WO2011159091A2 - 풍력 발전 장치용 블레이드 및 이를 이용한 풍력 발전 장치 - Google Patents

풍력 발전 장치용 블레이드 및 이를 이용한 풍력 발전 장치 Download PDF

Info

Publication number
WO2011159091A2
WO2011159091A2 PCT/KR2011/004358 KR2011004358W WO2011159091A2 WO 2011159091 A2 WO2011159091 A2 WO 2011159091A2 KR 2011004358 W KR2011004358 W KR 2011004358W WO 2011159091 A2 WO2011159091 A2 WO 2011159091A2
Authority
WO
WIPO (PCT)
Prior art keywords
blade
blade body
hole
wind turbine
wind power
Prior art date
Application number
PCT/KR2011/004358
Other languages
English (en)
French (fr)
Other versions
WO2011159091A3 (ko
Inventor
이정상
김기현
유철
최상민
Original Assignee
삼성중공업(주)
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 삼성중공업(주) filed Critical 삼성중공업(주)
Publication of WO2011159091A2 publication Critical patent/WO2011159091A2/ko
Publication of WO2011159091A3 publication Critical patent/WO2011159091A3/ko

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03DWIND MOTORS
    • F03D1/00Wind motors with rotation axis substantially parallel to the air flow entering the rotor 
    • F03D1/06Rotors
    • F03D1/0608Rotors characterised by their aerodynamic shape
    • F03D1/0633Rotors characterised by their aerodynamic shape of the blades
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03DWIND MOTORS
    • F03D1/00Wind motors with rotation axis substantially parallel to the air flow entering the rotor 
    • F03D1/06Rotors
    • F03D1/065Rotors characterised by their construction elements
    • F03D1/0675Rotors characterised by their construction elements of the blades
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05BINDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
    • F05B2240/00Components
    • F05B2240/20Rotors
    • F05B2240/30Characteristics of rotor blades, i.e. of any element transforming dynamic fluid energy to or from rotational energy and being attached to a rotor
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/70Wind energy
    • Y02E10/72Wind turbines with rotation axis in wind direction

Definitions

  • the present invention relates to a blade for a wind turbine and a wind turbine using the same.
  • the wind turbine generator is a generator for converting wind energy into electrical energy to produce electricity
  • an example of a typical wind turbine generator is shown in Figs.
  • the general wind power generator 200 includes a plurality of blades 5, a hub 60 to which the plurality of blades 5 are connected, and a hub 60 rotatably connected thereto.
  • the generator main body 210 and the support part 220 which supports the generator main body 210 with respect to the bottom surface are provided.
  • the plurality of blades 5 are disposed around the hub 60, and when wind power acts on the blade body 50, the blades 5 rotate in one direction so that electricity can be produced in the generator body 210.
  • a pressure surface 53 and a suction surface 54 are formed so that lift force for rotating the blade body 50 can be generated by the applied wind force. do.
  • the root portion 51 formed at one end of the blade body 50 and connected to the hub 60 generally has an angle of inclination with respect to the airflow, that is, an angle of attack relatively at the other end of the blade body 51.
  • the tip portion 52 formed in the is formed very large.
  • the velocity of the airflow flowing along the partial region of the blade body 50 adjacent to the root portion 51 is relatively small compared to the velocity of the airflow flowing along the region adjacent to the tip portion 52.
  • a flow separation layer S having a velocity of zero airflow is formed to a predetermined size, and flow separation The layer S causes turbulent transitions and vortex vibrations around the blades 5. In addition, vibration is generated in the blade 5, thereby lowering power generation efficiency of the wind turbine 200.
  • an object of the present invention is to propose a wind turbine generator blade and a wind turbine generator using the same, by which the power generation efficiency is increased by removing the flow separation layer generated around the blade.
  • the formation of a fluid peeling layer generated around the blade can be suppressed.
  • FIG. 1 is a view showing a wind turbine generator equipped with a blade for a conventional wind turbine.
  • FIG. 2 is a view showing the flow of air, in a cutaway view according to the II-II diagram of FIG.
  • FIG 3 is a view showing a wind turbine generator having a blade for a wind turbine generator according to a first embodiment of the present invention.
  • FIG. 4 shows a negative pressure surface of one blade body of a plurality of blade bodies of the blade for a wind turbine of FIG.
  • FIG. 5 shows the flow of air, in a cutaway view according to the V-V diagram of FIG. 3;
  • FIG. 6 is a view of the blade body of FIG. 4 viewed in the A direction;
  • FIG. 7 is a view showing a blade for a wind turbine according to a second embodiment of the present invention.
  • a wind turbine blade for achieving the above object the wind turbine blade for rotation is connected to the hub, the blade body, the pressing surface and the negative pressure surface is formed; A root portion formed at one side of the blade body and connected to the hub; And a tip portion spaced apart from the root portion in the longitudinal direction of the blade body, the tip portion being formed at the other end of the blade body, and an inflow hole is formed in a portion of the blade body adjacent to the root portion, and the tip portion
  • An outlet hole may be formed in the blade body, and a blade for a wind power generation device may be provided in the blade body, wherein an air passage for communicating the inlet hole and the outlet hole is formed.
  • the inlet hole may be located on the negative pressure surface of the blade body.
  • the inlet hole may be located between the central portion and the root portion of the blade in the longitudinal direction of the blade body.
  • the inlet hole may be located adjacent to the trailing edge of the leading and trailing edge of the blade body.
  • a direction in which the inflow hole is opened in the blade body and a direction in which the outflow hole is open may cross each other.
  • the inflow hole may be provided in plurality, and the plurality of inflow holes may be connected to one air flow path.
  • a wind turbine including a hub, a plurality of blades connected and rotated about the hub, and a generator body rotatably connected to the hub to generate electricity according to rotation of the blades.
  • a power generation apparatus comprising: a blade body having a pressing surface and a negative pressure surface; A root portion formed at one side of the blade body and connected to the hub; And a tip portion spaced apart from the root portion in the longitudinal direction of the blade body, the tip portion being formed at the other end of the blade body, an inlet hole is formed in a portion of the blade body adjacent to the root portion, and the tip portion An outflow hole is formed in the blade body, and an air flow path is formed in the blade body to communicate the inflow hole and the outflow hole, and the inflow hole may be provided with a wind power generator positioned on the negative pressure surface of the blade body.
  • FIG 3 is a view showing a wind turbine generator equipped with a blade for a wind turbine generator according to a first embodiment of the present invention.
  • the wind power generator 100 includes a wind generator body 110, a support 120, a hub 20, and a plurality of blades 1.
  • the wind power generator 100 is installed in a place where the surroundings are open so that interference of air flow can be minimized, such as a mountain ridge, a sea, or a roof of a building.
  • the support 120 may be formed by extending a predetermined height with respect to the bottom surface, thereby supporting the wind generator body 110 and the plurality of blades 1, such that the plurality of blades 1 may be rotated at a predetermined height.
  • the plurality of blades 1 are connected about the hub 20, and the hub 20 to which the plurality of blades 1 are connected is rotatably connected to the wind generator body 110.
  • the blade 1 includes a blade body 10, a root portion 11, and a tip portion 12.
  • the blade body 10 forms the outer shape of the blade 1, and is formed in a shape having an angle of inclination with respect to the airflow, that is, a shape having a predetermined angle of attack with respect to the airflow.
  • One surface of the blade body 10 is formed with a pressurized surface 13 on which lift force due to air flow is applied, and a suction surface 14 is formed on the rear surface of the blade body 1.
  • the blade body 10 is rotated in one direction.
  • the root portion 11 is formed on one side of the blade body 10 is connected to the hub 20, the tip portion 12 is spaced apart from the root portion 11 in the longitudinal direction in which the blade body 10 extends It is formed on the other end of the blade body (10).
  • the blade 1 according to the present exemplary embodiment includes an air inlet hole 15, an outlet hole 17, and an air passage 16 for removing a flow release layer generated in an area adjacent to the root part 11.
  • the bar for forming the fluidized release layer will be described in detail below.
  • Figure 4 is a view showing the negative pressure surface of the blade body of one of the plurality of blade body of the blade for the wind turbine of Figure 3
  • Figure 5 is a view showing the flow of air, in a cutaway view according to the VV diagram of FIG. .
  • 6 is a view of the blade body of FIG. 4 viewed in the A direction.
  • the blade body 10 includes a leading edge 18, which is a leading edge, and a trailing edge, which is a trailing edge, according to the rotational direction of the blade body 10. edge 19 is formed.
  • the width of the blade body 10 between the leading edge 18 and the trailing edge 19 is formed in a tendency to gradually decrease from the portion adjacent to the root portion 11 toward the tip portion 12 side.
  • an inflow hole 15 is formed through the region adjacent to the root portion 11.
  • an outlet hole 17 is formed in the tip part 12, and an air passage 16 is formed in the blade body 10 to allow the inlet hole 15 and the outlet hole 17 to communicate with each other.
  • the inlet hole 15 may be formed of a plurality of circular holes, and may be formed in a shape that opens in the direction (y direction) intersecting the negative pressure surface 14, that is, in the direction of the rotation vector component of the blade 1. .
  • the inlet hole 15 is not formed as a circular hole, it will also be possible to be configured in a slot (Slot) shape extending in one direction.
  • the plurality of inlet holes 15 are located between the leading edge 18 and the trailing edge 19 on the negative pressure surface 14, and in the present embodiment, the plurality of inlet holes 15 are provided on the trailing edge 19 side. It is described as being disposed adjacent to.
  • the flow release layer generated during the rotation of the blade 1 is uniformly disposed between the leading edge 18 and the trailing edge 19, or depending on the position formed on the negative pressure surface 14. It is also possible to configure the arrangement adjacent to the edge 18 side.
  • the inflow hole 15 is located between the central portion 101 and the root portion 11 of the blade body 10 with respect to the longitudinal direction of the blade body 10. That is, the inflow hole 15 is disposed between the central portion 101 and the root portion 11, which is a portion corresponding to half the size L2 of the total length L1 of the blade body 10. This is a region in which the angle of attack of the blade body 10 is adjacent to the root portion 11 is the largest, and the angle of attack decreases toward the tip portion 12 side, whereby the flow separation layer is the largest area. This is to effectively remove the flow release layer between the phosphorus, the root portion 11 and the central portion 101.
  • an outlet hole 17 is formed in the tip portion 12 formed at the other end of the blade body 10.
  • the outlet hole 17 may be provided in one or a plurality, it is described that one outlet hole 17 is provided in the blade 1 according to the present embodiment.
  • the outlet hole 17 is formed at the end side of the tip portion 12, and the hub 20 forming a direction (x-axis direction) intersecting with the direction in which the inlet hole 15 is opened, that is, the center of rotation of the blade 1. It is formed in the shape which opens in the direction toward ().
  • an air flow path 16 is formed in the blade body 10 to allow the inflow hole 15 and the inflow hole 17 to communicate with each other, and the plurality of inflow holes 15 have one air flow path 16. It is formed in the shape connected to).
  • the configuration in which the plurality of inflow holes 15 are connected to one air flow path 16 is merely an exemplary configuration, in which a plurality of air flow paths 16 corresponding to the plurality of inflow holes 15 are formed, respectively. It will also be included in the spirit of the present invention.
  • the pressure at the point where the inlet hole 15 is formed and the distance from the hub 20 are Pa, La, and the pressure at the point where the outlet hole 17 is formed and the distance from the hub 20 are Pb, Lb, respectively.
  • the angular velocity of the blade 1 is ⁇
  • the density of air is ⁇
  • the velocity of the airflow flowing into the blade is Vinf
  • the relative velocity Va and the outflow hole 17 of the airflow at the point where the inflow hole 15 is formed are
  • the relative velocity Vb of the air flow at the formed point satisfies the following formula.
  • Va ⁇ La + Vinf
  • the distance Lb from the hub 20 at the point where the outlet hole 17 is formed is substantially equal to the total length L1 of the blade body 10.
  • Pa-Pb (1/2) ⁇ ⁇ (Vb) ⁇ 2 ⁇ -(1/2) ⁇ ⁇ (Va) ⁇ 2 ⁇
  • the pressure at the point where the inlet hole 15 is formed is greater than the pressure at the point where the outlet hole 17 is formed at a relatively high speed.
  • the air of the fluidized release layer formed during the rotation of the blade 1 flows into the inlet hole 15 formed at a position corresponding to the area where the fluidized release layer is generated, thereby opening the air passage 16. It is discharged through a relatively low pressure outlet hole 17 through, the fluid separation layer is removed.
  • FIG. 7 is a view showing a blade for a wind turbine according to a second embodiment of the present invention.
  • This embodiment differs only in the shape of the inflow hole, and in other configurations is the same as the configuration of the blade for the wind turbine according to the first embodiment, and will be described below with reference to the characteristic parts of the present embodiment.
  • an inflow hole 35 having a slot shape extending in the longitudinal direction of the blade body 30 is formed in the negative pressure surface 34 of the blade body 30 according to the present embodiment.
  • the inlet hole 35 is formed at a position adjacent to the root portion 31, and the length of the inlet hole 35 is extended so that the flow release layer has a negative pressure surface 34 of the blade body 30. It may be formed to be equal to the length of the section formed in, or smaller than the length of the section.

Abstract

본 발명은 풍력 발전 장치용 블레이드 및 이를 이용한 풍력 발전 장치에 관한 것이다. 본 발명의 일 실시예에 따른 풍력 발전 장치용 블레이드는, 가압면 및 부압면이 형성되는 블레이드 몸체; 블레이드 몸체의 일측에 형성되며 허브에 연결되는 루트부; 및 블레이드 몸체의 길이 방향으로 루트부와 이격되며, 블레이드 몸체의 타측 단부에 형성되는 팁부를 포함하되, 루트부에 인접된 블레이드 몸체의 일부 영역에는 유입홀이 형성되고, 팁부에는 유출홀이 형성되며, 블레이드 몸체의 내부에는 유입홀과 유출홀을 연통시키는 공기 유로가 형성되는 것을 특징으로 한다.

Description

풍력 발전 장치용 블레이드 및 이를 이용한 풍력 발전 장치
본 발명은 풍력 발전 장치용 블레이드 및 이를 이용한 풍력 발전 장치에 관한 것이다.
근래에는 석탄 또는 석유와 같은 화석 연료를 사용하지 아니하고, 태양열, 조석 간만의 차이 또는 바람을 이용한 자연 친화적인 신재생 에너지를 이용한 발전 장치 및 발전 방법이 각광을 받고 있다.
상기 신재생 에너지를 이용한 발전 장치중, 풍력 발전 장치는 풍력 에너지를 전기 에너지로 변환시켜, 전기를 생산하는 발전 장치로서, 일반적인 풍력 발전 장치의 일례가 도 1 내지 도 2에 도시되어 있다.
도 1 및 도 2를 참조하면, 일반적인 풍력 발전 장치(200)에는 복수의 블레이드(5)와, 복수의 블레이드(5)가 연결되는 허브(60)와, 허브(60)가 회전 가능하게 연결되는 발전기 본체(210)와, 발전기 본체(210)를 바닥면에 대하여 지지하는 지주부(220)가 구비된다.
복수의 블레이드(5)는 허브(60)를 중심으로 배치되어, 블레이드 몸체(50)에 풍력이 작용하게 되면, 일방향으로 회전됨으로써, 발전기 본체(210)에서 전기가 생산될 수 있도록 한다.
블레이드 몸체(50)에는, 작용되는 풍력에 의하여 블레이드 몸체(50)를 회전시킬 수 있는 양력이 발생될 수 있도록, 가압면(Pressure surface)(53) 및 부압면 (Suction surface)(54)이 형성된다.
이때, 블레이드(5)가 상기 양력에 의하여 회전되면, 블레이드 몸체(50)를 따라서 흐르는 기류와 블레이드 몸체(50)의 표면 사이의 마찰에 의하여, 블레이드 몸체(50)의 표면 부근에서의 상기 기류의 속도는 0으로 수렴하게 된다.
또한, 블레이드 몸체(50)의 일측 단부에 형성되어 허브(60)에 연결되는 루트부(51)는, 일반적으로 상기 기류에 대하여 기울어지는 각도, 즉 받음각이 상대적으로 블레이드 몸체(51)의 타측 단부에 형성되는 팁부(52)에 비하여 매우 크게 형성된다. 따라서, 루트부(51)에 인접되는 블레이드 몸체(50)의 일부 영역을 따라 흐르는 상기 기류의 속도는 상대적으로 팁부(52)에 인접되는 영역을 따라 흐르는 상기 기류의 속도에 비하여 매우 작다.
따라서, 블레이드(5)가 회전되는 과정에서, 루트부(51)에 인접되는 블레이드 몸체(50)의 일부 영역에서는 기류의 속도가 0인 유동 박리층(S)이 일정 크기로 형성되며, 유동 박리층(S)에 의하여, 블레이드(5) 주위의 난류 천이 및 와류 진동이 발생하게 된다. 또한, 이에 의하여, 블레이드(5)에서 진동이 발생하게 되며, 풍력 발전 장치(200)의 발전 효율이 저하된다.
이에 본 발명의 목적은, 블레이드 주변에 발생되는 유동 박리층을 제거함으로써, 발전 효율이 증대되는 풍력 발전 장치용 블레이드 및 이를 이용한 풍력 발전 장치를 제안하는 것에 있다.
본 발명은 풍력발전 장치용 블레이드의 블레이드 몸체에 유입홀 및 유출홀과, 상기 유입홀 및 상기 유출홀을 연통시키는 유로를 형성시킴으로써, 상기 블레이드 주변에 발생되는 유동박리층의 형성을 억제시킬 수 있다.
제안되는 실시예에 의하면, 블레이드의 표면의 각 지점에서의 압력 차이를 이용하여 상기 유동 박리층을 제거함으로써, 상기 유동 박리층의 발생에 따른 난류 발생 및 와류 진동을 방지하고, 난류 발생 및 와류 진동에 따른 발전 효율의 저하가 방지될 수 있다.
또한, 블레이드의 회전 과정에서, 발생되는 블레이드 표면의 각 지점에서의 압력 차이를 이용하여 상기 유동 박리층을 제거함으로써, 상기 압력 차이를 생성하기 위한 별도의 압축기 또는 흡입기와 같은 구성이 요구되지 않는 장점이 있다.
도 1은 종래의 풍력 발전 장치용 블레이드가 설치된 풍력 발전 장치를 보여주는 도면.
도 2는 도 1의 Ⅱ-Ⅱ 선도에 따른 절개도에서, 공기의 흐름을 보여주는 도면.
도 3은 본 발명의 제1실시예에 따른 풍력 발전 장치용 블레이드가 설치된 풍력 발전 장치를 보여주는 도면.
도 4는 도 3의 풍력 발전 장치용 블레이드의 복수의 블레이드 몸체 중 하나의 블레이드 몸체의 부압면를 보여주는 도면.
도 5는 도 3의 V-V 선도에 따른 절개도에서, 공기의 흐름을 보여주는 도면.
도 6은 도 4의 블레이드 몸체를 A 방향에서 바라본 도면.
도 7은 본 발명의 제2실시예에 따른 풍력 발전 장치용 블레이드를 보여주는 도면.
상기 목적을 달성하기 위한 풍력 발전 장치용 블레이드는, 허브를 중심으로 연결되어 회전되는 풍력 발전 장치용 블레이드에 있어서, 가압면 및 부압면이 형성되는 블레이드 몸체; 상기 블레이드 몸체의 일측에 형성되며 상기 허브에 연결되는 루트부; 및 상기 블레이드 몸체의 길이 방향으로 상기 루트부와 이격되며, 상기 블레이드 몸체의 타측 단부에 형성되는 팁부를 포함하고, 상기 루트부에 인접된 상기 블레이드 몸체의 일부 영역에는 유입홀이 형성되고, 상기 팁부에는 유출홀이 형성되며, 상기 블레이드 몸체의 내부에는 상기 유입홀과 상기 유출홀을 연통시키는 공기 유로가 형성되는 것을 특징으로 하는 풍력 발전 장치용 블레이드가 제공될 수 있다.
또한, 상기 유입홀은 상기 블레이드 몸체의 상기 부압면에 위치할 수 있다.
또한, 상기 유입홀은 상기 블레이드 몸체의 길이 방향에 대한 상기 블레이드의 중앙부와 상기 루트부 사이에 위치할 수 있다.
또한, 상기 유입홀은 상기 블레이드 몸체의 리딩 에지와 트레일링 에지 중 상기 트레일링 에지에 인접되게 위치할 수 있다.
또한, 상기 유입홀이 상기 블레이드 몸체에서 개구되는 방향과, 상기 유출홀이 개구되는 방향은 서로 교차될 수 있다.
또한, 상기 유입홀은 복수개로 마련되며, 복수의 유입홀들은 하나의 공기 유로에 연결될 수 있다.
본 발명의 다른 측면에 의하면 허브와, 상기 허브를 중심으로 연결되어 회전되는 복수의 블레이드들과, 상기 허브가 회전 가능하게 연결되어, 상기 블레이드들의 회전에 따라서 전기를 생산하는 발전기 본체를 포함하는 풍력 발전 장치에 있어서, 가압면 및 부압면이 형성되는 블레이드 몸체; 상기 블레이드 몸체의 일측에 형성되며 상기 허브에 연결되는 루트부; 및 상기 블레이드 몸체의 길이 방향으로 상기 루트부와 이격되며, 상기 블레이드 몸체의 타측 단부에 형성되는 팁부를 포함하고, 상기 루트부에 인접된 상기 블레이드 몸체의 일부 영역에는 유입홀이 형성되고, 상기 팁부에는 유출홀이 형성되며, 상기 블레이드 몸체의 내부에는 상기 유입홀과 상기 유출홀을 연통시키는 공기 유로가 형성되고, 상기 유입홀은 상기 블레이드 몸체의 상기 부압면에 위치되는 풍력 발전 장치가 제공될 수 있다.
이하에서는 도면을 참조하여 본 발명에 따른 선박의 상태 측정 시스템 및 측정 방법을 상세하게 설명한다.
도 3은 본 발명의 제1실시예에 따른 풍력 발전 장치용 블레이드가 설치된 풍력 발전 장치를 보여주는 도면이다.
도 3을 참조하면, 본 실시예에 따른 풍력 발전 장치(100)는 풍력 발전기 본체(110)와, 지주부(120)와, 허브(20)와, 복수의 블레이드(1)들을 포함한다.
보다 상세히, 풍력 발전 장치(100)는 산의 능선, 해상 또는 건물의 옥상과 같이, 기류의 간섭이 최소화될 수 있도록, 주변이 개방된 장소에 설치된다. 그리고, 지주부(120)는 바닥면에 대하여 일정 높이만큼 연장 형성된 상태에서, 풍력 발전기 본체(110) 및 복수의 블레이드(1)들을 지지함으로써, 복수의 블레이드(1)들이 일정 높이에서 회전될 수 있도록 한다.
복수의 블레이드(1)들은 허브(20)를 중심으로 연결되며, 복수의 블레이드(1)들이 연결된 허브(20)는 풍력 발전기 본체(110)에 대하여 회전 가능하게 연결된다.
복수의 블레이드(1)들이 상기 기류에 의하여 회전되면, 허브(20)를 통하여 블레이드(1)들의 회전력이 풍력 발전기 본체(110)에 전달되어, 풍력 발전기 본체(110) 내부의 전자기 유도 현상에 의하여 전력이 생산된다. 상기 전력 생산 방식은 일반적인 풍력 발전기에 의한 전력 생산 방식과 동일하므로 이에 대한 상세한 설명은 생략한다.
한편, 블레이드(1)는 블레이드 몸체(10)와, 루트부(11)와, 팁부(12)를 포함한다.
보다 상세히, 상기 블레이드 몸체(10)는 블레이드(1)의 외형을 형성하며, 상기 기류에 대하여 일정 각도 기울어진 형태, 즉 상기 기류에 대하여 일정 크기의 받음각을 갖는 형상으로 형성된다.
그리고, 블레이드 몸체(10)의 일면에는 기류에 의한 양력이 작용되는 가압면(Pressure surface)(13)이 형성되며, 블레이드 몸체(1)의 이면에는 부압면(Suction surface)(14)이 형성되어, 블레이드 몸체(10)가 일방향으로 회전되도록 한다.
상기 루트부(11)는 블레이드 몸체(10)의 일측에 형성되어 허브(20)에 연결되며, 상기 팁부(12)는 블레이드 몸체(10)가 연장 형성되는 길이 방향으로 루트부(11)와 이격되며, 블레이드 몸체(10)의 타측 단부에 형성된다.
그리고, 본 실시예에 따른 블레이드(1)에는 루트부(11)에 인접되는 영역에 발생되는 유동 박리층을 제거하기 위한 공기 유입홀(15), 유출홀(17) 및 공기 유로(16)가 형성되는바, 이하에서는 상기의 유동 박리층를 제거하기 위한 구성을 상세하게 설명한다.
도 4는 도 3의 풍력 발전 장치용 블레이드의 복수의 블레이드 몸체 중 하나의 블레이드 몸체의 부압면을 보여주는 도면이며, 도 5는 도 3의 V-V 선도에 따른 절개도에서, 공기의 흐름을 보여주는 도면이다. 그리고, 도 6은 도 4의 블레이드 몸체를 A 방향에서 바라본 도면이다.
도 4 내지 도 6을 참조하면, 상기 블레이드 몸체(10)에는, 블레이드 몸체(10)의 회전 방향에 따라서 선행하는 에지인 리딩 에지(Leading edge)(18) 및 후행하는 에지인 트레일링 에지(Trailing edge)(19)가 형성된다.
그리고, 리딩 에지(18)와 트레일링 에지(19) 사이의 블레이드 몸체(10)의 폭은, 루트부(11)에 인접된 부분부터 팁부(12) 측으로 갈수록, 점진적으로 감소되는 경향으로 형성된다.
블레이드 몸체(10)의 부압면(14)에서, 루트부(11)에 인접되는 영역에는 유입홀(15)이 관통 형성된다. 그리고, 팁부(12)에는 유출홀(17)이 형성되며, 블레이드 몸체(10)의 내부에는 유입홀(15)과 유출홀(17)이 연통되도록 하는 공기 유로(16)가 형성된다.
보다 상세히, 유입홀(15)은 복수개의 원형 홀로 형성될 수 있으며, 부압면(14)과 교차되는 방향(y방향), 즉 블레이드(1)의 회전 벡터 성분의 방향으로 개구되는 형상으로 형성된다.
한편, 유입홀(15)이 원형 홀로 형성되지 아니하고, 일방향으로 길게 연장되는 슬롯(Slot) 형상으로 형성되는 구성 또한 가능하다고 할 것이다.
복수개의 유입홀(15)들은 부압면(14)에서 리딩 에지(18)와 트레일링 에지(19) 사이에 위치되며, 본 실시예에서는 복수의 유입홀(15)들이 트레일링 에지(19) 측에 인접되게 배치되는 것으로 설명된다.
다만, 블레이드(1)의 회전 과정 중에서 발생되는 상기 유동 박리층이, 부압면(14)에 형성되는 위치에 따라서, 리딩 에지(18)와 트레일링 에지(19) 사이에 균일하게 배치되거나, 리딩 에지(18) 측에 인접되어 배치되는 구성 또한 가능하다고 할 것이다.
그리고, 유입홀(15)은 블레이드 몸체(10)의 길이 방향에 대한 상기 블레이드 몸체(10)의 중앙부(101)와 루트부(11) 사이에 위치된다. 즉, 유입홀(15)은 블레이드 몸체(10)의 전체 길이(L1)의 절반 크기(L2)에 해당되는 부분인 중앙부(101)와 루트부(11) 사이에 배치된다. 이는, 블레이드 몸체(10)의 상기 받음각이 루트부(11)에 인접된 부분이 가장 크고, 팁부(12) 측으로 갈수록 상기 받음각이 감소되는 형상으로 형성됨으로써, 상기 유동 박리층이 가장 크게 발생되는 영역인, 루트부(11)와 중앙부(101) 사이의 상기 유동 박리층을 효과적으로 제거하기 위함이다.
한편, 블레이드 몸체(10)의 타측 단부에 형성되는 상기 팁부(12)에는 유출홀(17)이 형성된다. 이때, 유출홀(17)은 하나 또는 복수개로 마련될 수 있으며, 본 실시예에 따른 블레이드(1)에는 하나의 유출홀(17)이 마련되는 것으로 설명된다.
유출홀(17)은 팁부(12)의 단부 측에 형성되며, 유입홀(15)이 개구되는 방향과 교차되는 방향(x축 방향), 즉 블레이드(1)의 회전 중심을 형성하는 허브(20)를 향하는 방향으로 개구되는 형상으로 형성된다.
그리고, 블레이드 몸체(10)의 내부에는 유입홀(15)과 유입홀(17)이 서로 연통되도록 하기 위한 공기 유로(16)가 형성되며, 복수의 유입홀(15)들이 하나의 공기 유로(16)에 연결되는 형상으로 형성된다.
다만, 복수의 유입홀(15)들이 하나의 공기 유로(16)에 연결되는 구성은 예시적인 구성일뿐, 복수의 유입홀(15)들에 각각 대응되는 복수의 공기 유로(16)들이 형성되는 구성 또한 본 발명의 사상에 포함된다고 할 것이다.
이하에서는 유입홀(15), 유출홀(17) 및 공기 유로(16)를 포함하는 유동 박리층 제거 구성에 의하여 상기 유동 박리층이 제거되는 구성을 상세하게 설명한다.
본 실시예에 따른 풍력 발전 장치(100)에서 블레이드(1)가 회전되면, 블레이드(1)의 회전에 따라서 블레이드 몸체(10)의 주변부의 압력이, 회전 중심인 허브(20)로부터의 거리에 따라서 서로 다르게 형성된다.
즉, 유입홀(15)이 형성된 지점의 압력 및 허브(20)로부터의 거리를 각각 Pa, La, 유출홀(17)이 형성된 지점의 압력 및 허브(20)로부터의 거리를 각각 Pb, Lb, 블레이드(1)의 각속도를 ω, 공기의 밀도를 ρ, 블레이드에 유입되는 기류의 속도를 Vinf라고 할 때, 유입홀(15)이 형성된 지점에서의 기류의 상대 속도 Va 및 유출홀(17)이 형성된 지점에서의 기류의 상대 속도 Vb는 이하의 수식을 만족한다.
[수학식 1]
Va = ωLa + Vinf
[수학식 2]
Vb = ωLb + Vinf = ωL1 + Vinf
이때, 유출홀(17)이 형성된 지점에서 허브(20)로부터의 거리인 Lb는 실질적으로 블레이드 몸체(10)의 전체 길이 L1과 같다.
따라서, 상기 관계를 중심으로, 베르누이의 정리(Bernoulli principle)에 의하여 얻어지는 유입홀 압력(Pa)와 유출홀 압력(Pb)의 차이는 이하의 관계식을 만족한다.
[수학식 3]
Pa - Pb = (1/2)ρ{(Vb)^2} - (1/2)ρ{(Va)^2}
= (1/2)ρ{ω(L1+La)+2Vinf}{ω(L1-La)} > 0
즉, 상기 관계식으로부터, 유입홀(15)이 형성된 지점의 압력은 상대적으로 고속인 유출홀(17)이 형성된 지점의 압력보다 크게 형성됨을 알 수 있다.
따라서, 블레이드(1)의 회전 과정에서 형성되는 상기 유동 박리층의 공기는, 상기 유동 박리층이 발생되는 영역에 대응되는 위치에 형성되는 유입홀(15)로 유입되어, 공기 유로(16)를 통하여 상대적으로 저압인 유출홀(17)을 통하여 배출되어, 상기 유동 박리층이 제거된다.
상기 유동 박리층이 제거되면, 블레이드(1)의 표면 측에는 정상 흐름을 갖는 기류층만이 남게 되어, 상기 유동 박리층에 의한 난류 발생 및 와류 진동을 방지할 수 있다.
제안되는 실시예에 의하면, 블레이드(1)의 표면의 각 지점에서의 압력 차이를 이용하여 상기 유동 박리층을 제거함으로써, 상기 유동 박리층의 발생에 따른 난류 발생 및 와류 진동을 방지하고, 난류 발생 및 와류 진동에 따른 발전 효율의 저하가 방지될 수 있다.
또한, 블레이드(1)의 회전 과정에서, 발생되는 블레이드(1) 표면의 각 지점에서의 압력 차이를 이용하여 상기 유동 박리층을 제거함으로써, 상기 압력 차이를 생성하기 위한 별도의 압축기 또는 흡입기와 같은 구성이 요구되지 않는 장점이 있다.
도 7은 본 발명의 제2실시예에 따른 풍력 발전 장치용 블레이드를 보여주는 도면이다.
본 실시예는 유입홀의 형상에 있어서 차이가 있을 뿐, 다른 구성에 있어서는 제1실시예에 따른 풍력 발전 장치용 블레이드의 구성과 동일하므로, 이하에서는 본 실시예의 특징적인 부분을 중심으로 설명한다.
도 7을 참조하면, 본 실시예에 따른 블레이드 몸체(30)의 부압면(34)에는 블레이드 몸체(30)의 길이 방향으로 연장 형성되는 슬롯(Slot) 형상의 유입홀(35)이 형성된다.
본 실시예에 따른 유입홀(35)은 루트부(31)에 인접된 위치에 형성되며, 유입홀(35)의 연장 형성 길이는 상기 유동 박리층이 블레이드 몸체(30)의 부압면(34)에 형성되는 구간의 길이와 같거나, 상기 구간의 길이보다 작게 형성될 수 있다.
이상에서는 본 발명의 바람직한 발명에 대하여 도시하고 설명하였지만, 본 발명은 상술한 특정의 실시예에 한정되지 아니하며, 청구범위에서 청구하는 본 발명의 요지를 벗어남이 없이 당해 발명이 속하는 기술분야에서 통상의 지식을 가진 자에 의해 다양한 변형 실시 가능한 것은 물론이고, 이러한 변형 실시들은 본 발명의 기술적 사상이나 전망으로부터 개별적으로 이해되어서는 안 될 것이다.

Claims (6)

  1. 허브를 중심으로 연결되어 회전되는 풍력 발전 장치용 블레이드에 있어서,
    가압면 및 부압면이 형성되는 블레이드 몸체;
    상기 블레이드 몸체의 일측에 형성되며 상기 허브에 연결되는 루트부; 및
    상기 블레이드 몸체의 길이 방향으로 상기 루트부와 이격되며, 상기 블레이드 몸체의 타측 단부에 형성되는 팁부를 포함하되,
    상기 루트부에 인접된 상기 블레이드 몸체의 일부 영역에는 유입홀이 형성되고,
    상기 팁부에는 유출홀이 형성되며,
    상기 블레이드 몸체의 내부에는 상기 유입홀과 상기 유출홀을 연통시키는 공기 유로가 형성되는 것을 특징으로 하는 풍력 발전 장치용 블레이드.
  2. 제 1 항에 있어서,
    상기 유입홀은 상기 블레이드 몸체의 상기 부압면에 위치되는 것을 특징으로 하는 풍력 발전 장치용 블레이드.
  3. 제 1 항에 있어서,
    상기 유입홀은 상기 블레이드 몸체의 길이 방향에 대한 상기 블레이드의 중앙부와 상기 루트부 사이에 위치되는 것을 특징으로 하는 풍력 발전 장치용 블레이드.
  4. 제 1 항에 있어서,
    상기 유입홀은 상기 블레이드 몸체의 리딩 에지와 트레일링 에지 중 상기 트레일링 에지에 인접되게 위치하는 것을 특징으로 하는 풍력 발전 장치용 블레이드.
  5. 제 1 항에 있어서,
    상기 유입홀이 상기 블레이드 몸체에서 개구되는 방향과, 상기 유출홀이 개구되는 방향은 서로 교차되는 것을 특징으로 하는 풍력 발전 장치용 블레이드.
  6. 제1항 내지 제 5항 중 어느 한 항의 블레이드;
    허브; 및
    상기 블레이드의 회전에 따라서 전기를 생산하는 발전기 본체를 포함하는 풍력 발전 장치.
PCT/KR2011/004358 2010-06-14 2011-06-14 풍력 발전 장치용 블레이드 및 이를 이용한 풍력 발전 장치 WO2011159091A2 (ko)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2010-0056188 2010-06-14
KR1020100056188A KR20110136296A (ko) 2010-06-14 2010-06-14 풍력 발전 장치용 블레이드 및 이를 이용한 풍력 발전 장치

Publications (2)

Publication Number Publication Date
WO2011159091A2 true WO2011159091A2 (ko) 2011-12-22
WO2011159091A3 WO2011159091A3 (ko) 2012-03-29

Family

ID=45348739

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2011/004358 WO2011159091A2 (ko) 2010-06-14 2011-06-14 풍력 발전 장치용 블레이드 및 이를 이용한 풍력 발전 장치

Country Status (2)

Country Link
KR (1) KR20110136296A (ko)
WO (1) WO2011159091A2 (ko)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2998572A1 (de) * 2014-09-22 2016-03-23 Best Blades GmbH Windenergieanlagenrotorblatt
ES2569724R1 (es) * 2014-11-11 2016-05-27 Gimenez Ramon Robles Helice
CN110566400A (zh) * 2019-09-10 2019-12-13 河南理工大学 一种水平轴风力机叶片
WO2023287431A1 (en) * 2021-07-16 2023-01-19 Lm Wind Power A/S Wind turbine rotor blade with passive airflow modifying assembly

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2787182B1 (de) 2013-04-02 2018-06-06 MTU Aero Engines AG Leitschaufel für eine Strömungsmaschine, Leitschaufelgitter und Verfahren zur Herstellung einer Leitschaufel oder eines Leitschaufelgitters
WO2015046651A1 (ko) * 2013-09-27 2015-04-02 주식회사 케이티이엔지 풍력발전기용 블레이드의 무게중심 측정장치 및 측정방법
KR101509199B1 (ko) * 2014-01-29 2015-04-09 서강대학교산학협력단 수평축 윈드 터빈의 블레이드
KR101589537B1 (ko) * 2014-04-24 2016-01-29 두산중공업 주식회사 에어튜브를 포함하는 블레이드 회전장치
KR20160026044A (ko) 2014-08-29 2016-03-09 삼성중공업 주식회사 풍력 발전 장치용 허브의 공기 순환 시스템 및 이를 이용한 풍력 발전 장치
US10087912B2 (en) * 2015-01-30 2018-10-02 General Electric Company Vortex generator for a rotor blade

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002025109A1 (fr) * 2000-09-20 2002-03-28 Georges Boulisset Pales creuses reactives pour eolienne
WO2007035758A1 (en) * 2005-09-19 2007-03-29 University Of Florida Research Foundation, Inc. Wind turbine blade comprising a boundary layer control system
US20090068018A1 (en) * 2006-04-02 2009-03-12 Gustave Paul Corten Windturbine with slender blade

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002025109A1 (fr) * 2000-09-20 2002-03-28 Georges Boulisset Pales creuses reactives pour eolienne
WO2007035758A1 (en) * 2005-09-19 2007-03-29 University Of Florida Research Foundation, Inc. Wind turbine blade comprising a boundary layer control system
US20090068018A1 (en) * 2006-04-02 2009-03-12 Gustave Paul Corten Windturbine with slender blade

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2998572A1 (de) * 2014-09-22 2016-03-23 Best Blades GmbH Windenergieanlagenrotorblatt
WO2016045656A1 (de) * 2014-09-22 2016-03-31 Best Blades Gmbh Windenergieanlagenrotorblatt
CN105658954A (zh) * 2014-09-22 2016-06-08 最优叶片有限公司 风能设备转子叶片
KR20170064538A (ko) * 2014-09-22 2017-06-09 베스트 블레이즈 게엠베하 윈드 터빈 회전자 블레이드
KR101950862B1 (ko) 2014-09-22 2019-05-31 베스트 블레이즈 게엠베하 윈드 터빈 회전자 블레이드
CN105658954B (zh) * 2014-09-22 2019-06-14 最优叶片有限公司 风能设备转子叶片
ES2569724R1 (es) * 2014-11-11 2016-05-27 Gimenez Ramon Robles Helice
CN110566400A (zh) * 2019-09-10 2019-12-13 河南理工大学 一种水平轴风力机叶片
WO2023287431A1 (en) * 2021-07-16 2023-01-19 Lm Wind Power A/S Wind turbine rotor blade with passive airflow modifying assembly

Also Published As

Publication number Publication date
WO2011159091A3 (ko) 2012-03-29
KR20110136296A (ko) 2011-12-21

Similar Documents

Publication Publication Date Title
WO2011159091A2 (ko) 풍력 발전 장치용 블레이드 및 이를 이용한 풍력 발전 장치
EP2275672B1 (en) Boundary layer fins for wind turbine blade
WO2013095033A1 (ko) 나셀 펜스를 갖는 풍력발전기
DK2801720T3 (en) Luftstrømsmodificerende device for a rotor blade of a wind turbine
CN101344068B (zh) 风力涡轮机叶片末梢防涡器
ES2516092T3 (es) Sistema y procedimiento de manipulación de una capa límite en una pala de rotor de una turbina eólica
CN102297074B (zh) 用于转子叶片构件的紧固装置
JP6154050B1 (ja) 風車翼、風車ロータ及び風力発電装置並びにボルテックスジェネレータの取付方法
WO2013073799A1 (en) Multi-type wind turbine
US8358026B2 (en) Wave energy turbine for oscillating water column systems
CN108468619B (zh) 一种离心式风力机叶片射流增功装置
WO2011102638A2 (ko) 회전동력 발생기 및 이를 이용한 구심력 동작형 수차
WO2012030051A1 (ko) 수차 및 이를 이용한 수력발전 구조물
WO2020209605A1 (ko) 부유식 해상풍력발전 시스템
WO2012002607A1 (ko) 풍·조력 발전선
WO2015093641A1 (ko) 풍력 발전 유니트 및 수직 적층형 풍력 발전 시스템
WO2021132918A2 (ko) 스월 베인형 습분 분리장치
WO2014051277A1 (ko) 가변 형 수평 날개를 갖는 소형 풍력발전기 및 이의 출력 제어방법
CN206722990U (zh) 用于风力发电机组的散热系统及风力发电机组
WO2018199583A1 (ko) 전기 자동차에 장착되는 양력을 이용한 풍력 발전 장치
WO2018062680A1 (ko) 풍력 발전기 및 이를 포함하는 하이브리드 발전기
CA3104294C (en) Rotor blade for a wind turbine and wind turbine
CN2802113Y (zh) 涡旋式风力发电机
WO2020040461A1 (ko) 흐르는 유체로부터 에너지를 획득하는 장치 및 방법
CN209617487U (zh) 一种涵道式飞行器及涵道扩散器

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11795957

Country of ref document: EP

Kind code of ref document: A2

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11795957

Country of ref document: EP

Kind code of ref document: A2