WO2015096624A1 - 一种环形部件的加热装置及其环形腔体 - Google Patents

一种环形部件的加热装置及其环形腔体 Download PDF

Info

Publication number
WO2015096624A1
WO2015096624A1 PCT/CN2014/093630 CN2014093630W WO2015096624A1 WO 2015096624 A1 WO2015096624 A1 WO 2015096624A1 CN 2014093630 W CN2014093630 W CN 2014093630W WO 2015096624 A1 WO2015096624 A1 WO 2015096624A1
Authority
WO
WIPO (PCT)
Prior art keywords
airflow
annular cavity
annular
air flow
heating device
Prior art date
Application number
PCT/CN2014/093630
Other languages
English (en)
French (fr)
Inventor
马盛骏
刘承前
Original Assignee
北京金风科创风电设备有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 北京金风科创风电设备有限公司 filed Critical 北京金风科创风电设备有限公司
Priority to EP14875308.0A priority Critical patent/EP3093353B1/en
Priority to ES14875308T priority patent/ES2759981T3/es
Priority to US15/107,389 priority patent/US10378822B2/en
Priority to KR1020167019610A priority patent/KR101749470B1/ko
Publication of WO2015096624A1 publication Critical patent/WO2015096624A1/zh

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F27FURNACES; KILNS; OVENS; RETORTS
    • F27BFURNACES, KILNS, OVENS, OR RETORTS IN GENERAL; OPEN SINTERING OR LIKE APPARATUS
    • F27B17/00Furnaces of a kind not covered by any preceding group
    • F27B17/0016Chamber type furnaces
    • F27B17/0083Chamber type furnaces with means for circulating the atmosphere
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/34Methods of heating
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/74Methods of treatment in inert gas, controlled atmosphere, vacuum or pulverulent material
    • C21D1/767Methods of treatment in inert gas, controlled atmosphere, vacuum or pulverulent material with forced gas circulation; Reheating thereof
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/40Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for rings; for bearing races
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F27FURNACES; KILNS; OVENS; RETORTS
    • F27BFURNACES, KILNS, OVENS, OR RETORTS IN GENERAL; OPEN SINTERING OR LIKE APPARATUS
    • F27B17/00Furnaces of a kind not covered by any preceding group
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F27FURNACES; KILNS; OVENS; RETORTS
    • F27BFURNACES, KILNS, OVENS, OR RETORTS IN GENERAL; OPEN SINTERING OR LIKE APPARATUS
    • F27B17/00Furnaces of a kind not covered by any preceding group
    • F27B17/0016Chamber type furnaces
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F27FURNACES; KILNS; OVENS; RETORTS
    • F27BFURNACES, KILNS, OVENS, OR RETORTS IN GENERAL; OPEN SINTERING OR LIKE APPARATUS
    • F27B9/00Furnaces through which the charge is moved mechanically, e.g. of tunnel type; Similar furnaces in which the charge moves by gravity
    • F27B9/06Furnaces through which the charge is moved mechanically, e.g. of tunnel type; Similar furnaces in which the charge moves by gravity heated without contact between combustion gases and charge; electrically heated
    • F27B9/10Furnaces through which the charge is moved mechanically, e.g. of tunnel type; Similar furnaces in which the charge moves by gravity heated without contact between combustion gases and charge; electrically heated heated by hot air or gas
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F27FURNACES; KILNS; OVENS; RETORTS
    • F27BFURNACES, KILNS, OVENS, OR RETORTS IN GENERAL; OPEN SINTERING OR LIKE APPARATUS
    • F27B9/00Furnaces through which the charge is moved mechanically, e.g. of tunnel type; Similar furnaces in which the charge moves by gravity
    • F27B9/14Furnaces through which the charge is moved mechanically, e.g. of tunnel type; Similar furnaces in which the charge moves by gravity characterised by the path of the charge during treatment; characterised by the means by which the charge is moved during treatment
    • F27B9/16Furnaces through which the charge is moved mechanically, e.g. of tunnel type; Similar furnaces in which the charge moves by gravity characterised by the path of the charge during treatment; characterised by the means by which the charge is moved during treatment the charge moving in a circular or arcuate path
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F27FURNACES; KILNS; OVENS; RETORTS
    • F27DDETAILS OR ACCESSORIES OF FURNACES, KILNS, OVENS, OR RETORTS, IN SO FAR AS THEY ARE OF KINDS OCCURRING IN MORE THAN ONE KIND OF FURNACE
    • F27D7/00Forming, maintaining, or circulating atmospheres in heating chambers
    • F27D7/02Supplying steam, vapour, gases, or liquids
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F27FURNACES; KILNS; OVENS; RETORTS
    • F27DDETAILS OR ACCESSORIES OF FURNACES, KILNS, OVENS, OR RETORTS, IN SO FAR AS THEY ARE OF KINDS OCCURRING IN MORE THAN ONE KIND OF FURNACE
    • F27D7/00Forming, maintaining, or circulating atmospheres in heating chambers
    • F27D7/04Circulating atmospheres by mechanical means
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F27FURNACES; KILNS; OVENS; RETORTS
    • F27DDETAILS OR ACCESSORIES OF FURNACES, KILNS, OVENS, OR RETORTS, IN SO FAR AS THEY ARE OF KINDS OCCURRING IN MORE THAN ONE KIND OF FURNACE
    • F27D7/00Forming, maintaining, or circulating atmospheres in heating chambers
    • F27D7/04Circulating atmospheres by mechanical means
    • F27D2007/045Fans

Definitions

  • the present invention relates to a heating device and an annular cavity thereof, and more particularly to a heating device for heating a ring member with a gas as a heat exchange medium and an annular cavity thereof.
  • an air heating furnace used in a bearing heat jacketing method uses hot air as a heat transfer medium to heat the surface of the heat jacket bearing component, and the heating method is mainly convection heat transfer, supplemented by radiation heat transfer. .
  • FIG. 1 it is a schematic structural view of a prior art air heating furnace, which shows the structure of a typical heat sealing furnace for a bearing component used in the industry.
  • the heating furnace is divided into a furnace cover 81 and a top and bottom of the furnace basin 82.
  • the prior art heating furnace body is welded by a section steel and a steel plate, and the furnace lining is filled with a heat insulating engineering material (aluminum silicate fiber rock wool, etc.) by tiling and laminating to fill the inner liner and the casing as a furnace lining. Insulation and insulation use.
  • a heat insulating engineering material aluminum silicate fiber rock wool, etc.
  • the top center position of the furnace cover 81 is provided with a furnace motor 83 which is fixed by a flange, and the furnace motor drives the centrifugal fan 86 as a power for circulating air.
  • a baffle is disposed below the centrifugal fan 86, and the baffle and the inner wall of the furnace cover 81 form a "radial flow passage" portion of the upper air flow passage.
  • an annular lower baffle 85 is provided coaxial with the vertical portion of the upper baffle 84, after the furnace cover 81 and the sump bottom 82 and the seam, the upper baffle 84 and the lower
  • the deflector 85 is internally contiguous to form an annular flow passage.
  • the bottom of the furnace basin 82 is made of channel steel as a chassis to enhance the uniformity of the furnace temperature.
  • the lower baffle 85 leaves an equal gap with the inner wall of the sump bottom 82 for the flow from the furnace cover 81 to flow from the "equal gap” of the sump bottom 82 to the region of the heated bearing component via the "annular gap” (As shown by the arrow in Figure 1).
  • the annular region surrounded by the upper deflector 84 and the lower deflector 85 after the surface of the bearing member is released, it is merged into the suction port of the centrifugal fan 86.
  • a number of electric heating elements are provided as a heater 87 in the radial passage in the furnace cover 81 for heating the flowing air, and the electric heating elements are evenly distributed along the circumference.
  • the heated large bearing components are placed on the hearth bottom 82 in a multi-point support and are coaxial and equally spaced from the lower deflector 85.
  • the central region space within the annular region of the bearing component also increases.
  • the radial dimension of the bearing increases to the order of a few meters, when the bearing component is heated, the central region The air in the space does not participate in the convective heat transfer between the bearing surface and the hot air, and there is a huge waste in the air flow passage.
  • the power of the driving motor of the fan also increases, and the power consumption also increases.
  • the material consumption from the furnace cover 81 to the central portion of the hearth tray 82 is superfluous, especially the insulating insulation materials used in these areas.
  • the size of the main beam structure of the furnace body is also increased, and the costly material is further increased, thereby greatly increasing the manufacturing cost.
  • the size of the structure of the heating furnace body is limited, and the spatial structure scale of the "conventional hot air heating furnace” increases with the radial dimension of the heated annular workpiece (large bearing), resulting in an increase in manufacturing cost;
  • One of the objects of the present invention is to provide a heating device for an annular member and an annular chamber thereof to reduce waste on the air flow passage.
  • a third object of the present invention is to provide a heating device for an annular member and an annular cavity thereof to reduce the occurrence of warpage after eddy current heating.
  • the present invention provides a heating device for an annular member that heats the annular member by a hot gas flow, which includes an air flow heater and a fan, the heating device further including a ring member An annular cavity having an airflow inlet and an airflow outlet disposed on an outer wall thereof, the airflow heater heating the airflow, the wind turbine entering the airflow into the airflow inlet, passing through the annular cavity After the air flow passage, it is discharged from the air flow outlet.
  • the heating device of the annular member of the present invention saves the airflow flow path in the central region surrounded by the annular member by adopting the structure of the annular cavity, so that the airflow passage can be concentrated near the annular member, thereby making the heat exchange more effective and reducing Heat is wasted. Moreover, the material consumption for manufacturing the heating device is reduced, and the manufacturing cost is reduced.
  • the present invention also provides an annular cavity of a heating device that houses a heated annular member having an airflow inlet and an airflow outlet disposed on an outer wall thereof.
  • the annular cavity of the heating device of the present invention saves the airflow flow path in the central region surrounded by the annular member as compared with the furnace cavity of the prior art heating furnace, so that the airflow passage can be concentrated near the circumference of the annular member, thereby Make heat exchange more efficient and reduce heat energy waste.
  • the occupied space is greatly reduced, the material consumption for manufacturing the furnace cavity body is reduced, the manufacturing cost is reduced, and the transportation width is not limited, and is particularly suitable for mobile type. Factory requirements to meet the needs of large generator assembly for portable tooling.
  • FIG. 1 is a schematic view showing the structure of a prior art air heating furnace.
  • Fig. 2 is a schematic view showing the structure of a heating device for a ring member according to a first embodiment of the present invention.
  • FIG. 3 is a schematic structural view of a heating device for a ring member according to a second embodiment of the present invention.
  • FIG. 4 is a top plan view showing a flow guiding spiral rib of a heating device for a ring member according to a second embodiment of the present invention.
  • Fig. 7 is a view showing the relationship between the surface heat transfer coefficient and the temperature of the hot gas flow in the third embodiment of the present invention.
  • the present invention improves the overall structure of the heating device of the prior art annular member, changes the structure of the existing disc-type heating furnace to the annular cavity structure, and further designs and improves on the basis of this.
  • the heating device of the ring member of the present invention will be described in detail by way of examples.
  • FIG. 2 is a schematic structural view of a heating device for a ring member according to Embodiment 1 of the present invention.
  • the heating device of the annular member of the present embodiment heats the annular member by a hot air flow, which includes the airflow heater 1 and the fan 2, and further includes an annular cavity 3 accommodating the annular member 4, the outer wall of which is disposed on the outer wall
  • the airflow inlet 301 and the airflow outlet 302 the airflow heater 1 heats the airflow
  • the fan 2 causes the airflow to enter the airflow inlet 301, and after exiting the airflow passage in the annular cavity, is discharged from the airflow outlet 302.
  • Fig. 2 one half of the upper annular cavity 31 is removed to show the state after the annular member 4 is placed in the annular cavity 3.
  • the structure of the heating device of the present embodiment employs an annular cavity, which saves the flow path of the airflow in the central region surrounded by the annular member 4 compared to the prior art heating furnace, so that the airflow passage can be concentrated near the annular member 4. , which makes heat exchange more efficient and reduces waste of heat energy.
  • the airflow path is reduced, and the power of the fan required to drive the flow of the airflow is also reduced.
  • the portion of the prior art furnace corresponding to the central portion of the annular member 4 and the furnace bottom 82 (shown in Figure 1) is eliminated in the overall structure, thereby reducing
  • the material consumption for manufacturing the heating device reduces the manufacturing cost.
  • it is not limited by the radial dimension of the ring member or the like in manufacturing the manufacturing cost is greatly reduced, and the manufacturing cost material consumption can be reduced by half.
  • the annular cavity of the embodiment of the present invention may adopt any openable structure or a detachable structure as long as the heated annular member 4 can be placed in the inner cavity of the annular cavity 3, and may also be individually
  • the ring members are individually customized, and the present invention is not limited thereto.
  • the annular cavity 3 is formed by joining the upper annular cavity 31 and the lower annular cavity 32.
  • the annular cavity 3 is annular, and the annular cavity 3 has a circular cross section, in a plane along the radial direction of the annular cavity, in the vertical direction,
  • the annular cavity is split into two upper annular cavities 31 and a lower annular cavity 32 having a U-shaped cross section.
  • the upper annular cavity 31 is removed, the annular member 4 is placed in the inner cavity of the lower annular cavity 32, and then the upper annular cavity 31 and the lower annular cavity 32 are joined to form a closed annular cavity.
  • Body 3. More preferably, the upper annular cavity 31 is joined by a plurality of upper annular cavity units, and the lower annular cavity 32 is joined by a plurality of lower annular cavity units.
  • a plurality of upper annular cavity units and lower annular cavity units are joined to form a complete annular cavity.
  • the upper annular cavity 31 can be split into two identical semi-circular upper annular cavity units along the annular circumferential direction of the annular cavity 3, and the state shown in FIG. 2 can be regarded as removal. The state of one of the upper annular cavity units.
  • the lower annular cavity 32 can also be split into two identical lower annular cavity units.
  • the airflow inlet 301 and the airflow outlet 302 may be disposed at any portion of the annular cavity 3.
  • the position of the airflow heater 1 and the fan 2 may also be flexibly set, and may be external to the annular cavity or may be disposed in the annular cavity as needed.
  • the interior can also be set as many as needed.
  • the airflow inlet 301 and the airflow outlet 302 may be disposed on the outer wall of the inner side of the annular cavity, and the airflow heater 1 and the fan 2 are disposed inside the annular cavity, the airflow inlet 301, the annular cavity A closed air circulation passage is formed between the inner cavity of the body, the air outlet 302, the fan 2, and the airflow heater 1.
  • the circulation path of the airflow is minimized, heat energy can be utilized effectively, and heat exchange can be sufficiently realized.
  • air may be used as the heat exchange medium, and an air flow filter may be disposed at the air outlet 302 to filter the air as a heat transfer medium to protect the bearing surface from contamination.
  • the annular cavity of the present embodiment may be any ring shape such as an elliptical shape, a rectangular shape, a triangular shape, or the like, so that heating may be performed for various non-circular special annular members 4.
  • the gas as the heat exchange medium is not limited to air, and for example, natural gas or the like can also be used as the high temperature heat transfer medium.
  • other gas-solid separation devices may be employed for the filtration of the gas stream.
  • the heating device of the present embodiment may employ an adiabatic technique, for example, manufacturing a ring-shaped cavity or the like using a high heat insulating material. Thereby, the heating efficiency of the ground ring member 4 is improved, and energy is further saved.
  • embodiments of the present invention further improve the interior of the annular cavity.
  • FIG. 3 is a schematic structural view of a heating device for a ring member according to a second embodiment of the present invention.
  • a fluid guide body is disposed in the annular cavity 3, and the fluid guide body makes the airflow. Movement along the surface of the annular member.
  • the flow pattern of the airflow is controlled, whereby the annular member is uniformly heated and the heating efficiency is improved.
  • the fluid guiding body is a flow guiding spiral rib 5, by which the hot air flow path entering the annular cavity is made to surround the annular member 4 (such as the large bearing component shown in FIG. 3).
  • FIG. 4 is a top plan view of a flow guiding spiral rib of a heating device for a ring member according to a second embodiment of the present invention
  • FIG. 5 is a flow chart of a heating device for a ring member according to a second embodiment of the present invention
  • Schematic diagram of the three-dimensional structure of the spiral fins. 4 and 5 show the structure of the flow guiding spiral rib of the present embodiment from different angles.
  • the guide spiral fins 5 may be integrally formed on the inner wall of the annular cavity 3, or the separately formed flow guiding spiral fins 5 may be fixed to the inner wall of the annular cavity 3 after the annular cavity 3 is processed.
  • two airflow channels of the same length are formed between the airflow inlet 301 and the airflow outlet 302 inside the annular cavity 3.
  • the guiding spiral ribs of the two airflow channels may be axisymmetric and symmetric.
  • the axis is the line where the airflow inlet and the airflow outlet are located.
  • the swirling ribs 5 of the two air flow passages are oppositely rotated, and the spiral of the flow guiding spiral fins 5 of the two air flow passages is along The axis of the cavity is symmetrical.
  • Such a symmetrical structure has the following advantages: in the case of a circular annular cavity, when the entire circular annular cavity is decomposed into two half rings by the diameter of the airflow inlet 301 and the airflow outlet 302, each semicircle The ring corresponds to one air flow channel. If the spiral lines of the guiding spiral fins 5 of the two air flow channels are symmetric, the same mold can be used to manufacture the two semi-annular cavities without designing two a mold.
  • the present invention further improves the structure of the flow guiding spiral fin 5, which will be described in detail below.
  • the temperature is lowered, and the amount of heat exchange between the heated annular member 4 and the hot gas stream is gradually lowered, and uneven heating may occur.
  • the heat exchange rate of the hot gas flow with the surface of the annular member 4 A is the effective heat release area when the hot gas flow is in contact with the surface of the annular member 4, T is the temperature of the hot gas flow, and Tw is the temperature of the surface of the annular member 4, h is Surface heat transfer coefficient (also known as surface heat transfer rate). It can be seen from the formula (1) that A is a relatively fixed value, and therefore, the amount of heat exchange between the hot gas stream and the surface of the annular member 4 It depends on the product of the temperature difference (T-Tw) between the temperature T of the hot gas flow and the temperature Tw of the surface of the annular member 4 and the surface heat transfer rate h.
  • the present invention proposes to compensate for the decrease in the temperature difference (T-Tw) of the hot gas flow by increasing the surface heat transfer rate h, thereby maintaining the heat exchange amount.
  • FIG. 6 is a partial cross-sectional view showing an annular cavity provided with a flow guiding spiral rib according to a third embodiment of the present invention. The geometrical significance of the three parameters of pitch d, helix angle ⁇ , and tooth half angle ⁇ in the invention is shown.
  • the surface heat transfer coefficient h can be varied to compensate for the amount of heat exchange caused by the temperature drop between the gas flow inlet 301 and the gas flow outlet 302.
  • the reduction causes the entire annular member 4 to be evenly heated, obtaining a near-term or "head-to-tail" and nearly uniform heat exchange of the entire airflow passage.
  • the airflow heater 1 heats the airflow before it enters the airflow passage of the annular cavity.
  • the temperature T of the hot gas stream is decreasing from the gas flow inlet 301 to the gas outlet 302.
  • the present embodiment improves the following three aspects of the flow guiding spiral rib 5, and the improvement of the three aspects may be optional, or any two aspects may be combined or implemented. Improvements in terms.
  • the pitch d of the flow guiding helical fins 5 decreases from the airflow inlet 301 to the airflow outlet 302, and preferably the pitch d gradually decreases.
  • the smaller pitch d of the flow guiding spiral fins 5 can increase the rate of the hot gas flow while forcing the hot gas stream to approach the surface of the annular member 4, thereby increasing the surface heat transfer coefficient h between the hot gas flow and the annular member 4.
  • the smaller the pitch d of the flow guiding spiral fins 5 accelerates the hot air flow, and the heat release amount to the surface of the annular member 4 is increased, thereby compensating for the air flow passage from the air flow inlet 301 to the air flow outlet 302 due to the temperature drop of the air flow.
  • the profile half angle ⁇ of the flow guiding helical fin 5 decreases from the airflow inlet 301 to the airflow outlet 302, and preferably the tooth half angle ⁇ gradually decreases.
  • the profile half angle of the flow guiding spiral fin 5 is an angle ⁇ which constitutes a vertical plane which guides the flow spiral fin 5 and the axis of the annular cavity.
  • the half angle of the tooth is reduced, so that the field synergy angle is reduced.
  • the reduction of the half angle ⁇ of the tooth shape can also force the hot air flow toward the central axis, close to the surface of the annular member 4, to increase the surface heat transfer coefficient h, thereby increasing the heat release to the surface of the annular member 4, that is, the heat exchange amount.
  • FIG. 7 it is a schematic diagram showing the relationship between the surface heat transfer coefficient and the temperature of the hot gas flow in the third embodiment of the present invention.
  • the lower semicircular arrow-shaped curve represents the hot air flow from the air flow inlet.
  • the temperature of the airflow is T 0 , and the temperature gradually decreases with the flow of the hot gas in the annular cavity.
  • the pitch d, the helix angle ⁇ , and the tooth half angle ⁇ are designed to correspond to temperature changes even if the pitch of the guide spiral fins 5 becomes smaller and/or helix angle Increasing and/or reducing the half angle of the tooth shape, thereby indirectly adjusting the surface heat transfer coefficient h, so that the surface heat transfer coefficient h gradually increases over the entire air flow path, and the change trend is as shown in the line above the dotted line in FIG.
  • the surface heat transfer coefficient at the gas flow inlet is h 0 , and is increased to h 1 at the gas flow outlet, and there is a difference between h 0 - h 1 between the gas flow inlet and the gas flow outlet.
  • the temperature difference between the gas flow and the heated surface of the annular member is reduced by the gradually increasing surface heat transfer coefficient, that is, in the formula (1), although (T) -Tw) decreases, but the surface heat transfer coefficient h increases correspondingly, thereby obtaining the heat exchange amount close to or consistent with the first, last and intermediate processes.
  • the annular member 4 is heated uniformly throughout the air flow passage. Asymmetric deformation and warpage of the annular member 4 due to thermal differential stress in the prior art is avoided. phenomenon.
  • the variation of the pitch d, the helix angle ⁇ , and the tooth half angle ⁇ of the flow guiding spiral fin 5 of the present invention is not limited to the above-mentioned form, and can be flexibly configured according to the actual heating environment. That is, any one or more of the pitch d, the helix angle ⁇ , and the tooth half angle ⁇ of the flow guiding spiral fin 5 are varied, and the change trend is such that the surface heat transfer coefficient and the temperature of the air flow in the air flow passage change. The opposite trend. In this way, the heat transfer amount is controlled by indirectly adjusting the surface heat transfer coefficient h
  • the heating unevenness caused by the temperature change in the air flow passage is adjusted.
  • the change in temperature is not simply a downward trend from the airflow inlet 301 to the airflow outlet 302, but a situation in which the temperature rises in the channel and then decreases.
  • any one or more of the pitch d, the helix angle ⁇ , and the tooth half angle ⁇ of the flow guiding spiral fin 5 can be changed, and the change tendency thereof can compensate for the change in the air flow temperature in the air flow passage.
  • the numerical heat transfer model can be simulated and calculated by simulation test, and will not be described herein.
  • This embodiment proposes to provide a flow guiding spiral rib in the annular cavity, and adjust the adjustment by adjusting one or more of the three parameters of the pitch d, the helix angle ⁇ and the tooth half angle ⁇ of the guiding spiral fin 5 .
  • the technical idea of the surface heat transfer coefficient h which in turn adjusts the heat state of the annular member, has not been found in the technical field of the conventional large-scale heating device.
  • the heat transfer is fully utilized.
  • the principle of the study combined with the special flow-conducting structure design the flow state of the airflow is adjusted reasonably throughout the airflow passage, and the heat exchange condition is adjusted and controlled more accurately, so that the heat exchange efficiency and the heating uniformity of the components are improved. There has been a significant improvement, and at this point, it is technological.
  • annular cavity of the heating device of the present embodiment is shown in Figures 3, 4 and 5, and the annular cavity houses the heated annular member, and the outer wall of the annular cavity is provided with an air flow inlet and an air flow. Export.
  • a fluid guide may be disposed within the annular chamber, the fluid being configured to uniformly move the airflow along the surface of the annular member.
  • the fluid guide is a flow guiding helical rib.
  • the hot air flow path into the annular cavity becomes a helical tubular motion around the annular member, thereby heating the annular member more efficiently and uniformly.
  • the heating device of the ring member of the present invention will be described in detail by the above embodiments. It should be noted that the heating device of the annular member and the annular cavity of the heating device of the embodiment of the present invention can be applied to the heating of various annular members, including but not limited to a circular ring member, an elliptical ring member, and a rectangular ring member. And a triangular ring member, etc., correspondingly, the annular cavity can also be made into the above-mentioned various types of rings.
  • the heating device of the embodiment of the invention is suitable for heating of large bearing components.
  • the cross section of the annular cavity is not limited to a circular shape, and may be formed into any shape according to the shape of the annular member.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Thermal Sciences (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Combustion & Propulsion (AREA)
  • Furnace Details (AREA)
  • Direct Air Heating By Heater Or Combustion Gas (AREA)
  • Heating, Cooling, Or Curing Plastics Or The Like In General (AREA)

Abstract

一种环形部件(4)的加热装置,其通过热气流对所述环形部件(4)进行加热,包括气流加热器(1)和风机(2),还包括容纳环形部件(4)的环形腔体(3),该环形腔体(3)的外壁上设置有气流入口(301)和气流出口(302),气流加热器(1)对气流进行加热,风机(2)使气流进入气流入口(301),经过环形腔体(3)内的气流通道后,从气流出口(302)排出。

Description

一种环形部件的加热装置及其环形腔体 技术领域
本发明涉及一种加热装置及其环形腔体,尤其涉及以气体作为热交换介质对环形部件进行加热的加热装置及其环形腔体。
背景技术
对于大型的环形部件的加热(例如在轴承热套方法中,需要对大型的轴承进行加热),一般采用油浴、电磁感应涡流加热和空气加热的方式。其中,空气加热的方式使用较多。以在轴承热套方法中使用的空气加热炉为例,该空气加热炉以热空气作为传热介质,对热套轴承部件表面进行加热,加热方式以对流传热为主,辅以辐射传热。
如图1所示,其为现有技术的空气加热炉的结构示意图,其示出了目前行业中使用的典型的轴承部件热套用加热炉的结构。该加热炉分为炉盖81和炉盆底82上下两部分。现有技术的加热炉本体由型钢及钢板焊接而成,炉衬使用绝热工程材料(硅酸铝纤维岩棉等)通过平铺与叠铺的方法填充在内胆与护壳之间,作为炉衬作绝热保温使用。炉盖81的顶部中心位置设置有炉用电机83,该电机通过法兰固定,炉用电机驱动离心风机86作为空气循环流动的动力。离心风机86下方设置导流板,导流板与炉盖81内壁形成上部的空气流道的“辐流通道”部分。在炉盆底82内,设置有与上导流板84的竖直部分同轴的环形的下导流板85,在炉盖81与炉盆底82和缝后,上导流板84和下导流板85在内部能够对接形成环形气流通道。炉盆底82采用槽钢作底架,增强炉温均匀性。下导流板85与炉盆底82内壁留有等高间隙,供来自炉盖81的气流经“环状间隙”从炉盆底82的“等高间隙”流入被加热的轴承部件所在的区域(如图1箭头所示)。在上导流板84和下导流板85所围成的环形区域中,对轴承部件表面放热后,汇流到离心风机86的吸风口。通常在炉盖81内辐流通道设置一定数量的电热元件作为加热器87,用来加热流动空气,电热元件沿圆周均匀分布。被加热的大型轴承部件以多点支撑的方式放置炉盆底82上,并与下导流板85同轴且等间距。
以上是现有技术的空气加热炉的基本结构,发明人在实现本发明的过程 中,发现现有技术中的空气加热炉存在如下缺陷:
1)气流通道存在浪费
随着轴承径向尺度的增大,轴承部件的环形区域以内的中心区域空间也会增大,当轴承径向尺度增大到几米的数量级后,在对这样的轴承部件进行加热时,中心区域空间的空气没有参与轴承表面与热空气之间的对流换热,在气流通道上存在着巨大的浪费。同时,随着轴承部件尺寸的增大,为了使气流充分流动,风扇的驱动电机功率也随着增大、电耗也增加。
2)制造加热装置的材料上存在浪费
从圆柱状的加热炉的轴向看,从炉盖81到炉底盘82中心区域的材料消耗都是多余的,尤其是这些区域中使用的绝热保温材料。同时,由于整体结构的变大,为了保证强度,加热炉本体的主梁结构的尺寸也会增大,耗费的材料会进一步增加,从而大幅提高制造成本。
3)电涡流加热后存在翘曲问题大尺度轴承直径大、质量大(数吨以上),使用电磁涡流加热存在受热不均匀造成的翘曲问题,导致装配质量无法保障。大尺度部件内“残磁”导致后期无法长期正常使用。
4)加热炉尺寸变大,运输受限
加热炉本体结构尺寸受限,“传统热气流加热炉”本体空间结构尺度随着被加热环形工件(大型轴承)的径向尺度增大而增大,导致制造成本增加;运输超宽受限。
5)“热油浸法”存在健康和安全方面的隐患
传统的轴承加热方法“热油浸法”存在健康和安全(存在火灾危险)问题,此外,还须考虑到环境,对油的处理问题,费用高;轴承容易被污染,对于新轴承,将会损坏防护油。
发明内容
本发明的目的之一在于,提供一种环形部件的加热装置及其环形腔体,以减少气流通道上的浪费。
本发明的目的之二在于,提供一种环形部件的加热装置及其环形腔体,以减少制造加热装置的材料的浪费。
本发明的目的之三在于,提供一种环形部件的加热装置及其环形腔体,以减少出现电涡流加热后存在的翘曲问题。
本发明的目的之四在于,提供一种环形部件的加热装置及其环形腔体,克服加热炉尺寸变大,运输受限的问题。
本发明的目的之五在于,提供一种环形部件的加热装置及其环形腔体,避免“热油浸法”存在健康和安全方面的隐患。
为了实现上述目的,本发明提供了一种环形部件的加热装置,该加热装置通过热气流对所述环形部件进行加热,其包括气流加热器和风机,该加热装置还包括容纳所述环形部件的环形腔体,该环形腔体的外壁上设置有气流入口和气流出口,所述气流加热器对所述气流进行加热,所述风机使所述气流进入所述气流入口,经过所述环形腔体内的气流通道后,从所述气流出口排出。
本发明的环形部件的加热装置通过采用环形腔体的结构,节省了处于环形部件所包围的中心区域的气流流通路径,使得气流通道能够集中在环形部件附近,从而使得热交换更加有效,减少了热能浪费。并且,减少了制造加热装置的材料消耗,降低了制造成本。
本发明还提供了一种加热装置的环形腔体,该环形腔体容纳被加热的环形部件,该环形腔体的外壁上设置有气流入口和气流出口。
本发明的加热装置的环形腔体与现有技术的加热炉的炉腔相比,节省了处于环形部件所包围的中心区域的气流流通路径,使得气流通道能够集中在环形部件环周附近,从而使得热交换更加有效,减少了热能浪费。此外,与现有技术的加热炉的炉腔相比,大幅降低了占有空间,减少了制造炉腔本体的材料消耗,降低了制造成本,并且不受运输超宽的限制,尤其适于移动式工厂要求,满足大型发电机装配对便携式工装的需求。
附图说明
图1是现有技术的空气加热炉的结构示意图。
图2是本发明实施例一的环形部件的加热装置的结构示意图。
图3为本发明实施例二的环形部件的加热装置的结构示意图。
图4为本发明实施例二的环形部件的加热装置的导流螺旋肋片的俯视结构示意图。
图5为本发明实施例二的环形部件的加热装置的导流螺旋肋片的立体结构示意图。
图6为本发明实施例三的设置有导流螺旋肋片的环形腔体的局部剖面示意图。
图7为本发明实施例三的表面传热系数与热气流的温度之间的变化关系的示意图。
具体实施方式
本发明对现有技术的环形部件的加热装置的整体结构进行了改进,将现有的圆盘式的加热炉的结构改变环形腔体结构,并且在此基础上进行了进一步的设计和改进。下面,通过实施例对本发明的环形部件的加热装置进行详细说明。
实施例一
如图2所示,其为本发明实施例一的环形部件的加热装置的结构示意图。本实施例的环形部件的加热装置,通过热气流对环形部件进行加热,其包括气流加热器1和风机2,还包括容纳环形部件4的环形腔体3,该环形腔体的外壁上设置有气流入口301和气流出口302,气流加热器1对气流进行加热,风机2使气流进入气流入口301,经过环形腔体内的气流通道后,从气流出口302排出。为了示出环形腔体3的内部结构,在图2中,移除了上环形腔体31的一半,以示出将环形部件4放入环形腔体3后的状态。
本实施例的加热装置的结构采用了环形腔体,与现有技术的加热炉相比,节省了处于环形部件4所包围的中心区域的气流流通路径,使得气流通道能够集中在环形部件4附近,从而使得热交换更加有效,减少了热能浪费。并且,由于采用了环形腔体,气流流通路径减少,所需的驱动气流流动的风机的功率也减小了。此外,由于采用环形腔体,在整体结构上省去了现有技术的加热炉中对应于环形部件4中心区域的炉盖81和炉盆底82的部分(如图1所示),从而减少了制造加热装置的材料消耗,降低了制造成本。而且,在制造上不受环形部件的径向尺寸等的限制,极大地降低了制造成本,能够使制造成本材料消耗降低一半。
本发明的实施例的环形腔体可以采用任何可打开的结构或者可以拆解结构,只要能够使被加热的环形部件4放入环形腔体3的内腔中即可,此外,也可以根据个别环形部件进行单独定制,本发明对此不做限制。
优选地,环形腔体3由上环形腔体31和下环形腔体32接合而成。如图2所示,在本实施例中,环形腔体3为圆环状,并且环形腔体3的截面为圆形,在沿着环形腔体径向所在的平面,在竖直方向上,将环形腔体拆分为两个截面为U型的上环形腔体31和下环形腔体32。
在实际使用时,将上环形腔体31移开,将环形部件4放入下环形腔体32的内腔中,然后再将上环形腔体31和下环形腔体32接合形成密闭的环形腔体3。更优选地,上环形腔体31由多个上环形腔体单元接合而成,下环形腔体32由多个下环形腔体单元接合而成。使用时,将多个上环形腔体单元和下环形腔体单元进行接合,形成完整的环形腔体。例如,可以将上环形腔体31沿着环形腔体3的环形圆周方向,拆分为两个相同的半圆形的上环形腔体单元,图2所示的状态,可以看作是移除了其中一个上环形腔体单元的状态。同理,下环形腔体32也可以拆分为两个相同的下环形腔体单元。
通过这样的可打开或可拆解结构,便于将环形部件4放入环形腔体3的内部,同时,也便于运输,解决了现有技术的加热炉径向尺度超过路面运输宽度限制要求的问题,满足移动式运输的要求。
此外,气流入口301和气流出口302可以设置在环形腔体3的任何部位,气流加热器1和风机2位置也可以灵活设置,可以在环形腔体的外部,也可以根据需要设置在环形腔体的内部,还可以根据需要设置多个。
优选地,气流加热器1在气流进入环形腔体的气流通道之前对气流进行加热,即,气流加热器1设置在环形腔体外部,或者设置在气流入口301处对应的环形腔体内部,在形成密闭循环的气流通道的情况下,也可以设置气流出口302处对应的环形腔体内部。采用这样的结构,对于气流加热方式较为简单,气流加热器不会占用环形腔体内部的气流通道的空间。
更优选地,如图2所示,气流入口301和气流出口302可以设置在环形腔体的内侧的外壁上,气流加热器1和风机2设置在环形腔体的内侧,气流入口301、环形腔体的内腔、气流出口302、风机2以及气流加热器1之间形成密闭的气流循环通道。采用这样的结构,使得气流的循环路径最小,能够有效地利用热能,充分实现热交换。
此外,在环形腔体内,在气流入口301和气流出口302之间形成两条 长度相同的气流通道为宜。例如,如图2所示,将气流入口301和气流出口302设置在环形腔体3内侧的外壁上,并且处于环形腔体3的同一直径上,这样,从气流入口301到气流出口302之间,沿着环形部件4轴向形成两条长度相同的气流通道。采用这样的结构,两条气流通道中的气流温度变化、气流流速基本相同,便于统一对气流进行控制,也使得两条气流通道中的环形部件受热状况一致。
在本实施例中,可以采用空气作为热交换介质,还可以在气流出口302处设置有气流过滤器,以过滤后的空气作为热传递介质,能够保护轴承表面不受污染。
此外,本实施例的环形腔体可以是椭圆形、矩形、三角形等任何环形,从而可以针对各种非圆环形的特殊环形部件4进行加热。作为热交换介质的气体不限于空气,例如还可以使用天然气等作为高温传热介质。此外,对于气流的过滤,也可以采用其它气固分离设备。
此外,本实施方式的加热装置可以采用绝热技术,例如,采用高绝热材料制造环形腔体等。从而提高地环形部件4的加热效率,进一步节省能源。
实施例二
本发明的实施例除了在整体结构上的改进之外,还对环形腔体的内部进行了进一步改进。
图3为本发明实施例二的环形部件的加热装置的结构示意图,如图3所示,在实施例一的基础上,在环形腔体3内设置有导流体,该导流体使所述气流沿着所述环形部件的表面运动。通过在环形腔体3内设置导流体,从而对气流的流动方式进行控制,由此,来使环形部件受热均匀,并且提高加热效率。
优选地,所述导流体为导流螺旋肋片5,通过该导流螺旋肋片5使得进入环形腔体内的热空气流轨迹变成围绕环形部件4(如图3中示出的大型轴承部件)的螺线管状运动,从而更加高效和均匀地对环形部件4进行加热。
此外,图4为本发明实施例二的环形部件的加热装置的导流螺旋肋片的俯视结构示意图,图5为本发明实施例二的环形部件的加热装置的导流 螺旋肋片的立体结构示意图。图4和图5从不同角度示出了本实施例的导流螺旋肋片的结构。
对于导流螺旋肋片5可以一体成形于环形腔体3的内壁上,也可以在环形腔体3加工完成后,将单独制造的导流螺旋肋片5固定到环形腔体3的内壁上。
在本实施例中,在环形腔体3的内部,在气流入口301和气流出口302之间形成两条长度相同的气流通道,两条气流通道的导流螺旋肋片可以呈轴对称结构,对称轴为气流入口和气流出口所在的直线。具体地,如图4所示,在两条气流通道中,两条气流通道的导流螺旋肋片5的旋向相反,并且,两条气流通道的导流螺旋肋片5的螺旋线沿着腔体内轴线对称。
这样的对称结构具有如下优点:以圆环形腔体为例,将整个圆环形腔体以气流入口301和气流出口302所在的直径为界线分解为两个半圆环时,每个半圆环对应一条气流通道,如果两条气流通道的导流螺旋肋片5的螺旋线呈对称结构,则在制造两个半圆环腔体时,可以采用同一个模具即可完成,不需要设计两个模具。
实施例三
在实施例二的基础上,本发明对导流螺旋肋片5的结构也进行了进一步的改进,下面对此进行详细说明。
热气流从气流入口301到气流出口302的运动过程中,温度会下降,被加热的环形部件4与热气流换热量会逐渐降低,会出现受热不均的情形。
根据牛顿冷却定律可知,
Figure PCTCN2014093630-appb-000001
            公式(1)
在本实施例中,
Figure PCTCN2014093630-appb-000002
为热气流与环形部件4表面的换热速率,A为热气流与环形部件4的表面接触时的有效放热面积,T为热气流的温度,Tw为环形部件4的表面的温度,h为表面传热系数(也称作表面传热速率)。通过公式(1)可知,A是相对固定的值,因此,热气流与环形部件4表面的换热量
Figure PCTCN2014093630-appb-000003
取决于热气流的温度T与环形部件4的表面的温度Tw之间的温差(T-Tw)和表面传热速率h的乘积。从气流入口301到气流出口302的气流通道中,热气流的温度T是逐渐下降的,即温差(T-Tw)是变小的,由此,导致换热量
Figure PCTCN2014093630-appb-000004
逐渐降低,进而导致环形部件4的沿着流动路径受热 减弱。对此,本发明提出了通过提高表面传热速率h来补偿热气流的温差(T-Tw)的下降,由此来保持换热量
Figure PCTCN2014093630-appb-000005
几乎不变的技术方案。
具体地,可以通过改变导流螺旋肋片5的节距d、螺旋角α、牙型半角β这三个参数中的任一一个或任意两个或同时改变这三个参数,来改变表面传热速率h。如图6所示,其为本发明实施例三的设置有导流螺旋肋片的环形腔体的局部剖面示意图。图中示出了在发明中的节距d、螺旋角α、牙型半角β这三个参数的几何意义。
通过改变这些参数,可以改变表面传热系数h,从而补偿从气流入口301到气流出口302之间的温度下降所导致的换热量
Figure PCTCN2014093630-appb-000006
的降低,进而使得整个环形部件4受热均匀,获得“始末”或“首尾”以及整个气流通道的接近一致的换热量。
在本实施例中,气流加热器1在气流进入环形腔体的气流通道之前对气流进行加热。在这样的情况下,从气流入口301到气流出口302,热气流的温度T是呈降低趋势的。对此,本实施例对导流螺旋肋片5进行了如下三方面的改进,这三方面的改进可以任选其一实施,也可以将任意两方面进行组合实施,也可以同时实施这三个方面的改进。
1)导流螺旋肋片5的节距d从气流入口301到气流出口302呈减小趋势,优选为节距d逐渐减小。导流螺旋肋片5的节距d变小能够使热气流速率增加,同时迫使热气流靠近环形部件4表面,起到增大热气流与环形部件4之间的表面传热系数h的作用。通过导流螺旋肋片5的节距d的变小使得热气流加速,对环形部件4表面放热量提高,从而补偿在气流入口301到气流出口302的气流通道中,由于气流温度降低而造成的对环形部件4表面放热量的降低,使得环形部件4受热均匀,环形部件4整体温度趋于一致。即:在变螺旋节距的过程中,环绕环形部件4的热气流流速得到提高,雷诺数相应提高,努谢尔特数随雷诺数的提高而提高,表面传热系数随努谢尔特数同比增长,最终提高了对环形部件4表面放热量,即换热量
Figure PCTCN2014093630-appb-000007
2)从导流螺旋肋片5的螺旋角α从气流入口301到气流出口302呈增大趋势,优选为螺旋角α逐渐增大。导流螺旋肋片5的螺旋角α增大,将迫使热气流向中心轴线靠近,靠近环形部件4表面,同时也能够使热气 流速率增加,由此,起到增大热气流与环形部件4之间的表面传热系数h的作用。即:努谢尔特数与螺旋角α的余弦函数值的0.75次方成正比,螺旋角α增加将导致努谢尔特数增加,表面传热系数h随努谢尔特数同比增长,从而最终提高对环形部件4的表面放热量,即换热量
Figure PCTCN2014093630-appb-000008
3)导流螺旋肋片5的牙型半角β从气流入口301到气流出口302呈减小趋势,优选为牙型半角β逐渐减小。如图6所示,导流螺旋肋片5的牙型半角是指导流螺旋肋片5与环形腔体的轴线的垂面构成的夹角β。牙型半角减小,使得场协同角减小。牙型半角β的减小同样能够迫使热气流向中心轴线靠近,靠近环形部件4表面,起到增大表面传热系数h的作用,进而提高对环形部件4表面放热量,即换热量
Figure PCTCN2014093630-appb-000009
以上分别介绍了通过节距d、螺旋角α、牙型半角β这三个参数调节表面传热系数h进而调节换热量的原理,下面将接合图7进一步说明通过改变表面传热系数h来补偿换热量
Figure PCTCN2014093630-appb-000011
的技术方案。如图7所示,其为本发明实施例三的表面传热系数与热气流的温度之间的变化关系的示意图,图7中,下方的半圆形带箭头的曲线代表热气流从气流入口到气流出口的运动轨迹。设在气流温度为T0,随着热气流在环形腔体内的流动,温度逐渐下降,到了气流出口后,下降为T1,这样,气流在气流入口和气流出口之间存在T0-T1的温差,整个气流通道上的温度的变化趋势如图7虚线下方线段,该温差将导致换热量
Figure PCTCN2014093630-appb-000012
的减小。在设计导流螺旋肋片5时,对节距d、螺旋角α、牙型半角β进行了对应于温度变化的设计,即使导流螺旋肋片5的节距变小和/或螺旋角的增大和/或牙型半角的减小,从而间接调节表面传热系数h,使得在整个气流通道上,表面传热系数h呈逐渐提高的趋势,变化趋势如图7中虚线上方的线段,即,在气流入口处的表面传热系数为h0,在气流出口处提高为h1,气流入口和气流出口之间存在h0-h1的差值。由此,在整个气流通道的换热过程中,气流与环形部件的受热面之间的温差的降低,被逐渐升高的表面传热系数来补偿,即在公式(1)中,虽然(T-Tw)下降,但是表面传热系数h相应升高,从而获得首、尾、中间过程接近或者一致的换热量
Figure PCTCN2014093630-appb-000013
由此,通过本实施方式,使得环形部件4在整个气流通道中受热均匀。避免了现有技术中由于温差热应力产生的环形部件4的非对称变形和翘曲 现象。
另外,本发明的导流螺旋肋片5的节距d、螺旋角α和牙型半角β的变化规律也不限于上面所提到的形态,可以根据实际的加热环境进行灵活配置。即导流螺旋肋片5的节距d、螺旋角α和牙型半角β之中的任意一个或多个是变化的,其变化的趋势为使得表面传热系数与气流通道中气流温度的变化趋势相反。这样,通过间接调节表面传热系数h来控制换热量
Figure PCTCN2014093630-appb-000014
由此,通过调节这三个参数中的一个或多个,来调整气流通道中的温度变化所造成的加热不均。例如,当在环形腔体内设置气流加热器1时,温度的变化不是简单的从气流入口301到气流出口302呈降低趋势,而是在通道中存在温度升高后又降低的情形,对于这种情况,可以使导流螺旋肋片5的节距d、螺旋角α和牙型半角β之中的任意一个或多个变化,并使其变化趋势能够补偿气流通道中气流温度的变化。
对于导流螺旋肋片5的节距d、螺旋角α和牙型半角β的具体设计方法,可以通过仿真试验建立数值传热学模型的方式进行模拟和计算,在此不再赘述。
本实施例提出了在环形腔体中设置导流螺旋肋片,通过调节导流螺旋肋片5的节距d、螺旋角α和牙型半角β这三个参数中一个或多个来调节调节表面传热系数h,进而调节环形部件的受热状况的技术思想,这样的技术思想在以往的大型加热装置的技术领域中未曾出现过的,在本发明的实施例中,充分地利用了传热学原理并结合特殊的导流结构设计,在整个气流通道上,对气流的流动状态进行合理的调节,更加精准地对热交换状况进行调节和控制,使得在热交换效率和部件的加热均匀性上有了显著的提升,在这一点上,是具有开创性的意义。
实施例四
以上的实施例,对本发明的加热装置进行了详细说明,除此之外,加热装置的环形腔体本身也可以作为一个独立的部件进行应用,该环形腔体也是本发明所请求保护的技术方案。
本实施例的加热装置的环形腔体如图3、图4以及图5所示,该环形腔体容纳被加热的环形部件,该环形腔体的外壁上设置有气流入口和气流 出口。
本实施例的加热装置的环形腔体具有如下技术效果:
1)与现有技术的加热炉的炉腔相比,节省了处于环形部件所包围的中心区域的气流流通路径,使得气流通道能够集中在环形部件附近,从而使得热交换更加有效,减少了热能浪费。
2)与现有技术的加热炉相比,减少了制造炉腔本体的材料消耗,降低了制造成本。
进一步地,在环形腔体内可以设置有导流体,该导流体使所述气流均匀地沿着所述环形部件的表面运动。通过在环形腔体内设置导流体,从而对气流的流动方式进行控制,由此,来使环形部件受热均匀,并且提高加热效率。
优选地,导流体为导流螺旋肋片。通过设置导流螺旋肋片使得进入环形腔体内的热空气流轨迹变成围绕环形部件的螺线管状运动,从而更加高效和均匀地对环形部件进行加热。
鉴于以上实施例已经对环形腔体以及其导流螺旋肋片进行了充分说明,因此,以上实施例中所有关于环形腔体的内容,均可视为有关环形腔体的实施例的内容,在此不再赘述。
通过以上实施例对本发明的环形部件的加热装置进行详细说明。需要指出的是,本发明实施例的环形部件的加热装置以及加热装置的环形腔体,可以应用于各类环形部件的加热,包括但不限于圆环形部件,椭圆形环形部件、矩形环形部件、三角形环形部件等,相应地,该环形腔体也可以制作成上述的各类环形。优选地,本发明实施例的加热装置适用于大型轴承类部件的加热。另外,环形腔体的横截面也不限于圆形,可以根据环形部件的形状制作成任意形状。
尽管已参照优选实施例表示和描述了本发明,但本领域技术人员应该理解,在不脱离由权利要求限定的本发明的精神和范围的情况下,可以对这些实施例进行各种修改和变换。

Claims (21)

  1. 一种环形部件的加热装置,该加热装置通过热气流对所述环形部件进行加热,其包括气流加热器和风机,其特征在于,该加热装置还包括容纳所述环形部件的环形腔体,该环形腔体的外壁上设置有气流入口和气流出口,所述气流加热器对所述气流进行加热,所述风机使所述气流进入所述气流入口,经过所述环形腔体内的气流通道后,从所述气流出口排出。
  2. 根据权利要求1所述的环形部件的加热装置,其特征在于,在所述环形腔体内设置有导流体,该导流体使所述气流沿着所述环形部件的表面运动。
  3. 根据权利要求2所述的环形部件的加热装置,其特征在于,所述导流体为导流螺旋肋片。
  4. 根据权利要求3所述的环形部件的加热装置,其特征在于,所述气流加热器在所述气流进入环形腔体内的气流通道之前对所述气流进行加热。
  5. 根据权利要求4所述的环形部件的加热装置,其特征在于,
    所述导流螺旋肋片的节距从所述气流入口到所述气流出口呈减小趋势;和/或
    所述导流螺旋肋片的螺旋角从所述气流入口到所述气流出口呈增大趋势;和/或
    所述导流螺旋肋片的牙型半角从所述气流入口到所述气流出口呈减小趋势。
  6. 根据权利要求3所述的环形部件的加热装置,其特征在于,所述导流螺旋肋片的节距、螺旋角和牙型半角之中的任意一个或多个是变化的,其变化的趋势为使得表面传热系数与气流通道中气流温度的变化趋势相反。
  7. 根据权利要求3所述的环形部件的加热装置,其特征在于,所述导流螺旋肋片一体成形于所述环形腔体的内壁上。
  8. 根据权利要求3所述的环形部件的加热装置,其特征在于,在所述环形腔体内,在所述气流入口和气流出口之间形成两条长度相同的气流通道,所述两条气流通道的导流螺旋肋片呈轴对称结构,对称轴为所述气 流入口和气流出口所在的直线。
  9. 根据权利要求1所述的环形部件的加热装置,其特征在于,所述环形腔体由上环形腔体和下环形腔体接合而成。
  10. 根据权利要求9所述的环形部件的加热装置,其特征在于,所述上环形腔体由多个上环形腔体单元接合而成,所述下环形腔体由多个下环形腔体单元接合而成。
  11. 根据权利要求1所述的环形部件的加热装置,其特征在于,所述气流入口和所述气流出口设置在所述环形腔体的内侧的外壁上,所述气流加热器和所述风机设置在所述环形腔体的内侧,所述气流入口、所述环形腔体的内腔、所述气流出口、所述风机以及所述气流加热器之间形成密闭的气流循环通道。
  12. 根据权利要求11所述的环形部件的加热装置,其特征在于,在所述环形腔体内,在所述气流入口和气流出口之间形成两条长度相同的气流通道。
  13. 根据权利要求11所述的环形部件的加热装置,其特征在于,所述气流为空气流,在所述气流出口处设置有空气过滤器。
  14. 一种加热装置的环形腔体,其特征在于,该环形腔体容纳被加热的环形部件,该环形腔体的外壁上设置有气流入口和气流出口。
  15. 根据权利要求14所述的加热装置的环形腔体,其特征在于,在所述环形腔体内设置有导流体,该导流体使所述气流均匀地沿着所述环形部件的表面运动。
  16. 根据权利要求15所述的加热装置的环形腔体,其特征在于,所述导流体为导流螺旋肋片。
  17. 根据权利要求16所述的环形部件的环形腔体,其特征在于,
    所述导流螺旋肋片的节距从所述气流入口到所述气流出口呈减小趋势;和/或
    所述导流螺旋肋片的螺旋角从所述气流入口到所述气流出口呈增大趋势;和/或
    所述导流螺旋肋片的牙型半角从所述气流入口到所述气流出口呈减小趋势。
  18. 根据权利要求17所述的环形部件的环形腔体,其特征在于,所述导流螺旋肋片的节距、螺旋角和牙型半角之中的任意一个或多个是变化的,其变化的趋势为使得表面传热系数与气流通道中气流温度的变化趋势相反。
  19. 根据权利要求16所述的环形部件的环形腔体,其特征在于,在所述环形腔体内,在所述气流入口和气流出口之间形成两条长度相同的气流通道,所述两条气流通道的导流螺旋肋片呈轴对称结构,对称轴为所述气流入口和气流出口所在的直线。
  20. 根据权利要求14所述的环形部件的环形腔体,其特征在于,所述环形腔体由上环形腔体和下环形腔体接合而成。
  21. 根据权利要求20所述的环形部件的环形腔体,其特征在于,所述上环形腔体由多个上环形腔体单元接合而成,所述下环形腔体由多个下环形腔体单元接合而成。
PCT/CN2014/093630 2013-12-26 2014-12-11 一种环形部件的加热装置及其环形腔体 WO2015096624A1 (zh)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP14875308.0A EP3093353B1 (en) 2013-12-26 2014-12-11 Heating device for annular component and annular cavity thereof
ES14875308T ES2759981T3 (es) 2013-12-26 2014-12-11 Dispositivo de calentamiento para componente anular y cavidad anular del mismo
US15/107,389 US10378822B2 (en) 2013-12-26 2014-12-11 Heating device for annular component and annular cavity thereof
KR1020167019610A KR101749470B1 (ko) 2013-12-26 2014-12-11 환형 부품을 위한 가열 장치 및 그 환형 공동

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201310733579.8A CN103725863B (zh) 2013-12-26 2013-12-26 一种环形部件的加热装置及其环形腔体
CN201310733579.8 2013-12-26

Publications (1)

Publication Number Publication Date
WO2015096624A1 true WO2015096624A1 (zh) 2015-07-02

Family

ID=50450153

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2014/093630 WO2015096624A1 (zh) 2013-12-26 2014-12-11 一种环形部件的加热装置及其环形腔体

Country Status (6)

Country Link
US (1) US10378822B2 (zh)
EP (1) EP3093353B1 (zh)
KR (1) KR101749470B1 (zh)
CN (1) CN103725863B (zh)
ES (1) ES2759981T3 (zh)
WO (1) WO2015096624A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103725863B (zh) 2013-12-26 2015-12-16 北京金风科创风电设备有限公司 一种环形部件的加热装置及其环形腔体
CN110385560A (zh) * 2019-07-09 2019-10-29 中国航发哈尔滨东安发动机有限公司 轴承安装加热装置

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01260289A (ja) * 1988-04-11 1989-10-17 Murata Mfg Co Ltd バッチ式焼成炉
CN201679871U (zh) * 2010-05-17 2010-12-22 华锐风电科技(集团)股份有限公司 环形油浴加热器及油浴加热循环过滤冷却系统
CN103088200A (zh) * 2012-12-31 2013-05-08 北京金风科创风电设备有限公司 加热炉
EP2666875A1 (en) * 2011-01-21 2013-11-27 NTN Corporation Method for manufacturing bearing ring, bearing ring, and rolling bearing
CN103725863A (zh) * 2013-12-26 2014-04-16 北京金风科创风电设备有限公司 一种环形部件的加热装置及其环形腔体
CN203700442U (zh) * 2013-12-26 2014-07-09 北京金风科创风电设备有限公司 一种环形部件的加热装置及其环形腔体

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1431753A (en) 1972-05-17 1976-04-14 Hotwork Ltd Heat treatment apparatus
US4044950A (en) * 1975-09-08 1977-08-30 Engeling Charles F Combined heat-exchanger and supplemental air circulator for hot-air furnaces
GB9325571D0 (en) * 1993-12-14 1994-02-16 Grenier Mario Apparatus for annealing metal coils
DE4402332C1 (de) * 1994-01-27 1995-04-06 Wesumat Gmbh Fahrzeug-Trocknungs- oder Poliervorrichtung
CN100552358C (zh) * 2007-09-17 2009-10-21 李浩泉 一种圆环型连续煅烧退火窑炉
CN102659460B (zh) 2012-04-18 2013-12-25 陕西景盛肥业集团有限公司 硫酸钾副产高湿高热焓废气用于回转炉烘干复合肥的方法及装置
CN106282527B (zh) * 2016-09-29 2018-04-13 北京金风科创风电设备有限公司 一种用于环形部件加热的加热炉

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01260289A (ja) * 1988-04-11 1989-10-17 Murata Mfg Co Ltd バッチ式焼成炉
CN201679871U (zh) * 2010-05-17 2010-12-22 华锐风电科技(集团)股份有限公司 环形油浴加热器及油浴加热循环过滤冷却系统
EP2666875A1 (en) * 2011-01-21 2013-11-27 NTN Corporation Method for manufacturing bearing ring, bearing ring, and rolling bearing
CN103088200A (zh) * 2012-12-31 2013-05-08 北京金风科创风电设备有限公司 加热炉
CN103725863A (zh) * 2013-12-26 2014-04-16 北京金风科创风电设备有限公司 一种环形部件的加热装置及其环形腔体
CN203700442U (zh) * 2013-12-26 2014-07-09 北京金风科创风电设备有限公司 一种环形部件的加热装置及其环形腔体

Also Published As

Publication number Publication date
EP3093353A1 (en) 2016-11-16
KR101749470B1 (ko) 2017-07-03
KR20160101136A (ko) 2016-08-24
ES2759981T3 (es) 2020-05-12
CN103725863B (zh) 2015-12-16
US10378822B2 (en) 2019-08-13
US20170003074A1 (en) 2017-01-05
CN103725863A (zh) 2014-04-16
EP3093353B1 (en) 2019-09-11
EP3093353A4 (en) 2017-10-18

Similar Documents

Publication Publication Date Title
CN109261962B (zh) 一种基于电磁感应加热的分段式摩擦增材制造机
US4310302A (en) Batch coil annealing furnace baseplate
WO2018059013A1 (zh) 用于环形部件加热的加热炉
CN103088200B (zh) 加热炉
KR101892771B1 (ko) 금속 용제용 용해로
CN106170568B (zh) 用于在环底平炉中对细长扁平的金属物料、尤其是轧制铝锭进行热处理的方法和设备
WO2015096624A1 (zh) 一种环形部件的加热装置及其环形腔体
US7507368B2 (en) Hot air circulation furnace
US20190186835A1 (en) Rotary Cooler and Method for Operating a Rotary Cooler
JP2004257658A (ja) 熱風循環炉
CN202072735U (zh) 一种轴承推进式搅拌淬火装置
WO2014203732A1 (ja) ガス供給管および熱処理装置
CN107815522B (zh) 一种用于热处理炉的气体循环导流系统
JP2009243877A (ja) 熱風循環炉
CN106065864A (zh) 热处理装置用的搅拌风扇和具有该搅拌风扇的热处理装置
CN203700442U (zh) 一种环形部件的加热装置及其环形腔体
CN202770183U (zh) 一种链式退火炉
CN103276167B (zh) 一种圆形截面颗粒材料的淬火装置
CN205560100U (zh) 一种pvc管用快速升温装置
CN101979169B (zh) 用于管道管壁孔周围局部快速高温加热的装置
RU2467077C1 (ru) Способ термической обработки лифтовых труб малого диаметра типа "труба в трубе"
TW201702441A (zh) 長晶爐及其冷卻管
CN210796535U (zh) 一种强对流球化退火炉
CN104724708B (zh) 用于多晶硅还原炉的底盘组件
CN107388880A (zh) 交叉循环换热装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14875308

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 15107389

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20167019610

Country of ref document: KR

Kind code of ref document: A

REEP Request for entry into the european phase

Ref document number: 2014875308

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2014875308

Country of ref document: EP