of minutes, minimum peak width is ten seconds).
  • the drift time of the material components measured by IMS is on the order of milliseconds (generally several to several tens of milliseconds, and the peak width is less than 1 millisecond). Therefore, GC can be used in conjunction with IMS, GC as a pre-separator for IMS, and IMS as a back-end detector for GC.
  • the IMS is a positive and negative dual mode migration tube
  • the ionization zone is designed in the middle of the two reaction zones of the double pipe, and the double pipe shares one ionization zone, thereby saving one ionization source and eliminating the need for an ionization source. Correction between the two ionization sources and the precise ratio of the amount of sample entering the two ionization zones.
  • Two bell-shaped electrodes can be separately designed on both sides of the ionization zone, and the electrodes generate an electric field or not. When there are two bell-shaped electrodes, the two electric fields can separate the positive and negative ions, which can effectively reduce the ion destruction caused by the neutralization of positive and negative ions.
  • Some other designs of IMS may be based on CN101728208A or other existing dual mode IMS.
  • the interface between the GC and the IMS serves to introduce the sample separated by the GC separation column into the transfer channel of the IMS reaction zone without damage.
  • the sample separated from the GC column passes through a transfer unit and enters a metal transfer column.
  • a proportional diverter valve divides the metal transfer column into two paths through the IMS sidewall into the positive and negative reaction zones, and the proportional diverter valve adjusts the two samples. Positive and negative
  • the area should be supplied with a certain proportion of flow, and the flow ratio can be adjusted.
  • the metal transfer column exposed between the GC and the IMS can be armored with a heating transfer tube to control the metal transfer column at a certain temperature to prevent the GC split sample from condensing there.
  • This design structure achieves the purpose of bypassing the sample from the ionization zone.
  • the ionized ionization source ionizes the air molecules and undergoes a series of electron transfer to form positive and negative mixed reactive ions
  • two ionization zones can be used. The sides are respectively added with positive and negative two bell mouth electrodes, and the reactive ions enter the positive and negative reaction zones respectively under the action of the bell mouth electrode and the drifting carrier gas flowing backwards, and the sample components flowing out from the GC are in this region.
  • the electronegative sample molecules are combined in the negative mode reaction zone and the positively charged ion bands are positively stored in the positive ion storage region, and the positive ions are opened by the opening of the ion gate.
  • the migration zone released to the negative mode is separated; similarly, the positively positive sample molecules are combined in the positive mode reaction zone and the negative reaction ions are negatively charged in the negative ion storage zone, and the negative ions are released by the opening of the ion gate.
  • the migration mode of the positive mode is separated.
  • the migration time information of the ions to be measured is obtained by measuring the current signals reaching the Faraday disks at both ends. This design structure not only achieves the purpose of bypassing the ionization zone, but also avoids the problem of neutralization and destruction of positive and negative ions.
  • the GC-IMS system can simultaneously identify positive and negative ions, so that the system can respond to both positive and negative electrical affinity macromolecules at the same time, thereby improving the system's Selectivity.
  • the sample to be tested is avoided from the ionization zone, and even if a conventional radioactive ion source is used, the problem of generating sample molecular ion fragments can be avoided in the case of generating abundant reactive ions at the same time, thereby reducing signal interference and effectively improving. Resolving power.
  • the distribution design of the proportional diverter valve is adopted at the interface between the GC and the IMS, so that the sample can be distributed to the positive and negative reaction zones as needed, thereby avoiding the problem that the positive and negative reactive ions are destroyed, and solving the problem between positive and negative ions.
  • the interaction of the complex ions creates an indistinguishable ion spectrum problem, which allows the GC-IMS system to both improve detection sensitivity and increase resolution. Therefore, the application field of the GC-IMS system can be extended to the range of detecting highly difficult organic macromolecular samples.
  • FIG. 1 is a gas chromatograph and ion mobility spectrometer according to an embodiment of the present invention. Schematic diagram of the system;
  • FIG. 2 is a schematic diagram of a gas chromatograph and ion mobility spectrometer system in accordance with another embodiment of the present invention.
  • a gas chromatograph and ion mobility spectrometer system in accordance with an embodiment of the present invention includes a GC, IMS, GC-IMS interface C.
  • the gas chromatograph includes an injector A, a GC separation column system B, and an adapter unit 3.
  • the ion mobility spectrometer includes: an ionization region 8 for ionizing a gas such as a carrier gas (for example, air or nitrogen) to generate ions, and adjacent to the ionization region 8 and the ionization region 8
  • a gas such as a carrier gas (for example, air or nitrogen)
  • the sample delivery device 20 is coupled to a gas chromatograph and reaction zones 10D, 10E for gas chromatography
  • the sample of the instrument is sent directly to the reaction zone 10D, 10E without passing through the ionization zone or bypassing the ionization zone 8.
  • the sample delivery device 20 includes a GC-IMS interface C, a conduit 21 for conveying a sample, and a diverter valve 6 disposed on the conduit 21 for regulating a sample delivered to the two reaction zones 10D, 10E the amount.
  • the sample delivery device 20 can be any suitable sample delivery device as long as the sample from the gas chromatograph can be delivered directly to the reaction zone 10D, 10E without passing through the ionization zone or bypassing the ionization zone 8.
  • the ion mobility spectrometer further includes an electrode L disposed substantially between the ionization zone 8 and the reaction zone 10D, 10E, the electrode L being capable of generating an electric field for moving positive or negative ions in the ions generated by the ionization zone 8 to the reaction Zone 10D, 10E.
  • the ion mobility spectrometer is a dual mode ion mobility spectrometer (positive mode migration tube D, negative mode migration tube E), and includes two reaction zones 10D, 10E adjacent to the ionization zone 8.
  • the two electrodes L are respectively disposed substantially between the ionization region 8 and one of the two reaction regions 10D and between the ionization region 8 and the other of the two reaction regions, the two electrodes L are capable of generating an electric field for Positive in the ions generated by the ionization zone 8
  • the ions and negative ions are moved to the two reaction zones 10D, 10E, respectively.
  • the electrode L may have a bell mouth shape.
  • the sample delivery device 20 is coupled to the gas chromatograph and the reaction zone (only one reaction zone) so that the sample from the gas chromatograph does not pass through the ionization zone or bypass ionization. Zone 8 is delivered directly to the reaction zone.
  • the sample delivery device 20 includes a GC-IMS interface C, a conduit 21 for delivering a sample, and a valve 6 disposed on the conduit 21 for regulating the amount of sample delivered to the reaction zone.
  • the GC serves as a front-end pre-separator for the IMS, and the sample separated by the GC is controlled by a diverter valve 6 such as a proportional diverter valve to be divided into two paths, which are respectively passed through the IMS at any angle.
  • the two migrating tubes enter the two reaction zones 10D, 10E of the IMS, and the GC-separated sample can bypass the ionization zone 8 of the IMS, thereby avoiding pattern interference caused by the sample molecules being ionized, and avoiding positive and negative ions. And destroy the defects that reduce the sensitivity of the analysis; the IMS system, as the back-end detector of the GC, is a positive and negative transfer tube mode, which can realize simultaneous detection of positive and negative ions.
  • the gas chromatograph and ion mobility spectrometer system also includes electronic control system F, GC-IMS signal acquisition and analysis system G, carrier gas system (GC carrier gas 18, purge gas 9, IMS drift carrier gas 13D And 13E, IMS air outlets 14D and 14E).
  • electronic control system F GC-IMS signal acquisition and analysis system G
  • carrier gas system GC carrier gas 18, purge gas 9, IMS drift carrier gas 13D And 13E, IMS air outlets 14D and 14E.
  • injector A is an input device for the gas chromatograph and ion mobility spectrometer system. It can select various injectors suitable for GC injection according to the nature of the analytes, and facilitate docking and replacement.
  • the GC separation column system B includes a separation column 1 and a temperature control box 2.
  • the separation column 1 can be a packed column, a capillary column, a capillary column (MCC), etc., and the retention time is related to the type of the separation column, and the most widely used capillary column is currently used.
  • Retention time is on the order of hours, can provide a wider separation capacity, can be applied in the inspection; and MCC column [JIBaumbach, GAEiceman, D.Klockow, S.Sielemann, AvIrmer: Exploration of a multicapillary column for use In elevated speed chromatography.Int.J.Env.Anal.Chem.66,225-240,(1997)] shortens the retention time (on the order of seconds to minutes) under the premise of ensuring the injection volume, which can be in the fast inspection application.
  • the function of the temperature control box is to precisely control the operating temperature of the separation column 1 to ensure accurate and reproducible separation of the analytical sample.
  • the ionization source of the IMS can be a conventional radio source, or a corona discharge or glow can be used. Ionization source such as discharge, laser ionization, surface ionization.
  • the ionization source 7 is shown in the form of a source of radiation for the sake of convenience. Two bell-shaped electrodes L are added to the two transfer tubes.
  • the IMS may be a dual mode IMS or other existing dual mode IMS as disclosed in CN101728208A.
  • the adapter unit 3 at the end of the GC column 1 can use the GC column to transfer standard accessories, or can design the convenient accessories for loading and unloading.
  • the metal transfer column 4 can be an aluminum alloy column, MXT column (Cook G W, LaPuma P T, Hook G L, et al. Using gas chromatography with ion mobility spectrometry to resolve explosive compounds in the presence of interferents [J]. Journal Of forensic sciences, 2010, 55(6): 1582.), etc., with a smooth inner wall and an inertly treated metal column.
  • the transfer column 4 needs to be heated by an additional heating transfer tube 5 to ensure that the internal temperature is higher than the separation column temperature, avoiding condensation of the sample flowing out of the GC separation column in this region, and ensuring that the sample molecules enter the IMS without damage.
  • the proportional diverter valve 6 is a universal diverter valve that can realize the function of adjustable flow ratio.
  • the carrier gas system of the IMS-GC consists of two parts. One is the high purity carrier gas 18 entering the GC column, which can be used with current GC lines and valves. The second is the carrier gas of the IMS system, usually using pure air at normal pressure.
  • the IMS carrier gas consists of one purge gas 9, two drift gases 13D and 13E, and two outlets 14D and 14E.
  • the electronic control system F controls the heating and temperature of the GC system, the heating of the IMS, the high voltage and preamplifier power supply, the valves and the pumps, and transmits the measurement signals of the IMS to the peripherals.
  • the test process of the gas chromatograph and the ion mobility spectrometer system will be described below with reference to FIG. 1.
  • the sample is introduced by the injector A, enters the separation column 1 under the carrier of the GC carrier gas 18, and the mixed sample is separated into the separation column.
  • the single component flows out from the end of the GC separation column and enters the adapter column 4 through the adapter unit 3.
  • the outer surface of the adapter column 4 is armored by the heating conversion tube 5, and the proportional diverter valve 6 is disposed in the middle of the adapter column 4, and the proportional diverter valve 6 is provided.
  • the sample is divided into two reaction zones 10D and 10E which enter the IMS, and the purging action of the purge gas 9 cooperates with the action of the two bell-shaped electrodes L to separate the positive and negative mixed reaction ions formed in the ionization zone 8 respectively.
  • the high-speed positive pressure gas flowing out of the GC meets and is well mixed. Due to the different electrophilic characteristics of the sample molecules, the electronegative sample molecules are passed in 10D.
  • the proton transfer reaction is positively charged and stored in the storage area formed in the bell-shaped electrode L.
  • the positively positive sample molecules are negatively reacted on the 10E junction and negatively charged and stored in the bell mouth.
  • the stored ions are pulled into the migration regions 12D, 12E by the opening of the ion gates 11D, 11E, and the charged ions are pulled at the migration speed to reach the Faraday disks 15D, 15E, and the Faraday disks 15D, 15E are obtained by the electric field of the migration region.
  • the current signal is transmitted to the signal acquisition and analysis system G for data processing after being amplified by the amplifier circuit and analog-to-digital conversion 16D, 16E.
  • the signal acquisition and analysis system G collects and stores all ion map data during the entire chromatographic separation process.
  • the system simultaneously records the IMS migration amplitude-time (in milliseconds) spectrum, the GC retention time map (in seconds), the GC-IMS migration time-retention time-amplitude 3D map, and the simultaneous monitoring of the three spectra.
  • IMS GC migration amplitude-time
  • GC retention time map in seconds
  • GC-IMS migration time-retention time-amplitude 3D map the simultaneous monitoring of the three spectra.
  • the combination of GC-IMS can be compared with the function of GC mass spectrometry (MS) in series.
  • MS mass spectrometry
  • In GC-MS in order to prevent sample molecules from being fragmented, it is usually technically difficult and expensive to use soft ionization technology (matrix-assisted laser analysis or electricity).
  • GC and dual-mode IMS can be used to measure positive and negative ions simultaneously, while GC-MS can only detect positive ions. For those substances that can generate positive and negative ions at the same time, GC and dual-mode IMS can be greatly enhanced in series. The ability to discriminate between substances and enhance resolution.
  • FIG. 2 shows another embodiment according to the present invention.
  • the GC-separated sample is also directly introduced into the reaction zones 10D, 10E to avoid the generation of fragment ions.
  • FIG. 1 when the ion gates 11D, 11E are opened, ions in the reaction zone are detected, and when the ion gate is closed, the reactive ions are not stored and are lost on the migration tube wall.
  • the other process is exactly the same as in Figure 1.
  • the inventive concept of the embodiments of the present invention can also be applied to an ion mobility spectrometer, and thus the ion mobility spectrometer according to an embodiment of the present invention includes: an ionization region 8 for ionizing a gas to generate ions, and the ionization region 8 adjacent, different from the ionization zone 8 A reaction zone 10D, 10E that combines ions with a sample, and a sample delivery device 20 for delivering the sample directly to the reaction zone 10D, 10E without passing through the ionization zone or bypassing the ionization zone 8.
  • the sample delivery device 20 can add a conduit for delivering the sample directly to the reaction zones 10D, 10E based on the existing sample introduction device.
  • the ion mobility spectrometer may further include an electrode L disposed substantially between the ionization zone 8 and the reaction zone 10D, 10E, the electrode L being capable of generating an electric field for moving positive or negative ions in ions generated by the ionization zone 8 Go to reaction zones 10D, 10E.
  • the ion mobility spectrometer may be a single mode ion mobility spectrometer and a dual mode ion mobility spectrometer. In the case of a dual mode ion mobility spectrometer, the ion mobility spectrometer comprises two of the reaction zones adjacent to the ionization zone.
  • the electrode L may have a bell mouth shape.
  • the ion mobility spectrometer includes a reaction zone and may include an electrode L.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Analytical Chemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Biochemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Electrochemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Toxicology (AREA)
  • Other Investigation Or Analysis Of Materials By Electrical Means (AREA)

Abstract

一种气相色谱仪与离子迁移谱仪系统,包括:气相色谱仪,离子迁移谱仪,离子迁移谱仪包括:用于使气体电离产生离子的电离区(8),以及与电离区(8)相邻并与电离区(8)不同的用于使离子与样品结合的反应区(10D,10E),以及样品输送装置(20),样品输送装置(20)连接气相色谱仪和反应区(10D,10E),使来自气相色谱仪的样品不经过电离区(8),而直接被输送到反应区(10D,10E)。该系统一方面能避免样品分子离子碎片的产生,使图谱简洁易辨认,从而使应用领域拓展到分析高极性、难挥发和热不稳定有机大分子样品的范围;另一方面克服了正离子与负离子发生中和毁灭而逃逸检测的缺陷。

Description

气相色谱仪与离子迁移谱仪系统
本申请要求2013年12月27日提交的、申请号为201310741366.X的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本发明的实施例涉及一种气相色谱仪与离子迁移谱仪系统。
背景技术
专利US5811059A和专利US6481263B1分别公开了一种包括GC与单模式IMS的气体分析装置,其分离能力好于单纯的IMS技术,但是却只能检测一种电性的带电粒子,不能做到正负离子同时检测,对于那些电亲和性相反的物质则无法检测。专利DE19502674C1公开了利用切换电场实现正负离子兼测的方法,虽然实现正负离子兼测的目的,但是由于切换时间间隔,不能同时测量正负离子,在测量中会遗失正负离子关联信息。专利CN201917559U公开了一种包括GC和双模式离子迁移谱的气体分析装置,虽然实现了混合物的正负离子同时检测的技术,然而包括CN201917559 U和US5811059A在内的所公开的包括GC和IMS的气体分析装置的专利都是将经GC分离的样品直接导入了电离区。而电离源是IMS主要功能部件,不同的电离源产生的电离效果对谱仪的性能具有非常直接的影响,比如目前应用最广的放射性β源都会放射出高能初生电子(63Ni:67keV,3H:18keV),如果采用样品直接引入电离区的设计结构,当样品经过放射源附近时,将会被高能β射线直接打成分子离子碎片,或被电离成带正电的样品分子离子。一方面样品分子离子碎片会导致反应离子峰(RIP)增高,扰乱基线或产生干扰峰,减低谱仪的分辨率,尤其是对于如蛋白、核酸等生物大分子,硬电离源将会产生复杂的碎片,造成难以辨析的图谱,使GC-IMS系统难以拓宽到有机大分子的检测领域。另一方面样品分子离子碎片或带正电的样品分子离子会进而与反应离子发生反应生成不能分辨离子谱,导致谱线紊乱,严重影响谱线 分析。而如果使用另一种应用较广泛的电离源——脉冲电晕放电,虽然电晕放电属于软电离(初生电子5eV~10eV),不会将样品分子成打碎片,然而会使通过电晕针附近的样品分子电离成带正电的分子离子,带正电的样品分子离子能与未被电离的载气分子反应而增加样品分析的复杂性甚至扰乱峰分析,此外还能与负反应离子发生中和反应被毁灭,从而逃逸检测。除了上述设计缺陷带来的问题外,传统的双模式IMS(CN201917559U)和单模式IMS(US5811059A)还存在另一个设计缺陷,即在电离区产生的正离子和负离子在进入反应区时未能被分开。因为电离源电离载气时将会同时产生正离子(主要是(H2O)nH+)和负离子(主要是O2 -(H2O)2),在电离区同一空间内生成的正负离子之间会产生库仑吸引力,如果不在电离区加一个推斥电压,在载气流带动下进入反应区的正离子与负离子(或电子)将会因它们之间的碰撞和重新结合而中和,这个反应区将变成一个正负离子毁灭的陷阱,即便在电离区加上一个推斥电压将不同电荷的离子分开,而由于离子重新结合而中和所造成的损失还是存在的[Siegel,M.W.,Atmospheric pressure ionization,in Plasma Chromatography,Carr,T.W.,Ed.,Plenum Press,New York,1984,chap.3,pp.95-113.],因此这样的结构设计将会造成反应离子的损失,从而导致基线信号低下,仪器检测灵敏度下降。
发明内容
本发明的实施例的目的是提供一种气相色谱仪与离子迁移谱仪系统,该气相色谱仪与离子迁移谱仪系统能够避免样品分子离子碎片的产生或样品分子电离成带正电的分子离子,由此能够有效提高检测灵敏度。
根据本发明的实施例,本发明提供了一种气相色谱仪与离子迁移谱仪系统,该气相色谱仪与离子迁移谱仪系统包括:气相色谱仪,离子迁移谱仪,该离子迁移谱仪包括:用于使诸如载气的气体电离产生离子的电离区,以及与所述电离区相邻、与所述电离区不同的用于使离子与样品结合的反应区,以及样品输送装置,该样品输送装置连 接气相色谱仪和反应区,使来自气相色谱仪的样品不经过电离区或绕过电离区,而直接被输送到反应区。
根据本发明的实施例,所述离子迁移谱仪还包括:大致设置在电离区与反应区之间的电极,该电极能够产生电场,用于使电离区产生的离子中的正离子或负离子移动到反应区。
根据本发明的实施例,离子迁移谱仪是双模式离子迁移谱仪,并且包括与电离区相邻的两个所述反应区,并且所述离子迁移谱仪还包括:分别大致设置在电离区与两个反应区中的一个之间以及电离区与两个反应区中的另一个之间的两个电极,所述两个电极能够产生电场,用于使电离区产生的离子中的正离子和负离子分别移动到两个反应区。
根据本发明的实施例,所述电极具有喇叭口状。
根据本发明的实施例,所述样品输送装置还包括:用于输送样品的管道;以及分流阀,该分流阀设置在管道上,用于调节被输送到两个反应区的样品量。
根据本发明的实施例,所述载气可以是空气或氮气。
根据本发明的实施例,本发明提供了一种离子迁移谱仪,该离子迁移谱仪包括:用于使气体电离产生离子的电离区,与所述电离区相邻、与所述电离区不同的用于使离子与样品结合的反应区,以及样品输送装置,该样品输送装置用于将样品不经过电离区或绕过电离区,而直接输送到反应区。
根据本发明的实施例,所述离子迁移谱仪还包括:大致设置在电离区与反应区之间的电极,该电极能够产生电场,用于使电离区产生的离子中的正离子或负离子移动到反应区。
根据本发明的实施例,离子迁移谱仪是双模式离子迁移谱仪,并且包括与电离区相邻的两个所述反应区,并且
所述离子迁移谱仪还包括:分别大致设置在电离区与两个反应区中的一个之间以及电离区与两个反应区中的另一个之间的两个电极,所述两个电极能够产生电场,用于使电离区产生的离子中的正离子和负离子分别移动到两个反应区。
根据本发明的实施例,所述电极具有喇叭口状。
根据本发明的一些实施方式,气相色谱仪与离子迁移谱仪系统一方面实现正负离子同时检测,将正负图谱建立起了关联,对某些物质的分离能力好于通过切换电压实现正负模式的单管IMS。一方面能避免产生样品分子离子碎片的产生,使图谱简洁易辨认,从而更准确的检测目标分子,有效地提高分辨能力,进而使GC-IMS系统的应用领域拓展到分析高极性、难挥发和热不稳定有机大分子样品的范围。另一方面能够克服正离子与负离子离子发生中和毁灭而逃逸检测的缺陷,能够有效提高提高检测灵敏度。
根据本发明的一些实施方式,本发明的实施例的GC-IMS系统融合了GC和双模式IMS两个系统的优点。GC可以是一种常规的分离仪器,在GC中气态样品随着载气经过一个分离柱,分离柱中设有固定相,样品组分通过与固定相分子之间的相互作用不同因而通过分离柱的保留时间就不同,GC以保留时间特征实现物质的鉴别。GC的保留时间在分钟量级(几分钟~几十分钟,最小峰宽十几秒)。而IMS测量的物质组分的漂移时间为毫秒量级(一般几个到几十个毫秒,峰宽小于1毫秒)。因此可以GC与IMS联用,GC作为IMS的预分离器,IMS作为GC的后端检测器。
根据本发明的一些实施方式,IMS为正、负双模式迁移管,电离区设计在双管的两个反应区中间,双管共用一个电离区,这样既可节省一个电离源,又省去了两个电离源之间的校正以及进入两个电离区样品量的精密配比。在电离区两侧可以分别设计两个喇叭口状的电极,该电极产生电场,也可以不设计这两个电极。当有两个喇叭口状电极时,两个电场可将正负离子分离,能有效地减小正负离子中和而造成的离子毁灭问题。IMS的其他某些设计可以是基于CN101728208A或其它已有的双模式IMS。
GC与IMS的接口的作用是将GC分离柱分离的样品无损地引入IMS反应区的转接通道。从GC柱分离出的样品经过一个转接单元进入一个金属转接柱,一个比例分流阀将金属转接柱分成两路经过IMS侧壁分别进入正负反应区,由比例分流阀调节两路样品向正负两个反 应区按一定比例供应流量,实现流量比例可调。可用加热转换管将裸露在GC和IMS之间的金属转接柱铠装,使该处的金属转接柱控制在一定温度,避免GC分流的样品在此处凝结。这种设计结构实现了将样品绕开电离区的目的。此外,由于在电离区电离源将空气分子电离并经过一系列的电子转移最终形成正、负混合的反应离子,为了使正负混合反应离子分离并分别进入正负迁移管,可以在电离区两侧分别增加正、负两个喇叭口状电极,反应离子在喇叭口电极和逆流而来的漂移载气的共同作用下分别进入正、负反应区并与从GC流出的样品组分在这个区域混合,由于样品分子的亲电性不同,电负性较强的样品分子在负模式反应区结合上正反应离子带上正电被存储在正离子存储区内,通过离子门的打开将正离子释放到负模式的迁移区被分离;同理,电正性较强的样品分子在正模式反应区结合上负反应离子带上负电被存储在负离子存储区,通过离子门的打开将负离子释放到正模式的迁移区被分离。通过测量到达两端法拉第盘的电流信号获得待测离子的迁移时间信息。这种设计结构不仅实现了将样品绕开电离区的目的,而且还避免了正负离子中和毁灭的问题。
根据本发明的实施例,通过GC与双模式IMS联用,一方面GC-IMS系统能够同时鉴别正负离子,使该系统同时对正负电亲和性的大分子都能响应,提高了系统的选择性。另一方面将待测样品避开电离区,即便是采用常规的放射性离子源,在同时产生丰富的反应离子情况下,也能避免产生样品分子离子碎片的问题,从而降低信号干扰,有效地提高分辨能力。同时在GC与IMS的接口处采用比例分流阀的分配设计,这样能将样品按需分配到正负两个反应区,既避免了正负反应离子发生毁灭的问题,又解决了正负离子之间的交互作用而产生复杂的离子形成不可分辨了离子谱问题,从而使GC-IMS系统既提高了检测灵敏度又提高了分辨率。因此可以将GC-IMS系统的应用领域拓展到检测难度高的有机大分子样品的范围。
附图说明
图1是根据本发明的一个实施例的气相色谱仪与离子迁移谱仪 系统的示意图;以及
图2是根据本发明的另一个实施例的气相色谱仪与离子迁移谱仪系统的示意图。
具体实施方式
下面结合附图及具体实施方式对本发明做进一步说明。
如图1所示,根据本发明的实施例的气相色谱仪与离子迁移谱仪系统包括GC、IMS、GC-IMS接口C。
如图1所示,该气相色谱仪包括:进样器A、GC分离柱系统B、转接单元3。
如图1所示,离子迁移谱仪包括:用于使诸如载气(例如空气或氮气)的气体电离产生离子的电离区8,以及与所述电离区8相邻、与所述电离区8不同的用于使离子与样品结合(例如,与样品分子结合)的反应区10D、10E,以及样品输送装置20,该样品输送装置20连接气相色谱仪和反应区10D、10E,使来自气相色谱仪的样品不经过电离区或绕过电离区8,而直接被输送到反应区10D、10E。该样品输送装置20包括GC-IMS接口C、用于输送样品的管道21;以及分流阀6,该分流阀6设置在管道21上,用于调节被输送到两个反应区10D、10E的样品量。
该样品输送装置20可以是任何合适的该样品输送装置,只要能将来自气相色谱仪的样品不经过电离区或绕过电离区8,而直接输送到反应区10D、10E即可。
离子迁移谱仪还包括:大致设置在电离区8与反应区10D、10E之间的电极L,该电极L能够产生电场,用于使电离区8产生的离子中的正离子或负离子移动到反应区10D、10E。
如图1所示,离子迁移谱仪是双模式离子迁移谱仪(正模式的迁移管D,负模式的迁移管E),并且包括与电离区8相邻的两个反应区10D、10E,并且两个电极L分别大致设置在电离区8与两个反应区中的一个10D之间以及电离区8与两个反应区中的另一个10E之间,两个电极L能够产生电场,用于使电离区8产生的离子中的正 离子和负离子分别移动到两个反应区10D、10E。电极L可具有喇叭口状。
在离子迁移谱仪是单模式离子迁移谱仪的情况下,该样品输送装置20连接气相色谱仪和反应区(只有一个反应区),使来自气相色谱仪的样品不经过电离区或绕过电离区8,而直接被输送到反应区。该样品输送装置20包括GC-IMS接口C、用于输送样品的管道21;以及阀6,该阀6设置在管道21上,用于调节被输送到反应区的样品量。
根据本发明的示例,如图1所示,GC作为IMS的前端预分离器,经GC分离的样品由诸如比例分流阀的分流阀6控制分为两路分别以任意角度穿过IMS的正负两个迁移管进入IMS的两个反应区10D、10E,可将经GC分离的样品绕开IMS的电离区8,即避免样品分子被打成离子碎片而产生图谱干扰,又避免了正负离子中和毁灭降低分析灵敏度的缺陷;IMS系统作为GC的后端检测器,为正、负迁移管模式,可实现正负离子同时检测。
如图1所示,气相色谱仪与离子迁移谱仪系统还包括电控系统F、GC-IMS信号采集分析系统G、载气系统(GC载气18、吹扫气9、IMS漂移载气13D和13E、IMS出气口14D和14E)。
如图1所示,进样器A为气相色谱仪与离子迁移谱仪系统的输入装置,可根据被分析物质的性质的需求选择适合于GC进样的各种进样器、方便对接及更换。GC分离柱系统B包括分离柱1和控温箱2,分离柱1可为填充柱、毛细柱、多毛细柱(MCC)等,保留时间与分离柱的类型有关,目前使用最广的毛细柱保留时间为小时量级,能够提供更宽的分离能力,可在法检中应用;而MCC柱[J.I.Baumbach,G.A.Eiceman,D.Klockow,S.Sielemann,A.v.Irmer:Exploration of a multicapillary column for use in elevated speed chromatography.Int.J.Env.Anal.Chem.66,225-240,(1997)]在保证进样量的前提下缩短了保留时间(秒~分钟量级),可在快检中应用。控温箱作用是精确地控制分离柱1的工作温度,保证分析样品准确和可重复地得到分离。
IMS的电离源可采用传统的放射源,也可采用电晕放电、辉光 放电、激光电离、表面电离等电离源。为方便起见图中电离源7以放射源的形式表示。在两个迁移管中加两个喇叭口形状的电极L。IMS可以是CN101728208A公开的双模式IMS或其它已有的双模式IMS。
如图1所示,GC-IMS接口C处,GC柱1的末端的转接单元3可以使用GC柱转接标准配件,也可自行设计方便装卸的配件。金属转接柱4可为铝合金柱,MXT柱(Cook G W,LaPuma P T,Hook G L,et al.Using gas chromatography with ion mobility spectrometry to resolve explosive compounds in the presence of interferents[J].Journal of forensic sciences,2010,55(6):1582.),等内壁光滑,经过惰性处理的金属柱皆可。转接柱4需要用额外的加热转换管5加热,保证内部温度高于分离柱温,避免从GC分离柱流出的样品在此区域内冷凝,保证样品分子无损地进入IMS。比例分流阀6为通用的分流阀,可实现流量比例可调的功能。
IMS-GC的载气系统包括两部分。其一是进入GC柱的高纯载气18,可使用目前通用的GC管路和阀门。其二是IMS系统的载气,通常选用常压的纯净空气。IMS的载气包括一路吹扫气9、两路漂移气13D和13E、两路出气14D和14E组成。
电控系统F控制GC系统的加热及温度、IMS的加热、高压及前放供电、阀门及泵,并将IMS的测量信号传输到外设上。
下面结合图1描述气相色谱仪与离子迁移谱仪系统的测试过程,样品由进样器A引入,在GC载气18的携带下进入分离柱1,混合样品在分离柱的作用下被分离成单一成分从GC分离柱末端流出,通过转接单元3进入转接柱4,转接柱4外表面由加热转换管5铠装,转接柱4中间设有比例分流阀6,比例分流阀6将样品分为两路进入IMS的两个反应区10D和10E,同时吹扫气9的吹扫作用协同两个喇叭口形状的电极L的作用将在电离区8形成的正负混合反应离子分别拉向两个反应区10D、10E,从而实现的正负反应离子的分离,在这里吹扫气流9(0-0.5L/min的流量)携带的反应离子在逆流的漂移载气13D、13E作用下和GC流出的高速正压气流相遇并充分混合,由于样品分子的亲电性特征不同,电负性较强的样品分子在10D通过 质子转移反应带上正电并被存储在喇叭口状电极L内形成的存储区内,同理,电正性较强的样品分子在10E结合上负反应离子带上负电并被存储在喇叭口电极L形成的存储区内。通过离子门11D、11E的打开将储存的离子拉进迁移区12D、12E,在迁移区电场的作用下带电离子被按迁移速度拉开陆续到达法拉第盘15D、15E,法拉第盘15D、15E上获得的电流信号经过放大电路及模数转换16D、16E后传输到信号获取及分析系统G进行数据处理。信号获取及分析系统G对整个色谱分离过程中全部离子图谱数据都要采集和储存。一次完整的测试,系统同时记录IMS迁移幅度-时间(单位是毫秒)谱图,GC保留时间图谱(单位是秒),GC-IMS迁移时间-保留时间-幅度三维图谱,三种图谱同时监控能呈现更多的信息,增强了谱仪的分析能力,即某些GC无法分离的物质能够被IMS分离,反之亦然。因此GC-IMS联用可以与GC质谱(MS)串联的功能相媲美,在GC-MS中为了防止样品分子被打成碎片通常采用技术难度高且价格昂贵软电离技术(基质辅助激光解析或电喷雾电离技术),而本设计的GC与双模式IMS联用的结构在对电离技术无特殊设计要求的情况下避免了分子离子碎片的产生,使GC-IMS的应用扩展到了有机大分子的检测领域;此外,GC与双模式的IMS联用够同时测量正负离子,而GC-MS只能检测正离子,这对于那些能够同时产生正负离子的物质来说,GC与双模式IMS串联会大大增强物质的鉴别能力,增强分辨率。
图2示出了根据本发明的另一个实施例,如图2所示,气相色谱仪与离子迁移谱仪系统中,除了没有两个喇叭口状的电极L外,其他细节完全同图1的设计,该实施例也是将经GC分离的样品直接导入反应区10D、10E,避免碎片离子的产生。与图1的实施例稍有不同的是,在图2中,当离子门11D、11E打开时反应区的离子被检测,当离子门关闭时反应离子不被储存而损失在迁移管壁上,其他过程完全同图1。
此外,本发明的实施例的发明构思也可以用于离子迁移谱仪,因此根据本发明的实施例的离子迁移谱仪包括:用于使气体电离产生离子的电离区8,与所述电离区8相邻、与所述电离区8不同的用于 使离子与样品结合的反应区10D、10E,以及样品输送装置20,该样品输送装置20用于将样品不经过电离区或绕过电离区8,而直接输送到反应区10D、10E。样品输送装置20可以在现有的进样装置的基础上增加将样品直接输送到反应区10D、10E的管道。该离子迁移谱仪可还包括:大致设置在电离区8与反应区10D、10E之间的电极L,该电极L能够产生电场,用于使电离区8产生的离子中的正离子或负离子移动到反应区10D、10E。该离子迁移谱仪可以是单模式离子迁移谱仪和双模式离子迁移谱仪,在双模式离子迁移谱仪的情况下,该离子迁移谱仪包括与电离区相邻的两个所述反应区,和分别大致设置在电离区与两个反应区中的一个之间以及电离区与两个反应区中的另一个之间的两个电极L,所述两个电极L能够产生电场,用于使电离区产生的离子中的正离子和负离子分别移动到两个反应区。所述电极L可以具有喇叭口状。
如上所述,如果是单模式离子迁移谱仪,该离子迁移谱仪包括一个反应区,可包括一个电极L。

Claims (12)

  1. 一种气相色谱仪与离子迁移谱仪系统,包括:
    气相色谱仪,
    离子迁移谱仪,该离子迁移谱仪包括:用于使气体电离产生离子的电离区,以及与所述电离区相邻、与所述电离区不同的用于使离子与样品结合的反应区,以及
    样品输送装置,该样品输送装置连接气相色谱仪和反应区,使来自气相色谱仪的样品不经过电离区或绕过电离区,而直接被输送到反应区。
  2. 根据权利要求1所述的气相色谱仪与离子迁移谱仪系统,其中
    所述离子迁移谱仪还包括:大致设置在电离区与反应区之间的电极,该电极能够产生电场,用于使电离区产生的离子中的正离子或负离子移动到反应区。
  3. 根据权利要求1所述的气相色谱仪与离子迁移谱仪系统,其中
    离子迁移谱仪是双模式离子迁移谱仪,并且包括与电离区相邻的两个所述反应区,并且
    所述离子迁移谱仪还包括:分别大致设置在电离区与两个反应区中的一个之间以及电离区与两个反应区中的另一个之间的两个电极,所述两个电极能够产生电场,用于使电离区产生的离子中的正离子和负离子分别移动到两个反应区。
  4. 根据权利要求2或3所述的气相色谱仪与离子迁移谱仪系统,其中
    所述电极具有喇叭口状。
  5. 根据权利要求3所述的气相色谱仪与离子迁移谱仪系统,其中所述样品输送装置还包括:
    用于输送样品的管道;以及
    分流阀,该分流阀设置在管道上,用于调节被输送到两个反应区的样品量。
  6. 根据权利要求1所述的气相色谱仪与离子迁移谱仪系统,其中
    所述气体是载气。
  7. 根据权利要求6所述的气相色谱仪与离子迁移谱仪系统,其中
    所述载气是空气或氮气。
  8. 一种离子迁移谱仪,包括:
    用于使气体电离产生离子的电离区,
    与所述电离区相邻、与所述电离区不同的用于使离子与样品结合的反应区,以及
    样品输送装置,该样品输送装置用于将样品不经过电离区或绕过电离区,而直接输送到反应区。
  9. 根据权利要求8所述的离子迁移谱仪,还包括:
    大致设置在电离区与反应区之间的电极,该电极能够产生电场,用于使电离区产生的离子中的正离子或负离子移动到反应区。
  10. 根据权利要求8所述的离子迁移谱仪,其中
    所述离子迁移谱仪是双模式离子迁移谱仪,并且包括与电离区相邻的两个所述反应区,并且
    所述离子迁移谱仪还包括:分别大致设置在电离区与两个反应区中的一个之间以及电离区与两个反应区中的另一个之间的两个电 极,所述两个电极能够产生电场,用于使电离区产生的离子中的正离子和负离子分别移动到两个反应区。
  11. 根据权利要求9或10所述的离子迁移谱仪,其中
    所述电极具有喇叭口状。
  12. 根据权利要求8所述的离子迁移谱仪,其中
    所述气体是载气。
PCT/CN2014/095009 2013-12-27 2014-12-25 气相色谱仪与离子迁移谱仪系统 WO2015096787A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201310741366.X 2013-12-27
CN201310741366.XA CN104749264B (zh) 2013-12-27 2013-12-27 气相色谱仪与离子迁移谱仪联用设备

Publications (1)

Publication Number Publication Date
WO2015096787A1 true WO2015096787A1 (zh) 2015-07-02

Family

ID=52134001

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2014/095009 WO2015096787A1 (zh) 2013-12-27 2014-12-25 气相色谱仪与离子迁移谱仪系统

Country Status (4)

Country Link
US (1) US9513266B2 (zh)
EP (1) EP2889616A1 (zh)
CN (1) CN104749264B (zh)
WO (1) WO2015096787A1 (zh)

Families Citing this family (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104569233B (zh) * 2013-10-28 2018-04-24 同方威视技术股份有限公司 离子迁移谱仪系统
CN104749264B (zh) * 2013-12-27 2016-08-17 同方威视技术股份有限公司 气相色谱仪与离子迁移谱仪联用设备
CN104515824B (zh) 2014-12-31 2016-08-24 同方威视技术股份有限公司 气相物质分析装置和气相导入装置
US9589776B2 (en) * 2015-03-16 2017-03-07 Sri International Ruggedized advanced identification mass spectrometer
DE102015106418B3 (de) * 2015-04-27 2016-08-11 Bruker Daltonik Gmbh Messung des elektrischen Stromverlaufs von Partikelschwärmen in Gasen und im Vakuum
US10068757B2 (en) * 2015-11-16 2018-09-04 Thermo Finnigan Llc Strong field photoionization ion source for a mass spectrometer
CN106645513B (zh) * 2016-12-07 2023-11-03 同方威视技术股份有限公司 用于痕量分析仪器标定的标准样品的制备和送进装置
CN107037171A (zh) * 2016-12-29 2017-08-11 浙江富春江环保科技研究有限公司 一种用于二恶英在线检测的气相色谱‑质谱间传输线系统
CN107991379A (zh) * 2018-01-25 2018-05-04 清华大学 离子迁移谱仪的气路流量监控装置和方法
CN108614050A (zh) * 2018-05-14 2018-10-02 清华大学 采样管束、采样分析设备及采样管束的制备方法
GB201807900D0 (en) * 2018-05-15 2018-06-27 Fasmatech Science And Tech Ltd Improvements in and relating to the control of ions
CN110618189A (zh) * 2019-10-29 2019-12-27 广西大学 一种采用离子迁移谱快速检测二硫代氨基甲酸盐类农药残留的分析方法
CN110632163A (zh) * 2019-10-29 2019-12-31 广西大学 一种采用离子迁移谱快速检测氨基甲酸酯类农药残留的分析方法
CN113740444A (zh) * 2020-05-29 2021-12-03 清华大学 气相检测装置
DE102021117816A1 (de) 2021-07-09 2023-01-12 B. Braun Melsungen Aktiengesellschaft Messvorrichtung mit zwei aufeinanderfolgenden Messungen
DE102022117190A1 (de) 2022-07-11 2024-01-11 Gottfried Wilhelm Leibniz Universität Hannover, Körperschaft des öffentlichen Rechts Ionenmobilitätsspektrometer und Verfahren zur Analyse von Substanzen
DE102023003851A1 (de) 2022-09-27 2024-03-28 Achim Schumann System und Verfahren zur Analyse und Identifizierung von Gasen und verdampfbaren Stoffen

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19502674C1 (de) * 1995-01-20 1996-09-12 Inst Umwelttechnologien Gmbh Ionenmobilitätsspektrometer mit interner GC-Säule
US5811059A (en) * 1995-10-16 1998-09-22 The United States Of America As Represented By The Secretary Of The Army Automated, on-demand ion mobility spectrometry analysis of gas chromatograph effluents
US6481263B1 (en) * 1998-02-11 2002-11-19 Intelligent Detection Systems, Inc. Hand-held detection system using GC/IMS
CN201917559U (zh) * 2010-11-30 2011-08-03 中国科学院大连化学物理研究所 一种气相色谱和双极离子迁移谱联用装置
CN203798779U (zh) * 2013-12-27 2014-08-27 同方威视技术股份有限公司 气相色谱仪与离子迁移谱仪联用设备

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3372298A (en) * 1966-05-31 1968-03-05 Texas Instruments Inc Color display system
JPS6479652A (en) * 1987-09-21 1989-03-24 Shimadzu Corp Gas chromatograph mass spectrometer
US5083019A (en) * 1990-08-21 1992-01-21 Environmental Technologies Group, Inc. Preconcentrator for ion mobility spectrometer
US6376246B1 (en) * 1999-02-05 2002-04-23 Maxygen, Inc. Oligonucleotide mediated nucleic acid recombination
US7057168B2 (en) * 1999-07-21 2006-06-06 Sionex Corporation Systems for differential ion mobility analysis
US6627878B1 (en) * 2000-07-11 2003-09-30 The United States Of America As Represented By The Secretary Of The Navy (Chemical agent) point detection system (IPDS) employing dual ion mobility spectrometers
GB0107311D0 (en) * 2001-03-23 2001-05-16 Secr Defence Corona ionisation source
US7081618B2 (en) * 2004-03-24 2006-07-25 Burle Technologies, Inc. Use of conductive glass tubes to create electric fields in ion mobility spectrometers
US9523657B2 (en) * 2006-02-14 2016-12-20 Excellims Corporation Practical ion mobility spectrometer apparatus and methods for chemical and/or biological detection
US7696474B2 (en) * 2007-02-05 2010-04-13 Excellims Corporation Methods and apparatus of ion mobility spectrometer
JP5425798B2 (ja) * 2007-11-06 2014-02-26 ジ アリゾナ ボード オブ リージェンツ オン ビハーフ オブ ザ ユニバーシティ オブ アリゾナ ガス中の蒸気としての化合物を分析するための高感度イオン検出装置及び方法
CN101728208B (zh) 2008-10-20 2012-09-26 同方威视技术股份有限公司 双极性离子迁移谱仪的离子门及方法
GB2465166A (en) * 2008-11-06 2010-05-12 Brixs Ltd Security apparatus comprising an ion mobility spectrometer
CN102074448B (zh) * 2009-11-20 2014-09-24 同方威视技术股份有限公司 离子迁移谱仪以及提高其检测灵敏度的方法
CN102103973B (zh) * 2009-12-18 2012-11-07 中国科学院大连化学物理研究所 一种双极型离子迁移管
WO2012056709A1 (ja) * 2010-10-27 2012-05-03 アトナープ株式会社 分析装置
CN104749264B (zh) * 2013-12-27 2016-08-17 同方威视技术股份有限公司 气相色谱仪与离子迁移谱仪联用设备

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19502674C1 (de) * 1995-01-20 1996-09-12 Inst Umwelttechnologien Gmbh Ionenmobilitätsspektrometer mit interner GC-Säule
US5811059A (en) * 1995-10-16 1998-09-22 The United States Of America As Represented By The Secretary Of The Army Automated, on-demand ion mobility spectrometry analysis of gas chromatograph effluents
US6481263B1 (en) * 1998-02-11 2002-11-19 Intelligent Detection Systems, Inc. Hand-held detection system using GC/IMS
CN201917559U (zh) * 2010-11-30 2011-08-03 中国科学院大连化学物理研究所 一种气相色谱和双极离子迁移谱联用装置
CN203798779U (zh) * 2013-12-27 2014-08-27 同方威视技术股份有限公司 气相色谱仪与离子迁移谱仪联用设备

Also Published As

Publication number Publication date
EP2889616A1 (en) 2015-07-01
US9513266B2 (en) 2016-12-06
US20150185190A1 (en) 2015-07-02
CN104749264B (zh) 2016-08-17
CN104749264A (zh) 2015-07-01

Similar Documents

Publication Publication Date Title
WO2015096787A1 (zh) 气相色谱仪与离子迁移谱仪系统
Sinues et al. Mechanistic study on the ionization of trace gases by an electrospray plume
US8253097B2 (en) Mass spectrometer and method of mass spectrometry
Chen et al. Neutral desorption using a sealed enclosure to sample explosives on human skin for rapid detection by EESI-MS
US9482642B2 (en) Fast method for measuring collision cross section of ions utilizing ion mobility spectrometry
CN108072690B (zh) 一种离子迁移谱和离子阱质谱联用装置及分析方法
Lee et al. Detection of carbohydrates by electrospray ionization-ion mobility spectrometry following microbore high-performance liquid chromatography
US9209003B2 (en) Quantification of an analyte in serum and other biological matrices
CN108008054B (zh) 离子迁移谱仪系统
JP3235775B2 (ja) 液体クロマトグラフ直結質量分析方法及び装置
US5545304A (en) Ion current detector for high pressure ion sources for monitoring separations
CN203798779U (zh) 气相色谱仪与离子迁移谱仪联用设备
Drees et al. Stepwise optimization of a Flexible Microtube Plasma (FµTP) as an ionization source for Ion Mobility Spectrometry
Hallen et al. Preliminary investigation of ion mobility spectrometry after capillary electrophoretic introduction
Li et al. On the resolution, sensitivity and ion transmission efficiency of a planar FAIMS
Budimir et al. Analysis of pharmaceutical formulations using atmospheric pressure ion mobility spectrometry combined with liquid chromatography and nano-electrospray ionisation
Fandino et al. A novel gas sampling introduction interface for fast analysis of volatile organic compounds using radiofrequency pulsed glow discharge time of flight mass spectrometry
Verenchikov et al. Electrospray ionization developed by Lidija Gall's group
Zhu et al. Development and application of a miniature mass spectrometer with continuous sub-atmospheric pressure interface and integrated ionization source
Zhang et al. Rapid screening and quantification of glucocorticoids in essential oils using direct analysis in real time mass spectrometry
US6037179A (en) Method and apparatus for suppression of analyte diffusion in an ionization detector
CN108008001A (zh) 提高六亚甲基三过氧化二胺(hmtd)定量准确性的检测方法
Liao et al. Portable nanoelectrospray periodic focusing differential ion mobility spectrometer for the rapid screening of illicit drugs
US20190317062A1 (en) Mass Spectrometer Ion Source with Integrated Column
EP3246936B1 (en) Methods for enhancing electrospray

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14873561

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14873561

Country of ref document: EP

Kind code of ref document: A1