JP6154050B1 - 風車翼、風車ロータ及び風力発電装置並びにボルテックスジェネレータの取付方法 - Google Patents

風車翼、風車ロータ及び風力発電装置並びにボルテックスジェネレータの取付方法 Download PDF

Info

Publication number
JP6154050B1
JP6154050B1 JP2016155525A JP2016155525A JP6154050B1 JP 6154050 B1 JP6154050 B1 JP 6154050B1 JP 2016155525 A JP2016155525 A JP 2016155525A JP 2016155525 A JP2016155525 A JP 2016155525A JP 6154050 B1 JP6154050 B1 JP 6154050B1
Authority
JP
Japan
Prior art keywords
blade
wind turbine
fin
turbine blade
fin sets
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2016155525A
Other languages
English (en)
Other versions
JP2018025114A (ja
Inventor
浩司 深見
浩司 深見
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=58779016&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=JP6154050(B1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP2016155525A priority Critical patent/JP6154050B1/ja
Priority to EP17173247.2A priority patent/EP3282120B1/en
Priority to US15/634,541 priority patent/US10458388B2/en
Application granted granted Critical
Publication of JP6154050B1 publication Critical patent/JP6154050B1/ja
Publication of JP2018025114A publication Critical patent/JP2018025114A/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03DWIND MOTORS
    • F03D1/00Wind motors with rotation axis substantially parallel to the air flow entering the rotor 
    • F03D1/06Rotors
    • F03D1/065Rotors characterised by their construction elements
    • F03D1/0675Rotors characterised by their construction elements of the blades
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03DWIND MOTORS
    • F03D1/00Wind motors with rotation axis substantially parallel to the air flow entering the rotor 
    • F03D1/06Rotors
    • F03D1/0608Rotors characterised by their aerodynamic shape
    • F03D1/0633Rotors characterised by their aerodynamic shape of the blades
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03DWIND MOTORS
    • F03D9/00Adaptations of wind motors for special use; Combinations of wind motors with apparatus driven thereby; Wind motors specially adapted for installation in particular locations
    • F03D9/20Wind motors characterised by the driven apparatus
    • F03D9/25Wind motors characterised by the driven apparatus the apparatus being an electrical generator
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05BINDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
    • F05B2220/00Application
    • F05B2220/70Application in combination with
    • F05B2220/706Application in combination with an electrical generator
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05BINDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
    • F05B2230/00Manufacture
    • F05B2230/50Building or constructing in particular ways
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05BINDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
    • F05B2240/00Components
    • F05B2240/10Stators
    • F05B2240/12Fluid guiding means, e.g. vanes
    • F05B2240/122Vortex generators, turbulators, or the like, for mixing
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05BINDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
    • F05B2240/00Components
    • F05B2240/20Rotors
    • F05B2240/21Rotors for wind turbines
    • F05B2240/221Rotors for wind turbines with horizontal axis
    • F05B2240/2211Rotors for wind turbines with horizontal axis of the multibladed, low speed, e.g. "American farm" type
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05BINDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
    • F05B2240/00Components
    • F05B2240/20Rotors
    • F05B2240/30Characteristics of rotor blades, i.e. of any element transforming dynamic fluid energy to or from rotational energy and being attached to a rotor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05BINDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
    • F05B2240/00Components
    • F05B2240/20Rotors
    • F05B2240/30Characteristics of rotor blades, i.e. of any element transforming dynamic fluid energy to or from rotational energy and being attached to a rotor
    • F05B2240/306Surface measures
    • F05B2240/3062Vortex generators
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/70Wind energy
    • Y02E10/72Wind turbines with rotation axis in wind direction
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Abstract

【課題】風車の運転効率を向上可能な風車翼を提供する。【解決手段】風車翼は、翼本体と、前記翼本体の表面に取付けられたボルテックスジェネレータと、を備え、前記ボルテックスジェネレータは、互いに異なる翼長方向位置において、前記翼本体の表面から突出してそれぞれ設けられた複数のフィンをそれぞれ含む複数のフィンセットを含み、前記複数のフィンセットは、前記翼本体の翼長方向における前記翼本体の翼根の位置と前記翼本体の最大コード長位置との間の少なくとも一部の領域において、前記翼長方向において隣り合う2つの前記フィンセットを結ぶ直線と前記翼根の中心軸とが前記翼本体の表面の平面展開図上にてなす角度θが前記翼根に近づくにつれて大きくなるように配置される。【選択図】 図2

Description

本開示は、風車翼、風車ロータ及び風力発電装置並びにボルテックスジェネレータの取付方法に関する。
風車翼の空力的性能を改善して風車の運転効率を向上させる観点から、風車翼の表面に沿った流れの剥離を抑制するために、風車翼の表面にボルテックスジェネレータが設けられることがある。そして、風車翼の空力的性能を向上させるため、風車翼の表面におけるボルテックスジェネレータの配置に関して、様々な試みがなされている。
例えば、特許文献1には、風車翼面に沿った流れの剥離を抑制する渦を生成するためのフィンが、風車翼の翼長方向に沿って直線状に配列されたボルテックスジェネレータが開示されている。
また、特許文献2及び3には、上述のフィンが、ピッチ軸に対して所定の角度で傾斜する直線に沿って配列されたボルテックスジェネレータが開示されている。
欧州特許出願公開第2799710号明細書 米国特許出願公開第2014/0140856号明細書 欧州特許出願公開第2548800号明細書
風車翼面におけるボルテックスジェネレータのフィンの配列を適切に選択することによって、風車の運転効率が向上することが期待される。
しかしながら、特許文献1〜3では、風車翼面におけるフィンの配置と風車の運転効率との関係について、具体的な検討がなされていない。
上述の事情に鑑みて、本発明の少なくとも一実施形態は、風車の運転効率を向上可能な風車翼、風車ロータ及び風力発電装置並びにボルテックスジェネレータの取付方法を提供することを目的とする。
(1)本発明の少なくとも一実施形態に係る風車翼は、
翼本体と、
前記翼本体の表面に取付けられたボルテックスジェネレータと、を備え、
前記ボルテックスジェネレータは、互いに異なる翼長方向位置において、前記翼本体の表面から突出してそれぞれ設けられた複数のフィンをそれぞれ含む複数のフィンセットを含み、
前記複数のフィンセットは、前記翼本体の翼長方向における前記翼本体の翼根の位置と前記翼本体の最大コード長位置との間の少なくとも一部の領域において、前記翼長方向において隣り合う2つの前記フィンセットを結ぶ直線と前記翼根の中心軸とが前記翼本体の表面の平面展開図上にてなす角度θが前記翼根に近づくにつれて大きくなるように配置される。
なお、本明細書において、「翼長方向」とは、翼本体の翼根と翼先端とを結ぶ方向のことである。また、本明細書において、風車翼の「コード長」とは、ある翼長方向位置における翼本体の前縁と後縁とを結ぶ線(コード)の長さのことである。
本発明者の鋭意検討の結果、風車翼の翼根側の領域において、風車翼の翼長方向に沿って風車翼の翼根に近づくほど、風車翼の表面で風の流れが剥離する位置が前縁側にずれ、かつ、翼長方向位置の変化に対する剥離位置の変化の度合いが大きくなることが明らかとなった。
このことは、以下の理由によると考えられる。すなわち、風車翼の翼長方向における翼根の位置と最大コード長位置との間の少なくとも一部の領域では、風車翼の前縁側の形状は円柱で近似することができる。そして、この領域では、風車翼の翼長方向に沿って風車翼の翼根に近づくほど、周速が小さくなる結果、風の相対流入角度(周速ベクトルと相対流入速度ベクトルとがなす角)が大きくなる。このため、風車翼の翼根に近づくほど、風の相対入流角度の増大に応じて、風車翼の表面で風の流れが剥離する位置が前縁側にずれる。また、翼根に近づくほど翼長方向位置の変化に対する風の相対流入角度の変化量は大きいため、翼根に近づくにつれて、翼長方向位置の変化に対する剥離位置の変化の度合いが大きくなる。
この点、上記(1)の構成では、ボルテックスジェネレータを構成する複数のフィンセットは、翼本体の翼長方向における翼根の位置と最大コード長位置との間の少なくとも一部の領域において、翼長方向において隣り合う2つのフィンセットを結ぶ直線と翼根の中心軸とが翼本体の表面の平面展開図上にてなす角度θが翼根に近づくにつれて大きくなるように配置される。よって、上記(1)の構成によれば、翼長方向位置の変化に応じて変化する流れの剥離位置に対応してフィンが設けられるので、風車翼面上において流れの剥離を効果的に遅延させることができる。これにより、風車の運転効率を向上させることができる。
(2)幾つかの実施形態では、上記(1)の構成において、
前記複数のフィンセットは、前記翼根位置における前記翼本体の外径をdとし、前記風車翼が取り付けられる風車の設計周速比をλとし、前記風車翼を含む風車ロータの回転中心と前記翼本体の先端との間の距離をRとし、前記隣り合う2つの前記フィンセットのうち前記翼根に近いフィンセットの前記回転中心からの距離をrとし、前記rと前記Rとの比(r/R)である無次元半径位置をμとしたとき、前記翼根の前記位置と前記最大コード長位置との間の少なくとも一部の領域において、前記角度θが下記式(A)を満たすように配置される。
Figure 0006154050
本発明者の鋭意検討の結果、風車翼の翼長方向における翼根付近の領域では、翼面上で流れが剥離する位置は、後で詳述するように、翼本体の表面の平面展開図上にて下記式(B)で表される角度ψに対応する位置であり、下記式(B)より、翼面上における剥離の位置は、無次元半径位置μに応じて変化することが明らかとなった。
Figure 0006154050
この点、上記(2)の構成では、角度θが上記式(B)で表されるψ以下であるため、翼面上で流れが剥離する位置よりも前縁側にフィンが配置されるので、風車翼面上において流れの剥離をより効果的に遅延させることができる。また、上記(2)の構成では、角度θが3°以上であるので、比較的先端側においても、風車翼面上において流れの剥離を遅延させる効果を十分に得ることができる。
(3)幾つかの実施形態では、上記(2)の構成において、前記複数のフィンセットは、前記角度θが、θ≦(0.0034/μ)×(180/π)[°]を満たすように配置される。
(4)幾つかの実施形態では、上記(2)又は(3))の構成において、前記複数のフィンセットは、前記角度θが、θ≧(0.0021/μ)×(180/π)[°]を満たすように配置される。
典型的な風車翼では、角度θがθ≦(0.0034/μ)×(180/π)[°]を満たせば、翼長方向位置の変化に対する剥離位置の変化量に照らして角度θが過大になることが防止され、翼根における広い翼長方向範囲において、剥離遅延効果を享受できる。また、典型的な風車翼では、角度θがθ≧(0.0021/μ)×(180/π)[°]を満たせば、翼長方向位置の変化に対する剥離位置の変化量に照らして角度θが過小になることが防止され、翼根における広い翼長方向範囲において、剥離遅延効果を享受できる。
よって、上記(3)又は(4)の構成によれば、風車翼面上において流れの剥離を効果的に遅延させることができる。これにより、風車の運転効率を向上させることができる。
(5)幾つかの実施形態では、上記(1)乃至(4)の何れかの構成において、前記複数のフィンセットは、前記風車翼を含む風車ロータの回転中心と前記翼本体の先端との間の距離をRとし、前記隣り合う2つの前記フィンセットのうち前記翼根に近いフィンセットの前記回転中心からの距離をrとし、前記rと前記Rとの比(r/R)である無次元半径位置をμとしたとき、少なくとも前記無次元半径位置μが0.10≦μ≦0.15の範囲において、角度θが前記翼根に近づくにつれて大きくなるように配置される。
典型的な風車翼では、μが0.10≦μを満たす領域は、風車翼のハブへの取付け位置からある程度離れた位置であるため、風車翼にボルテックスジェネレータを取り付けることによる風車の性能改善効果をある程度見込める。また、典型的な風車翼では、μがμ≦0.15を満たす領域では、風車翼の前縁側の形状が円柱で精度よく近似できるため、上記(1)で説明した効果が得られる。
よって、上記(5)の構成によれば、風車翼面上において、流れの剥離を効果的に遅延させるために適した領域にフィンが設けられる。これにより、風車の運転効率を効果的に向上させることができる。
(6)幾つかの実施形態では、上記(1)乃至(5)の何れかの構成において、前記複数のフィンは、少なくとも、前記翼本体の翼厚tと、前記翼本体のコード長cとの比である翼厚比(t/c)が70%≦(t/c)≦85%を満たす前記翼長方向の領域において、角度θが前記翼根に近づくにつれて大きくなるように配置される。
典型的な風車翼では、翼厚比(t/c)が(t/c)≦85%を満たす領域は、風車翼のハブへの取付け位置からある程度離れた位置であるため、風車翼にボルテックスジェネレータを取り付けることによる風車の性能改善効果をある程度見込める。また、典型的な風車翼では、翼厚比(t/c)が70%≦(t/c)を満たす領域では、風車翼の前縁側の形状が円柱で精度よく近似できるため、上記(1)で説明した効果が得られる。
よって、上記(6)の構成によれば、風車翼面上において、流れの剥離を効果的に遅延させるために適した領域にフィンが設けられる。これにより、風車の運転効率を効果的に向上させることができる。
(7)幾つかの実施形態では、上記(1)乃至(6)の構成において、前記フィンセットは、前記翼本体の表面に固定される基部と、前記基部上に立設される1本又は2本の前記フィンと、を有するVGユニットを含む。
上記(7)の構成によれば、翼本体の表面に固定される基部と、基部上に立設される1本又は2本のフィンと、を有するVGユニットによりフィンセットが構成される。したがって、風車翼面上にVGユニットの単位でフィンを柔軟に配置して、上記(1)に記載したように複数のフィンを配列させることができ、これにより、風車翼面上において流れの剥離を効果的に遅延させることができ、風車の運転効率を向上させることができる。
(8)幾つかの実施形態では、上記(1)乃至(7)の構成において、前記ボルテックスジェネレータは、前記翼本体の負圧面において、該負圧面に沿った風の流れの乱流域内に設置される。
風車翼の負圧面における流れの剥離は、前縁近傍の層流域からその下流側の乱流域に向かって境界層が徐々に厚くなり、後縁に到達する前に流れが剥がれてしまうことで生じる。
この点、上記(8)の構成によれば、負圧面に沿った風の流れの乱流域内にボルテックスジェネレータを設置することで、負圧面からの流れの剥離を抑制することができる。
(9)本発明の少なくとも一実施形態に係る風車ロータは、
上記(1)乃至(8)の何れかに記載の風車翼と、
前記風車翼が取り付けられるハブと、
を備える。
上記(9)の構成では、ボルテックスジェネレータを構成する複数のフィンセットは、翼本体の翼長方向における翼根の位置と最大コード長位置との間の少なくとも一部の領域において、翼長方向において隣り合う2つのフィンセットを結ぶ直線と翼根の中心軸とが翼本体の表面の平面展開図上にてなす角度θが翼根に近づくにつれて大きくなるように配置される。よって、上記(9)の構成によれば、翼長方向位置の変化に応じて変化する流れの剥離位置に対応してフィンが設けられるので、風車翼面上において流れの剥離を効果的に遅延させることができる。これにより、風車の運転効率を向上させることができる。
(10)本発明の少なくとも一実施形態に係る風力発電装置は、上記(9)に記載の風車ロータを備える。
上記(10)の構成では、ボルテックスジェネレータを構成する複数のフィンセットは、翼本体の翼長方向における翼根の位置と最大コード長位置との間の少なくとも一部の領域において、翼長方向において隣り合う2つのフィンセットを結ぶ直線と翼根の中心軸とが翼本体の表面の平面展開図上にてなす角度θが翼根に近づくにつれて大きくなるように配置される。よって、上記(10)の構成によれば、翼長方向位置の変化に応じて変化する流れの剥離位置に対応してフィンが設けられるので、風車翼面上において流れの剥離を効果的に遅延させることができる。これにより、風車の運転効率を向上させることができる。
(11)本発明の少なくとも一実施形態に係るボルテックスジェネレータの取付方法は、
風車翼の表面へのボルテックスジェネレータの取付方法であって、
前記ボルテックスジェネレータは複数のフィンをそれぞれ含む複数のフィンセットを含み、
前記複数のフィンが互いに異なる翼長方向位置において前記風車翼の表面から突出するように、かつ、前記複数のフィンセットが、前記風車翼の翼長方向における前記風車翼の翼根の位置と前記風車翼の最大コード長位置との間の少なくとも一部の領域において、前記翼長方向において隣り合う2つの前記フィンセットを結ぶ直線と前記翼根の中心軸とが前記風車翼の表面の平面展開図上にてなす角度θが前記翼根に近づくにつれて大きくなるように、前記複数のフィンセットを前記風車翼に取付ける取付ステップを備える。
上記(11)の方法では、ボルテックスジェネレータを構成する複数のフィンセットは、風車翼の翼長方向における翼根の位置と最大コード長位置との間の少なくとも一部の領域において、翼長方向において隣り合う2つのフィンセットを結ぶ直線と翼根の中心軸とが風車翼の表面の平面展開図上にてなす角度θが翼根に近づくにつれて大きくなるように配置される。よって、上記(11)の方法によれば、翼長方向位置の変化に応じて変化する流れの剥離位置に対応してフィンが設けられるので、風車翼面上において流れの剥離を効果的に遅延させることができる。これにより、風車の運転効率を向上させることができる。
(12)幾つかの実施形態では、上記(11)の方法において、
前記取付ステップでは、前記翼根位置における前記風車翼の外径をdとし、前記風車翼が取り付けられる風車の設計周速比をλとし、前記風車翼を含む風車ロータの回転中心と前記風車翼の先端との間の距離をRとし、前記隣り合う2つの前記フィンセットのうち前記翼根に近いフィンセットの前記回転中心からの距離をrとし、前記rと前記Rとの比(r/R)である無次元半径位置をμとしたとき、前記翼根の前記位置と前記最大コード長位置との間の少なくとも一部の領域において、前記角度θが下記式(A)を満たすように、前記複数のフィンを配置して前記風車翼に取付ける。
Figure 0006154050
上記(12)の方法では、角度θが上記式(B)で表されるψ以下であるため、翼面上で流れが剥離する位置よりも前縁側にフィンが配置されるので、風車翼面上において流れの剥離をより効果的に遅延させることができる。また、上記(12)の方法では、角度θが3°以上であるので、比較的先端側においても、風車翼面上において流れの剥離を遅延させる効果を十分に得ることができる。
(13)幾つかの実施形態では、上記(12)の方法において、
前記取付ステップでは、前記角度θが、θ≦(0.0034/μ)×(180/π)[°]を満たすように前記複数のフィンセットを配置して前記風車翼に取付ける。
(14)幾つかの実施形態では、上記(12)又は(13)の方法において、
前記取付ステップでは、前記角度θが、θ≧(0.0021/μ)×(180/π)[°]を満たすように前記複数のフィンセットを配置して前記風車翼に取付ける。
典型的な風車翼では、角度θがθ≦(0.0034/μ)×(180/π)[°]を満たせば、翼長方向位置の変化に対する剥離位置の変化量に照らして角度θが過大になることが防止され、翼根における広い翼長方向範囲において、剥離遅延効果を享受できる。また、典型的な風車翼では、角度θがθ≧(0.0021/μ)×(180/π)[°]を満たせば、翼長方向位置の変化に対する剥離位置の変化量に照らして角度θが過小になることが防止され、翼根における広い翼長方向範囲において、剥離遅延効果を享受できる。
よって、上記(13)又は(14)の方法によれば、風車翼面上において流れの剥離を効果的に遅延させることができる。これにより、風車の運転効率を向上させることができる。
(15)幾つかの実施形態では、上記(11)乃至(14)の何れかの方法において、
前記取付ステップでは、前記風車翼を含む風車ロータの回転中心と前記風車翼の先端との間の距離をRとし、前記隣り合う2つの前記フィンセットのうち前記翼根に近いフィンセットの前記回転中心からの距離をrとし、前記rと前記Rとの比(r/R)である無次元半径位置をμとしたとき、少なくとも前記無次元半径位置μが0.10≦μ≦0.15の範囲において、角度θが前記翼根に近づくにつれて大きくなるように前記複数のフィンセットを配置して前記風車翼に取付ける。
典型的な風車翼では、μが0.10≦μを満たす領域は、風車翼のハブへの取付け位置からある程度離れた位置であるため、風車翼にボルテックスジェネレータを取り付けることによる風車の性能改善効果をある程度見込める。また、典型的な風車翼では、μがμ≦0.15を満たす領域では、風車翼の前縁側の形状が円柱で精度よく近似できるため、上記(11)で説明した効果が得られる。
よって、上記(15)の方法によれば、風車翼面上において、流れの剥離を効果的に遅延させるために適した領域にフィンが設けられる。これにより、風車の運転効率を効果的に向上させることができる。
本発明の少なくとも一実施形態によれば、風車の運転効率を向上可能な風車翼、風車ロータ及び風力発電装置並びにボルテックスジェネレータの取付方法が提供される。
一実施形態に係る風力発電装置の概略構成図である。 一実施形態に係る風車翼の斜視図である。 図2に示す翼面上の領域Sの平面展開図である。 一実施形態に係る風車翼の模式図である。 図4に示す風車翼のA−Aに沿った模式的な断面図である。 一実施形態に係る風車翼の一部を示す模式図である。 一実施形態に係るVGユニットの概略構成図である。
以下、添付図面を参照して本発明の幾つかの実施形態について説明する。ただし、実施形態として記載されている又は図面に示されている構成部品の寸法、材質、形状、その相対的配置等は、本発明の範囲をこれに限定する趣旨ではなく、単なる説明例にすぎない。
図1は、幾つかの実施形態に係る風車翼が適用される風力発電装置の概略構成図である。図1に示すように、風力発電装置1は、少なくとも一本(例えば3本)の風車翼2及びハブ4で構成されるロータ(風車ロータ)5を備える。風車翼2は放射状にハブ4に取り付けられており、風車翼2で風を受けることによってロータ5が回転し、ロータ5に連結された発電機(不図示)で発電を行うように構成されている。
なお、図1に示す実施形態において、ロータ5は、タワー6の上方に設けられたナセル14によって支持されている。タワー6は、水上又は陸上に設けられた基礎構造又は浮体構造などの土台構造に立設されていてもよい。
図2は、一実施形態に係る風車翼2の斜視図である。図2に示すように、風車翼2は、翼本体3と、翼本体3の表面(翼面)に取付けられたボルテックスジェネレータ20と、を備える。
翼本体3は、風力発電装置1のハブ4に取り付けられる翼根7と、ハブ4から最も遠くに位置する翼先端8と、翼根7と翼先端8の間に延在する翼型部と、を含む。また、翼本体3は、翼根7から翼先端8にかけて、前縁11と後縁12とを有する。また、翼本体3の外形は、圧力面(腹面)9と、圧力面9に対向する負圧面(背面)10とによって形成される。
なお、図2において、幾つかの翼長方向位置における翼本体3のコード方向に沿った断面の形状が破線で示されている。また、図2において、符号13は翼本体3の最大コード長位置を示し、符号Oは、円柱状の形状を有する翼根7の中心軸を示す。中心軸Oは、翼長方向と略平行に延びている。
図2に示すボルテックスジェネレータ20は、一対の(すなわち2枚の)フィン23をそれぞれ含む複数のフィンセット22を含む。ボルテックスジェネレータ20を構成する複数のフィンセット22のフィン23は、それぞれ、互いに異なる翼長方向位置において翼本体3の表面から突出するように設けられている。
1つのフィンセット22を構成する一対のフィン23は、コード方向の直線に関して対称に配置されていてもよい。
なお、本明細書において、「翼長方向」とは、翼根7と翼先端8とを結ぶ方向であり、「翼コード方向」とは、翼本体3の前縁11と後縁12とを結ぶ線(コード)に沿った方向である。また、本明細書において、風車翼の「コード長」とは、ある翼長方向位置における翼本体の前縁と後縁とを結ぶ線(コード)の長さのことである。
また、図2に示す例示的な実施形態では、ボルテックスジェネレータ20を構成する各々のフィンセット22は、負圧面10側に設けられている。
2枚のフィン23を含むフィンセット22は、後述するVGユニットであってもよい。
他の実施形態では、フィンセット22は、3枚以上のフィン23を含んでいてもよい。一実施形態では、フィンセット22は、2対のフィン、すなわち合計4枚のフィンを含んでいてもよい。
ここで、図3は、図2に示す翼面上の領域Sの平面展開図である。図2に示すように、領域Sは、翼本体3の翼長方向における翼根7の位置と最大コード長位置13との間に位置する。
幾つかの実施形態では、フィンセット22を構成する一対のフィン23は、翼型を有している。フィン23は、風の流入方向の上流側に位置する前縁26と、風の流入方向の下流側に位置する後縁27と、風の流入方向における上流側を向くフィン23の腹面(圧力面)28と、風の流入方向における下流側を向くフィン23の背面(負圧面)29と、を有する(図3参照)。フィン23において、前縁26と後縁27とを結ぶ直線の方向が、フィン23のコード方向である。
幾つかの実施形態において、フィン23は、風流入方向に対して所定の角度をなすように傾斜して設けられている。
例えば、図2又は図3に示すボルテックスジェネレータ20においては、風流入方向の上流側から下流側に向けて(すなわち、風車翼2(図2参照)の前縁11側から後縁12側に向けて)、一対のフィン23,23の間の隙間が広がるように各々のフィン23,23が設けられている。
幾つかの実施形態では、風流入方向の下流側から上流側に向けて(すなわち、風車翼2(図2参照)の後縁12側から前縁11側に向けて)、一対のフィン23,23の間の隙間が広がるように各々のフィン23,23が設けられていてもよい。
ここで、ボルテックスジェネレータ20の作用について簡単に説明する。
風車翼2の負圧面10における流れの剥離は、前縁11近傍の層流域からその下流側の乱流域に向かって境界層が徐々に厚くなり、後縁12に到達する前に流れが剥がれてしまうことで生じる。
風車翼2に取り付けられたボルテックスジェネレータ20のフィンセット22は、フィン23が生み出す揚力によって、フィン23の背面29側に縦渦を形成する。また、フィン23に流入した流れによって、フィン23の前縁26の最上流側位置から、それよりも後縁27側の頂部に向かうエッジに沿った縦渦が形成される。このようにフィン23により生成される縦渦によって、フィンセット22の後流側において、風車翼2面上の境界層内外でのフィン23の高さ方向における運動量交換が促進される。これにより、風車翼2の表面における境界相が薄くなり、風車翼2の後縁剥離が抑制されるようになっている。
幾つかの実施形態では、複数のフィンセット22は、翼本体3の翼長方向における翼根7の位置と最大コード長位置13との間の少なくとも一部の領域において、翼長方向において隣り合う2つのフィンセット22を結ぶ直線と翼根の中心軸Oとが翼本体3の表面の平面展開図上にてなす角度θが翼根7に近づくにつれて大きくなるように配置される。なお、最大コード長位置とは、翼本体3の翼長方向においてコード長が最大となる位置のことである。
このことついて、図3を参照して説明する。領域Sには、ボルテックスジェネレータ20を構成するフィンセット22のうち、隣り合う3つのフィンセット22A,22B及び22Cがそれぞれ異なる翼長方向位置に配置されている。フィンセット22A,22B及び22Cは、それぞれ、一対のフィン23A,23A及び23B,23B及び23C,23Cをそれぞれ含む。
図3において、直線O’及び直線O’’は、翼根7の中心軸Oと平行な直線であり、直線L及びLは、それぞれ、フィンセット22Aの中心C及びフィンセット22Bの中心C、及び、フィンセット22Bの中心C及びフィンセット22Cの中心Cを通る直線である。
ここで、隣り合う2つのフィンセット22を結ぶ直線は、これらフィンセット22の対応する点を結ぶ直線である。例えば、該直線は、隣り合う2つのフィンセットのそれぞれの中心を結ぶ直線であってもよい。
図3に示す例では、翼本体3の表面の平面展開図上において、翼長方向において隣り合う2つのフィンセット22A,22Bを結ぶ直線Lと、翼根7の中心軸Oに平行な直線O’とがなす角度θ、及び、翼長方向において隣り合う2つのフィンセット22B,22Cを結ぶ直線Lと、翼根7の中心軸Oに平行な直線O’’とがなす角度θは、それぞれ上述の角度θである。
そして、図3に示す例では、領域Sに存在するフィンセット22A,22B,22Cは、角度θが翼根7に近づくにつれて大きくなるように配置されている。すなわち、翼根7に近い側の隣り合うフィンセット22A,22Bにより定まる角度θは、翼根7から遠い側の隣り合うフィンセット22B,22Cにより定まる角度θよりも大きい。
なお、角度θが翼根7に近づくにつれて大きくなるように配置された隣り合うフィンセット22は、これらのうち翼根7に近いほうのフィンセット22(例えばフィンセット22Aと22Bのうちフィンセット22A)が、前縁11からの距離が小さくなるように配置されている。言い換えれば、隣り合う2つのフィンセット22を結ぶ直線(例えば直線L及び直線L)は、翼根7の中心軸O(又は直線O’又は直線O’’)に対して、翼先端8側に近づくにつれて、後縁12側に近づくように傾いている。
本発明者の鋭意検討の結果、風車翼2の翼根7側の領域において、風車翼2の翼長方向に沿って風車翼2の翼根7に近づくほど、風車翼2の表面で風の流れが剥離する位置が前縁側にずれ、かつ、翼長方向位置の変化に対する剥離位置の変化の度合いが大きくなることが明らかとなった。
この点、上述の実施形態に係る風車翼2では、ボルテックスジェネレータ20を構成する複数のフィンセット22は、翼本体3の翼長方向における翼根7の位置と最大コード長位置13との間の少なくとも一部の領域において、翼長方向において隣り合う2つのフィンセット22を結ぶ直線Lと翼根7の中心軸Oとが翼本体3の表面の平面展開図上にてなす角度θが翼根7に近づくにつれて大きくなるように配置される。よって、翼長方向位置の変化に応じて変化する流れの剥離位置に対応してフィン23が設けられるので、風車翼面上において流れの剥離を効果的に遅延させることができる。これにより、風車翼2が取り付けられる風車(例えば、風力発電装置1)の運転効率を向上させることができる。
図4は、一実施形態に係る風車翼の模式図である。なお、図4において、風車翼2は、該風車翼2が取り付けられるハブ4とともに図示されている。
図4において、rは翼長方向における翼根7の位置であり、rは翼長方向における最大コード長位置(図2において符号13で示す位置)であり、dは翼根位置rにおける翼本体3の外径であり、Dはハブ4の直径であり、Qは風車翼2及びハブ4を含む風車ロータ5の回転中心であり、Rは風車ロータ5の回転中心Qと翼本体3の先端8との間の距離である。
一実施形態では、複数のフィンセット22は、風車翼2が取り付けられる風車の設計周速比をλとし、隣り合う2つのフィンセット22のうち翼根7に近いフィンセット22のロータ5の回転中心Qからの距離をrとし、rとRとの比(r/R)である無次元半径位置をμとしたとき、翼根位置rと最大コード長位置rとの間の少なくとも一部の領域において、角度θが下記式(A)を満たすように配置される。
Figure 0006154050
本発明者の鋭意検討の結果、風車翼の翼長方向における翼根付近の領域では、翼面上で流れが剥離する位置は、翼本体の表面の平面展開図上にて下記式(B)で表される角度ψに対応する位置でることがわかった。
Figure 0006154050
以下に、上記式(B)の導出について説明する。
ここで、図5は、図4に示す風車翼2のA−Aに沿った模式的な断面図である。図4に示す翼本体3の翼長方向において、A−Aで示される領域では、翼本体3の前縁11側の形状を円柱で近似できる。そこで、上記式(B)の導出について説明するため、図5には、翼本体3の前縁11側を円柱で近似した断面図を示している。なお、図5において、符号3’は、翼本体3の前縁11側を近似した円柱の断面を示す。
図5はロータ5の回転中心Qからの距離rの位置(便宜的に半径方向位置rとする)における風車翼2の断面図であるとすると、図5において、cは半径方向位置rにおける翼本体3のコード長であり、tは半径方向位置rにおける翼本体3の翼厚であり、rωは半径方向位置rにおけるロータ5の周速ベクトルを示し、Vは風速ベクトルを示し、Uは相対流入風速ベクトルを示し、φは風車翼2に対する風の流入角を示し、PINは風の流入位置を示し、PVGはボルテックスジェネレータ20を構成するフィンセット22の取付位置を示す。
なお、図5は、翼本体3の前縁11側を円柱で近似した断面図であるので、図5におけるコード長cと翼厚tとの比は、実際の翼本体3におけるコード長cと翼厚tとの比とは異なる場合がある。
まず、風車翼2に対する風の流入角φは、φ≒V/rωで近似できる。ここで、無次元半径位置μ=r/R、周速比λ=Rω/Vとそれぞれ定義すると、流入角φは、以下のように表せる。
Figure 0006154050
また、半径方向位置rが微小量Δrだけ変化したときの無次元半径位置μの変化量をΔμ、流入角φの変化量をΔφとすると、上記式(C)より、Δφは、以下のように表せる。
Figure 0006154050
ここで、翼面上の位置PINから流入した風は、半径方向位置rによらず、前縁11を通って翼面に沿ってある一定距離進行した負圧面10上の位置Pにおいて流れの剥離が生じると仮定する。このとき、翼本体3の平面展開上において、翼根7の中心軸Oと、半径方向位置rにおける流れの剥離位置及び半径方向位置(r+Δr)における流れの剥離位置を通る直線とがなす角度ψ’は、Δr及びΔφを用いて以下のように表される。
Figure 0006154050
上述の式(D)及び式(E)より、角度ψ’は、以下のように表される。
Figure 0006154050
上記式(F)で表されるψ’の絶対値をψであると定義すれば(ψ=|ψ’|)、上述の式(B)が得られる。
上記式(B)によれば、角度ψに応じた翼面上における剥離の位置は、無次元半径位置μに応じて変化する。
この点、上述の実施形態のように、翼根位置rと最大コード長位置rとの間の少なくとも一部の領域において、角度θが上記式(A)を満たす場合、該領域では、角度θが上記式(B)で表されるψ以下であるため、翼面上で流れが剥離する位置Pよりも前縁11側にフィン23及びフィンセット22が配置されるので(図5参照)、風車翼面上において流れの剥離をより効果的に遅延させることができる。また、上述の実施形態のように、角度θが上記式(A)を満たす場合、角度θが3°以上であるため、比較的先端8側においても、風車翼面上において流れの剥離を遅延させる効果を十分に得ることができる。
なお、風車ロータ5の回転中心Qから翼根7までの距離をD/2とし(図4参照)、翼本体3の翼長(翼根7から翼先端8までの距離)をLとし(図4参照)、翼長方向における翼根7からの距離をrとしたとき、μ=r/R、R=L+D/2、及び、r=r+D/2より、上述の式(A)を書き換えると、下記式(G)となる。
Figure 0006154050
よって、一実施形態では、複数のフィンセット22は、翼根位置rと最大コード長位置rとの間の少なくとも一部の領域において、角度θが上記式(G)を満たすように配置されてもよい。
ここで、典型的な風車では、風車ロータ5の回転中心Qから翼根7までの距離(D/2)は、1.0〜3.0m程度である。そこで、一実施形態では、複数のフィンセット22は、翼根位置rと最大コード長位置rとの間の少なくとも一部の領域において、角度θが下記式(H)を満たすように配置されてもよい。
Figure 0006154050
なお、上記式(H)は、上記式(G)に(D/2)=1.0を代入したものである。この場合、風車ロータ5の回転中心Qから翼根7までの距離(D/2)や、ロータ5の中心からの距離R,r等によらず、翼本体3の翼長L及び翼根7からの距離をrによって、角度θの範囲を規定することができる。
また、典型的な風車では、設計周速比λは8〜11程度であり、翼根位置における翼本体3の外径dと、風車ロータ5の回転中心Qと翼本体3の先端8との間の距離Rとの比(d/R)は、0.047〜0.053程度である。
そこで、幾つかの実施形態では、上述したように翼根位置rと最大コード長位置rとの間の少なくとも一部の領域にて、角度θが上記式(A)を満たす場合において、複数のフィンセット22は、角度θが、θ≦(0.0034/μ)×(180/π)[°]を満たすように配置されていてもよい。
あるいは、幾つかの実施形態では、上述したように翼根位置rと最大コード長位置rとの間の少なくとも一部の領域にて、角度θが上記式(A)を満たす場合において、複数のフィンセット22は、角度θが、θ≧(0.0021/μ)×(180/π)[°]を満たすように配置されていてもよい。
典型的な風車翼2では、角度θがθ≦(0.0034/μ)×(180/π)[°]を満たせば、翼長方向位置の変化に対する剥離位置の変化量に照らして角度θが過大になることが防止され、翼根7における広い翼長方向範囲において、剥離遅延効果を享受できる。また、典型的な風車翼2では、角度θがθ≧(0.0021/μ)×(180/π)[°]を満たせば、翼長方向位置の変化に対する剥離位置の変化量に照らして角度θが過小になることが防止され、翼根7における広い翼長方向範囲において、剥離遅延効果を享受できる。
これにより、風車翼面上において流れの剥離を効果的に遅延させることができる。これにより、風車(例えば風力発電装置1)の運転効率を向上させることができる。
図6は、一実施形態に係る風車翼の一部を示す模式図である。なお、図6において、フィンセット22は、後述するVGユニット21(図7参照)により構成されている。
上述したように、幾つかの実施形態では、複数のフィンセット22は、翼長方向における翼根7の位置(r)と最大コード長位置13(r)間の少なくとも一部の領域(図6に示す領域A)において、上述の角度θが翼根7に近づくにつれて大きくなるように配置される。
幾つかの実施形態では、上述の領域Aは、無次元半径位置μ(μ=r/R)が0.10≦μ≦0.15の範囲である。
典型的な風車翼2では、μが0.10≦μを満たす領域は、風車翼2のハブ4への取付け位置からある程度離れた位置であるため、風車翼2にボルテックスジェネレータ20を取り付けることによる風車の性能改善効果をある程度見込める。また、典型的な風車翼2では、μがμ≦0.15を満たす領域では、例えば図5に示されるように、風車翼2の前縁11側の形状が円柱で精度よく近似できるため、風車翼面上において流れの剥離を効果的に遅延させることができる。
あるいは、幾つかの実施形態では、上述の領域Aは、翼本体3の翼厚t(図5参照)と、翼本体3のコード長c(図5参照)との比である翼厚比(t/c)が70%≦(t/c)≦85%を満たす翼長方向の領域である。
典型的な風車翼2では、翼厚比(t/c)が(t/c)≦85%を満たす領域は、風車翼2のハブ4への取付け位置からある程度離れた位置であるため、風車翼2にボルテックスジェネレータ20を取り付けることによる風車の性能改善効果をある程度見込める。また、典型的な風車翼2では、翼厚比(t/c)が70%≦(t/c)を満たす領域では、風車翼2の前縁11側の形状が円柱で精度よく近似できるため、風車翼面上において流れの剥離を効果的に遅延させることができる。
なお、幾つかの実施形態では、図6に示すように、領域Aよりも翼先端8側に位置する少なくとも一部の領域Bにも、ボルテックスジェネレータ20として複数のフィンセット22又はフィン23を配置してもよい。領域Bでは、複数のフィンセット22又はフィン23は、翼面上に規定される直線に沿って配置されていてもよい。
図7は、一実施形態に係るVGユニットの概略構成図である。
図7に示すVGユニット21は、翼本体3の表面に固定される基部24と、基部24条に立設される2本のフィン23と、を含む。基部24は、例えば両面テープ等の接着剤を介して翼本体3の表面に固定されていてもよい。
幾つかの実施形態では、2本のフィン23は、それぞれ、翼型を有している。フィン23は、風の流入方向の上流側に位置する前縁26と、風の流入方向の下流側に位置する後縁27と、風の流入方向における上流側を向くフィン23の腹面(圧力面)28と、風の流入方向における下流側を向くフィン23の背面(負圧面)29と、を有する。そして、これらのフィン23によって、上述したように渦が形成されて、風車翼2における流れの剥離が抑制される。
幾つかの実施形態では、フィンセット22は、上述のように一対(すなわち2本)のフィン23,23を有するVGユニット21により構成されていてもよい。
あるいは、幾つかの実施形態では、フィンセット22は、1本のフィンを有するVGユニットにより構成されていてもよい。
翼本体3の表面に固定される基部24と、基部24上に立設される1本又は2本のフィン23と、を有するVGユニット21によりフィンセット22が構成される場合、風車翼面上にVGユニット21の単位でフィン23を柔軟に配置することができる。これにより、複数のフィン23を適切に配列させることができ、これにより、風車翼面上において流れの剥離を効果的に遅延させることができ、風車(例えば風力発電装置1)の運転効率を向上させることができる。
幾つかの実施形態では、ボルテックスジェネレータ20は、翼本体3の負圧面10において、負圧面10に沿った風の流れの乱流域内に設置される。このように、負圧面10に沿った風の流れの乱流域内にフィンセット22含むボルテックスジェネレータ20を設置することで、負圧面10からの流れの剥離を効果的に抑制することができる。
以上、本発明の実施形態について説明したが、本発明は上述した実施形態に限定されることはなく、上述した実施形態に変形を加えた形態や、これらの形態を適宜組み合わせた形態も含む。
本明細書において、「ある方向に」、「ある方向に沿って」、「平行」、「直交」、「中心」、「同心」或いは「同軸」等の相対的或いは絶対的な配置を表す表現は、厳密にそのような配置を表すのみならず、公差、若しくは、同じ機能が得られる程度の角度や距離をもって相対的に変位している状態も表すものとする。
例えば、「同一」、「等しい」及び「均質」等の物事が等しい状態であることを表す表現は、厳密に等しい状態を表すのみならず、公差、若しくは、同じ機能が得られる程度の差が存在している状態も表すものとする。
また、本明細書において、四角形状や円筒形状等の形状を表す表現は、幾何学的に厳密な意味での四角形状や円筒形状等の形状を表すのみならず、同じ効果が得られる範囲で、凹凸部や面取り部等を含む形状も表すものとする。
また、本明細書において、一の構成要素を「備える」、「含む」、又は、「有する」という表現は、他の構成要素の存在を除外する排他的な表現ではない。
1 風力発電装置
2 風車翼
3 翼本体
4 ハブ
5 風車ロータ
6 タワー
7 翼根
8 翼先端
9 圧力面
10 負圧面
11 前縁
12 後縁
13 最大コード長位置
14 ナセル
20 ボルテックスジェネレータ
21 VGユニット
22,22A〜22C フィンセット
23,23A〜23C フィン
24 基部
26 前縁
27 後縁
29 背面
O 中心軸
Q 回転中心

Claims (15)

  1. 翼本体と、
    前記翼本体の表面に取付けられたボルテックスジェネレータと、を備え、
    前記ボルテックスジェネレータは、互いに異なる翼長方向位置において、前記翼本体の表面から突出してそれぞれ設けられた複数のフィンをそれぞれ含む複数のフィンセットを含み、
    前記複数のフィンセットは、前記複数のフィンセットのうち第1フィンセットの前縁からの距離に比べて、前記フィンセットのうち前記第1フィンセットよりも翼根に近い第2フィンセットの前記前縁からの距離が小さくなるように配置され、
    前記複数のフィンセットは、前記翼本体の翼長方向における前記翼本体の翼根の位置と前記翼本体の最大コード長位置との間の少なくとも一部の領域において、前記翼長方向において隣り合う2つの前記フィンセットを結ぶ直線と前記翼根の中心軸とが前記翼本体の表面の平面展開図上にてなす角度θが前記翼根に近づくにつれて大きくなるように配置されることを特徴とする風車翼。
  2. 前記複数のフィンセットは、前記翼根位置における前記翼本体の外径をdとし、前記風車翼が取り付けられる風車の設計周速比をλとし、前記風車翼を含む風車ロータの回転中心と前記翼本体の先端との間の距離をRとし、前記隣り合う2つの前記フィンセットのうち前記翼根に近いフィンセットの前記回転中心からの距離をrとし、前記rと前記Rとの比(r/R)である無次元半径位置をμとしたとき、前記翼根の前記位置と前記最大コード長位置との間の少なくとも一部の領域において、前記角度θが下記式
    Figure 0006154050

    を満たすように配置されたことを特徴とする請求項1に記載の風車翼。
  3. 前記複数のフィンセットは、前記角度θが、θ≦(0.0034/μ)×(180/π)[°]を満たすように配置されたことを特徴とする請求項2に記載の風車翼。
  4. 前記複数のフィンセットは、前記角度θが、θ≧(0.0021/μ)×(180/π)[°]を満たすように配置されたことを特徴とする請求項2又は3に記載の風車翼。
  5. 前記複数のフィンセットは、前記風車翼を含む風車ロータの回転中心と前記翼本体の先端との間の距離をRとし、前記隣り合う2つの前記フィンセットのうち前記翼根に近いフィンセットの前記回転中心からの距離をrとし、前記rと前記Rとの比(r/R)である無次元半径位置をμとしたとき、少なくとも前記無次元半径位置μが0.10≦μ≦0.15の範囲において、角度θが前記翼根に近づくにつれて大きくなるように配置されたことを特徴とする請求項1乃至4の何れか一項に記載の風車翼。
  6. 前記複数のフィンは、少なくとも、前記翼本体の翼厚tと、前記翼本体のコード長cとの比である翼厚比(t/c)が70%≦(t/c)≦85%を満たす前記翼長方向の領域において、角度θが前記翼根に近づくにつれて大きくなるように配置されたことを特徴とする請求項1乃至5の何れか一項に記載の風車翼。
  7. 前記フィンセットは、前記翼本体の表面に固定される基部と、前記基部上に立設される1本又は2本の前記フィンと、を有するVGユニットを含むことを特徴とする請求項1乃至6の何れか一項に記載の風車翼。
  8. 前記ボルテックスジェネレータは、前記翼本体の負圧面において、該負圧面に沿った風の流れの乱流域内に設置されることを特徴とする請求項1乃至7の何れか一項に記載の風車翼。
  9. 請求項1乃至8の何れか一項に記載の風車翼と、
    前記風車翼が取り付けられるハブと、
    を備えることを特徴とする風車ロータ。
  10. 請求項9に記載の風車ロータを備えることを特徴とする風力発電装置。
  11. 風車翼の表面へのボルテックスジェネレータの取付方法であって、
    前記ボルテックスジェネレータは複数のフィンをそれぞれ含む複数のフィンセットを含み、
    前記複数のフィンが互いに異なる翼長方向位置において前記風車翼の表面から突出するように、かつ、前記複数のフィンセットが、前記風車翼の翼長方向における前記風車翼の翼根の位置と前記風車翼の最大コード長位置との間の少なくとも一部の領域において、前記翼長方向において隣り合う2つの前記フィンセットを結ぶ直線と前記翼根の中心軸とが前記風車翼の表面の平面展開図上にてなす角度θが前記翼根に近づくにつれて大きくなるように、前記複数のフィンセットを前記風車翼に取付ける取付ステップを備え
    前記複数のフィンセットは、前記複数のフィンセットのうち第1フィンセットの前縁からの距離に比べて、前記フィンセットのうち前記第1フィンセットよりも翼根に近い第2フィンセットの前記前縁からの距離が小さくなるように配置される
    ことを特徴とするボルテックスジェネレータの取付方法。
  12. 前記取付ステップでは、前記翼根位置における前記風車翼の外径をdとし、前記風車翼が取り付けられる風車の設計周速比をλとし、前記風車翼を含む風車ロータの回転中心と前記風車翼の先端との間の距離をRとし、前記隣り合う2つの前記フィンセットのうち前記翼根に近いフィンセットの前記回転中心からの距離をrとし、前記rと前記Rとの比(r/R)である無次元半径位置をμとしたとき、前記翼根の前記位置と前記最大コード長位置との間の少なくとも一部の領域において、前記角度θが下記式
    Figure 0006154050

    を満たすように、前記複数のフィンセットを配置して前記風車翼に取付ける
    ことを特徴とする請求項11に記載のボルテックスジェネレータの取付方法。
  13. 前記取付ステップでは、前記角度θが、θ≦(0.0034/μ)×(180/π)[°]を満たすように前記複数のフィンセットを配置して前記風車翼に取付けることを特徴とする請求項12に記載のボルテックスジェネレータの取付方法。
  14. 前記取付ステップでは、前記角度θが、θ≧(0.0021/μ)×(180/π)[°]を満たすように前記複数のフィンセットを配置して前記風車翼に取付けることを特徴とする請求項12又は13に記載のボルテックスジェネレータの取付方法。
  15. 前記取付ステップでは、前記風車翼を含む風車ロータの回転中心と前記風車翼の先端との間の距離をRとし、前記隣り合う2つの前記フィンセットのうち前記翼根に近いフィンセットの前記回転中心からの距離をrとし、前記rと前記Rとの比(r/R)である無次元半径位置をμとしたとき、少なくとも前記無次元半径位置μが0.10≦μ≦0.15の範囲において、角度θが前記翼根に近づくにつれて大きくなるように前記複数のフィンセットを配置して前記風車翼に取付けることを特徴とする請求項11乃至14の何れか一項に記載のボルテックスジェネレータの取付方法。
JP2016155525A 2016-08-08 2016-08-08 風車翼、風車ロータ及び風力発電装置並びにボルテックスジェネレータの取付方法 Active JP6154050B1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2016155525A JP6154050B1 (ja) 2016-08-08 2016-08-08 風車翼、風車ロータ及び風力発電装置並びにボルテックスジェネレータの取付方法
EP17173247.2A EP3282120B1 (en) 2016-08-08 2017-05-29 Wind turbine blade, wind turbine rotor, wind turbine power generating apparatus, and method of mounting vortex generator
US15/634,541 US10458388B2 (en) 2016-08-08 2017-06-27 Wind turbine blade, wind turbine rotor, wind turbine power generating apparatus, and method of mounting vortex generator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016155525A JP6154050B1 (ja) 2016-08-08 2016-08-08 風車翼、風車ロータ及び風力発電装置並びにボルテックスジェネレータの取付方法

Publications (2)

Publication Number Publication Date
JP6154050B1 true JP6154050B1 (ja) 2017-06-28
JP2018025114A JP2018025114A (ja) 2018-02-15

Family

ID=58779016

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016155525A Active JP6154050B1 (ja) 2016-08-08 2016-08-08 風車翼、風車ロータ及び風力発電装置並びにボルテックスジェネレータの取付方法

Country Status (3)

Country Link
US (1) US10458388B2 (ja)
EP (1) EP3282120B1 (ja)
JP (1) JP6154050B1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3431750A1 (en) * 2017-07-05 2019-01-23 Mitsubishi Heavy Industries, Ltd. Method for determining arrangement position of vortex generator on wind turbine blade, method for producing wind turbine blade assembly, and wind turbine blade assembly
US10808676B2 (en) 2017-10-20 2020-10-20 Mitsubishi Heavy Industries, Ltd. Method for determining arrangement position of vortex generator on wind turbine blade, method for producing wind turbine blade assembly, and wind turbine blade assembly
US11149707B2 (en) 2017-10-20 2021-10-19 Mitsubishi Heavy Industries, Ltd. Wind turbine blade and method for determining arrangement of vortex generator on wind turbine blade

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10208733B2 (en) * 2016-07-19 2019-02-19 Michael L Barrows Tandem tip-joined rotor blade and hub coupling for passive pitch angle control
US10465652B2 (en) 2017-01-26 2019-11-05 General Electric Company Vortex generators for wind turbine rotor blades having noise-reducing features
EP3788255A4 (en) * 2018-04-30 2021-12-08 General Electric Company VORTEX GENERATORS FOR WIND TURBINE ROTOR BLADES WITH NOISE REDUCTION CHARACTERISTICS
DE102018121190A1 (de) * 2018-08-30 2020-03-05 Wobben Properties Gmbh Rotorblatt, Windenergieanlage und Verfahren zum Optimieren einer Windenergieanlage
DE102018124084A1 (de) * 2018-09-28 2020-04-02 Wobben Properties Gmbh Verfahren zum Betreiben einer Windenergieanlage, Windenergieanlage und Windpark
WO2021102171A1 (en) * 2019-11-21 2021-05-27 University Of Washington Vortex control on engine nacelle strake and other vortex generators
JP7469126B2 (ja) 2020-04-17 2024-04-16 三菱重工業株式会社 風車翼アセンブリ及び風車
EP3916217A1 (en) * 2020-05-27 2021-12-01 Vestas Offshore Wind A/S Wind turbine blade and method of deciding arrangement of vortex generators for wind turbine blade
EP4008894A1 (en) 2020-12-02 2022-06-08 Siemens Gamesa Renewable Energy A/S Rotor blade for a wind turbine
KR102562255B1 (ko) * 2021-12-03 2023-08-02 삼성중공업 주식회사 풍력 발전기용 블레이드

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001016482A1 (en) * 1999-09-01 2001-03-08 Stichting Energieonderzoek Centrum Nederland Blade for a wind turbine
EP2484896A1 (en) * 2011-02-04 2012-08-08 LM Wind Power A/S Mounting of vortex generator devices on a wind turbine rotorblade by means of mounting plate
JP2014070638A (ja) * 2012-09-28 2014-04-21 Siemens Aktiengesellschaft 風力タービンのロータのブレード
US20140328692A1 (en) * 2013-05-02 2014-11-06 General Electric Company Attachment system and method for wind turbine vortex generators
US20140328688A1 (en) * 2013-05-03 2014-11-06 General Electric Company Rotor blade assembly having vortex generators for wind turbine

Family Cites Families (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2000015961A1 (en) 1998-09-16 2000-03-23 Lm Glasfiber A/S Wind turbine blade with vortex generator
WO2007140771A1 (en) 2006-06-09 2007-12-13 Vestas Wind Systems A/S A wind turbine blade and a pitch controlled wind turbine
DK1944505T3 (da) 2007-01-12 2013-01-07 Siemens Ag Vindmøllerotorblad med hvirvelgeneratorer
EP2031241A1 (en) 2007-08-29 2009-03-04 Lm Glasfiber A/S Blade for a rotor of a wind turbine provided with barrier generating means
CN102414440B (zh) 2009-03-06 2014-04-09 维斯塔斯风力系统有限公司 功率输出增大的风轮机
US8047801B2 (en) 2010-06-23 2011-11-01 General Electric Company Wind turbine blades with aerodynamic vortex elements
US8746053B2 (en) 2010-12-16 2014-06-10 Inventus Holdings, Llc Method for determining optimum vortex generator placement for maximum efficiency on a retrofitted wind turbine generator of unknown aerodynamic design
EP2484898B1 (en) 2011-02-04 2014-04-23 LM WP Patent Holding A/S Vortex generator device with tapered sections for a wind turbine
EP2484897B1 (en) 2011-02-04 2013-12-04 LM Wind Power A/S Vortex generator for wind turbine with base having recess for adhesive
EP2484895A1 (en) 2011-02-04 2012-08-08 LM Wind Power A/S Vortex generator vane pair with trapezium-shaped base
EP2736805B1 (en) 2011-07-22 2017-06-14 LM WP Patent Holding A/S Wind turbine blade comprising vortex generators
EP2548800A1 (en) 2011-07-22 2013-01-23 LM Wind Power A/S Method for retrofitting vortex generators on a wind turbine blade
EP2597300B2 (en) 2011-11-23 2018-11-07 Siemens Aktiengesellschaft A wind turbine blade
DE102011122140A1 (de) 2011-12-22 2013-06-27 Smart Blade Gmbh Delta-Wirbelstromgeneratoren
DE102013201871C5 (de) 2013-02-05 2018-09-06 Senvion Gmbh Vortexgenerator für ein Rotorblatt einer Windenergieanlage
US20150010407A1 (en) 2013-07-08 2015-01-08 Alonso O. Zamora Rodriguez Reduced noise vortex generator for wind turbine blade
RS59138B1 (sr) 2013-09-02 2019-09-30 Wobben Properties Gmbh Vortex generator za vetroturbinu
DE102014203442A1 (de) * 2013-11-04 2015-05-07 Senvion Se Rotorblatt einer Windenergieanlage und Windenergieanlage
US9624782B2 (en) * 2013-11-11 2017-04-18 General Electric Company Template for aligning surface features on a rotor blade
WO2015132884A1 (ja) 2014-03-04 2015-09-11 中国電力株式会社 風力発電装置
CN204984715U (zh) 2015-07-10 2016-01-20 北京东方中电科技有限公司 一种风电叶片表面可变角度的涡流发生器
JP6148312B2 (ja) 2015-11-12 2017-06-14 三菱重工業株式会社 ボルテックスジェネレータ、風車翼および風力発電装置
JP6153989B2 (ja) 2015-11-13 2017-06-28 三菱重工業株式会社 ボルテックスジェネレータ、風車翼および風力発電装置
JP6154037B1 (ja) 2016-02-26 2017-06-28 三菱重工業株式会社 ボルテックスジェネレータの取付方法及びテンプレート
JP6148364B1 (ja) 2016-02-26 2017-06-14 三菱重工業株式会社 風車翼用ボルテックスジェネレータ、風車翼、風力発電装置、及びボルテックスジェネレータの取付方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001016482A1 (en) * 1999-09-01 2001-03-08 Stichting Energieonderzoek Centrum Nederland Blade for a wind turbine
EP2484896A1 (en) * 2011-02-04 2012-08-08 LM Wind Power A/S Mounting of vortex generator devices on a wind turbine rotorblade by means of mounting plate
JP2014070638A (ja) * 2012-09-28 2014-04-21 Siemens Aktiengesellschaft 風力タービンのロータのブレード
US20140328692A1 (en) * 2013-05-02 2014-11-06 General Electric Company Attachment system and method for wind turbine vortex generators
US20140328688A1 (en) * 2013-05-03 2014-11-06 General Electric Company Rotor blade assembly having vortex generators for wind turbine

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3431750A1 (en) * 2017-07-05 2019-01-23 Mitsubishi Heavy Industries, Ltd. Method for determining arrangement position of vortex generator on wind turbine blade, method for producing wind turbine blade assembly, and wind turbine blade assembly
US11300096B2 (en) 2017-07-05 2022-04-12 Mitsubishi Heavy Industries, Ltd. Method for determining arrangement position of vortex generator on wind turbine blade, method for producing wind turbine blade assembly, and wind turbine blade assembly
US10808676B2 (en) 2017-10-20 2020-10-20 Mitsubishi Heavy Industries, Ltd. Method for determining arrangement position of vortex generator on wind turbine blade, method for producing wind turbine blade assembly, and wind turbine blade assembly
US11149707B2 (en) 2017-10-20 2021-10-19 Mitsubishi Heavy Industries, Ltd. Wind turbine blade and method for determining arrangement of vortex generator on wind turbine blade

Also Published As

Publication number Publication date
EP3282120B1 (en) 2019-04-17
EP3282120A1 (en) 2018-02-14
US20180038341A1 (en) 2018-02-08
US10458388B2 (en) 2019-10-29
JP2018025114A (ja) 2018-02-15

Similar Documents

Publication Publication Date Title
JP6154050B1 (ja) 風車翼、風車ロータ及び風力発電装置並びにボルテックスジェネレータの取付方法
CN103089536B (zh) 安装在风力涡轮机叶片上的失速栅上的副翼面
US10982647B2 (en) Vortex generator, installation method for the same, wind turbine blade, and wind turbine power generating apparatus
JP6148312B2 (ja) ボルテックスジェネレータ、風車翼および風力発電装置
JP6153989B2 (ja) ボルテックスジェネレータ、風車翼および風力発電装置
JP6783211B2 (ja) 風車翼及び風車翼へのボルテックスジェネレータの配置決定方法
BR102013007870A2 (pt) Palheta com anexo para modificação de ponta de vórtice para turbina de vento
JP6779180B2 (ja) ボルテックスジェネレータ及び風車翼アセンブリ
BR102013007919A2 (pt) Aerofólio auxiliar com parte traseira plana para turbina eólica
JP2019078191A5 (ja)
JP6783212B2 (ja) 風車翼へのボルテックスジェネレータの配置位置決定方法、風車翼アセンブリの製造方法及び風車翼アセンブリ
EP3431750B1 (en) Method for determining arrangement position of vortex generator on wind turbine blade, method for producing wind turbine blade assembly, and wind turbine blade assembly
US11459999B2 (en) Rotor blade, wind turbine, and method for optimizing a wind turbine
EP4234917A1 (en) Vortex generator for wind turbine blade, wind turbine blade, and wind-power generation apparatus
JP7469126B2 (ja) 風車翼アセンブリ及び風車
JP5805913B1 (ja) 風車翼及びそれを備えた風力発電装置
JP7063973B1 (ja) 風車翼用のボルテックスジェネレータ、風車翼及び風力発電装置並びに風車翼の製造方法
US11703029B2 (en) Rotor blade for a wind power installation, rotor for a wind power installation, structure and wind power installation
KR20140028593A (ko) 풍력 발전기

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170406

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170526

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170531

R150 Certificate of patent or registration of utility model

Ref document number: 6154050

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150