CN105431631A - 风力发电单元及竖直层叠型风力发电系统 - Google Patents
风力发电单元及竖直层叠型风力发电系统 Download PDFInfo
- Publication number
- CN105431631A CN105431631A CN201380076639.1A CN201380076639A CN105431631A CN 105431631 A CN105431631 A CN 105431631A CN 201380076639 A CN201380076639 A CN 201380076639A CN 105431631 A CN105431631 A CN 105431631A
- Authority
- CN
- China
- Prior art keywords
- impeller
- wind power
- power generation
- upper plate
- lower plate
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 238000010248 power generation Methods 0.000 title claims abstract description 33
- 230000005611 electricity Effects 0.000 claims abstract description 9
- 238000005452 bending Methods 0.000 claims description 7
- 230000015572 biosynthetic process Effects 0.000 description 12
- 238000005755 formation reaction Methods 0.000 description 12
- 238000012360 testing method Methods 0.000 description 4
- 230000000875 corresponding effect Effects 0.000 description 3
- 238000002474 experimental method Methods 0.000 description 3
- 230000000694 effects Effects 0.000 description 2
- 238000006243 chemical reaction Methods 0.000 description 1
- 230000002596 correlated effect Effects 0.000 description 1
- 230000008878 coupling Effects 0.000 description 1
- 238000010168 coupling process Methods 0.000 description 1
- 238000005859 coupling reaction Methods 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 230000005674 electromagnetic induction Effects 0.000 description 1
- 239000002803 fossil fuel Substances 0.000 description 1
- 239000005435 mesosphere Substances 0.000 description 1
- 238000000034 method Methods 0.000 description 1
- 230000002085 persistent effect Effects 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 238000013517 stratification Methods 0.000 description 1
- 238000010792 warming Methods 0.000 description 1
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F03—MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
- F03D—WIND MOTORS
- F03D9/00—Adaptations of wind motors for special use; Combinations of wind motors with apparatus driven thereby; Wind motors specially adapted for installation in particular locations
- F03D9/20—Wind motors characterised by the driven apparatus
- F03D9/25—Wind motors characterised by the driven apparatus the apparatus being an electrical generator
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F03—MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
- F03D—WIND MOTORS
- F03D3/00—Wind motors with rotation axis substantially perpendicular to the air flow entering the rotor
- F03D3/005—Wind motors with rotation axis substantially perpendicular to the air flow entering the rotor the axis being vertical
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F03—MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
- F03D—WIND MOTORS
- F03D3/00—Wind motors with rotation axis substantially perpendicular to the air flow entering the rotor
- F03D3/02—Wind motors with rotation axis substantially perpendicular to the air flow entering the rotor having a plurality of rotors
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F03—MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
- F03D—WIND MOTORS
- F03D3/00—Wind motors with rotation axis substantially perpendicular to the air flow entering the rotor
- F03D3/04—Wind motors with rotation axis substantially perpendicular to the air flow entering the rotor having stationary wind-guiding means, e.g. with shrouds or channels
- F03D3/0409—Wind motors with rotation axis substantially perpendicular to the air flow entering the rotor having stationary wind-guiding means, e.g. with shrouds or channels surrounding the rotor
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F03—MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
- F03D—WIND MOTORS
- F03D3/00—Wind motors with rotation axis substantially perpendicular to the air flow entering the rotor
- F03D3/04—Wind motors with rotation axis substantially perpendicular to the air flow entering the rotor having stationary wind-guiding means, e.g. with shrouds or channels
- F03D3/0427—Wind motors with rotation axis substantially perpendicular to the air flow entering the rotor having stationary wind-guiding means, e.g. with shrouds or channels with converging inlets, i.e. the guiding means intercepting an area greater than the effective rotor area
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F03—MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
- F03D—WIND MOTORS
- F03D9/00—Adaptations of wind motors for special use; Combinations of wind motors with apparatus driven thereby; Wind motors specially adapted for installation in particular locations
- F03D9/30—Wind motors specially adapted for installation in particular locations
- F03D9/34—Wind motors specially adapted for installation in particular locations on stationary objects or on stationary man-made structures
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F05—INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
- F05B—INDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
- F05B2240/00—Components
- F05B2240/90—Mounting on supporting structures or systems
- F05B2240/91—Mounting on supporting structures or systems on a stationary structure
- F05B2240/911—Mounting on supporting structures or systems on a stationary structure already existing for a prior purpose
- F05B2240/9112—Mounting on supporting structures or systems on a stationary structure already existing for a prior purpose which is a building
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02B—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
- Y02B10/00—Integration of renewable energy sources in buildings
- Y02B10/30—Wind power
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E10/00—Energy generation through renewable energy sources
- Y02E10/70—Wind energy
- Y02E10/728—Onshore wind turbines
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E10/00—Energy generation through renewable energy sources
- Y02E10/70—Wind energy
- Y02E10/74—Wind turbines with rotation axis perpendicular to the wind direction
Landscapes
- Engineering & Computer Science (AREA)
- Life Sciences & Earth Sciences (AREA)
- Sustainable Development (AREA)
- Sustainable Energy (AREA)
- Chemical & Material Sciences (AREA)
- Combustion & Propulsion (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Power Engineering (AREA)
- Wind Motors (AREA)
Abstract
本发明提供一种风力发电单元及竖直层叠型风力发电系统,包括:外壳,其具备上板和下板;叶轮,其能旋转地配置于所述上板与所述下板之间,借助于流入所述上板与所述下板之间的空气的流动而旋转;及发电机,其与所述叶轮的旋转联动,随着所述叶轮的旋转而生产电。
Description
技术领域
本发明涉及风力发电单元及竖直层叠型风力发电系统。
背景技术
一般而言,为了解决因化石燃料导致的地球变暖问题,全世界正在为扩大再生能量普及而积极倾注努力。
风能作为新再生能源的一种而倍受瞩目。但是,风能存在密度低、风向与速度随时变化的问题。另外,风的持续性降低,现在使用中的原有轴流式风力发电装置(axial-flowwindturbine)的开动率为30%以下,为非常低的状态。
需要进行这样一种研究,提出原有轴流式风力发电装置问题的风向、风速以及风的持续性问题等的解决方案,对此进行改善、进一步提高风力发电装置的开动率。
发明内容
本发明要解决的技术问题
本发明的目的在于提供一种风力发电单元及竖直层叠型风力发电系统,能够改善风向、风速以及风的持续性中至少一者以上,提高整体的发电效率。
技术方案
旨在实现所述课题的本发明一个方面的风力发电单元可以包括:外壳,其具备上板和下板;叶轮,其能旋转地配置于所述上板与所述下板之间,借助于流入所述上板与所述下板之间的空气的流动而旋转;及发电机,其与所述叶轮的旋转联动,随着所述叶轮的旋转而生产电。
其中,所述外壳可以还包括栅栏,其配置于所述上板与所述下板之间,从所述上板及所述下板各个的外廓区域向所述叶轮延长。
其中,可以还具备引导叶片,其位于所述栅栏与所述叶轮之间,向与所述叶轮的叶片的弯曲方向相反的方向弯曲。
其中,所述叶轮、所述引导叶片及所述栅栏可以分别配备多个,所述多个叶轮构成的圆、所述多个引导叶片构成的圆以及所述多个栅栏构成的圆,相互构成同心关系。
其中,所述引导叶片可以配备24个。
其中,所述引导叶片与所述叶轮之间的间隙可以为0.15m。
其中,所述叶轮可以为横流型。
其中,可以还具备引导叶片,其配置于所述上板与所述下板之间,从所述上板及所述下板各自的外廓区域向所述叶轮弯曲延长。
本发明另一方面的竖直层叠型风力发电系统可以包括:驱动机,其借助于空气的流动而产生旋转力;及发电机,其从所述驱动机接受提供所述旋转力并生产电;所述驱动机包括:外壳,其具备形成内部空间的上板与下板;及叶轮,其能旋转地配置于所述内部空间,借助于流入所述内部空间的空气的流动而产生所述旋转力;所述外壳具备沿着从所述下板向所述上板的方向层叠的多个内部空间;所述叶轮配备多个,分别配置于所述多个内部空间。
发明效果
根据如上所述构成的本发明相关的风力发电单元及竖直层叠型风力发电系统,能够改善风向、风速以及风的持续性中至少一者以上,提高整体的发电效率。
附图说明
图1是显示本发明一个实施例的竖直层叠型风力发电系统100的安装状态的立体图。
图2是显示构成图1的竖直层叠型风力发电系统100的一部分的风力发电单元200构成的概念图。
图3是详细显示图2的风力发电单元200中除发电机250之外的构成的立体图。
图4是显示图3的叶轮230及引导叶片270的俯视图。
图5是显示本发明另一实施例的风力发电单元300构成的横剖面图。
图6作为根据叶轮叶片个数的压力分布实验的结果,是显示最大正压的图表。
具体实施方式
下面参照附图,对本发明优选实施例的风力发电单元及竖直层叠型风力发电系统进行详细说明。在本说明书中,即使是互不相同的实施例,也针对相同、类似的构成,赋予相同、类似的参照符号,其说明用首次说明代替。
图1是显示本发明一个实施例的竖直层叠型风力发电系统100的安装状态的立体图。
如果参照本图,竖直层叠型风力发电系统100可以包括驱动机110、发电机130及附属物150。
驱动机110是接受风而产生旋转力的构成。驱动机110既可以是单层,也可以如本实施例所示,层叠得构成多层。
发电机130是接受提供驱动机110产生的旋转力而生产电的构成。发电机130可以位于驱动机110的下侧。
附属物150安装于驱动机110的上面的空闲空间,例如可以是太阳能电池模块。
根据这种构成,可以在诸如建筑物B的屋顶R的城市中心内空闲空间安装竖直层叠型风力发电系统100。不同于此,竖直层叠型风力发电系统100也可以安装于建筑物B的中间层的开放的部分。由于建筑物B的高层化,吹到建筑物之间的风强劲,因而在竖直层叠型风力发电系统100的发电方面,该位置更具效果。另外,竖直层叠型风力发电系统100不仅在陆上建筑物B,也可以安装于驳船等而位于海上。
此时,发电机130虽然为一个,但驱动机110构成多层,因而使得因风量随距离屋顶R高度而变化导致驱动机110的驱动效率下降得不大。由此,能够提高风的持续性,与单纯借助于一个螺旋桨的风力发电机相比,能够提高发电效率。
另外,如果借助于所述太阳能电池模块,则还可以同时执行风力发电与太阳能发电。
参照图2及图3,对以上的竖直层叠型风力发电系统100中使用的风力发电单元200进行说明。
图2是显示构成图1的竖直层叠型风力发电系统100一部分的风力发电单元200构成的概念图,图3是详细显示图2的风力发电单元200中除发电机250之外构成的立体图。
如果参照本图,风力发电单元200在竖直层叠型风力发电系统100中具有驱动机110的一层和发电机130。
具体而言,风力发电单元200可以具有外壳210、叶轮230、发电机250以及引导叶片270。
外壳210是形成供叶轮230和引导叶片270位于的内部空间I的构成。具体而言,外壳210可以具有上板211、下板213及栅栏215。上板211与下板213分别为板形态,可以具有四边形(图3)或八角形(图1)等形状。上板211与下板213为相互对应的形状,可以沿高度方向间隔地配置。栅栏215可以相对于上板211和下板213垂直地配置。栅栏215的高度可以成为上板211与下板213的间隔距离。栅栏215可以配备多个,从上板211及下板213的边缘区域朝向中央地配置。
叶轮230是能旋转地位于内部空间I,借助于流入内部空间I的空气的力而旋转并产生旋转力的构成。叶轮230可以位于内部空间I的中央区域。叶轮230的旋转中心轴可以沿着从下板213向上板211的方向配置。叶轮230的叶片235可以配备多个。
发电机250是连接于叶轮230,借助于叶轮230产生的旋转力而生产电的构成。发电机250可以具有轴251、变速器253及发电部255。轴251是连接于叶轮230的旋转中心的杆。变速器253连接轴251与发电部255。发电部255在内部具备线圈,当轴251旋转时,借助于电磁感应而在线圈中生成电流。发电部255可以被支架S所支撑。其中,发电机250与竖直层叠型风力发电系统100的发电机130大致相同,但由于是风力发电单元200的一部分,因而参照符号用250表现。
引导叶片270是把流入内部空间I的空气朝向叶轮230加速并引导的构成。引导叶片270可以固定地位于栅栏215与叶轮230之间。此时,引导叶片270可以具有多个叶片275,这些叶片275中与栅栏215对应者可以与栅栏215连接。出于这种关系,多个叶片275构成的圆,可以在多个栅栏215构成的圆与多个叶片235构成的圆之间,与它们构成同心关系。
根据这种构成,就空气相对于外壳210的流动方向F来说,与外壳210的前方相比,在外壳210的后方发生涡流(vortexflow)现象。由此,所述前方与所述后方间的压力差比没有外壳210时大。这提供了提高上述空气的流动速度,使更高速度的空气应用于叶轮230的优点。
另外,栅栏215(进一步而言是引导叶片270)具有比叶轮230宽度W1更宽的宽度W2,与叶轮230自身存在的情形相比,使更多量的空气朝向叶轮230流入。这提供了提高朝向叶轮230的空气流量的优点。
下面参照图4,对叶轮230与引导叶片270的关系进行说明。
图4是显示图3的叶轮230及引导叶片270的俯视图。不过,在本图中,引导叶片270的叶片275向与叶轮230的叶片235相同的方向弯曲,在这点上与并非如此的图3显示出相反的形态。
如果参照本图,首先,叶轮230以横流型形成。由此,就空气相对于叶轮230的流动方向F而言,向一侧的叶片235流入,向相反侧叶片235流出。这种横流型叶轮的能量转换效率为35%以上,比只有20%一线的轴流式叶轮更高效。
叶片235的形状由其入口的角度α与出口角度β决定。入口角度α是连接叶片235外侧的圆的切线与朝向叶片235外侧方向的延长线之间的角度。出口角度β是连接叶片235内侧的圆的切线与朝向叶片235的内侧方向的延长线之间的角度。其中,出口角度β越减小,也就是说,使叶片235的出口角度β比入口角度α折弯越多,发电效率越提高。但是,如果出口角度β的大小超出某一范围,则由于从叶片235表面的剥离现象,会出现发电效率反而减小的现象。
引导叶片270可以具有与叶轮230的叶片235对应个数的叶片275。由此,向引导叶片270的邻接的一对叶片275之间流动的空气可以被进一步加速,流入叶轮230的对应的一对叶片235之间。
引导叶片270的叶片275与叶轮230的叶片235之间的间隙C可以从旨在使叶轮230旋转力最大化的观点而决定。后面参照图10及图11对此进行叙述。
下面参照图5,对另一形态的风力发电单元进行说明。
图5是显示本发明另一实施例的风力发电单元300构成的横剖面图。
如果参照本图,风力发电单元300可以包括外壳310、叶轮330、发电机(参照图2的250)和引导叶片370。
其中,引导叶片370,具体而言,第1叶片371是前面实施例的外壳210的栅栏215与引导叶片270综合的形态。由此,第1叶片371以从外壳310的边缘区域弯曲的形态延长。借助于这种构成,第1叶片371从外壳310的边缘区域使空气的流动角度折弯。第1叶片371的弯曲方向与叶轮330的弯曲方向构成相反方向,向叶轮330提供阻力。
另外,引导叶片370可以具有位于第1叶片371之间的第2叶片375。第2叶片375针对流入第1叶片371之间的空气,更细密地导向叶轮330。
下面参照图6,说明对前面的叶轮230最佳叶片个数的探讨。
图6作为根据叶轮叶片个数的压力分布实验的结果,是显示最大正压的图表。
如果参照本图,在压力分布实验中,在叶轮230的每分钟旋转数为30、风速为10m/s的条件下,采用不同叶片235个数进行了实验。具体而言,叶片235的个数为8个、12个、24个、30个。
通过本图可知,叶轮230的叶片235的个数越增加,最大正压也越升高。但是,这只在直到叶轮230的叶片235为24个时之前有效。也就是说,如果叶片235为30个,则反而出现最大正压减小的现象。因此,叶轮230的叶片235为24个者可以获得最佳效率。
针对叶轮230与引导叶片270之间的间隙也进行了实验。
在该实验中,流入空气的速度为10m/s,叶轮230的每分钟旋转数为20,叶轮230的叶片235的出口角度β为85°。另外,叶轮230的叶片235的个数为16个,间隙C为0.1m、0.15m、0.2m、0.5m。
通过实验可知,叶轮230与引导叶片270之间的间隙C越大,动能损失越大。另外可知,上述间隙C为0.15m时,在叶轮230的入口侧发生最大正压。
如上所述的风力发电单元及竖直层叠型风力发电系统并非限定于以上说明的实施例的构成与运转方式。所述实施例也可以构成得由各实施例的全部或一部分选择性组合,实现多样变形。
Claims (9)
1.一种风力发电单元,其特征在于,包括:
外壳,其具备上板和下板;
叶轮,其能旋转地配置于所述上板与所述下板之间,借助于流入所述上板与所述下板之间的空气的流动而旋转;及
发电机,其与所述叶轮的旋转联动,随着所述叶轮的旋转而生产电。
2.根据权利要求1所述的风力发电单元,其特征在于,
所述外壳还包括栅栏,其配置于所述上板与所述下板之间,从所述上板及所述下板各个的外廓区域向所述叶轮延长。
3.根据权利要求2所述的风力发电单元,其特征在于,
还具备引导叶片,其位于所述栅栏与所述叶轮之间,向与所述叶轮的叶片的弯曲方向相反的方向弯曲。
4.根据权利要求3所述的风力发电单元,其特征在于,
所述叶轮、所述引导叶片及所述栅栏分别配备多个,
所述多个叶轮构成的圆、所述多个引导叶片构成的圆以及所述多个栅栏构成的圆,相互构成同心关系。
5.根据权利要求4所述的风力发电单元,其特征在于,
所述引导叶片配备24个。
6.根据权利要求4所述的风力发电单元,其特征在于,
所述引导叶片与所述叶轮之间的间隙为0.15m。
7.根据权利要求1所述的风力发电单元,其特征在于,
所述叶轮为横流型。
8.根据权利要求1所述的风力发电单元,其特征在于,
还包括引导叶片,其配置于所述上板与所述下板之间,从所述上板及所述下板各自的外廓区域向所述叶轮弯曲延长。
9.一种竖直层叠型风力发电系统,其特征在于,包括:
驱动机,其借助于空气的流动而产生旋转力;及发电机,其从所述驱动机接受提供所述旋转力并生产电;
所述驱动机包括:外壳,其具备形成内部空间的上板与下板;及叶轮,其能旋转地配置于所述内部空间,借助于流入所述内部空间的空气的流动而产生所述旋转力;
所述外壳具备沿着从所述下板向所述上板的方向层叠的多个内部空间;
所述叶轮配备多个,分别配置于所述多个内部空间。
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/KR2013/011718 WO2015093641A1 (ko) | 2013-12-17 | 2013-12-17 | 풍력 발전 유니트 및 수직 적층형 풍력 발전 시스템 |
Publications (1)
Publication Number | Publication Date |
---|---|
CN105431631A true CN105431631A (zh) | 2016-03-23 |
Family
ID=53367849
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201380076639.1A Pending CN105431631A (zh) | 2013-12-17 | 2013-12-17 | 风力发电单元及竖直层叠型风力发电系统 |
Country Status (4)
Country | Link |
---|---|
US (1) | US20150167635A1 (zh) |
EP (1) | EP3085954A1 (zh) |
CN (1) | CN105431631A (zh) |
WO (1) | WO2015093641A1 (zh) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN111677626A (zh) * | 2020-06-03 | 2020-09-18 | 河南恒聚新能源设备有限公司 | 垂直轴涡轮风力发电系统 |
Families Citing this family (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20180266390A1 (en) * | 2013-03-14 | 2018-09-20 | Hover Energy, LLC | Wind power generating rotor with diffuser or diverter system for a wind turbine |
GR1008967B (el) * | 2015-11-11 | 2017-02-28 | Ιωαννης Ελευθεριου Δροσης | Κιονας ανεμογεννητρια |
WO2022035759A1 (en) * | 2020-08-10 | 2022-02-17 | Velocity Wind Turbines Llc | Configurable multi-purpose cross-flow wind turbine with performance enhancements |
USD1013896S1 (en) * | 2021-12-02 | 2024-02-06 | Gerhard Wieser | Wind turbine tower |
Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US1645855A (en) * | 1926-07-06 | 1927-10-18 | Vore Ernest E De | Wind motor |
US4236866A (en) * | 1976-12-13 | 1980-12-02 | Valentin Zapata Martinez | System for the obtainment and the regulation of energy starting from air, sea and river currents |
US4834610A (en) * | 1986-04-25 | 1989-05-30 | Bond Iii Frederick W | Wind processing air turbine, and methods of constructing and utilizing same |
US20030209911A1 (en) * | 2002-05-08 | 2003-11-13 | Pechler Elcho R. | Vertical-axis wind turbine |
US20060275105A1 (en) * | 2005-06-03 | 2006-12-07 | Novastron Corporation | Aerodynamic-hybrid vertical-axis wind turbine |
CN201377383Y (zh) * | 2007-11-28 | 2010-01-06 | 李业权 | 漩涡式导风板风车 |
CN202991349U (zh) * | 2012-07-27 | 2013-06-12 | 刘先知 | 一种电动车用风能发电装置 |
CN103195654A (zh) * | 2012-01-04 | 2013-07-10 | 陈宏基 | 风能动力装置 |
Family Cites Families (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US1463924A (en) * | 1922-05-03 | 1923-08-07 | Ozaki Yukiteru | Wind turbine |
US4551631A (en) * | 1984-07-06 | 1985-11-05 | Trigilio Gaetano T | Wind and solar electric generating plant |
US6015258A (en) * | 1998-04-17 | 2000-01-18 | Taylor; Ronald J. | Wind turbine |
US6448669B1 (en) * | 1998-12-01 | 2002-09-10 | Dillyn M. Elder | Water power generation system |
CA2602466C (en) * | 2005-03-22 | 2012-09-18 | Vinod Kumar Chamanlal Kariya | Vertical axis windmill with guiding devices |
US7633177B2 (en) * | 2005-04-14 | 2009-12-15 | Natural Forces, Llc | Reduced friction wind turbine apparatus and method |
US7969036B2 (en) * | 2008-05-22 | 2011-06-28 | Chun-Neng Chung | Apparatus for generating electric power using wind energy |
IT1396927B1 (it) * | 2009-11-13 | 2012-12-20 | Alfonsi | Turbina ad elevate prestazioni, particolarmente a potenza specifica incrementata. |
TW201031820A (en) * | 2009-12-04 | 2010-09-01 | Fung Gin Da Energy Science & Technology Co Ltd | Wind collection type wind power generator |
ES2556654T3 (es) * | 2010-08-26 | 2016-01-19 | Guy Andrew Vaz | Turbina de eje vertical |
KR101063775B1 (ko) * | 2011-04-28 | 2011-09-19 | 주식회사지티에너지 | 다목적 회전장치와 이를 구비한 발전시스템 |
US9121384B2 (en) * | 2013-06-24 | 2015-09-01 | Chun-Shuan Lin | Vertical axis wind turbine |
-
2013
- 2013-12-17 CN CN201380076639.1A patent/CN105431631A/zh active Pending
- 2013-12-17 EP EP13899835.6A patent/EP3085954A1/en not_active Withdrawn
- 2013-12-17 WO PCT/KR2013/011718 patent/WO2015093641A1/ko active Application Filing
-
2014
- 2014-12-16 US US14/572,065 patent/US20150167635A1/en not_active Abandoned
Patent Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US1645855A (en) * | 1926-07-06 | 1927-10-18 | Vore Ernest E De | Wind motor |
US4236866A (en) * | 1976-12-13 | 1980-12-02 | Valentin Zapata Martinez | System for the obtainment and the regulation of energy starting from air, sea and river currents |
US4834610A (en) * | 1986-04-25 | 1989-05-30 | Bond Iii Frederick W | Wind processing air turbine, and methods of constructing and utilizing same |
US20030209911A1 (en) * | 2002-05-08 | 2003-11-13 | Pechler Elcho R. | Vertical-axis wind turbine |
US20060275105A1 (en) * | 2005-06-03 | 2006-12-07 | Novastron Corporation | Aerodynamic-hybrid vertical-axis wind turbine |
CN201377383Y (zh) * | 2007-11-28 | 2010-01-06 | 李业权 | 漩涡式导风板风车 |
CN103195654A (zh) * | 2012-01-04 | 2013-07-10 | 陈宏基 | 风能动力装置 |
CN202991349U (zh) * | 2012-07-27 | 2013-06-12 | 刘先知 | 一种电动车用风能发电装置 |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN111677626A (zh) * | 2020-06-03 | 2020-09-18 | 河南恒聚新能源设备有限公司 | 垂直轴涡轮风力发电系统 |
CN111677626B (zh) * | 2020-06-03 | 2022-02-25 | 河南恒聚新能源设备有限公司 | 垂直轴涡轮风力发电系统 |
Also Published As
Publication number | Publication date |
---|---|
US20150167635A1 (en) | 2015-06-18 |
WO2015093641A1 (ko) | 2015-06-25 |
EP3085954A1 (en) | 2016-10-26 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6810194B2 (ja) | 改良型水ロータ用のシステム及び方法 | |
CN105431631A (zh) | 风力发电单元及竖直层叠型风力发电系统 | |
JP6038809B2 (ja) | 回転子装置 | |
US9989033B2 (en) | Horizontal axis wind or water turbine with forked or multi-blade upper segments | |
CN101223355A (zh) | 带有双对称翼型的水涡轮 | |
KR101241134B1 (ko) | 조류발전장치 | |
CN105221320A (zh) | 水力发电构造物 | |
CN108798986A (zh) | 一种基于框架载体的漂浮式潮流能和波浪能综合利用装置 | |
TW200925409A (en) | Simple-installation flowing-water hydroelectric power apparatus | |
CN201474837U (zh) | 串联式多次水力发电系统 | |
KR20150061154A (ko) | 발전효율을 향상시킨 풍력발전장치 | |
RU2666211C1 (ru) | Аэрационная система для гидравлической турбины | |
CN102032089A (zh) | 串联式多次水力发电系统 | |
KR20150070696A (ko) | 풍력 발전 유니트 및 수직 적층형 풍력 발전 시스템 | |
KR101207023B1 (ko) | 풍력발전장치 | |
KR101019907B1 (ko) | 풍력발전장치 | |
KR101295083B1 (ko) | 풍력과 파력을 이용한 복합 발전 장치 | |
KR101409717B1 (ko) | 임펠러 좌우 변위형 풍력발전시스템 | |
CN105422381A (zh) | 聚能多转子阻力型垂直轴风力发电机 | |
CN102235308A (zh) | 多种洁净能源合力发电机 | |
KR101697228B1 (ko) | 블레이드 가변형 터빈 | |
US20180017035A1 (en) | Hydraulic water wheel for a directional water flow | |
JP2019100187A (ja) | 海流・潮流発電装置 | |
Khan et al. | Sea-floor power generation system | |
US20240011456A1 (en) | Tidal stream generation apparatus |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
WD01 | Invention patent application deemed withdrawn after publication | ||
WD01 | Invention patent application deemed withdrawn after publication |
Application publication date: 20160323 |