WO2015096545A1 - 液体喷头、液体喷射装置一体成型制造方法及设备 - Google Patents

液体喷头、液体喷射装置一体成型制造方法及设备 Download PDF

Info

Publication number
WO2015096545A1
WO2015096545A1 PCT/CN2014/089454 CN2014089454W WO2015096545A1 WO 2015096545 A1 WO2015096545 A1 WO 2015096545A1 CN 2014089454 W CN2014089454 W CN 2014089454W WO 2015096545 A1 WO2015096545 A1 WO 2015096545A1
Authority
WO
WIPO (PCT)
Prior art keywords
substrate
layer
forming
chamber
manufacturing
Prior art date
Application number
PCT/CN2014/089454
Other languages
English (en)
French (fr)
Inventor
邹赫麟
何敬志
李越
陈晓坤
Original Assignee
大连理工大学
珠海赛纳打印科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CN201310733314.8A external-priority patent/CN103770468B/zh
Priority claimed from CN201410182638.1A external-priority patent/CN103935128B/zh
Application filed by 大连理工大学, 珠海赛纳打印科技股份有限公司 filed Critical 大连理工大学
Priority to JP2016552657A priority Critical patent/JP6333992B2/ja
Publication of WO2015096545A1 publication Critical patent/WO2015096545A1/zh
Priority to US15/073,594 priority patent/US9731508B2/en
Priority to US15/463,032 priority patent/US9919527B2/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41JTYPEWRITERS; SELECTIVE PRINTING MECHANISMS, i.e. MECHANISMS PRINTING OTHERWISE THAN FROM A FORME; CORRECTION OF TYPOGRAPHICAL ERRORS
    • B41J2/00Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed
    • B41J2/005Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed characterised by bringing liquid or particles selectively into contact with a printing material
    • B41J2/01Ink jet
    • B41J2/135Nozzles
    • B41J2/16Production of nozzles
    • B41J2/162Manufacturing of the nozzle plates
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41JTYPEWRITERS; SELECTIVE PRINTING MECHANISMS, i.e. MECHANISMS PRINTING OTHERWISE THAN FROM A FORME; CORRECTION OF TYPOGRAPHICAL ERRORS
    • B41J2/00Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed
    • B41J2/005Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed characterised by bringing liquid or particles selectively into contact with a printing material
    • B41J2/01Ink jet
    • B41J2/135Nozzles
    • B41J2/16Production of nozzles
    • B41J2/1621Manufacturing processes
    • B41J2/1631Manufacturing processes photolithography
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41JTYPEWRITERS; SELECTIVE PRINTING MECHANISMS, i.e. MECHANISMS PRINTING OTHERWISE THAN FROM A FORME; CORRECTION OF TYPOGRAPHICAL ERRORS
    • B41J2/00Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed
    • B41J2/005Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed characterised by bringing liquid or particles selectively into contact with a printing material
    • B41J2/01Ink jet
    • B41J2/135Nozzles
    • B41J2/14Structure thereof only for on-demand ink jet heads
    • B41J2/1433Structure of nozzle plates
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41JTYPEWRITERS; SELECTIVE PRINTING MECHANISMS, i.e. MECHANISMS PRINTING OTHERWISE THAN FROM A FORME; CORRECTION OF TYPOGRAPHICAL ERRORS
    • B41J2/00Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed
    • B41J2/005Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed characterised by bringing liquid or particles selectively into contact with a printing material
    • B41J2/01Ink jet
    • B41J2/135Nozzles
    • B41J2/16Production of nozzles
    • B41J2/1607Production of print heads with piezoelectric elements
    • B41J2/161Production of print heads with piezoelectric elements of film type, deformed by bending and disposed on a diaphragm
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41JTYPEWRITERS; SELECTIVE PRINTING MECHANISMS, i.e. MECHANISMS PRINTING OTHERWISE THAN FROM A FORME; CORRECTION OF TYPOGRAPHICAL ERRORS
    • B41J2/00Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed
    • B41J2/005Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed characterised by bringing liquid or particles selectively into contact with a printing material
    • B41J2/01Ink jet
    • B41J2/135Nozzles
    • B41J2/16Production of nozzles
    • B41J2/1621Manufacturing processes
    • B41J2/1623Manufacturing processes bonding and adhesion
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41JTYPEWRITERS; SELECTIVE PRINTING MECHANISMS, i.e. MECHANISMS PRINTING OTHERWISE THAN FROM A FORME; CORRECTION OF TYPOGRAPHICAL ERRORS
    • B41J2/00Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed
    • B41J2/005Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed characterised by bringing liquid or particles selectively into contact with a printing material
    • B41J2/01Ink jet
    • B41J2/135Nozzles
    • B41J2/16Production of nozzles
    • B41J2/1621Manufacturing processes
    • B41J2/1626Manufacturing processes etching
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41JTYPEWRITERS; SELECTIVE PRINTING MECHANISMS, i.e. MECHANISMS PRINTING OTHERWISE THAN FROM A FORME; CORRECTION OF TYPOGRAPHICAL ERRORS
    • B41J2/00Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed
    • B41J2/005Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed characterised by bringing liquid or particles selectively into contact with a printing material
    • B41J2/01Ink jet
    • B41J2/135Nozzles
    • B41J2/16Production of nozzles
    • B41J2/1621Manufacturing processes
    • B41J2/1626Manufacturing processes etching
    • B41J2/1628Manufacturing processes etching dry etching
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41JTYPEWRITERS; SELECTIVE PRINTING MECHANISMS, i.e. MECHANISMS PRINTING OTHERWISE THAN FROM A FORME; CORRECTION OF TYPOGRAPHICAL ERRORS
    • B41J2/00Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed
    • B41J2/005Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed characterised by bringing liquid or particles selectively into contact with a printing material
    • B41J2/01Ink jet
    • B41J2/135Nozzles
    • B41J2/16Production of nozzles
    • B41J2/1621Manufacturing processes
    • B41J2/1626Manufacturing processes etching
    • B41J2/1629Manufacturing processes etching wet etching
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41JTYPEWRITERS; SELECTIVE PRINTING MECHANISMS, i.e. MECHANISMS PRINTING OTHERWISE THAN FROM A FORME; CORRECTION OF TYPOGRAPHICAL ERRORS
    • B41J2/00Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed
    • B41J2/005Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed characterised by bringing liquid or particles selectively into contact with a printing material
    • B41J2/01Ink jet
    • B41J2/135Nozzles
    • B41J2/16Production of nozzles
    • B41J2/1621Manufacturing processes
    • B41J2/164Manufacturing processes thin film formation
    • B41J2/1642Manufacturing processes thin film formation thin film formation by CVD [chemical vapor deposition]
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41JTYPEWRITERS; SELECTIVE PRINTING MECHANISMS, i.e. MECHANISMS PRINTING OTHERWISE THAN FROM A FORME; CORRECTION OF TYPOGRAPHICAL ERRORS
    • B41J2/00Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed
    • B41J2/005Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed characterised by bringing liquid or particles selectively into contact with a printing material
    • B41J2/01Ink jet
    • B41J2/135Nozzles
    • B41J2/16Production of nozzles
    • B41J2/1621Manufacturing processes
    • B41J2/164Manufacturing processes thin film formation
    • B41J2/1646Manufacturing processes thin film formation thin film formation by sputtering

Definitions

  • the present invention relates to printer technology, and more particularly to a liquid nozzle, a liquid ejection device, an integrally formed manufacturing method and apparatus.
  • the liquid jet or liquid ejecting device of the printer is such that the volume of the pressure chamber is changed by the deformation of the piezoelectric element and the vibrating plate, thereby ejecting the ink in the pressure chamber from the ejection hole.
  • a prior art liquid jet head includes a substrate, a vibrating plate and a piezoelectric element disposed on a first side of the substrate, and a perforated plate bonded to a second side of the substrate (the side opposite to the first side).
  • the existing liquid jet head is manufactured by forming a vibrating plate and a piezoelectric element on a first side of the substrate, and etching a plurality of positions corresponding to the position of the piezoelectric element on the second surface of the substrate by an etching process.
  • a conventional liquid ejecting apparatus includes a substrate, a vibrating plate and a piezoelectric element disposed on the first surface of the substrate, and a perforated plate bonded to the second surface of the substrate (the side opposite to the first surface).
  • a conventional liquid ejecting apparatus is manufactured by forming a vibrating plate and a piezoelectric element on a first side of a substrate, and etching a plurality of positions corresponding to the piezoelectric element on the second surface of the substrate by an etching process a pressure chamber for storing the liquid and a common chamber corresponding to the position of the ink supply port, and finally, bonding the orifice plate to the second side of the substrate, so that the plurality of orifices on the orifice plate are respectively associated with the respective pressure chambers Connected.
  • the piezoelectric element When the liquid ejecting apparatus is in operation, the piezoelectric element is deformed by voltage driving, and is transmitted to the vibrating plate to cause a volume change of the pressure chamber, so that the liquid in the pressure chamber is ejected from the ejecting hole to complete printing.
  • the pressure chamber of the existing liquid ejecting head or the liquid ejecting apparatus is formed by etching on the substrate, the pressure chamber is increased.
  • the number of chambers needs to reduce the thickness of the sidewalls of the adjacent pressure chambers, which inevitably leads to a decrease in the mechanical strength of the silicon wafer as a substrate, and the substrate is easily damaged during the manufacturing process, so that the yield of the liquid jet head or the liquid ejecting device is lowered.
  • the present invention provides a liquid jetting head, a liquid jetting device, an integrally formed manufacturing method and apparatus, and is used for solving the liquid jet device manufacturing rate produced by the liquid jet head or the liquid jetting device integrated manufacturing method manufactured by the prior art liquid jet head manufacturing method. Low technical cost, high manufacturing cost and poor print quality.
  • a liquid nozzle manufacturing method provided by the first aspect of the invention includes:
  • An orifice communicating with the pressure chamber is formed on the orifice plate and the transition layer by a photolithography process.
  • a liquid injection device integrated molding manufacturing method provided by a second aspect of the present invention includes:
  • An orifice plate is formed on the pressure chamber by a bonding process, and a nozzle hole communicating with the pressure chamber is formed on the orifice plate by a photolithography process.
  • a liquid ejecting head which is manufactured by the above-described liquid ejecting head manufacturing method.
  • a fourth aspect of the invention provides a printing apparatus comprising the liquid jet head as described above.
  • a liquid ejecting apparatus which is manufactured by the above-described liquid ejecting apparatus integrally formed and manufactured.
  • the liquid nozzle and the liquid ejection device integrally formed manufacturing method and device provided by the invention form a pressure chamber and a common chamber on the first surface of the first substrate, when it is required to increase the pressure of the high liquid nozzle
  • the pressure chamber is separately formed on the first substrate in this embodiment, the mechanical strength of the first substrate is not reduced, and the first substrate can be prevented from being damaged during the manufacturing process, thereby improving the liquid nozzle.
  • the yield rate reduces manufacturing costs.
  • a transition layer is formed by a bonding process, an orifice plate is formed on the transition layer, and an orifice is formed on the orifice plate and the transition layer by a photolithography process, thereby preventing the adhesive from flowing into the pressure chamber and increasing the liquid Print quality of the printhead.
  • FIG. 1 is a flow chart of a method for manufacturing a liquid jet head according to an embodiment of the present invention
  • FIG. 2 is a flow chart of a specific embodiment of step 200 in FIG. 1;
  • step 300 in FIG. 3 is a flow chart of a specific embodiment of step 300 in FIG. 1;
  • step 100 in FIG. 1 is a flow chart of a specific embodiment of step 100 in FIG. 1;
  • FIG. 5 is a flowchart of another method for manufacturing a liquid jet head according to an embodiment of the present invention.
  • FIG. 6 is a schematic structural view of a liquid jet head manufactured according to an embodiment of the present invention.
  • FIG. 7A-7I are structural views of a product manufacturing process according to a specific embodiment of the step 200 in the embodiment of the present invention.
  • FIGS. 8A-8G are structural views of a manufacturing process of a product according to another embodiment of the present invention.
  • 9A-9C are structural views of a manufacturing process of a product according to still another embodiment of the present invention.
  • 10A-10B are structural views of a manufacturing process of a product according to still another embodiment of the present invention.
  • FIG. 11 is a flow chart of a method for integrally forming a liquid ejecting apparatus according to an embodiment of the present invention.
  • step 600 in FIG. 11 is a flow chart of a specific embodiment of step 600 in FIG. 11;
  • step 700 in FIG. 11 is a flow chart of a specific embodiment of step 700 in FIG. 11;
  • step 500 in FIG. 11 is a flow chart of a specific embodiment of step 500 in FIG. 11;
  • 15 is a flow chart of another method for integrally forming a liquid ejecting apparatus according to an embodiment of the present invention.
  • Figure 16 is a schematic structural view of a liquid ejecting apparatus manufactured according to an embodiment of the present invention.
  • 17A-17H are structural views of a manufacturing process of a product according to a specific embodiment of step 600 in the embodiment of the present invention.
  • 18A-18G are structural views of a manufacturing process of a product according to another embodiment of the present invention.
  • 19A-19C are structural views of a manufacturing process of a product according to still another embodiment of the present invention.
  • 20A-20B are structural views showing a manufacturing process of a product according to still another embodiment of the present invention.
  • FIG. 1 is a flow chart of a method for manufacturing a liquid jet head according to an embodiment of the present invention. As shown in FIG. 1 , the method for manufacturing a liquid jet head provided by the embodiment includes:
  • Step 100 forming a plurality of spaced-apart pressure generating members on the first substrate.
  • Step 200 forming a pressure chamber corresponding to the plurality of pressure generating members and a common chamber communicating with the plurality of pressure chambers on the first surface of the first substrate.
  • FIG. 2 is a flowchart of a specific embodiment of step 200 in FIG. 1; as shown in FIG. 2, step 200 is formed on a first surface of the first substrate corresponding to the plurality of pressure generating components.
  • the pressure chamber and the common chamber in communication with the plurality of pressure chambers may include:
  • Step 201 providing a chamber layer on the first surface of the first substrate and exposing, defining the shape and position of the pressure chamber and the common chamber.
  • FIG. 6 is a schematic structural view of a liquid jet head manufactured according to an embodiment of the present invention
  • FIGS. 7A-7I are structural views of a manufacturing process of a specific embodiment of the step 200 in the embodiment of the present invention, as shown in FIGS. 6 and 7A.
  • the first substrate 1 may be a silicon substrate, and the first surface of the first substrate 1 is an upper surface of the first substrate 1 shown in the drawing, and the chamber layer 5a may be suspended on the first surface of the first substrate 1.
  • the material of the chamber layer 5a may be a negative photosensitive glue SU8 or polyimide having good machinability, and the chamber layer 5a may be coated on the entire upper surface of the first substrate 1, the thickness of the chamber layer 5a and the pressure chamber Matches the height dimension of the common chamber.
  • the chamber layer 5a can be exposed by the mask 12a, and
  • the structure and exposure process of the reticle 12a define the shape and position of the pressure chamber 5 and the common chamber 8, wherein the chamber wall 5b is solidified and is not removed by the developer used in the subsequent process.
  • development forms a pressure chamber and a common chamber.
  • the developer developing chamber layer 5a can be used, the solidified chamber wall 5b is retained, and the remaining portions are removed to form the pressure chamber 5 and the common chamber 8 (shown in Fig. 6).
  • Step 300 forming a transition layer on the pressure chamber by a bonding process, and forming an orifice plate on the transition layer.
  • FIG. 3 is a flow chart of a specific embodiment of step 300 in FIG. As shown in FIG. 3, step 300 may include:
  • Step 301 suspending a transition layer on the second substrate.
  • the material of the second substrate 1' may be an organic glass or the like, and the material of the transition layer 6a may be a negative photosensitive paste SU8 or polyimide having good machinability.
  • Step 302 bonding the chamber wall of the chamber layer to the transition layer by a bonding process.
  • a thin transition layer 6a may be disposed to ensure the transition layer 6a and the cavity. The chamber walls of the chamber layer are better bonded together.
  • step 303 the second substrate is peeled off as shown in FIG. 7F.
  • Step 304 suspending the orifice plate on the transition layer.
  • a thicker orifice plate 7a may be suspended over the transition layer 6a.
  • the material of the orifice plate 7a may be a negative photosensitive paste SU8 or polyimide having good machinability. Since the orifice plate 7a is formed on the transition layer 6a, a thicker orifice plate 7a can be formed better.
  • Step 400 forming a nozzle hole communicating with the pressure chamber on the orifice plate and the transition layer by a photolithography process.
  • the orifice plate 7a may be exposed by using the mask 12b, and the shape and position of the orifice are defined by the structural form of the mask 12b and the exposure process, wherein the orifice wall is Cured, not removed by the developer used in subsequent processes.
  • the orifice plate 7a is developed with a developing solution, the walls of the solidified orifice are retained, and the remaining portions are removed to form the orifices 7.
  • the liquid nozzle manufacturing method provided in this embodiment is to form a pressure chamber and a common chamber on the first surface of the first substrate, and when the number of pressure chambers of the high liquid nozzle needs to be increased, since the embodiment is in the first
  • the pressure chamber is separately formed on a substrate, so that the mechanical strength of the first substrate is not reduced, and the first substrate can be prevented from being damaged during the manufacturing process, thereby improving the yield of the liquid jet head and reducing the manufacturing cost.
  • a transition layer is formed by a bonding process, and an orifice plate is formed on the transition layer, Moreover, by forming a nozzle hole on the orifice plate and the transition layer by a photolithography process, the adhesive can be prevented from flowing into the pressure chamber, and the printing quality of the liquid nozzle can be improved.
  • step 100 forming a plurality of spaced-apart pressure generating components on the first substrate may include:
  • step 101 the first surface of the first substrate is etched to form a groove.
  • the groove 2 is formed by dry etching or wet etching on the first surface of the first substrate 1, and the groove 2 is for accommodating a pressure generating member.
  • Step 102 forming a piezoelectric element in the recess, the upper surface of the piezoelectric element being flush with the first surface of the first substrate.
  • the lower electrode layer 3c, the piezoelectric body layer 3b, and the upper electrode layer 3a may be sequentially formed in the recess 2 by a sputtering method; wherein the lower electrode layer 3c is a titanium (Ti) layer or platinum (Pt) a layer or a plurality of layers of titanium layers; the piezoelectric layer 3b is a layer of lead zirconate titanate (PZT); and the upper electrode layer 3a is a layer of platinum (Pt) or a layer of gold.
  • the lower electrode layer 3c is a titanium (Ti) layer or platinum (Pt) a layer or a plurality of layers of titanium layers
  • the piezoelectric layer 3b is a layer of lead zirconate titanate (PZT)
  • the upper electrode layer 3a is a layer of platinum (Pt) or a layer of gold.
  • Step 103 forming a vibrating plate on the first surface of the first substrate, the vibrating plate being disposed outside the piezoelectric element.
  • the vibrating plate 4 is formed on the first surface of the first substrate 1 by a low pressure chemical vapor deposition method or a plasma enhanced chemical vapor deposition method, and the material of the vibrating plate 4 may be a SiO2 or Si3N4 or SiO2-Si3N4 material stack.
  • the vibrating plate 4 is disposed outside the upper electrode layer 3a, and the outer edge is disposed on the first surface of the first substrate 1.
  • the pressure chamber 5, the transition layer 6a, the common chamber 8 and the injection hole 7 can be formed by the manufacturing method provided by the above embodiment, and the above-mentioned chamber and the injection hole can be formed by the method, and the printing can be improved. Resolution, and the miniaturization of the liquid jet head can be achieved.
  • FIG. 5 is a flow chart of another method for manufacturing a liquid jet head according to an embodiment of the present invention. as shown in FIG. 5, further, after the step 400 in the integrated manufacturing method, the method further includes:
  • Step 500 etching the two surfaces of the first substrate to form an ink supply port communicating with the common chamber and a cavity communicating with the pressure generating member.
  • the second surface of the first substrate 1 (the lower surface of the first substrate is illustrated) may be etched by dry etching to form the ink supply holes 9 and the piezoelectric elements in communication with the common chamber 8.
  • a slit 11 may be formed between both sides of the piezoelectric element 3 and the first substrate 1, and the slit 11 can ensure that the piezoelectric element 3 is not vibrated.
  • the binding of the first substrate 1 increases the amplitude of the vibration.
  • Step 600 providing a cover plate on the second surface of the first substrate, the cover plate covering the cavity and keeping the ink supply hole unblocked.
  • the cover 12 is bonded to the second surface of the first substrate 1 to complete the manufacturing process of the liquid jet.
  • the material of the cover 12 may be polymethyl acrylate (PMMA).
  • the step 100 of forming a plurality of spaced-apart pressure generating components on the first substrate may be implemented in other manners.
  • the step 100 may include:
  • step 101' a vibrating plate is formed on the first surface of the first substrate.
  • a vibrating plate may be formed on the first surface of the first substrate 1 by a low pressure chemical vapor deposition method or a plasma enhanced chemical vapor deposition method; wherein the vibrating plate is made of SiO2 or Si3N4 or SiO2-Si3N4. Lamination.
  • step 102' a piezoelectric element is formed on the diaphragm.
  • the lower electrode layer 3c may be formed by a sputtering method
  • the piezoelectric layer 3b may be formed by a sol-gel method
  • the upper electrode layer 3a may be formed by a sputtering method
  • the lower electrode layer 3c may be a titanium (Ti) layer a platinum (Pt) layer or a plurality of titanium layer superposed layers
  • the piezoelectric layer may be a lead zirconate titanate (PZT) layer
  • the upper electrode layer may be a platinum (Pt) layer or a gold layer.
  • the pressure chamber 5, the transition layer 6a common chamber 8, and the orifice 7 may then be formed on the first surface of the first substrate 1 by the manufacturing method provided by the above embodiment.
  • An ink supply port 9 communicating with the common chamber 8 and a cavity 10 communicating with the lower electrode layer 3c of the pressure member 3 are formed on the second surface of the first substrate 1.
  • a cover plate 12 is disposed on the second surface of the first substrate 1, and the cover plate 12 covers the cavity 10 and keeps the ink supply 9 hole open.
  • FIG. 10A-10B are structural views of a manufacturing process of a product according to still another embodiment of the present invention.
  • a plurality of spaced-apart pressure generating members are formed on the first substrate, specifically:
  • a thin film resistive layer 3' is deposited on the first surface of the first substrate 1, and the material of the thin film resistive layer 3' is tantalum aluminum alloy or nickel chromium alloy or tungsten silicon nitride or titanium nitride.
  • the second surface of the first substrate 1 is etched to form an ink supply port 9 communicating with the common chamber 8.
  • the specific liquid discharging process of the liquid jet head manufactured by this embodiment is: liquid reaches the common chamber 8 through the ink supply hole 9, and at the same time, after applying a pulse signal, the thin film resistive layer 3' heats the liquid at a rate of 1000 ° C / ⁇ s, approximately At around 340 °C, the volatile components in the liquid are vaporized to generate bubbles, and the bubbles are used to extrude the ink droplets from the original position. The formation of the bubbles is reversible. When the pulse signal is released, the passive cooling causes the bubbles to burst instantaneously. At this time, the ink droplets are completely ejected from the injection holes 7.
  • FIG. 11 is a flow chart of a method for integrally forming a liquid ejecting apparatus according to an embodiment of the present invention. As shown in FIG.
  • Step 500 forming a plurality of spaced-apart pressure generating members on the first substrate.
  • Step 600 forming a pressure chamber corresponding to the plurality of pressure generating members and a common chamber communicating with the plurality of pressure chambers on the first surface of the first substrate.
  • FIG. 12 is a flowchart of a specific embodiment of step 600 in FIG. 11; as shown in FIG. 12, step 600 is formed on the first surface of the first substrate corresponding to the plurality of pressure generating components.
  • the pressure chamber and the common chamber in communication with the plurality of pressure chambers may include:
  • Step 601 providing a chamber layer on the first surface of the first substrate and exposing, defining the shape and position of the pressure chamber and the common chamber.
  • FIG. 16 is a schematic structural view of a liquid ejecting apparatus manufactured according to an embodiment of the present invention
  • FIGS. 17A-17H are structural views of a manufacturing process of a specific embodiment of the step 600 in the embodiment of the present invention, as shown in FIGS. 16 and 17A.
  • the first substrate 21 may be a silicon substrate, and the first surface of the first substrate 21 is an upper surface of the first substrate 21 shown in the drawing, and the chamber layer 25a may be suspended on the first surface of the first substrate 21.
  • the material of the chamber layer 25a may be a negative photosensitive paste SU8 having good machinability.
  • the chamber layer 25a may be coated on the entire upper surface of the first substrate 21, the thickness of the chamber layer 25a and the pressure chamber and the common chamber. The height dimensions match.
  • the chamber layer 25a may be exposed using a mask 212a, and the shape and position of the pressure chamber 25 and the common chamber 27 are defined by the configuration of the mask 212a and the exposure process, wherein the cavity
  • the chamber wall 25b is cured and is not removed by the developer used in the subsequent process.
  • development forms a pressure chamber and a common chamber.
  • the developing solution 1, 2 propylene glycol formate (PMEGA) can be used to develop the chamber layer 25a, the solidified chamber wall 25b is retained, and the remaining portion is removed to form a pressure chamber. 25 and a common chamber 27 (shown in Figure 16).
  • step 700 a orifice plate is formed on the pressure chamber by a bonding process, and an orifice corresponding to the pressure chamber is formed on the orifice plate by a photolithography process.
  • FIG. 13 is a flowchart of a specific implementation of step 700 in FIG. 11; as shown in FIG. 13, step 700 may include:
  • Step 701 suspending the orifice layer on the second substrate.
  • the material of the second substrate 21' may be plexiglass or the like, and the material of the orifice layer 26a may be a negative photosensitive resin SU8 having good machinability.
  • Step 702 bonding the chamber wall of the chamber layer to the orifice layer by a bonding process, as shown in FIG. 17E.
  • step 703 the second substrate is peeled off as shown in FIG. 17F.
  • the orifice layer 26a may be exposed by using the mask 212b, and the shape and position of the orifice are defined by the structural form of the mask 212b and the exposure process, wherein the orifice wall is Cured, not removed by the developer used in subsequent processes.
  • the orifice layer 26a was developed using a developer 1,2 propylene glycol formate (PMEGA), the walls of the cured orifice were retained, and the remaining portions were removed to form orifices 26.
  • PMEGA developer 1,2 propylene glycol formate
  • the liquid ejecting apparatus integrally formed manufacturing method provided by the embodiment is to form a pressure chamber and a common chamber on the first surface of the first substrate, when the number of pressure chambers of the high liquid ejecting device needs to be increased,
  • the pressure chamber is separately formed on the first substrate, so that the mechanical strength of the first substrate is not reduced, and the first substrate can be prevented from being damaged during the manufacturing process, thereby improving the yield of the liquid ejecting apparatus and reducing the manufacturing cost.
  • the adhesive can be prevented from flowing into the pressure chamber, and the printing quality of the liquid ejecting apparatus can be improved.
  • step 500 forming a plurality of spaced-apart pressure generating components on the first substrate may include:
  • Step 501 etching a first surface of the first substrate to form a groove.
  • a groove 22 is formed by dry etching or wet etching on the first surface of the first substrate 21, and the groove 22 is for accommodating a pressure generating member.
  • Step 502 forming a piezoelectric element in the recess, the upper surface of the piezoelectric element being flush with the first surface of the first substrate.
  • the lower electrode layer 23c, the piezoelectric layer 23b, and the upper electrode layer 23a may be sequentially formed in the recess 22 by a sputtering method; wherein the lower electrode layer 23c is a titanium (Ti) layer or platinum (Pt) a layer or a plurality of layers of titanium layers; the piezoelectric layer 23b is a layer of lead zirconate titanate (PZT); and the upper electrode layer 23a is a layer of platinum (Pt) or a layer of gold.
  • Step 503 forming a vibrating plate on the first surface of the first substrate, the vibrating plate being disposed outside the piezoelectric element.
  • the vibrating plate 24 is formed on the first surface of the first substrate 21 by a low pressure chemical vapor deposition method or a plasma enhanced chemical vapor deposition method, and the material of the vibrating plate 24 may be a SiO2 or Si3N4 or SiO2-Si3N4 stack.
  • the vibrating plate 24 is disposed outside the upper electrode layer 23a, and the outer edge is disposed on the first surface of the first substrate 21.
  • the pressure chamber 25, the common chamber 27, and the injection hole 26 can be formed by the integral molding manufacturing method provided by the above embodiment, and the above-mentioned chamber and the nozzle hole can be formed by the method, and the printing resolution can be improved. And the miniaturization of the liquid ejecting apparatus can be achieved.
  • FIG. 15 is a flow chart of another method for integrally forming a liquid ejecting apparatus according to an embodiment of the present invention. as shown in FIG. 15, further, after the step 700 in the integrated manufacturing method, the method further includes:
  • Step 800 etching the two surfaces of the first substrate to form an ink supply port communicating with the common chamber and a cavity communicating with the pressure generating member.
  • the second surface of the first substrate 21 may be etched by dry etching to form the ink supply port 28 and the piezoelectric element in communication with the common chamber 27.
  • a slit 20 may be formed between both sides of the piezoelectric element 23 and the first substrate 21, and the slit 20 can ensure that the piezoelectric element 23 is not vibrated.
  • the binding of the first substrate 21 increases the amplitude of the vibration.
  • Step 900 providing a cover plate on the second surface of the first substrate, the cover plate covering the cavity and keeping the ink supply hole unblocked.
  • the cover plate 211 is bonded to the second surface of the first substrate 21 to complete the liquid ejection.
  • the material of the cover plate 211 may be polymethyl acrylate (PMMA).
  • the step of forming the plurality of pressure generating components on the first substrate may be implemented in other manners.
  • the step 500 may include:
  • Step 501' forming a vibrating plate on the first surface of the first substrate.
  • a vibrating plate may be formed on the first surface of the first substrate 21 by a low pressure chemical vapor deposition method or a plasma enhanced chemical vapor deposition method; wherein the vibrating plate is made of SiO2 or Si3N4 or SiO2-Si3N4. Lamination.
  • Step 502' forming a piezoelectric element on the diaphragm.
  • the lower electrode layer 23c may be formed by a sputtering method
  • the piezoelectric layer 23b may be formed by a sol-gel method
  • the upper electrode layer 23a may be formed by a sputtering method
  • the lower electrode layer 23c may be a titanium (Ti) layer a platinum (Pt) layer or a plurality of titanium layer superposed layers
  • the piezoelectric layer may be a lead zirconate titanate (PZT) layer
  • the upper electrode layer may be a platinum (Pt) layer or a gold layer.
  • the pressure chamber 25, the common chamber 27, and the injection holes 26 may be formed on the first surface of the first substrate 21 by the integral molding manufacturing method provided by the above embodiment.
  • An ink supply port 28 communicating with the common chamber 27 and a cavity 29 communicating with the lower electrode layer 23c of the pressure member 23 are formed on the second surface of the first substrate 1.
  • a cover plate 211 is disposed on the second surface of the first substrate 21, and the cover plate 211 covers the cavity 29 and keeps the ink supply hole 29 unobstructed.
  • FIG. 20A-20B are structural views showing a manufacturing process of a product according to still another embodiment of the present invention.
  • a plurality of spaced-apart pressure generating members are formed on the first substrate, specifically:
  • a thin film resistive layer 23' is deposited on the first surface of the first substrate 21, and the material of the thin film resistive layer 23' is tantalum aluminum alloy or nickel chromium alloy or tungsten silicon nitride or titanium nitride.
  • the second surface of the first substrate 21 is etched to form an ink supply port 28 communicating with the common chamber 27.
  • the specific liquid ejecting process of the liquid ejecting apparatus manufactured in this embodiment is that the liquid reaches the common chamber 27 through the ink supply port 28, and at the same time, after the pulse signal is applied, the thin film resistive layer 23' heats the liquid at a rate of 1000 ° C / ⁇ s.
  • the volatile components in the liquid are vaporized to generate bubbles, and the bubbles eject the ink droplets from the original position into the orifice 26; the formation of the bubbles is reversible, and when the pulse signal is released, the passive cooling causes the bubbles to be instantaneous. Broken, at this time, the ink droplets are completely ejected from the injection holes 26.
  • the invention also provides a liquid jet head which is the liquid spray provided by the above embodiment Made by the head manufacturing method.
  • the liquid nozzle provided in this embodiment is a pressure chamber and a common chamber formed on the first surface of the first substrate.
  • the pressure chamber is separately formed, so that the mechanical strength of the first substrate is not reduced, and the first substrate can be prevented from being damaged during the manufacturing process, thereby improving the yield of the liquid jet head and reducing the manufacturing cost.
  • the adhesive can be prevented from flowing into the pressure chamber, and the printing quality of the liquid nozzle can be improved.
  • the present invention also provides a printing apparatus comprising the liquid jet head provided by the above embodiment.
  • the technical solution of the printing device also has the above effects, and details are not described herein again.
  • the present invention also provides a liquid ejecting apparatus which is manufactured by the integrally formed manufacturing method of the liquid ejecting apparatus provided in the above embodiment.
  • the liquid ejecting apparatus provided in this embodiment is that a pressure chamber and a common chamber are formed on the first surface of the first substrate, and when it is required to increase the number of pressure chambers of the high liquid ejecting apparatus, since this embodiment is The pressure chamber is separately formed on a substrate, so that the mechanical strength of the first substrate is not reduced, and the first substrate can be prevented from being damaged during the manufacturing process, thereby improving the yield of the liquid ejecting apparatus and reducing the manufacturing cost.
  • the adhesive can be prevented from flowing into the pressure chamber, and the printing quality of the liquid ejecting apparatus can be improved.

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Particle Formation And Scattering Control In Inkjet Printers (AREA)

Abstract

一种液体喷头制造方法、液体喷射装置一体成型制造方法、液体喷头、打印装置和液体装置,其中,制造方法包括在第一基底(1)上形成多个间隔设置的压力发生部件;在第一基底(1)的第一表面上形成与多个压力发生部件对应的压力腔室(5)以及与多个压力腔室(5)连通的公共腔室(8);通过键合工艺在压力腔室(5)上成形过渡层(6a),并在过渡层(6a)上形成喷孔板(7a);通过光刻工艺在喷孔板(7a)和过渡层(6a)上形成有与压力腔室(6)连通的喷孔(7)。压力腔室(5)和公共腔室(8)形成在第一基底(1)的第一表面上,当需要增加液体喷头的压力腔室(5)的数量时,在第一基底(1)上单独形成压力腔室(5),因而不会减小第一基底(1)的机械强度,在制造过程中可以避免第一基底(1)破损,从而提高液体喷头的成品率,降低制造成本。

Description

液体喷头、液体喷射装置一体成型制造方法及设备 技术领域
本发明涉及打印机技术,尤其涉及一种液体喷头、液体喷射装置一体成型制造方法及设备。
背景技术
打印机的液体喷头或液体喷射装置是通过压电元件和振动板的变形,使压力腔室的体积发生变化,从而将压力腔室中的墨水从喷孔喷出。
现有的一种液体喷头包括基底、设置在基底第一面上的振动板和压电元件以及粘接在基底第二面(与第一面相对的一面)上的喷孔板。现有的液体喷头的制造方法是:在基底的第一面形成振动板和压电元件,在基底的第二面通过蚀刻工艺,在该基底上蚀刻出多个与压电元件位置相对应的存储液体的压力腔室以及与供墨孔位置相对应的公共腔室,最后,在基体的第二面粘结喷孔板,使喷孔板上的多个喷孔分别与各个压力腔室连通。该液体喷头在工作时,压电元件在电压驱动下产生变形,并传递给振动板引起压力腔室体积变化,使得压力腔室中的液体从喷孔中喷出而完成打印。
现有的一种液体喷射装置包括基底、设置在基底第一面上的振动板和压电元件以及粘接在基底第二面(与第一面相对的一面)上的喷孔板。现有的液体喷射装置的制造方法是:在基底的第一面形成振动板和压电元件,在基底的第二面通过蚀刻工艺,在该基底上蚀刻出多个与压电元件位置相对应的存储液体的压力腔室以及与供墨孔位置相对应的公共腔室,最后,在基体的第二面粘结喷孔板,使喷孔板上的多个喷孔分别与各个压力腔室连通。该液体喷射装置在工作时,压电元件在电压驱动下产生变形,并传递给振动板引起压力腔室体积变化,使得压力腔室中的液体从喷孔中喷出而完成打印。
但是,为了提高打印机的打印分辨率,需要增加高液体喷头或液体喷射装置的压力腔室的数量,由于现有的液体喷头或液体喷射装置的压力腔室是在基底上蚀刻形成,增加压力腔室数量需要减小相邻压力腔室的侧壁厚度,因而必然会导致作为基底的硅片的机械强度下降,在制造过程中容易出现基底破损而使液体喷头或液体喷射装置的成品率降低,制造成本较高;另一方 面,由于喷嘴板是通过粘合剂粘接在压力腔室的基底上,若粘合剂流入压力腔室中,也会影响到打印质量。
发明内容
本发明提供一种液体喷头、液体喷射装置一体成型制造方法及设备,用于解决现有技术中液体喷头制造方法制造出的液体喷头或液体喷射装置一体成型制造方法制造出的液体喷射装置成品率低、制造成本较高且打印质量较差的技术缺陷。
本发明第一方面提供的一种液体喷头制造方法,包括:
在第一基底上形成多个间隔设置的压力发生部件;
在第一基底的第一表面上形成与多个所述压力发生部件对应的压力腔室以及与多个所述压力腔室连通的公共腔室;
通过键合工艺在所述压力腔室上成形过渡层,并在所述过渡层上形成喷孔板;
通过光刻工艺在所述喷孔板和过渡层上形成有与所述压力腔室连通的喷孔。
本发明第二方面提供的一种液体喷射装置一体成型制造方法,包括:
在第一基底上形成多个间隔设置的压力发生部件;
在第一基底的第一表面上形成与多个所述压力发生部件对应的压力腔室以及与多个所述压力腔室连通的公共腔室;
通过键合工艺在所述压力腔室上成形有喷孔板以及通过光刻工艺在所述喷孔板上形成有与所述压力腔室连通的喷孔。
本发明第三方面提供一种液体喷头,该液体喷头是用上述的液体喷头制造方法制造的。
本发明第四方面提供一种打印装置,该打印装置包括如上所述的液体喷头。
本发明第五方面提供一种液体喷射装置,该液体喷射装置是用上述的液体喷射装置一体成型制造方法制造的。
本发明提供的液体喷头、液体喷射装置一体成型制造方法及设备,在第一基底的第一表面上形成压力腔室和公共腔室,当需要增加高液体喷头的压 力腔室的数量时,由于本实施例是在第一基底上单独形成压力腔室,因而不会减小第一基底的机械强度,在制造过程中可以避免第一基底破损,从而提高液体喷头的成品率,降低制造成本。并且,通过键合工艺形成过渡层,在过渡层上形成喷孔板,并且通过光刻工艺在喷孔板和过渡层上形成喷孔,可以避免粘合剂流入压力腔室中,能够提高液体喷头的打印质量。
附图说明
为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作一简单地介绍,显而易见地,下面描述中的附图是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动性的前提下,还可以根据这些附图获得其他的附图。
图1为本发明实施例提供的一种液体喷头制造方法的流程图;
图2为图1中步骤200的一种具体实施方式的流程图;
图3为图1中步骤300的一种具体实施方式的流程图;
图4为图1中步骤100的一种具体实施方式的流程图;
图5为本发明实施例提供的另一种液体喷头制造方法的流程图;
图6为本发明实施例制造的液体喷头的结构示意图;
图7A-图7I为本发明实施例中步骤200的一种具体实施方式的产品制造过程结构视图;
图8A-图8G为本发明另一实施方式的产品制造过程结构视图;
图9A-图9C为本发明又一实施方式的产品制造过程结构视图;
图10A-图10B为本发明再一实施方式的产品制造过程结构视图;
图11为本发明实施例提供的一种液体喷射装置一体成型制造方法的流程图;
图12为图11中步骤600的一种具体实施方式的流程图;
图13为图11中步骤700的一种具体实施方式的流程图;
图14为图11中步骤500的一种具体实施方式的流程图;
图15为本发明实施例提供的另一种液体喷射装置一体成型制造方法的流程图;
图16为本发明实施例制造的液体喷射装置的结构示意图;
图17A-图17H为本发明实施例中步骤600的一种具体实施方式的产品制造过程结构视图;
图18A-图18G为本发明另一实施方式的产品制造过程结构视图;
图19A-图19C为本发明又一实施方式的产品制造过程结构视图;
图20A-图20B为本发明再一实施方式的产品制造过程结构视图。
具体实施方式
为使本发明实施例的目的、技术方案和优点更加清楚,下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
图1为本发明实施例提供的一种液体喷头制造方法的流程图,如图1所示,本实施例提供的液体喷头制造方法,包括:
步骤100,在第一基底上形成多个间隔设置的压力发生部件。
步骤200,在第一基底的第一表面上形成与多个所述压力发生部件对应的压力腔室以及与多个所述压力腔室连通的公共腔室。
具体地,图2为图1中步骤200的一种具体实施方式的流程图;如图2所示,步骤200,在第一基底的第一表面上形成与多个所述压力发生部件对应的压力腔室以及与多个所述压力腔室连通的公共腔室,可以包括:
步骤201,在第一基底的第一表面上设置腔室层并曝光,限定压力腔室和公共腔室的形状和位置。
具体地,图6为本发明实施例制造的液体喷头的结构示意图;图7A-图7I为本发明实施例中步骤200的一种具体实施方式的产品制造过程结构视图,如图6和7A所示,第一基底1可以为硅基底,第一基底1的第一表面为图中所示第一基底1的上表面,可以在第一基底1的第一表面上悬涂腔室层5a,腔室层5a的材料可以为具有良好机械加工性能的负性光敏胶SU8或者聚酰亚胺,腔室层5a可以涂满整个第一基底1上表面,腔室层5a的厚度与压力腔室和公共腔室的高度尺寸相匹配。
如图6和7B所示,可以采用掩模板12a对腔室层5a进行曝光,并且通 过掩模板12a的结构形式及曝光工艺限定压力腔室5和公共腔室8的形状和位置,其中,腔室壁5b被固化,不会被后续工艺采用的显影液去除。
步骤202,显影形成压力腔室和公共腔室。
如图7C所示,可以采用显影液显影腔室层5a,被固化的腔室壁5b被保留下来,其余的部分被去除后形成压力腔室5和公共腔室8(图6所示)。
步骤300,通过键合工艺在所述压力腔室上成形过渡层,并在所述过渡层上形成喷孔板,具体地,图3为图1中步骤300的一种具体实施方式的流程图;如图3所示,步骤300可以包括:
步骤301,在第二基底上悬涂过渡层。
如图7D所示,第二基底1’的材料可以为有机玻璃等,过渡层6a的材料可以为具有良好机械加工性能的负性光敏胶SU8或者聚酰亚胺。
步骤302,通过键合工艺将所述腔室层的腔室壁与所述过渡层粘接在一起,如图7E所示,可以设置较薄的过渡层6a,可以保证过渡层6a能与腔室层的腔室壁更好地键合在一起。
步骤303,剥离所述第二基底,如图7F所示。
步骤304,在所述过渡层上悬涂喷孔板。如图7G所示,可以在过渡层6a上悬涂较厚的喷孔板7a,喷孔板7a的材料可以为具有良好机械加工性能的负性光敏胶SU8或者聚酰亚胺。由于在过渡层6a上形成喷孔板7a,可以更好地形成较厚的喷孔板7a。
步骤400,通过光刻工艺在所述喷孔板和过渡层上形成有与所述压力腔室连通的喷孔。
具体地,如图7G和图7H所示,可以采用掩模板12b对喷孔板7a进行曝光,并且通过掩模板12b的结构形式及曝光工艺限定喷孔的形状和位置,其中,喷孔壁被固化,不会被后续工艺采用的显影液去除。采用显影液显影喷孔板7a,被固化的喷孔壁保留下来,其余的部分被去除后形成喷孔7。
本实施例提供的液体喷头制造方法,是在第一基底的第一表面上形成压力腔室和公共腔室,当需要增加高液体喷头的压力腔室的数量时,由于本实施例是在第一基底上单独形成压力腔室,因而不会减小第一基底的机械强度,在制造过程中可以避免第一基底破损,从而提高液体喷头的成品率,降低制造成本。并且,并且,通过键合工艺形成过渡层,在过渡层上形成喷孔板, 并且通过光刻工艺在喷孔板和过渡层上形成喷孔,可以避免粘合剂流入压力腔室中,能够提高液体喷头的打印质量。
图4为图1中步骤100的一种具体实施方式的流程图,图8A-图8G为本发明另一实施方式的产品制造过程结构视图。如图4所示,在上述实施例技术方案的基础上,步骤100,在第一基底上形成多个间隔设置的压力发生部件,可以包括:
步骤101,刻蚀第一基底的第一表面形成凹槽。
如图8A所示,具体地,在第一基底1的第一表面通过干法刻蚀或湿法刻蚀形成凹槽2,该凹槽2用于容设压力发生部件。
步骤102,在所述凹槽内形成压电元件,该压电元件的上表面与所述第一基底第一表面平齐。
如图8B所示,可以通过溅射法在凹槽2内依次形成下电极层3c、压电体层3b和上电极层3a;其中,下电极层3c为钛(Ti)层、铂金(Pt)层或多个钛层叠加层;压电体层3b为锆钛酸铅(PZT)层;上电极层3a为铂金(Pt)层或黄金层。
步骤103,在第一基底的第一表面上形成振动板,所述振动板盖设在所述压电元件的外部。
如图8C所示,在第一基底1的第一表面通过低压化学气相沉积法或等离子体增强化学气相沉积法形成振动板4,振动板4的材料可以为SiO2或Si3N4或SiO2-Si3N4材料叠层;振动板4盖设在上电极层3a外部,且外边沿覆设在第一基底1的第一表面。
然后,如图8D所示,可以采用上述实施例提供的制造方法形成压力腔室5、过渡层6a、公共腔室8和喷孔7,采用该方法形成上述腔室和喷孔,可以提高打印分辨率,并且能够实现液体喷头的小型化。
图5为本发明实施例提供的另一种液体喷头制造方法的流程图;如图5所示,进一步地,在上述一体成型制造方法中步骤400之后,还可以包括:
步骤500,蚀刻第一基底的二表面形成与公共腔室连通的供墨孔以及与压力发生部件相通的空腔。
如图8E所示,可以采用干法蚀刻法刻蚀第一基底1的第二表面(图示第一基底的下表面),形成与公共腔室8连通的供墨孔9和与压电元件3中的 下电极层3c相通的空腔10,其中,空腔10是可以提高压电元件3的振动幅度。
为了进一步提高压电元件3的振动性能,如图8F所示,可以在压电元件3的两侧与第一基底1之间形成缝隙11,缝隙11可以保证压电元件3在振动时不受第一基底1的束缚,提高振动幅度。
步骤600,在第一基底的第二表面设置盖板,该盖板盖设所述空腔上并保持所述供墨孔畅通。
如图8G所示,在第一基底1的第二表面粘结盖板12,完成液体喷头的制造流程,盖板12的材料可以是聚丙烯酸甲酯(PMMA)。
在上述实施例技术方案中步骤100,所述在第一基底上形成多个间隔设置的压力发生部件,还可以通过其他方式实现,具体地,步骤100可以包括:
步骤101’,在第一基底的第一表面上形成振动板。
如图9A所示,可以通过低压化学气相沉积法或等离子体增强化学气相沉积法在第一基底1的第一表面形成振动板;其中,所述振动板的材料为SiO2或Si3N4或SiO2-Si3N4叠层。
步骤102’,在所述振动板上形成压电元件。
如图9B所示,可以通过溅射法形成下电极层3c、溶胶凝胶法形成压电体层3b和溅射法形成上电极层3a;其中,下电极层3c可以为钛(Ti)层、铂金(Pt)层或多个钛层叠加层;压电体层可以为锆钛酸铅(PZT)层;上电极层可以为铂金(Pt)层或黄金层。
如图9C所示,然后,可以采用上述实施例提供的制造方法在第一基底1的第一表面形成压力腔室5、过渡层6a公共腔室8和喷孔7。在第一基底1第二表面蚀刻形成与公共腔室8连通的供墨孔9以及与压力元件3的下电极层3c相通的空腔10。在第一基底1的第二表面设置盖板12,该盖板12盖设空腔10上并保持供墨9孔畅通。
图10A-图10B为本发明再一实施方式的产品制造过程结构视图。如图10A所示,在上述实施例技术方案的基础上,步骤100,在第一基底上形成多个间隔设置的压力发生部件,具体地为:
在第一基底1的第一表面沉积薄膜电阻层3′,该薄膜电阻层3′的材料为钽铝合金或镍铬合金或钨硅氮化物或氮化钛。
如图10B所示,进一步地,蚀刻第一基底1的第二表面形成与公共腔室8连通的供墨孔9。
该实施例制造的液体喷头的具体的喷液过程为:液体通过供墨孔9到达公共腔室8,同时,施加脉冲信号后薄膜电阻层3′以1000℃/μs的速度加热液体,大约到340℃左右使液体中易挥发组分气化产生气泡,气泡把墨滴从原来的位置挤出喷孔7;气泡的形成是可逆的,当解除脉冲信号时,被动的冷却会致使气泡瞬间破灭,这时,墨滴将从喷孔7中彻底喷出。
图11为本发明实施例提供的一种液体喷射装置一体成型制造方法的流程图,如图11所示,本实施例提供的液体喷射装置一体成型制造方法,包括:
步骤500,在第一基底上形成多个间隔设置的压力发生部件。
步骤600,在第一基底的第一表面上形成与多个所述压力发生部件对应的压力腔室以及与多个所述压力腔室连通的公共腔室。
具体地,图12为图11中步骤600的一种具体实施方式的流程图;如图12所示,步骤600,在第一基底的第一表面上形成与多个所述压力发生部件对应的压力腔室以及与多个所述压力腔室连通的公共腔室,可以包括:
步骤601,在第一基底的第一表面上设置腔室层并曝光,限定压力腔室和公共腔室的形状和位置。
具体地,图16为本发明实施例制造的液体喷射装置的结构示意图;图17A-图17H为本发明实施例中步骤600的一种具体实施方式的产品制造过程结构视图,如图16和17A所示,第一基底21可以为硅基底,第一基底21的第一表面为图中所示第一基底21的上表面,可以在第一基底21的第一表面上悬涂腔室层25a,腔室层25a的材料可以为具有良好机械加工性能的负性光敏胶SU8,腔室层25a可以涂满整个第一基底21上表面,腔室层25a的厚度与压力腔室和公共腔室的高度尺寸相匹配。
如图16和17B所示,可以采用掩模板212a对腔室层25a进行曝光,并且通过掩模板212a的结构形式及曝光工艺限定压力腔室25和公共腔室27的形状和位置,其中,腔室壁25b被固化,不会被后续工艺采用的显影液去除。
步骤602,显影形成压力腔室和公共腔室。
如图17C所示,可以采用显影液1,2丙二醇甲酸酯(PMEGA)显影腔室层25a,被固化的腔室壁25b被保留下来,其余的部分被去除后形成压力腔室 25和公共腔室27(图16所示)。
步骤700,通过键合工艺在所述压力腔室上成形有喷孔板以及通过光刻工艺在所述喷孔板上形成有与所述压力腔室连通的喷孔。具体地,图13为图11中步骤700的一种具体实施方式的流程图;如图13所示,步骤700可以包括:
步骤701,在第二基底上悬涂喷孔层。
如图17D所示,第二基底21’的材料可以为有机玻璃等,喷孔层26a的材料可以为具有良好机械加工性能的负性光敏胶SU8。
步骤702,通过键合工艺将所述腔室层的腔室壁与所述喷孔层粘接在一起,如图17E所示。
步骤703,剥离所述第二基底,如图17F所示。
进一步地,如图17G和图17H所示,可以采用掩模板212b对喷孔层26a进行曝光,并且通过掩模板212b的结构形式及曝光工艺限定喷孔的形状和位置,其中,喷孔壁被固化,不会被后续工艺采用的显影液去除。采用显影液1,2丙二醇甲酸酯(PMEGA)显影喷孔层26a,被固化的喷孔壁保留下来,其余的部分被去除后形成喷孔26。
本实施例提供的液体喷射装置一体成型制造方法,是在第一基底的第一表面上形成压力腔室和公共腔室,当需要增加高液体喷射装置的压力腔室的数量时,由于本实施例是在第一基底上单独形成压力腔室,因而不会减小第一基底的机械强度,在制造过程中可以避免第一基底破损,从而提高液体喷射装置的成品率,降低制造成本。并且,通过键合工艺形成喷孔板和通过光刻工艺在喷孔板上形成喷孔,可以避免粘合剂流入压力腔室中,能够提高液体喷射装置的打印质量。
图14为图11中步骤500的一种具体实施方式的流程图,图18A-图18G为本发明另一实施方式的产品制造过程结构视图。如图14所示,在上述实施例技术方案的基础上,步骤500,在第一基底上形成多个间隔设置的压力发生部件,可以包括:
步骤501,刻蚀第一基底的第一表面形成凹槽。
如图18A所示,具体地,在第一基底21的第一表面通过干法刻蚀或湿法刻蚀形成凹槽22,该凹槽22用于容设压力发生部件。
步骤502,在所述凹槽内形成压电元件,该压电元件的上表面与所述第一基底第一表面平齐。
如图18B所示,可以通过溅射法在凹槽22内依次形成下电极层23c、压电体层23b和上电极层23a;其中,下电极层23c为钛(Ti)层、铂金(Pt)层或多个钛层叠加层;压电体层23b为锆钛酸铅(PZT)层;上电极层23a为铂金(Pt)层或黄金层。
步骤503,在第一基底的第一表面上形成振动板,所述振动板盖设在所述压电元件的外部。
如图18C所示,在第一基底21的第一表面通过低压化学气相沉积法或等离子体增强化学气相沉积法形成振动板24,振动板24的材料可以为SiO2或Si3N4或SiO2-Si3N4叠层;振动板24盖设在上电极层23a外部,且外边沿覆设在第一基底21的第一表面。
然后,如图18D所示,可以采用上述实施例提供的一体成型制造方法形成压力腔室25、公共腔室27和喷孔26,采用该方法形成上述腔室和喷孔,可以提高打印分辨率,并且能够实现液体喷射装置的小型化。
图15为本发明实施例提供的另一种液体喷射装置一体成型制造方法的流程图;如图15所示,进一步地,在上述一体成型制造方法中步骤700之后,还可以包括:
步骤800,蚀刻第一基底的二表面形成与公共腔室连通的供墨孔以及与压力发生部件相通的空腔。
如图18E所示,可以采用干法蚀刻法刻蚀第一基底21的第二表面(图示第一基底的下表面),形成与公共腔室27连通的供墨孔28和与压电元件23中的下电极层23c相通的空腔29,其中,空腔29是可以提高压电元件23的振动幅度。
为了进一步提高压电元件23的振动性能,如图18F所示,可以在压电元件23的两侧与第一基底21之间形成缝隙20,缝隙20可以保证压电元件23在振动时不受第一基底21的束缚,提高振动幅度。
步骤900,在第一基底的第二表面设置盖板,该盖板盖设所述空腔上并保持所述供墨孔畅通。
如图18G所示,在第一基底21的第二表面粘结盖板211,完成液体喷射 装置的制造流程,盖板211的材料可以是聚丙烯酸甲酯(PMMA)。
在上述实施例技术方案中步骤500,所述在第一基底上形成多个间隔设置的压力发生部件,还可以通过其他方式实现,具体地,步骤500可以包括:
步骤501’,在第一基底的第一表面上形成振动板。
如图19A所示,可以通过低压化学气相沉积法或等离子体增强化学气相沉积法在第一基底21的第一表面形成振动板;其中,所述振动板的材料为SiO2或Si3N4或SiO2-Si3N4叠层。
步骤502’,在所述振动板上形成压电元件。
如图19B所示,可以通过溅射法形成下电极层23c、溶胶凝胶法形成压电体层23b和溅射法形成上电极层23a;其中,下电极层23c可以为钛(Ti)层、铂金(Pt)层或多个钛层叠加层;压电体层可以为锆钛酸铅(PZT)层;上电极层可以为铂金(Pt)层或黄金层。
如图19C所示,然后,可以采用上述实施例提供的一体成型制造方法在第一基底21的第一表面形成压力腔室25、公共腔室27和喷孔26。在第一基底1第二表面蚀刻形成与公共腔室27连通的供墨孔28以及与压力元件23的下电极层23c相通的空腔29。在第一基底21的第二表面设置盖板211,该盖板211盖设空腔29上并保持供墨29孔畅通。
图20A-图20B为本发明再一实施方式的产品制造过程结构视图。如图20A所示,在上述实施例技术方案的基础上,步骤500,在第一基底上形成多个间隔设置的压力发生部件,具体地为:
在第一基底21的第一表面沉积薄膜电阻层23′,该薄膜电阻层23′的材料为钽铝合金或镍铬合金或钨硅氮化物或氮化钛。
如图20B所示,进一步地,蚀刻第一基底21的第二表面形成与公共腔室27连通的供墨孔28。
该实施例制造的液体喷射装置的具体的喷液过程为:液体通过供墨孔28到达公共腔室27,同时,施加脉冲信号后薄膜电阻层23′以1000℃/μs的速度加热液体,大约到340℃左右使液体中易挥发组分气化产生气泡,气泡把墨滴从原来的位置挤出喷孔26;气泡的形成是可逆的,当解除脉冲信号时,被动的冷却会致使气泡瞬间破灭,这时,墨滴将从喷孔26中彻底喷出。
本发明还提供一种液体喷头,该液体喷头是用上述实施例提供的液体喷 头制造方法制造的。本实施例提供的液体喷头,是在第一基底的第一表面上形成压力腔室和公共腔室,当需要增加高液体喷头的压力腔室的数量时,由于本实施例是在第一基底上单独形成压力腔室,因而不会减小第一基底的机械强度,在制造过程中可以避免第一基底破损,从而提高液体喷头的成品率,降低制造成本。并且,通过键合工艺形成喷孔板和通过光刻工艺在喷孔板上形成喷孔,可以避免粘合剂流入压力腔室中,能够提高液体喷头的打印质量。
本发明还提供一种打印装置,该打印装置包括上述实施例提供的液体喷头。该打印装置的技术方案也具有上述效果,在此不再赘述。
本发明还提供一种液体喷射装置,该液体喷射装置是用上述实施例提供的液体喷射装置一体成型制造方法制造的。本实施例提供的液体喷射装置,是在第一基底的第一表面上形成压力腔室和公共腔室,当需要增加高液体喷射装置的压力腔室的数量时,由于本实施例是在第一基底上单独形成压力腔室,因而不会减小第一基底的机械强度,在制造过程中可以避免第一基底破损,从而提高液体喷射装置的成品率,降低制造成本。并且,通过键合工艺形成喷孔板和通过光刻工艺在喷孔板上形成喷孔,可以避免粘合剂流入压力腔室中,能够提高液体喷射装置的打印质量。
最后应说明的是:以上各实施例仅用以说明本发明的技术方案,而非对其限制;尽管参照前述各实施例对本发明进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分或者全部技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本发明各实施例技术方案的范围。

Claims (28)

  1. 一种液体喷头制造方法,其特征在于,包括:
    在第一基底上形成多个间隔设置的压力发生部件;
    在第一基底的第一表面上形成与多个所述压力发生部件对应的压力腔室以及与多个所述压力腔室连通的公共腔室;
    通过键合工艺在所述压力腔室上成形过渡层,并在所述过渡层上形成喷孔板;
    通过光刻工艺在所述喷孔板和过渡层上形成有与所述压力腔室连通的喷孔。
  2. 根据权利要求1的液体喷头制造方法,其特征在于,所述在第一基底的第一表面上形成与多个所述压力发生部件对应的压力腔室以及与多个所述压力腔室连通的公共腔室,包括:
    在第一基底第一表面上设置腔室层并曝光,限定压力腔室和公共腔室的形状和位置;
    显影形成压力腔室和公共腔室。
  3. 根据权利要求2所述的液体喷头制造方法,其特征在于,所述通过键合工艺在所述压力腔室上成形过渡层,并在所述过渡层上形成喷孔板,包括:
    在第二基底上悬涂过渡层;
    通过键合工艺将所述腔室层的腔室壁与所述过渡层粘接在一起;
    剥离所述第二基底;
    在所述过渡层上悬涂喷孔板。
  4. 根据权利要求3所述的液体喷头制造方法,其特征在于,所述过渡层和腔室层的材料为具有良好机械加工性能的负性光敏胶SU8或者聚酰亚胺。
  5. 根据权利要求1所述的液体喷头制造方法,其特征在于,所述在第一基底上形成多个间隔设置的压力发生部件,包括:
    刻蚀第一基底的第一表面形成凹槽;
    在所述凹槽内形成压电元件,该压电元件的上表面与所述第一基底的第一表面平齐;
    在第一基底的第一表面上形成振动板,所述振动板盖设在所述压电元件的外部。
  6. 根据权利要求5所述的液体喷头制造方法,其特征在于,所述在所述凹槽内形成压电元件,包括:
    通过溅射法在所述凹槽内依次形成下电极层、压电体层和上电极层;其中,所述下电极层为钛层、铂金层或多个钛层叠加层;所述压电体层为锆钛酸铅层;所述上电极层为铂金层或黄金层。
  7. 根据权利要求5或6所述的液体喷头制造方法,其特征在于,所述通过光刻工艺在所述喷孔板和过渡层上形成有与所述压力腔室连通的喷孔之后,还包括:
    蚀刻第一基底的第二表面形成与公共腔室连通的供墨孔以及与压力发生部件相通的空腔;
    在第一基底的第二表面设置盖板,该盖板盖设所述空腔上并保持所述供墨孔畅通。
  8. 根据权利要求7所述的液体喷头制造方法,其特征在于,所述蚀刻第一基底的第二表面形成与公共腔室连通的供墨孔以及与压力发生部件相通的空腔之后,还包括:
    在所述压电元件的两侧与所述第一基底之间形成缝隙。
  9. 根据权利要求1所述的液体喷头制造方法,其特征在于,所述在第一基底上形成多个间隔设置的压力发生部件,包括:
    在第一基底的第一表面上形成振动板;
    在所述振动板上形成压电元件。
  10. 根据权利要求5或6或9所述的液体喷头制造方法,其特征在于:
    所述在第一基底的第一表面形成振动板包括:通过低压化学气相沉积法或等离子体增强化学气相沉积法形成振动板;其中,所述振动板为SiO2或Si3N4
  11. 根据权利要求9所述的液体喷头制造方法,其特征在于,所述通过光刻工艺在所述喷孔板和过渡层上形成有与所述压力腔室连通的喷孔之后,还包括:
    在第一基底第二表面蚀刻形成与公共腔室连通的供墨孔以及与压力发生部件相通的空腔;
    在第一基底第二表面设置盖板,该盖板盖设所述空腔上并保持所述供墨 孔畅通。
  12. 根据权利要求1所述的液体喷头制造方法,其特征在于,所述在第一基底上形成多个间隔设置的压力发生部件,包括:
    在第一基底的第一表面沉积薄膜电阻层,该薄膜电阻层的材料为钽铝合金或镍铬合金或钨硅氮化物或氮化钛。
  13. 根据权利要求12所述的液体喷头制造方法,其特征在于,所述通过光刻工艺在所述喷孔板和过渡层上形成有与所述压力腔室连通的喷孔之后,还包括:
    蚀刻第一基底的第二表面形成与公共腔室连通的供墨孔。
  14. 一种液体喷射装置一体成型制造方法,其特征在于,包括:
    在第一基底上形成多个间隔设置的压力发生部件;
    在第一基底的第一表面上形成与多个所述压力发生部件对应的压力腔室以及与多个所述压力腔室连通的公共腔室;
    通过键合工艺在所述压力腔室上成形有喷孔板以及通过光刻工艺在所述喷孔板上形成有与所述压力腔室连通的喷孔。
  15. 根据权利要求14的液体喷射装置一体成型制造方法,其特征在于,所述在第一基底的第一表面上形成与多个所述压力发生部件对应的压力腔室以及与多个所述压力腔室连通的公共腔室,包括:
    在第一基底第一表面上设置腔室层并曝光,限定压力腔室和公共腔室的形状和位置;
    显影形成压力腔室和公共腔室。
  16. 根据权利要求15所述的液体喷射装置一体成型制造方法,其特征在于,所述通过键合工艺在所述压力腔室上成形有喷孔板,包括:
    在第二基底上悬涂喷孔层;
    通过键合工艺将所述腔室层的腔室壁与所述喷孔层粘接在一起;
    剥离所述第二基底。
  17. 根据权利要求14所述的液体喷射装置一体成型制造方法,其特征在于,所述在第一基底上形成多个间隔设置的压力发生部件,包括:
    刻蚀第一基底的第一表面形成凹槽;
    在所述凹槽内形成压电元件,该压电元件的上表面与所述第一基底的第 一表面平齐;
    在第一基底的第一表面上形成振动板,所述振动板盖设在所述压电元件的外部。
  18. 根据权利要求17所述的液体喷射装置一体成型制造方法,其特征在于,所述在所述凹槽内形成压电元件,包括:
    通过溅射法在所述凹槽内依次形成下电极层、压电体层和上电极层;其中,所述下电极层为钛层、铂金层或多个钛层叠加层;所述压电体层为锆钛酸铅层;所述上电极层为铂金层或黄金层。
  19. 根据权利要求17或18所述的液体喷射装置一体成型制造方法,其特征在于,所述通过键合工艺在所述压力腔室上成形有喷孔板以及通过光刻工艺在所述喷孔板上形成有与所述压力腔室连通的喷孔之后,还包括:
    蚀刻第一基底的第二表面形成与公共腔室连通的供墨孔以及与压力发生部件相通的空腔;
    在第一基底的第二表面设置盖板,该盖板盖设所述空腔上并保持所述供墨孔畅通。
  20. 根据权利要求19所述的液体喷射装置一体成型制造方法,其特征在于,所述蚀刻第一基底的第二表面形成与公共腔室连通的供墨孔以及与压力发生部件相通的空腔之后,还包括:
    在所述压电元件的两侧与所述第一基底之间形成缝隙。
  21. 根据权利要求14所述的液体喷射装置一体成型制造方法,其特征在于,所述在第一基底上形成多个间隔设置的压力发生部件,包括:
    在第一基底的第一表面上形成振动板;
    在所述振动板上形成压电元件。
  22. 根据权利要求17或18或21所述的液体喷射装置一体成型制造方法,其特征在于:
    所述在第一基底的第一表面形成振动板包括:通过低压化学气相沉积法或等离子体增强化学气相沉积法形成振动板;其中,所述振动板的材料为SiO2或Si3N4或SiO2-Si3N4叠层。
  23. 根据权利要求21所述的液体喷射装置一体成型制造方法,其特征在于,所述通过键合工艺在所述压力腔室上成形有喷孔板以及通过光刻工艺在 所述喷孔板上形成有与所述压力腔室连通的喷孔之后,还包括:
    在第一基底第二表面蚀刻形成与公共腔室连通的供墨孔以及与压力发生部件相通的空腔;
    在第一基底第二表面设置盖板,该盖板盖设所述空腔上并保持所述供墨孔畅通。
  24. 根据权利要求14所述的液体喷射装置一体成型制造方法,其特征在于,所述在第一基底上形成多个间隔设置的压力发生部件,包括:
    在第一基底的第一表面沉积薄膜电阻层,该薄膜电阻层的材料为钽铝合金或镍铬合金或钨硅氮化物或氮化钛。
  25. 根据权利要求24所述的液体喷射装置一体成型制造方法,其特征在于,通过键合工艺在所述压力腔室上成形有喷孔板以及通过光刻工艺在所述喷孔板上形成有与所述压力腔室连通的喷孔,还包括:
    蚀刻第一基底的第二表面形成与公共腔室连通的供墨孔。
  26. 一种液体喷头,其特征在于,该液体喷头是用权利要求1至13中任一项所述的液体喷头制造方法制造的。
  27. 一种打印装置,其特征在于,该打印装置包括权利要求26所述的液体喷头。
  28. 一种液体喷射装置,其特征在于,该液体喷射装置是用权利要求14至25中任一项所述的液体喷射装置一体成型制造方法制造的
PCT/CN2014/089454 2013-12-26 2014-10-24 液体喷头、液体喷射装置一体成型制造方法及设备 WO2015096545A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2016552657A JP6333992B2 (ja) 2013-12-26 2014-10-24 液体ノズルと液体噴射装置の一体成形製造方法及びその装置
US15/073,594 US9731508B2 (en) 2013-12-26 2016-03-17 Liquid jet head, method for integrally manufacturing a liquid jet apparatus, and device
US15/463,032 US9919527B2 (en) 2013-12-26 2017-03-20 Liquid jet head, method for integrally manufacturing a liquid jet apparatus, and device

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
CN201310733314.8 2013-12-26
CN201310733314.8A CN103770468B (zh) 2013-12-26 2013-12-26 液体喷射装置及其一体成型制造方法
CN201410182638.1A CN103935128B (zh) 2014-04-29 2014-04-29 液体喷头制造方法、液体喷头和打印装置
CN201410182638.1 2014-04-29

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US15/073,594 Continuation US9731508B2 (en) 2013-12-26 2016-03-17 Liquid jet head, method for integrally manufacturing a liquid jet apparatus, and device

Publications (1)

Publication Number Publication Date
WO2015096545A1 true WO2015096545A1 (zh) 2015-07-02

Family

ID=53477495

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2014/089454 WO2015096545A1 (zh) 2013-12-26 2014-10-24 液体喷头、液体喷射装置一体成型制造方法及设备

Country Status (3)

Country Link
US (2) US9731508B2 (zh)
JP (1) JP6333992B2 (zh)
WO (1) WO2015096545A1 (zh)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001003934A1 (en) * 1999-07-12 2001-01-18 Olivetti Lexikon S.P.A. Monolithic printhead and associated manufacturing process
CN1545451A (zh) * 2002-04-10 2004-11-10 ������������ʽ���� 液体排出头、液体排出装置以及制造液体排出头的方法
US20060134561A1 (en) * 2004-12-16 2006-06-22 Palo Alto Research Center Incorporated Electroplated three dimensional ink jet manifold and nozzle structures using successive lithography and electroplated sacrificial layers
CN101003206A (zh) * 2006-01-20 2007-07-25 三星电机株式会社 喷墨打印机喷头及其制造方法
CN101505967A (zh) * 2006-08-31 2009-08-12 柯尼卡美能达控股株式会社 液体吐出头用喷嘴板的制造方法、液体吐出头用喷嘴板及液体吐出头
CN103192603A (zh) * 2012-01-04 2013-07-10 珠海并洲贸易有限公司 液体喷头及其制造方法
CN103770468A (zh) * 2013-12-26 2014-05-07 大连理工大学 液体喷射装置及其一体成型制造方法
CN103935128A (zh) * 2014-04-29 2014-07-23 大连理工大学 液体喷头制造方法、液体喷头和打印装置

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002059557A (ja) * 2000-08-22 2002-02-26 Casio Comput Co Ltd 薄膜体設置方法
JP4269721B2 (ja) * 2002-03-07 2009-05-27 コニカミノルタホールディングス株式会社 インクジェットヘッドの製造方法
US6739519B2 (en) 2002-07-31 2004-05-25 Hewlett-Packard Development Company, Lp. Plurality of barrier layers
ATE376935T1 (de) 2003-09-17 2007-11-15 Hewlett Packard Development Co Ein vielzahl von sperrschichten
KR100537522B1 (ko) * 2004-02-27 2005-12-19 삼성전자주식회사 압전 방식의 잉크젯 프린트헤드와 그 노즐 플레이트의제조 방법
JP2007055007A (ja) * 2005-08-23 2007-03-08 Canon Inc インクジェット記録ヘッドおよびその製造方法
JP2009166385A (ja) * 2008-01-17 2009-07-30 Seiko Epson Corp 液体噴射ヘッド及びその製造方法
JP2009196354A (ja) 2008-01-21 2009-09-03 Seiko Epson Corp 液体噴射ヘッドの製造方法及び液体噴射装置
TW201032693A (en) 2009-02-24 2010-09-01 Compal Electronics Inc Fastening mechanism
CN103182844B (zh) 2011-12-27 2015-06-03 珠海纳思达企业管理有限公司 一种液体喷头
CN103085479B (zh) 2013-02-04 2015-12-23 珠海赛纳打印科技股份有限公司 一种墨水喷头及其制造方法

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001003934A1 (en) * 1999-07-12 2001-01-18 Olivetti Lexikon S.P.A. Monolithic printhead and associated manufacturing process
CN1545451A (zh) * 2002-04-10 2004-11-10 ������������ʽ���� 液体排出头、液体排出装置以及制造液体排出头的方法
US20060134561A1 (en) * 2004-12-16 2006-06-22 Palo Alto Research Center Incorporated Electroplated three dimensional ink jet manifold and nozzle structures using successive lithography and electroplated sacrificial layers
CN101003206A (zh) * 2006-01-20 2007-07-25 三星电机株式会社 喷墨打印机喷头及其制造方法
CN101505967A (zh) * 2006-08-31 2009-08-12 柯尼卡美能达控股株式会社 液体吐出头用喷嘴板的制造方法、液体吐出头用喷嘴板及液体吐出头
CN103192603A (zh) * 2012-01-04 2013-07-10 珠海并洲贸易有限公司 液体喷头及其制造方法
CN103770468A (zh) * 2013-12-26 2014-05-07 大连理工大学 液体喷射装置及其一体成型制造方法
CN103935128A (zh) * 2014-04-29 2014-07-23 大连理工大学 液体喷头制造方法、液体喷头和打印装置

Also Published As

Publication number Publication date
JP6333992B2 (ja) 2018-05-30
US20170210134A1 (en) 2017-07-27
US20160200105A1 (en) 2016-07-14
US9731508B2 (en) 2017-08-15
JP2016536181A (ja) 2016-11-24
US9919527B2 (en) 2018-03-20

Similar Documents

Publication Publication Date Title
KR101153562B1 (ko) 압전 방식의 잉크젯 프린트헤드 및 그 제조방법
JP6883042B2 (ja) 液体吐出装置
KR100682917B1 (ko) 압전 방식의 잉크젯 프린트헤드 및 그 제조방법
US10232616B2 (en) Liquid ejection head
KR100590558B1 (ko) 압전 방식의 잉크젯 프린트 헤드 및 그 제조방법
CN103770468B (zh) 液体喷射装置及其一体成型制造方法
WO2015096545A1 (zh) 液体喷头、液体喷射装置一体成型制造方法及设备
CN103935128B (zh) 液体喷头制造方法、液体喷头和打印装置
JP6394901B2 (ja) 液体噴射ヘッド
JP2001130009A (ja) インクジェットプリンタヘッドの製造方法
JP6869708B2 (ja) 液体吐出ヘッド
JP3972932B2 (ja) インクジェットヘッドの製造方法並びにインクジェット装置
JP2002301818A (ja) インクジェットヘッド
JPH05124208A (ja) 液体噴射記録ヘツドの製造方法および液体噴射記録ヘツド
CN104669787B (zh) 液体喷射装置及其制造方法
US20110211026A1 (en) Print head, printer
JP2001010050A (ja) インクジェットヘッド
KR100561865B1 (ko) 압전 방식의 잉크젯 프린트헤드 및 그 제조방법
JP2001130011A (ja) インクジェットヘッド及びその製造方法並びにインクジェット式記録装置
JP3722338B2 (ja) インクジェットプリントヘッド及びその製造方法
JP2002326360A (ja) 液体吐出ヘッドの製造方法
US9199455B2 (en) Printhead
JPH03187757A (ja) 液滴噴出装置
JPH03190744A (ja) 液滴噴出装置
JP2016162933A (ja) 圧電素子の製造方法及び液体噴射ヘッド

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14875313

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2016552657

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14875313

Country of ref document: EP

Kind code of ref document: A1