WO2015093641A1 - 풍력 발전 유니트 및 수직 적층형 풍력 발전 시스템 - Google Patents

풍력 발전 유니트 및 수직 적층형 풍력 발전 시스템 Download PDF

Info

Publication number
WO2015093641A1
WO2015093641A1 PCT/KR2013/011718 KR2013011718W WO2015093641A1 WO 2015093641 A1 WO2015093641 A1 WO 2015093641A1 KR 2013011718 W KR2013011718 W KR 2013011718W WO 2015093641 A1 WO2015093641 A1 WO 2015093641A1
Authority
WO
WIPO (PCT)
Prior art keywords
impeller
wind power
power generation
upper plate
lower plate
Prior art date
Application number
PCT/KR2013/011718
Other languages
English (en)
French (fr)
Inventor
곽승렬
정광섭
김철호
이성운
Original Assignee
주식회사 성진에어로
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 성진에어로 filed Critical 주식회사 성진에어로
Priority to EP13899835.6A priority Critical patent/EP3085954A1/en
Priority to PCT/KR2013/011718 priority patent/WO2015093641A1/ko
Priority to CN201380076639.1A priority patent/CN105431631A/zh
Priority to US14/572,065 priority patent/US20150167635A1/en
Publication of WO2015093641A1 publication Critical patent/WO2015093641A1/ko

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03DWIND MOTORS
    • F03D9/00Adaptations of wind motors for special use; Combinations of wind motors with apparatus driven thereby; Wind motors specially adapted for installation in particular locations
    • F03D9/20Wind motors characterised by the driven apparatus
    • F03D9/25Wind motors characterised by the driven apparatus the apparatus being an electrical generator
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03DWIND MOTORS
    • F03D3/00Wind motors with rotation axis substantially perpendicular to the air flow entering the rotor 
    • F03D3/005Wind motors with rotation axis substantially perpendicular to the air flow entering the rotor  the axis being vertical
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03DWIND MOTORS
    • F03D3/00Wind motors with rotation axis substantially perpendicular to the air flow entering the rotor 
    • F03D3/02Wind motors with rotation axis substantially perpendicular to the air flow entering the rotor  having a plurality of rotors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03DWIND MOTORS
    • F03D3/00Wind motors with rotation axis substantially perpendicular to the air flow entering the rotor 
    • F03D3/04Wind motors with rotation axis substantially perpendicular to the air flow entering the rotor  having stationary wind-guiding means, e.g. with shrouds or channels
    • F03D3/0409Wind motors with rotation axis substantially perpendicular to the air flow entering the rotor  having stationary wind-guiding means, e.g. with shrouds or channels surrounding the rotor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03DWIND MOTORS
    • F03D3/00Wind motors with rotation axis substantially perpendicular to the air flow entering the rotor 
    • F03D3/04Wind motors with rotation axis substantially perpendicular to the air flow entering the rotor  having stationary wind-guiding means, e.g. with shrouds or channels
    • F03D3/0427Wind motors with rotation axis substantially perpendicular to the air flow entering the rotor  having stationary wind-guiding means, e.g. with shrouds or channels with converging inlets, i.e. the guiding means intercepting an area greater than the effective rotor area
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03DWIND MOTORS
    • F03D9/00Adaptations of wind motors for special use; Combinations of wind motors with apparatus driven thereby; Wind motors specially adapted for installation in particular locations
    • F03D9/30Wind motors specially adapted for installation in particular locations
    • F03D9/34Wind motors specially adapted for installation in particular locations on stationary objects or on stationary man-made structures
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05BINDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
    • F05B2240/00Components
    • F05B2240/90Mounting on supporting structures or systems
    • F05B2240/91Mounting on supporting structures or systems on a stationary structure
    • F05B2240/911Mounting on supporting structures or systems on a stationary structure already existing for a prior purpose
    • F05B2240/9112Mounting on supporting structures or systems on a stationary structure already existing for a prior purpose which is a building
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B10/00Integration of renewable energy sources in buildings
    • Y02B10/30Wind power
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/70Wind energy
    • Y02E10/728Onshore wind turbines
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/70Wind energy
    • Y02E10/74Wind turbines with rotation axis perpendicular to the wind direction

Definitions

  • the present invention relates to a wind power generation unit and a vertically stacked wind power generation system.
  • Wind energy is in the limelight as a kind of renewable energy.
  • the wind energy is low density, and the direction and speed of the wind change frequently.
  • the utilization rate of existing axial-flow wind turbines currently in use is very low, less than 30%.
  • Wind power generation unit related to an aspect of the present invention for achieving the above object, the housing having an upper plate and a lower plate; An impeller rotatably disposed between the upper plate and the lower plate and rotated by a flow of air introduced between the upper plate and the lower plate; And linked to the rotation of the impeller, it may include a generator for producing electricity in accordance with the rotation of the impeller.
  • the housing may further include a fence disposed between the upper plate and the lower plate and extending toward the impeller in an outer region of each of the upper plate and the lower plate.
  • the guide vane may be further disposed between the fence and the impeller and bent in a direction opposite to the bending direction of the blade of the impeller.
  • the impeller, the guide vanes, and the fence is provided in plurality, each of the circle formed by the plurality of impeller, the circle formed by the plurality of guide vanes, and the circle formed by the plurality of fence has a concentric relationship Can be achieved.
  • the guide vanes may be provided in 24 pieces.
  • the gap between the guide vane and the impeller may be 0.15m.
  • the impeller may be a cross flow type.
  • a guide vane may be further disposed between the upper plate and the lower plate and bent toward the impeller in an outer region of each of the upper plate and the lower plate.
  • the driver for generating a rotational force by the flow of air; And a generator configured to receive the rotational force from the driver to generate electricity
  • the driver comprises: a housing having an upper plate and a lower plate forming an inner space; And an impeller rotatably disposed in the inner space to generate the rotational force by the flow of air introduced into the inner space, wherein the housing includes a plurality of inner parts stacked along the direction from the lower plate toward the upper plate.
  • the impeller may include a plurality of spaces disposed in the plurality of internal spaces, respectively.
  • the wind power generation unit and the vertically stacked wind power generation system according to the present invention configured as described above, it is possible to improve the overall power generation efficiency by improving at least one or more of the wind direction, wind speed and wind persistence.
  • FIG. 1 is a perspective view showing an installation state of the vertically stacked wind power generation system 100 according to an embodiment of the present invention.
  • FIG. 2 is a conceptual view illustrating a configuration of a wind power generation unit 200 constituting a part of the vertically stacked wind power generation system 100 of FIG. 1.
  • FIG. 3 is a perspective view showing in detail the configuration excluding the generator 250 of the wind power generation unit 200 of FIG.
  • FIG. 4 is a plan view illustrating the impeller 230 and the guide vane 270 of FIG. 3.
  • FIG 5 is a cross-sectional view showing the configuration of a wind power generation unit 300 according to another embodiment of the present invention.
  • FIG. 6 is a graph showing the maximum static pressure as a result of the pressure distribution experiment according to the number of blades of the impeller.
  • FIG. 1 is a perspective view showing an installation state of the vertically stacked wind power generation system 100 according to an embodiment of the present invention.
  • the vertically stacked wind power generation system 100 may include a driver 110, a generator 130, and an accessory 150.
  • the driver 110 is configured to generate rotational force by receiving wind.
  • the driver 110 may be a single layer, but may be stacked to form a plurality of layers as in the present embodiment.
  • the generator 130 is configured to generate electricity by receiving rotational force generated from the driver 110.
  • the generator 130 may be located under the driver 110.
  • Attachment 150 is installed in the free space of the upper surface of the driver 110, for example, may be a solar cell module.
  • the vertically stacked wind power generation system 100 may be installed in an idle space in the city center such as the rooftop R of the building B.
  • the vertically stacked wind power generation system 100 may be installed in the open portion of the middle floor of the building B. Since the wind blowing between buildings due to the high rise of the building (B), its location may be effective for the development of the vertically stacked wind power generation system (100).
  • the vertically stacked wind power generation system 100 may not only be installed in a building B on land, but also installed on a barge or the like and be located at sea.
  • the driver 110 is formed in a plurality of layers, so that the change in the driving efficiency of the driver 110 is not large due to the change in the amount of wind according to the height from the roof (R). Thereby, it is possible to improve the sustainability of the wind and to increase the power generation efficiency compared to the wind generator simply relying on one propeller.
  • the generation by the solar power as well as the generation by the wind can be performed simultaneously.
  • the wind power generation unit 200 used in the vertically stacked wind power generation system 100 will be described with reference to FIGS. 2 and 3.
  • FIG. 2 is a conceptual view illustrating a configuration of a wind power generation unit 200 constituting a part of the vertically stacked wind power generation system 100 of FIG. 1
  • FIG. 3 is a view excluding a generator 250 of the wind power generation unit 200 of FIG. A perspective view showing the configuration in detail.
  • the wind power generation unit 200 has one layer of the driver 110 and the generator 130 of the vertically stacked wind power generation system 100.
  • the wind power generation unit 200 may have a housing 210, an impeller 230, a generator 250, and a guide vane 270.
  • the housing 210 is configured to form an internal space I in which the impeller 230 and the guide vane 270 are positioned.
  • the housing 210 may have an upper plate 211, a lower plate 213, and a fence 215.
  • the upper plate 211 and the lower plate 213 may each have a plate shape and have a shape such as a square (FIG. 3) or an octagon (FIG. 1).
  • the upper plate 211 and the lower plate 213 may be spaced apart from each other in the height direction as shapes corresponding to each other.
  • the fence 215 may be disposed perpendicularly to the upper plate 211 and the lower plate 213.
  • the height of the fence 215 may be a distance between the upper plate 211 and the lower plate 213.
  • the fence 215 may be provided in plural and may be disposed to face the center in the edge regions of the upper plate 211 and the lower plate 213.
  • the impeller 230 is rotatably positioned in the internal space I and rotates by the force of air introduced into the internal space I to generate a rotational force.
  • the impeller 230 may be located in the central region of the internal space I.
  • the central axis of rotation of the impeller 230 may be disposed along the direction from the lower plate 213 toward the upper plate 211.
  • the wings 235 of the impeller 230 may be provided in plurality.
  • the generator 250 is connected to the impeller 230 to generate electricity by the rotational force generated by the impeller 230.
  • the generator 250 may have a shaft 251, a transmission 253, and a power generator 255.
  • the shaft 251 is a rod connected to the center of rotation of the impeller 230.
  • the transmission 253 connects the shaft 251 and the power generation unit 255.
  • the power generation unit 255 has a coil therein, so that a current is generated in the coil by electromagnetic induction when the shaft 251 rotates.
  • the power generation unit 255 may be supported by the support (S).
  • the generator 250 is generally the same as the generator 130 of the vertically stacked wind power generation system 100, but because it is part of the wind power generation unit 200, the reference numeral 250 is represented.
  • the guide vane 270 is configured to accelerate and guide the air introduced into the internal space I toward the impeller 230.
  • the guide vane 270 may be fixedly positioned between the fence 215 and the impeller 230.
  • the guide vane 270 has a plurality of wings 275, one of the wings 275 corresponding to the fence 215 may be connected to the fence 215.
  • the circle formed by the plurality of wings 275 may be positioned to form a concentric relationship between the circle formed by the plurality of fences 215 and the circle formed by the plurality of wings 235.
  • the fence 215 (further guide vane 270) has a width W 2 that is wider than the width W 1 of the impeller 230, thereby allowing a greater amount of air than if the impeller 230 itself is present. It is introduced toward the impeller 230. This provides the advantage of increasing the flow rate of air towards the impeller 230.
  • FIG. 4 is a plan view illustrating the impeller 230 and the guide vane 270 of FIG. 3.
  • the wing 275 of the guide vane 270 in the present figure is bent in the same direction as the wing 235 of the impeller 230, it is showing the shape opposite to that of FIG.
  • the impeller 230 is formed in a cross flow type.
  • the air flow direction F with respect to the impeller 230 flows into the wing 235 on one side and flows out toward the wing 235 on the opposite side.
  • the crossflow type impeller has an energy conversion efficiency of 35% or more, which is more efficient than an axial type impeller of 20%.
  • the shape of the blade 235 is determined by its inlet angle ⁇ and outlet angle ⁇ .
  • the inlet angle ⁇ is the angle between the tangent of the circle connecting the outside of the wing 235 and the extension line in the outward direction of the wing 235.
  • the exit angle ⁇ is the angle between the tangent of the circle that connects the inside of the vane 235 and the extension line in the inward direction of the vane 235.
  • the outlet angle ⁇ decreases, that is, the more the outlet angle ⁇ of the blade 235 is bent than the inlet angle ⁇ , the power generation efficiency is improved.
  • the size of the exit angle ⁇ is out of a certain range, the power generation efficiency may be reduced due to the peeling phenomenon on the surface of the wing 235.
  • the guide vane 270 may have a number of wings 275 corresponding to the wings 235 of the impeller 230. Thereby, air flowing between the adjacent pair of vanes 275 of the guide vane 270 may be accelerated and introduced between the corresponding pair of vanes 235 of the impeller 230.
  • the gap C between the wing 275 of the guide vane 270 and the wing 235 of the impeller 230 may be determined in view of maximizing the rotational force of the impeller 230. This will be described later with reference to FIGS. 10 and 11.
  • FIG 5 is a cross-sectional view showing the configuration of a wind power generation unit 300 according to another embodiment of the present invention.
  • the wind power generation unit 300 may include a housing 310, an impeller 330, a generator (see 250 of FIG. 2), and a guide vane 370.
  • the guide vane 370 specifically, the first vane 371 is a form in which the fence 215 and the guide vane 270 of the housing 210 of the previous embodiment are integrated.
  • the first vanes 371 extend in a bent form from the edge region of the housing 310.
  • the first vane 371 is to bend the flow angle of the air from the edge region of the housing 310.
  • the bending direction of the first vane 371 is opposite to the bending direction of the impeller 330, thereby providing drag to the impeller 330.
  • the guide vane 370 may have a second vane 375 positioned between the first vanes 371.
  • the second vane 375 guides the impeller 330 in detail with respect to the air flowing between the first vanes 371.
  • FIG. 6 is a graph showing the maximum static pressure as a result of the pressure distribution experiment according to the number of blades of the impeller.
  • the revolutions per minute of the impeller 230 and the wind speed were experimented by varying the number of wings 235 under the condition of 10 m / s. Specifically, the number of wings 235 was 8, 12, 24, 30.
  • the maximum static pressure also increased as the number of wings 235 of the impeller 230 increases. However, this is only valid until there are 24 wings 235 of the impeller 230. In other words, when the number of wings 235 is 30, the maximum static pressure is rather reduced. Therefore, 24 wings 235 of the impeller 230 is to obtain the optimum efficiency.
  • the gap between the impeller 230 and the guide vane 270 was also tested.
  • the speed of the inlet air is 10 m / s
  • the revolutions per minute of the impeller 230 is 20, and the exit angle ⁇ of the blade 235 of the impeller 230 is 85 °.
  • the number of wings 235 of the impeller 230 is 16, and the gap C is 0.1 m, 0.15 m, 0.2 m, 0.5 m.
  • Such a wind power generation unit and a vertically stacked wind power generation system are not limited to the configuration and manner of operation of the embodiments described above.
  • the above embodiments may be configured such that various modifications may be made by selectively combining all or part of the embodiments.

Landscapes

  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Wind Motors (AREA)

Abstract

본 발명은, 상판과 하판을 구비하는 하우징; 상기 상판과 상기 하판 사이에 회전 가능하게 배치되어, 상기 상판과 상기 하판 사이로 유입되는 공기의 유동에 의해 회전되는 임펠러; 및 상기 임펠러의 회전에 연동되어, 상기 임펠러의 회전에 따라 전기를 생산하는 발전기를 포함하는, 풍력 발전 유니트 및 수직 적층형 풍력 발전 시스템을 제공한다.

Description

풍력 발전 유니트 및 수직 적층형 풍력 발전 시스템
본 발명은 풍력 발전 유니트 및 수직 적층형 풍력 발전 시스템에 관한 것이다.
일반적으로, 화석연료에 의한 지구온난화 문제의 해결을 위해 전 세계는 재생에너지 보급 확대를 위해 적극적으로 노력을 기울이고 있다.
신재생에너지의 한 종류로서 바람 에너지가 각광을 받고 있다. 그러나 바람 에너지는 밀도가 낮고, 바람의 방향과 속도가 수시로 바뀌는 문제가 있다. 또한 바람의 지속성이 떨어져 현재 활용중인 기존의 축류형 풍력발전장치(axial-flow wind turbine)들의 가동율이 30%이하로 매우 낮은 상태이다.
기존 축류형 풍력발전장치의 문제점인 풍향, 풍속 그리고 바람의 지속성 문제 등의 해결방안을 제시하여 이를 개선하고 풍력발전장치의 가동률을 더 높이는 연구가 필요하다.
본 발명의 목적은, 풍향, 풍속 그리고 바람의 지속성 중 적어도 하나 이상을 개선하여 전체적인 발전 효율을 높일 수 있는, 풍력 발전 유니트 및 수직 적층형 풍력 발전 시스템을 제공하는 것이다.
상기한 과제를 실현하기 위한 본 발명의 측면과 관련된 풍력 발전 유니트는, 상판과 하판을 구비하는 하우징; 상기 상판과 상기 하판 사이에 회전 가능하게 배치되어, 상기 상판과 상기 하판 사이로 유입되는 공기의 유동에 의해 회전되는 임펠러; 및 상기 임펠러의 회전에 연동되어, 상기 임펠러의 회전에 따라 전기를 생산하는 발전기를 포함할 수 있다.
여기서, 상기 하우징은, 상기 상판과 상기 하판 사이에 배치되고, 상기 상판 및 상기 하판 각각의 외곽 영역에서 상기 임펠러를 향해 연장되는 펜스를 더 포함할 수 있다.
여기서, 상기 펜스와 상기 임펠러 사이에 위치하고, 상기 임펠러의 날개의 굴곡 방향에 반대되는 방향으로 굴곡된 안내 베인이 더 구비될 수 있다.
여기서, 상기 임펠러, 상기 안내 베인, 및 상기 펜스는 각각 복수 개로 구비되고, 상기 복수의 임펠러가 이루는 원과, 상기 복수의 안내 베인이 이루는 원, 그리고 상기 복수의 펜스가 이루는 원은 서로 동심 관계를 이룰 수 있다.
여기서, 상기 안내 베인은 24개로 구비될 수 있다.
여기서, 상기 안내 베인과 상기 임펠러 사이의 간극은 0.15m일 수 있다.
여기서, 상기 임펠러는 횡류 타입일 수 있다.
여기서, 상기 상판과 상기 하판 사이에 배치되고, 상기 상판 및 상기 하판 각각의 외곽 영역에서 상기 임펠러를 향해 휘어져서 연장되는 가이드 베인이 더 구비될 수 있다.
본 발명의 다른 측면에 따른 수직 적층형 풍력 발전 시스템은, 공기의 유동에 의해 회전력을 발생시키는 구동기; 및 상기 구동기로부터 상기 회전력을 제공받아, 전기를 생산하는 발전기를 포함하고, 상기 구동기는, 내부 공간을 형성하는 상판과 하판을 구비하는 하우징; 및 상기 내부 공간에 회전 가능하게 배치되어 상기 내부 공간으로 유입되는 공기의 유동에 의해 상기 회전력을 발생시키는 임펠러를 포함하고, 상기 하우징은, 상기 하판에서 상기 상판을 향하는 방향을 따라 적층되는 복수의 내부 공간을 구비하고, 상기 임펠러는, 상기 복수의 내부 공간에 각각 배치되는 복수 개로 구비될 수 있다.
상기와 같이 구성되는 본 발명에 관련된 풍력 발전 유니트 및 수직 적층형 풍력 발전 시스템에 의하면, 풍향, 풍속 그리고 바람의 지속성 중 적어도 하나 이상을 개선하여 전체적인 발전 효율을 높일 수 있게 된다.
도 1은 본 발명의 일 실시예에 따른 수직 적층형 풍력 발전 시스템(100)의 설치 상태를 보인 사시도이다.
도 2는 도 1의 수직 적층형 풍력 발전 시스템(100)의 일부를 이루는 풍력 발전 유니트(200)의 구성을 보인 개념도이다.
도 3은 도 2의 풍력 발전 유니트(200) 중 발전기(250)를 제외한 구성을 자세히 보인 사시도이다.
도 4는 도 3의 임펠러(230) 및 안내 베인(270)을 보인 평면도이다.
도 5는 본 발명의 다른 실시예에 따른 풍력 발전 유니트(300)의 구성을 보인 횡 단면도이다.
도 6은 임펠러의 날개 개수에 따른 압력 분포 실험의 결과로서 최대 정압을 나타낸 그래프이다.
이하, 본 발명의 바람직한 실시예에 따른 풍력 발전 유니트 및 수직 적층형 풍력 발전 시스템에 대하여 첨부한 도면을 참조하여 상세히 설명한다. 본 명세서에서는 서로 다른 실시예라도 동일·유사한 구성에 대해서는 동일·유사한 참조번호를 부여하고, 그 설명은 처음 설명으로 갈음한다.
도 1은 본 발명의 일 실시예에 따른 수직 적층형 풍력 발전 시스템(100)의 설치 상태를 보인 사시도이다.
본 도면을 참조하면, 수직 적층형 풍력 발전 시스템(100)은, 구동기(110)와, 발전기(130), 및 부속물(150)을 포함할 수 있다.
구동기(110)는 바람을 받아서 회전력을 발생시키는 구성이다. 구동기(110)는 단층일 수도 있으나, 본 실시예에서와 같이 복수의 층을 이루도록 적층될 수 있다.
발전기(130)는 구동기(110)에서 발생한 회전력을 제공받아 전기를 생산하는 구성이다. 발전기(130)는 구동기(110)의 하측에 위치할 수 있다.
부속물(150)은 구동기(110)의 상면의 여유 공간에 설치되는 것으로, 예를 들어 태양 전지 모듈일 수 있다.
이러한 구성에 의하면, 건물(B)의 옥상(R)과 같은 도심 속 유휴 공간에 수직 적층형 풍력 발전 시스템(100)이 설치될 수 있다. 이와 달리, 수직 적층형 풍력 발전 시스템(100)은 건물(B)의 중간층의 개방된 부분에 설치될 수도 있다. 건물(B)의 고층화로 건물 사이로 부는 바람이 세므로, 수직 적층형 풍력 발전 시스템(100)의 발전에 그 위치가 효과적일 수 있다. 또한, 수직 적층형 풍력 발전 시스템(100)은 육상의 건물(B)에 뿐만 아니라, 바지선 등에 설치되어 해상에 위치될 수도 있을 것이다.
이때, 발전기(130)는 하나이지만, 구동기(110)는 복수 층을 이루므로, 옥상(R)으로부터의 높이에 따른 바람의 양의 변화에 구동기(110)의 구동 효율의 저하가 크지 않게 된다. 그에 의해, 바람의 지속성을 향상시켜서, 단순히 하나의 프로펠러에만 의지하는 풍력 발전기에 비해 발전 효율을 높일 수 있다.
또한, 상기 태양 전지 모듈에 의하면, 풍력에 의한 발전과 더불어 태양광에 의한 발전도 동시에 수행될 수 있다.
이상의 수직 적층형 풍력 발전 시스템(100)에 사용되는 풍력 발전 유니트(200)에 대해 도 2 및 도 3을 참조하여 설명한다.
도 2는 도 1의 수직 적층형 풍력 발전 시스템(100)의 일부를 이루는 풍력 발전 유니트(200)의 구성을 보인 개념도이고, 도 3은 도 2의 풍력 발전 유니트(200) 중 발전기(250)를 제외한 구성을 자세히 보인 사시도이다.
본 도면들을 참조하면, 풍력 발전 유니트(200)는, 수직 적층형 풍력 발전 시스템(100) 중에서 구동기(110)의 한 층과, 발전기(130)를 갖는 것이다.
구체적으로, 풍력 발전 유니트(200)는, 하우징(210)과, 임펠러(230)와, 발전기(250), 그리고 안내 베인(270)을 가질 수 있다.
하우징(210)은 임펠러(230)와 안내 베인(270)이 위치하는 내부 공간(I)을 형성하는 구성이다. 구체적으로, 하우징(210)은, 상판(211), 하판(213), 및 펜스(215)를 가질 수 있다. 상판(211)과 하판(213)은 각각 플레이트 형태로서, 사각형(도 3) 또는 팔각형(도 1) 등의 형상을 가질 수 있다. 상판(211)과 하판(213)은 서로 대응하는 형상으로서 높이 방향으로 이격되어 배치될 수 있다. 펜스(215)는 상판(211)과 하판(213)에 대해 수직하게 배치될 수 있다. 펜스(215)의 높이는 상판(211)과 하판(213)의 이격 거리가 될 수 있다. 펜스(215)는 복수 개로 구비되고, 상판(211) 및 하판(213)의 가장자리 영역에서 중앙을 향하도록 배치될 수 있다.
임펠러(230)는 내부 공간(I)에 회전 가능하게 위치하고, 내부 공간(I)으로 유입되는 공기의 힘에 의해 회전하여 회전력을 발생시키는 구성이다. 임펠러(230)는 내부 공간(I)의 중앙 영역에 위치할 수 있다. 임펠러(230)의 회전의 중심축은 하판(213)에서 상판(211)을 향하는 방향을 따라 배치될 수 있다. 임펠러(230)의 날개(235)는 복수 개로 구비될 수 있다.
발전기(250)는 임펠러(230)에 연결되어 임펠러(230)가 발생시키는 회전력에 의해 전기를 생산하는 구성이다. 발전기(250)는, 샤프트(251), 변속기(253), 및 발전부(255)를 가질 수 있다. 샤프트(251)는 임펠러(230)의 회전 중심에 연결되는 막대이다. 변속기(253)는 샤프트(251)와 발전부(255)를 연결한다. 발전부(255)는 내부에 코일을 구비하여, 샤프트(251)의 회전 시에 전자기 유도에 의해 코일에 전류가 생성되게 한다. 발전부(255)는 지지대(S)에 의해 지지될 수 있다. 여기서, 발전기(250)는 수직 적층형 풍력 발전 시스템(100)의 발전기(130)와 대체로 동일하나, 풍력 발전 유니트(200)의 일부이기에 참조번호를 250으로 표현한다.
안내 베인(270)은 내부 공간(I)으로 유입된 공기를 임펠러(230)를 향해 가속하여 안내하는 구성이다. 안내 베인(270)은 펜스(215)와 임펠러(230) 사이에 고정적으로 위치할 수 있다. 이때, 안내 베인(270)은 복수의 날개(275)를 가지고, 그 날개(275) 중 펜스(215)에 대응하는 것은 펜스(215)와 연결될 수 있다. 이러한 관계에서, 복수의 날개(275)가 이루는 원은, 복수의 펜스(215)가 이루는 원과 복수의 날개(235)가 이루는 원 사이에 그들과 동심 관계를 이루도록 위치할 수 있다.
이러한 구성에 의하면, 하우징(210)에 대한 공기의 유동 방향(F)과 관련하여, 하우징(210)의 전방에 비해 하우징(210)의 후방에는 와류 유동(vortex flow) 현상이 발생한다. 그에 의해, 상기 전방과 상기 후방 간의 압력 차가, 하우징(210)이 없는 경우에 비해 커지게 된다. 이는 위 공기의 유동의 속도를 높여서, 임펠러(230)에 보다 높은 속도의 공기가 작용하게 하는 이점을 제공한다.
또한, 펜스(215)[나아가 안내 베인(270)]는 임펠러(230)의 폭(W1)보다 넓은 폭(W2)을 가져서, 임펠러(230) 자체가 존재하는 경우보다 많은 양의 공기를 임펠러(230)를 향해 유입시킨다. 이는 임펠러(230)를 향한 공기의 유량을 높여 주는 이점을 제공한다.
다음으로, 임펠러(230)와 안내 베인(270)의 관계에 대해 도 4를 참조하여 설명한다.
도 4는 도 3의 임펠러(230) 및 안내 베인(270)을 보인 평면도이다. 다만, 본 도면에서 안내 베인(270)의 날개(275)는 임펠러(230)의 날개(235)와 동일한 방향으로 굴곡된 점에서, 그렇지 않은 도 3과 반대인 형태를 보이고 있다.
본 도면을 참조하면, 우선 임펠러(230)는 횡류 타입으로 형성된다. 그에 의해, 임펠러(230)에 대해 공기의 유동 방향(F)은 일 측의 날개(235)로 유입되어 반대 측의 날개(235) 쪽으로 유출되는 것이 된다. 이러한 횡류 타입의 임펠러는 에너지 변환 효율이 35% 이상으로서, 20% 선에 그치는 축류 타입의 임펠러에 비해 효율적이다.
날개(235)의 형상은 그의 입구 각도(α)와 출구 각도(β)에 의해 결정된다. 입구 각도(α)는 날개(235)의 외측을 이은 원의 접선과 날개(235)의 외측 방향으로의 연장선 사이의 각도이다. 출구 각도(β)는 날개(235)의 내측을 이은 원의 접선과 날개(235)의 내측 방향으로의 연장선 사이의 각도이다. 여기서, 출구 각도(β)가 감소할수록, 다시 말해 날개(235)의 출구 각도(β)를 입구 각도(α)에 비해 많이 꺾을수록 발전 효율은 향상된다. 그러나, 출구 각도(β)의 크기가 어느 범위를 벗어나게 되면 날개(235)의 표면에서의 박리 현상으로 인해 오히려 발전 효율이 감소되는 현상을 나타낼 수 있다.
안내 베인(270)은 임펠러(230)의 날개(235)에 대응하는 개수의 날개(275)를 가질 수 있다. 그에 의해, 안내 베인(270)의 인접한 한 쌍의 날개(275) 사이로 유동하는 공기는 보다 가속되어 임펠러(230)의 대응하는 한 쌍의 날개(235) 사이로 유입될 수 있다.
안내 베인(270)의 날개(275)와 임펠러(230)의 날개(235) 사이의 간극(C)은, 임펠러(230)의 회전력을 극대화하기 위한 관점에서 결정될 수 있다. 그에 관해서는, 도 10 및 도 11을 참조하여 후술한다.
다음으로, 다른 형태의 풍력 발전 유니에 대해 도 5를 참조하여 설명한다.
도 5는 본 발명의 다른 실시예에 따른 풍력 발전 유니트(300)의 구성을 보인 횡 단면도이다.
본 도면을 참조하면, 풍력 발전 유니트(300)는, 하우징(310)과, 임펠러(330)와, 발전기(도 2의 250 참조)와, 안내 베인(370)을 포함할 수 있다.
여기서, 안내 베인(370), 구체적으로 제1 베인(371)은, 앞선 실시예의 하우징(210)의 펜스(215)와 안내 베인(270)이 통합된 형태이다. 그에 의해, 제1 베인(371)은 하우징(310)의 가장자리 영역에서부터 휘어진 형태로 연장된다. 이러한 구성에 의하여, 제1 베인(371)은 하우징(310)의 가장자리 영역에서부터 공기의 흐름 각도를 꺾어주게 된다. 제1 베인(371)의 굴곡 방향은 임펠러(330)의 굴곡 방향과 반대 방향이 되어, 임펠러(330)에 항력을 제공한다.
또한, 안내 베인(370)은 제1 베인(371) 사이에 위치하는 제2 베인(375)을 가질 수 있다. 제2 베인(375)은 제1 베인(371)들 사이로 유입되는 공기에 대해, 임펠러(330)에 보다 세밀하게 안내하게 된다.
다음으로, 앞서의 임펠러(230)의 최적의 날개 개수에 대한 검토를 도 6을 참조하여 설명한다.
도 6은 임펠러의 날개 개수에 따른 압력 분포 실험의 결과로서 최대 정압을 나타낸 그래프이다.
본 도면들을 참조하면, 압력 분포 실험에서 임펠러(230)의 분당 회전수는 30이고 풍속은 10 m/s의 조건에서 날개(235)의 개수를 달리하며 실험이 이루어졌다. 구체적으로 날개(235)의 개수는 8개, 12개, 24개, 30개로 하였다.
본 도면을 통해 알 수 있듯이, 임펠러(230)의 날개(235)의 개수가 증가할수록 최대 정압도 높아졌다. 그러나, 이는 임펠러(230)의 날개(235)가 24개일 때까지만 유효하다. 다시 말해서, 날개(235)가 30개가 되면 오히려 최대 정압이 감소되는 현상을 나타낸다. 따라서 임펠러(230)의 날개(235)는 24개인 것이 최적의 효율을 얻을 수 있게 한다.
임펠러(230)와 안내 베인(270) 사이의 간극에 대해서도 실험을 하였다.
이 실험에서, 유입 공기의 속도는 10 m/s이고, 임펠러(230)의 분당 회전수는 20이며, 임펠러(230)의 날개(235)의 출구 각도(β)는 85°이다. 또한, 임펠러(230)의 날개(235)의 개수는 16개이며, 간극(C)은 0.1 m, 0.15 m, 0.2 m, 0.5 m이다.
실험을 통해서는, 임펠러(230)와 안내 베인(270) 사이의 간극(C)이 커질수록 운동에너지 손실이 커짐을 알 수 있었다. 또한, 위 간극(C)이 0.15 m에서 최대 정압이 임펠러(230)의 입구 측에서 발생함을 알 수 있다.
상기와 같은 풍력 발전 유니트 및 수직 적층형 풍력 발전 시스템은 위에서 설명된 실시예들의 구성과 작동 방식에 한정되는 것이 아니다. 상기 실시예들은 각 실시예들의 전부 또는 일부가 선택적으로 조합되어 다양한 변형이 이루어질 수 있도록 구성될 수도 있다.

Claims (9)

  1. 상판과 하판을 구비하는 하우징;
    상기 상판과 상기 하판 사이에 회전 가능하게 배치되어, 상기 상판과 상기 하판 사이로 유입되는 공기의 유동에 의해 회전되는 임펠러; 및
    상기 임펠러의 회전에 연동되어, 상기 임펠러의 회전에 따라 전기를 생산하는 발전기를 포함하는, 풍력 발전 유니트.
  2. 제1항에 있어서,
    상기 하우징은,
    상기 상판과 상기 하판 사이에 배치되고, 상기 상판 및 상기 하판 각각의 외곽 영역에서 상기 임펠러를 향해 연장되는 펜스를 더 포함하는, 풍력 발전 유니트.
  3. 제2항에 있어서,
    상기 펜스와 상기 임펠러 사이에 위치하고, 상기 임펠러의 날개의 굴곡 방향에 반대되는 방향으로 굴곡된 안내 베인을 더 포함하는, 풍력 발전 유니트.
  4. 제3항에 있어서,
    상기 임펠러, 상기 안내 베인, 및 상기 펜스는 각각 복수 개로 구비되고,
    상기 복수 개의 임펠러가 이루는 원과, 상기 복수 개의 안내 베인이 이루는 원, 그리고 상기 복수 개의 펜스가 이루는 원은 서로 동심 관계를 이루는, 풍력 발전 유니트.
  5. 제4항에 있어서,
    상기 안내 베인은 24개로 구비되는, 풍력 발전 유니트.
  6. 제4항에 있어서,
    상기 안내 베인과 상기 임펠러 사이의 간극은 0.15m인, 풍력 발전 유니트.
  7. 제1항에 있어서,
    상기 임펠러는 횡류 타입인, 풍력 발전 유니트.
  8. 제1항에 있어서,
    상기 상판과 상기 하판 사이에 배치되고, 상기 상판 및 상기 하판 각각의 외곽 영역에서 상기 임펠러를 향해 휘어져서 연장되는 가이드 베인을 더 포함하는, 풍력 발전 유니트.
  9. 공기의 유동에 의해 회전력을 발생시키는 구동기; 및 상기 구동기로부터 상기 회전력을 제공받아, 전기를 생산하는 발전기를 포함하고,
    상기 구동기는, 내부 공간을 형성하는 상판과 하판을 구비하는 하우징; 및 상기 내부 공간에 회전 가능하게 배치되어 상기 내부 공간으로 유입되는 공기의 유동에 의해 상기 회전력을 발생시키는 임펠러를 포함하고,
    상기 하우징은, 상기 하판에서 상기 상판을 향하는 방향을 따라 적층되는 복수의 내부 공간을 구비하고,
    상기 임펠러는, 상기 복수의 내부 공간에 각각 배치되는 복수 개로 구비되는, 수직 적층형 풍력 발전 시스템.
PCT/KR2013/011718 2013-12-17 2013-12-17 풍력 발전 유니트 및 수직 적층형 풍력 발전 시스템 WO2015093641A1 (ko)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP13899835.6A EP3085954A1 (en) 2013-12-17 2013-12-17 Wind power generating unit and vertically stacked wind power generation system
PCT/KR2013/011718 WO2015093641A1 (ko) 2013-12-17 2013-12-17 풍력 발전 유니트 및 수직 적층형 풍력 발전 시스템
CN201380076639.1A CN105431631A (zh) 2013-12-17 2013-12-17 风力发电单元及竖直层叠型风力发电系统
US14/572,065 US20150167635A1 (en) 2013-12-17 2014-12-16 Wind power generation unit and wind power generation system of vertically stacked type

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/KR2013/011718 WO2015093641A1 (ko) 2013-12-17 2013-12-17 풍력 발전 유니트 및 수직 적층형 풍력 발전 시스템

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US14/572,065 Continuation-In-Part US20150167635A1 (en) 2013-12-17 2014-12-16 Wind power generation unit and wind power generation system of vertically stacked type

Publications (1)

Publication Number Publication Date
WO2015093641A1 true WO2015093641A1 (ko) 2015-06-25

Family

ID=53367849

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2013/011718 WO2015093641A1 (ko) 2013-12-17 2013-12-17 풍력 발전 유니트 및 수직 적층형 풍력 발전 시스템

Country Status (4)

Country Link
US (1) US20150167635A1 (ko)
EP (1) EP3085954A1 (ko)
CN (1) CN105431631A (ko)
WO (1) WO2015093641A1 (ko)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20180266390A1 (en) * 2013-03-14 2018-09-20 Hover Energy, LLC Wind power generating rotor with diffuser or diverter system for a wind turbine
GR1008967B (el) * 2015-11-11 2017-02-28 Ιωαννης Ελευθεριου Δροσης Κιονας ανεμογεννητρια
CN111677626B (zh) * 2020-06-03 2022-02-25 河南恒聚新能源设备有限公司 垂直轴涡轮风力发电系统
EP4193059A1 (en) * 2020-08-10 2023-06-14 Velocity Wind Turbines LLC Configurable multi-purpose cross-flow wind turbine with performance enhancements
USD1013896S1 (en) * 2021-12-02 2024-02-06 Gerhard Wieser Wind turbine tower

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4834610A (en) * 1986-04-25 1989-05-30 Bond Iii Frederick W Wind processing air turbine, and methods of constructing and utilizing same
US20020047276A1 (en) * 1998-12-01 2002-04-25 Elder Dillyn M. Water power generation system
US20060275105A1 (en) * 2005-06-03 2006-12-07 Novastron Corporation Aerodynamic-hybrid vertical-axis wind turbine
KR20070116138A (ko) * 2005-03-22 2007-12-06 비노드 쿠마르 챠마날 카리야 안내 장치를 구비한 수직 축 풍차
KR20110063378A (ko) * 2009-12-04 2011-06-10 풍진다 에너지 사이언스 앤드 테크놀로지 컴퍼니, 리미티드 풍력 에너지를 이용한 발전 장치

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1463924A (en) * 1922-05-03 1923-08-07 Ozaki Yukiteru Wind turbine
US1645855A (en) * 1926-07-06 1927-10-18 Vore Ernest E De Wind motor
ES454192A1 (es) * 1976-12-13 1977-12-01 Zapata Martinez Valentin Sistema para la obtencion y regulacion de energia a partir de corrientes aereas, maritimas o fluviales.
US4551631A (en) * 1984-07-06 1985-11-05 Trigilio Gaetano T Wind and solar electric generating plant
US6015258A (en) * 1998-04-17 2000-01-18 Taylor; Ronald J. Wind turbine
US6870280B2 (en) * 2002-05-08 2005-03-22 Elcho R. Pechler Vertical-axis wind turbine
US7633177B2 (en) * 2005-04-14 2009-12-15 Natural Forces, Llc Reduced friction wind turbine apparatus and method
CN201377383Y (zh) * 2007-11-28 2010-01-06 李业权 漩涡式导风板风车
US7969036B2 (en) * 2008-05-22 2011-06-28 Chun-Neng Chung Apparatus for generating electric power using wind energy
IT1396927B1 (it) * 2009-11-13 2012-12-20 Alfonsi Turbina ad elevate prestazioni, particolarmente a potenza specifica incrementata.
CN102959237B (zh) * 2010-08-26 2015-10-14 该·安德鲁·瓦氏 导向设备、风力涡轮机系统以及导向流体流的方法
KR101063775B1 (ko) * 2011-04-28 2011-09-19 주식회사지티에너지 다목적 회전장치와 이를 구비한 발전시스템
CN103195654A (zh) * 2012-01-04 2013-07-10 陈宏基 风能动力装置
CN202991349U (zh) * 2012-07-27 2013-06-12 刘先知 一种电动车用风能发电装置
US9121384B2 (en) * 2013-06-24 2015-09-01 Chun-Shuan Lin Vertical axis wind turbine

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4834610A (en) * 1986-04-25 1989-05-30 Bond Iii Frederick W Wind processing air turbine, and methods of constructing and utilizing same
US20020047276A1 (en) * 1998-12-01 2002-04-25 Elder Dillyn M. Water power generation system
KR20070116138A (ko) * 2005-03-22 2007-12-06 비노드 쿠마르 챠마날 카리야 안내 장치를 구비한 수직 축 풍차
US20060275105A1 (en) * 2005-06-03 2006-12-07 Novastron Corporation Aerodynamic-hybrid vertical-axis wind turbine
KR20110063378A (ko) * 2009-12-04 2011-06-10 풍진다 에너지 사이언스 앤드 테크놀로지 컴퍼니, 리미티드 풍력 에너지를 이용한 발전 장치

Also Published As

Publication number Publication date
EP3085954A1 (en) 2016-10-26
CN105431631A (zh) 2016-03-23
US20150167635A1 (en) 2015-06-18

Similar Documents

Publication Publication Date Title
EP1095216B1 (en) Wind turbine
WO2015093641A1 (ko) 풍력 발전 유니트 및 수직 적층형 풍력 발전 시스템
WO2013095033A1 (ko) 나셀 펜스를 갖는 풍력발전기
US9989033B2 (en) Horizontal axis wind or water turbine with forked or multi-blade upper segments
WO2012102433A1 (ko) 조류 발전 장치
WO2015016444A1 (ko) 자이로밀형 풍력 터빈을 구비한 풍력 발전 타워
WO2011159091A2 (ko) 풍력 발전 장치용 블레이드 및 이를 이용한 풍력 발전 장치
CN102057157A (zh) 风力涡轮机
WO2012000105A1 (en) Apparatus for extracting energy from a fluid flow
WO2014025124A1 (ko) 풍력발전장치
US11391262B1 (en) Systems and methods for fluid flow based renewable energy generation
JP2010065676A (ja) 風力エネルギーシステム、風力エネルギー変換システム及び風トンネルモジュール
KR20120120809A (ko) 풍량의 집적 유도구조를 이용한 터빈의 연동 적층식 양방향 풍력 발전 설비
KR20150070696A (ko) 풍력 발전 유니트 및 수직 적층형 풍력 발전 시스템
KR102067026B1 (ko) 보조 블레이드가 형성된 수직축 풍력발전장치
WO2018199583A1 (ko) 전기 자동차에 장착되는 양력을 이용한 풍력 발전 장치
WO2016032099A1 (ko) 조류발전장치
WO2020138601A1 (ko) 풍력과 수력을 이용한 발전장치
WO2018117380A1 (ko) 해양 양식단지 방류구용 친환경 소수력 발전시설
WO2019013414A1 (ko) 다중 풍력발전장치
US11898543B2 (en) High efficiency turbine impeller
CN205779451U (zh) 潮流能发电装置及其水底密封保护装置
CN214944723U (zh) 一种多路径导风的建筑外墙结构
KR101871823B1 (ko) 모듈화된 덕트형 부유식 해류 발전 장치
WO2017179885A1 (ko) 고 효율의 수차 및 이를 이용한 소수력 발전장치

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201380076639.1

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13899835

Country of ref document: EP

Kind code of ref document: A1

REEP Request for entry into the european phase

Ref document number: 2013899835

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2013899835

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE