WO2013095033A1 - 나셀 펜스를 갖는 풍력발전기 - Google Patents

나셀 펜스를 갖는 풍력발전기 Download PDF

Info

Publication number
WO2013095033A1
WO2013095033A1 PCT/KR2012/011248 KR2012011248W WO2013095033A1 WO 2013095033 A1 WO2013095033 A1 WO 2013095033A1 KR 2012011248 W KR2012011248 W KR 2012011248W WO 2013095033 A1 WO2013095033 A1 WO 2013095033A1
Authority
WO
WIPO (PCT)
Prior art keywords
nacelle
fence
wind turbine
generator
wind
Prior art date
Application number
PCT/KR2012/011248
Other languages
English (en)
French (fr)
Inventor
김철완
조태환
Original Assignee
한국항공우주연구원
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 한국항공우주연구원 filed Critical 한국항공우주연구원
Priority to US14/368,004 priority Critical patent/US9683547B2/en
Priority to DE112012005432.6T priority patent/DE112012005432T5/de
Publication of WO2013095033A1 publication Critical patent/WO2013095033A1/ko

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03DWIND MOTORS
    • F03D80/00Details, components or accessories not provided for in groups F03D1/00 - F03D17/00
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03DWIND MOTORS
    • F03D15/00Transmission of mechanical power
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03DWIND MOTORS
    • F03D13/00Assembly, mounting or commissioning of wind motors; Arrangements specially adapted for transporting wind motor components
    • F03D13/20Arrangements for mounting or supporting wind motors; Masts or towers for wind motors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03DWIND MOTORS
    • F03D15/00Transmission of mechanical power
    • F03D15/10Transmission of mechanical power using gearing not limited to rotary motion, e.g. with oscillating or reciprocating members
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05BINDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
    • F05B2240/00Components
    • F05B2240/10Stators
    • F05B2240/14Casings, housings, nacelles, gondels or the like, protecting or supporting assemblies there within
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05BINDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
    • F05B2260/00Function
    • F05B2260/97Reducing windage losses
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/70Wind energy
    • Y02E10/72Wind turbines with rotation axis in wind direction

Definitions

  • the present invention relates to a wind generator for producing electrical energy by wind, and more particularly to a wind power generator having a nacelle fence to install a fence structure on the nacelle of the horizontal axis wind turbine and improve aerodynamic performance.
  • Wind power generators that generate electrical energy using the power of wind are being researched as an alternative energy source due to the depletion of natural resources such as oil, coal, and natural gas due to the development of industry and population growth.
  • Wind power generation is a technology that converts the kinetic energy of air flow into mechanical energy and then produces electrical energy again. It uses eco-friendly wind as an energy source, and it is eco-friendly without cost. Doing.
  • the conventional wind power generator is rotatably installed on the top of a high-rise tower 1 standing on the ground so as to rotate the nacelle 2 supporting the blades 3.
  • an accelerator, a generator, and a control device are provided inside the nacelle 2, so that the rotational force of the rotor blades 3 passes through the hub 4 to the generator through the main shaft.
  • the aerodynamic performance is reduced due to the vortices occurring at the tip 3a and the root 3b of the blade 3. Since the reduction in the aerodynamic performance of the blade 3 results in a decrease in the power generation efficiency of the wind generator, development of a technique for increasing the aerodynamic performance of the blade 3 is required.
  • an object of the present invention is to provide a wind power generator having a nacelle fence having a fence along the air flow direction in the nacelle to minimize the vortex generated at the downstream end of the blade Is in.
  • a wind turbine comprising a tower standing on the ground, a nacelle installed on the top of the tower, and a rotor blade rotatably installed on one side of the nacelle, wherein the wind generator includes: At least one nacelle fence extending outward from a peripheral surface of the nacelle along a direction of air flow; It includes.
  • the nacelle fence characterized in that the cross section is formed to be inclined at a predetermined angle with the rotation axis of the rotor blade, the cross section is formed inclined in the opposite direction of the blade rotation from the upstream end of the fence to the fence downstream end.
  • a plurality of nacelle fences are provided radially around a rotation axis of the blade.
  • the nacelle fence is characterized in that the angle formed between the vertical section of the fence upstream end and the nacelle is vertical, and the angle between the longitudinal section of the nacelle fence and the nacelle gradually decreases toward the downstream end of the fence.
  • the nacelle fence characterized in that the predetermined distance apart in the downstream direction of the rotor blade is formed on the upstream side of the tower.
  • Wind turbine generator having a nacelle fence of the present invention by the configuration as described above has the effect of reducing the vortices generated in the lower end of the rotating blade, improve the aerodynamic performance of the blade and further increase the power generation efficiency of the wind turbine generator .
  • FIG. 1 is a perspective view of a conventional wind power generator
  • FIG. 2 is a plan view of a conventional wind power generator
  • FIG. 3 is a perspective view of a wind turbine generator of the present invention
  • FIG. 4 is a plan view of a wind turbine of the present invention
  • Figure 6 is a wind turbine performance test graph of the prior art and the present invention
  • the wind turbine generator having a nacelle fence of the present invention includes a tower 10, a nacelle 20, rotor blades 30 and 40, and a nacelle fence 50.
  • Tower 10 may be formed in the vertical direction.
  • the lower end of the tower 10 is fixed to the ground, the upper portion may be formed with a rotating portion (not shown).
  • the rotary part may be coupled to the lower surface of the nacelle 20.
  • the rotating part rotates the nacelle 20 in a horizontal direction, that is, plays a role of pitch movement.
  • the configuration of the tower 10 may be used for the support of the wind generator is commonly used.
  • the nacelle 20 may be coupled to the top of the tower 10.
  • Nacelle 20 is the body configuration of the wind turbine.
  • the nacelle 20 may be hinged to the tower 10 to be rotatable in the transverse direction to optimize the position of the rotor blades 30 and 40 according to the direction of the wind.
  • the nacelle 20 may be coupled to one side so that the rotor blades 30 and 40 are rotatable.
  • Inside the nacelle 20 may be provided with a speed increaser and a generator.
  • the nacelle 20 may be configured such that the rotational force of the rotor blades 30 and 40 reaches the generator through the rotation shaft.
  • the rotor blades 30 and 40 may include a hub 40 connected to the rotation axis of the nacelle 20 and a blade 30 radially connected about the hub 40.
  • a plurality of blades 30 may be coupled to the hub 40. Although three blades 30 are shown in the drawings, the number of blades 30 is not limited to three, and the number may be added or subtracted according to the capacity of the generator and the purpose of the wind turbine.
  • the rotor blades 30 and 40 are applied to the rotor blades commonly used in wind power generators, and thus detailed description thereof will be omitted.
  • the present invention improves the aerodynamic performance of the rotor blades 30 and 40 by minimizing vortices that may occur on the downstream side of the rotor blades 30 and 40 by the rotation of the rotor blades 30 and 40.
  • the core configuration of Nacelle Fence (50) will be described in detail.
  • the direction in which air is introduced is defined upstream, and the direction in which air is outflow is defined as downstream.
  • Nacelle fence 50 is made of a plate body with a length.
  • the nacelle fence 50 may be integrally formed with the nacelle 20 on the peripheral surface of the nacelle 20, or a lower end thereof may be coupled to the peripheral surface of the nacelle 20.
  • the nacelle fence 50 may be formed in the nacelle 20 along the air flow direction.
  • the nacelle fence 50 is formed at a predetermined distance from the rotor blades 30 and 40 in the downstream direction. The separation distance is determined differently according to the power generation capacity of the wind turbine, the number of blades, the length of the blades.
  • a plurality of nacelle fences 50 may be radially installed on the nacelle 20 about a rotation axis, and three nacelle fences 50 are illustrated in the drawing, but the number of nacelle fences 50 is three. The number may be added or subtracted according to the capacity of the generator and the use of the wind turbine.
  • the vortex (Vortex) that can occur on the downstream side of the rotor blades (30, 40) by laminar flow (Laminar flow) to minimize the vortex (Vortex) by the rotor blade (30, 40) improves aerodynamic performance.
  • the nacelle fence 50 of the present invention further has the following characteristic configuration to more effectively reduce the vortex.
  • the nacelle fence 50 may have a cross section inclined at a predetermined angle with the rotation axes of the rotor blades 30 and 40. That is, a line connecting the fence upstream end 51 and the fence downstream end 52 of the nacelle fence 50 may be formed at an angle with the rotation axis.
  • the slope of the nacelle fence 50 is determined differently according to the generating capacity of the wind turbine, the number of blades, and the length of the blades.
  • the cross section of the nacelle fence 50 may be formed to be inclined at a predetermined angle in the opposite direction of rotation of the rotor blades 30 and 40 toward the fence downstream end 52 from the fence upstream end 51 of the nacelle fence 50.
  • the longitudinal section of the nacelle fence 50 is vertical at the fence upstream end 51 of the nacelle fence 50, but the angle formed with the nacelle 20 is vertical, but the rotor blade ( The angle formed with the nacelle 30 in the opposite direction of rotation of the 30 and 40 may be formed to gradually decrease.
  • the angle formed with the nacelle 20 may be 45 degrees in the fence downstream end 52.
  • FIG. 6 shows a performance test graph according to the wind turbine of the present invention.
  • the horizontal axis of the graph shown represents the azimuth angle according to the position of the blade 30.
  • the blade 30 was defined as 0 when the upper portion of the hub 40 was perpendicular to the ground, and the blade 30 was defined as 180 when the blade 30 was positioned below the vertical surface of the hub 40.
  • the vertical axis of the graph shown represents the power efficiency.
  • the generation efficiency was calculated by dividing the generator's generation in wind.
  • the experiment was divided into three groups: a wind turbine including a nacelle fence of the present invention, a conventional wind turbine including a tower, and a towerless wind turbine.
  • the curve located at the top is the numerical curve of the wind turbine including the nacelle fence of the present invention
  • the curve at the middle is the curve of the conventional wind turbine including the tower
  • the line at the bottom is the tower without the tower. Is the numerical curve of.
  • the towerless wind turbine has the lowest power generation efficiency due to the blade vortex, and the conventional wind turbine including the tower reduces the vortex of the blade to a certain degree so that the power generation efficiency is higher than that of the towerless wind turbine. high.
  • the wind power generator including the nacelle fence of the present invention proved that the generation efficiency is superior to the other two groups by minimizing the vortex of the blade through the nacelle fence.

Landscapes

  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Wind Motors (AREA)

Abstract

본 발명은 풍력에 의해 전기에너지를 생산하는 풍력 발전기에 관한 것으로, 더욱 상세하게는 수평축 풍력발전기의 나셀에 펜스 구조물을 설치하며 공기역학적 성능을 향상시키는 나셀 펜스를 갖는 풍력발전기에 관한 것이다. 본 발명의 나셀 펜스를 갖는 풍력발전기는 회전하는 블레이드 하류단에서 발생하는 와류를 감소시켜, 블레이드의 공기역학적인 성능을 향상시키며 나아가 풍력발전기의 발전 효율을 증가시키는 효과가 있다.

Description

나셀 펜스를 갖는 풍력발전기
본 발명은 풍력에 의해 전기에너지를 생산하는 풍력 발전기에 관한 것으로, 더욱 상세하게는 수평축 풍력발전기의 나셀에 펜스 구조물을 설치하며 공기역학적 성능을 향상시키는 나셀 펜스를 갖는 풍력발전기에 관한 것이다.
바람의 힘을 이용하여 전기에너지를 발생시키는 풍력발전기는 산업의 발달과 인구 증가에 의한 석유, 석탄, 천연가스 등의 천연자원의 고갈에 따라 대체 에너지원으로 많은 연구가 진행되고 있다.
풍력발전이란 공기 유동이 갖는 운동에너지를 기계적 에너지로 변환시킨 후 다시 전기에너지를 생산하는 기술로서, 자연에 존재하는 바람을 에너지원으로 이용하므로 비용이 들지 않으면서도 친환경적인 바, 점차 사용 범위가 증가하고 있다.
종래의 풍력발전기의 구조는 도 1 및 도 2에 도시한 바와 같이, 지면상에 세워지는 고층의 타워(1) 상단에 블레이드(3)를 회동 지지하는 나셀(2)을 회전 가능하도록 설치하고, 나셀(2) 내부에는 증속기, 발전기 및 제어장치(미도시)를 두어, 로터블레이드(3)의 회전력이 허브(4)를 거쳐 주축을 통해 발전기에 이르도록 구성된다.
상기와 같은 구성의 풍력 발전기는, 블레이드(3)의 팁(3a) 및 루트(3b)부에서 발생하는 와류(Vortex)로 인해 공기역학적 성능이 감소된다. 블레이드(3)의 공기 역학적 성능 감소는 풍력 발전기의 발전 효율 저하를 초래하므로, 블레이드(3)의 공기 역학적 성능을 증가시키기 위한 기술의 개발이 요구된다.
본 발명은 상기와 같은 문제점을 해결하기 위하여 안출된 것으로서 본 발명의 목적은, 나셀에 공기 유동 방향을 따라 펜스를 구비하여 블레이드의 하류단에서 발생하는 와류를 최소화하는 나셀 펜스를 갖는 풍력발전기를 제공함에 있다.
본 발명의 풍력발전기는, 지면상에 세워지는 타워와, 상기 타워의 상단에 설치되는 나셀과, 상기 나셀의 일측에 회전 가능하도록 설치되는 로터블레이드를 포함하는 풍력발전기에 있어서, 상기 풍력발전기는, 공기 유동 방향을 따라 상기 나셀의 둘레면 외측으로 연장 형성되는 적어도 하나 이상의 나셀 펜스; 를 포함한다.
이때, 상기 나셀 펜스는, 횡단면이 로터블레이드의 회전축과 일정 각도 기울어져 형성되고, 횡 단면이 펜스 상류단에서 펜스 하류단으로 갈수록 블레이드 회전 반대 방향으로 기울어져 형성되는 것을 특징으로 한다.
또한, 상기 나셀 펜스는, 상기 블레이드의 회전축을 중심으로 다수 개가 방사상으로 구비된다.
아울러, 상기 나셀 펜스는, 펜스 상류단 종단면과 나셀이 이루는 각도가 수직이며, 펜스 하류단으로 갈수록 나셀 펜스의 종단면과 나셀이 이루는 각도가 점점 감소하도록 형성되는 것을 특징으로 한다.
또한, 상기 나셀 펜스는, 상기 로터블레이드의 하류 방향으로 일정거리 이격 형성되되 상기 타워의 상류측에 형성되는 것을 특징으로 한다.
상기와 같은 구성에 의한 본 발명의 나셀 펜스를 갖는 풍력발전기는 회전하는 블레이드 하류단에서 발생하는 와류를 감소시켜, 블레이드의 공기역학적인 성능을 향상시키며 나아가 풍력발전기의 발전 효율을 증가시키는 효과가 있다.
도 1은 종래의 풍력발전기 사시도
도 2는 종래의 풍력발전기 평면도
도 3은 본 발명의 풍력발전기 사시도
도 4는 본 발명의 풍력발전기 평면도
도 5는 본 발명의 풍력발전기 정면도
도 6은 종래와 본 발명의 풍력발전기 성능 시험 그래프
<도면의 주요부분에 대한 부호의 설명>
T : 풍력발전기
10 : 타워 20 : 나셀
30 : 블레이드 40 : 허브
50 : 나셀 펜스 51 : 펜스 상류단
52 : 펜스 하류단
이하, 상기와 같은 본 발명의 일실시예에 대하여 도면을 참조하여 상세히 설명한다.
도 3 내지 도 5를 참조하면, 본 발명의 나셀 펜스를 갖는 풍력발전기(T)는 타워(10), 나셀(20), 로터블레이드(30, 40) 및 나셀 펜스(50)를 포함하여 이루어진다.
타워(10)는 상하 길이방향으로 형성될 수 있다. 상기 타워(10)의 하단은 지면에 고정되며, 상단에는 회전부(미도시)가 형성될 수 있다. 상기 회전부는 상면이 나셀(20)의 하단과 결합될 수 있다. 상기 회전부는 나셀(20)을 수평방향으로 회전, 즉 피치(Pitch)운동 시키는 역할을 수행한다. 타워(10)의 구성은 통상적으로 사용되는 풍력발전기의 지지대가 사용될 수 있다.
나셀(20)은 타워(10)의 상단에 결합될 수 있다. 나셀(20)은 풍력발전기의 몸체 구성이다. 나셀(20)은 바람의 방향에 따라 로터블레이드(30, 40)의 위치를 최적화하기 위해 횡 방향으로 회전 가능하도록 타워(10)에 힌지 결합될 수 있다. 나셀(20)은 일측에 로터블레이드(30, 40)가 회동 가능하도록 결합될 수 있다. 나셀(20)의 내부에는 증속기 및 발전기가 구비될 수 있다. 나셀(20)은 로터블레이드(30, 40)의 회전력이 회전축을 통해 발전기에 이르도록 구성될 수 있다.
로터블레이드(30, 40)는 나셀(20)의 회전축에 연결되는 허브(40)와 허브(40)를 중심으로 방사상으로 연결되는 블레이드(30)를 포함하여 이루어질 수 있다. 블레이드(30)는 다수 개가 허브(40)에 결합될 수 있다. 블레이드(30)는 도면상에 3개로 도시되어 있으나, 블레이드(30)의 개수를 3개로 한정하는 것은 아니며, 발전기의 용량 및 풍력발전기의 용도에 따라 그 수가 가감될 수 있다. 로터블레이드(30, 40)는 풍력발전기에 통상적으로 사용되는 로터블레이드가 적용되는 바 이에 대한 상세한 설명은 생략하기로 한다.
이하 로터블레이드(30, 40)의 회전에 의해 로터블레이드(30, 40)의 하류측에서 발생할 수 있는 와류(Vortex)를 최소화 하여 로터블레이드(30, 40)의 공기역학 성능을 향상시키기 위한 본 발명의 핵심 구성인 나셀 펜스(Nacelle Fence, 50)에 대해 상세 설명하기로 한다.
편의상 공기가 유입되는 방향을 상류(Upstream), 공기가 유출되는 방향을 하류(Downstream)로 정의하여 설명한다.
나셀 펜스(50)는 길이가 있는 판체 상으로 이루어진다. 나셀 펜스(50)는 나셀(20)의 둘레면에 나셀(20)과 일체로 형성되거나, 하단이 나셀(20)의 둘레면에 결합될 수 있다. 나셀 펜스(50)는 공기 유동 방향을 따라 나셀(20)에 형성될 수 있다. 나셀 펜스(50)는 로터블레이드(30, 40)에서 하류 방향으로 일정거리 이격 형성된다. 이때 이격거리는 풍력발전기의 발전용량, 블레이드의 개수, 블레이드의 길이에 따라 달리 결정된다. 나셀 펜스(50)는 회전축을 중심으로 다수 개가 방사상으로 나셀(20) 상에 설치될 수 있으며, 나셀 펜스(50)는 도면상에 3개로 도시되어 있으나, 나셀 펜스(50)의 개수를 3개로 한정하는 것은 아니며, 발전기의 용량 및 풍력발전기의 용도에 따라 그 수가 가감될 수 있다.
상기와 같은 나셀 펜스(50)의 구성을 통해 로터블레이드(30, 40)의 하류측에서 발생할 수 있는 와류(Vortex)를 층류(Laminar flow)화하여 와류(Vortex)를 최소화함으로써 로터블레이드(30, 40)의 공기역학 성능을 향상시킨다.
이때 본 발명의 나셀 펜스(50)는 상기 와류를 보다 효과적으로 감소시키기 위해 다음과 같은 특징적 구성을 추가로 갖는다.
도 4에 도시된 바와 같이 나셀 펜스(50)는 횡단면이 로터블레이드(30, 40)의 회전축과 일정 각도 기울어져 형성될 수 있다. 즉 나셀 펜스(50)의 펜스 상류단(51)과 펜스 하류단(52)을 이은 선이 상기 회전축과 일정 각도 기울어져 형성될 수 있다. 나셀 펜스(50)의 기울기는 풍력발전기의 발전용량, 블레이드의 개수, 블레이드의 길이에 따라 달리 결정된다.
특히 펜스 상류단(51)에서 펜스 하류단(52)으로 갈수록 로터 블레이드(30, 40) 회전 반대 방향으로 기울어지게 형성될 수 있다. 이는 로터 블레이드(30, 40)의 회전에 의한 루트와류 형성을 저지하기 위함이다. 즉 나셀펜스(50)의 횡단면은 나셀 펜스(50)의 펜스 상류단(51)에서 펜스 하류단(52)으로 갈수록 로터 블레이드(30, 40)의 회전 반대 방향으로 일정각도 기울어지게 형성될 수 있다.
또한 도면상에는 도시되지 않았지만, 나셀 펜스(50)의 종단면은 나셀 펜스(50)의 펜스 상류단(51)에서는 나셀(20)과 이루는 각도가 수직이지만, 펜스 하류단(52)으로 갈수록 로터 블레이드(30, 40)의 회전 반대 방향으로 나셀(30)과 이루는 각도가 점점 감소하도록 형성될 수 있다. 일예로 펜스 상류단(51)이 나셀(20)과 이루는 각도가 90도이면, 펜스 하류단(52)에서는 나셀(20)과 이루는 각도가 45도일 수 있다.
도 6에는 본 발명의 풍력발전기에 따른 성능 시험 그래프가 도시되어 있다.
도시된 그래프의 가로축은 블레이드(30)의 위치에 따른 방위각(Azimuth angle)을 나타낸다. 즉 블레이드(30)가 허브(40)의 지면에 수직한 상측에 위치했을 때를 0으로 하고 블레이드(30)가 허브(40) 상의 지면에 수직한 하측에 위치했을 때는 180으로 정의하였다.
도시된 그래프의 세로축은 발전효율(Power Coefficient)을 나타낸다. 발전 효율은 풍력에서 발전기의 발전량을 나누어 계산하였다.
따라서 도면에 도시된 그래프를 통해 블레이드(30)의 위치에 따른 발전 효율을 확인 할 수 있다.
실험은 본 발명의 나셀 펜스를 포함하는 풍력발전기, 타워를 포함하는 통상의 풍력발전기 및 타워가 없는 풍력발전기 세군으로 나누어 진행되었다. 최상측에 위치한 곡선이 본 발명의 나셀 펜스를 포함하는 풍력발전기의 수치 곡선이며, 중간에 위치한 곡선이 타워를 포함하는 통상의 풍력발전기의 수치 곡선이고, 최하측에 위치한 직선이 타워가 없는 풍력발전기의 수치곡선이다.
도시된 바와 같이 타워가 없는 풍력발전기는 블레이드 와류의 영향으로 발전 효율이 제일 낮으며, 타워를 포함하는 통상의 풍력발전기는 타워가 블레이드의 와류를 일정부분 감소시켜 발전효율이 타워가 없는 풍력발전기 보다 높다.
아울러 본 발명의 나셀 펜스를 포함하는 풍력발전기는 나셀 펜스를 통해 블레이드의 와류를 최소화하여 발전효율이 나머지 두군에 비해 우수함을 입증하였다.
본 발명의 상기한 실시 예에 한정하여 기술적 사상을 해석해서는 안 된다. 적용범위가 다양함은 물론이고, 청구범위에서 청구하는 본 발명의 요지를 벗어남이 없이 당업자의 수준에서 다양한 변형 실시가 가능하다. 따라서 이러한 개량 및 변경은 당업자에게 자명한 것인 한 본 발명의 보호범위에 속하게 된다.

Claims (6)

  1. 지면상에 세워지는 타워와, 상기 타워의 상단에 설치되는 나셀과, 상기 나셀의 일측에 회전 가능하도록 설치되는 로터블레이드를 포함하는 풍력발전기에 있어서,
    상기 풍력발전기는,
    공기 유동 방향을 따라 상기 나셀의 둘레면 외측으로 연장 형성되는 적어도 하나 이상의 나셀 펜스;
    를 포함하는, 나셀 펜스를 갖는 풍력발전기.
  2. 제 1항에 있어서,
    상기 나셀 펜스는,
    횡단면이 로터블레이드의 회전축과 일정 각도 기울어져 형성되는 것을 특징으로 하는 나셀 펜스를 갖는 풍력발전기.
  3. 제 2항에 있어서,
    상기 나셀 펜스는,
    횡 단면이 펜스 상류단에서 펜스 하류단으로 갈수록 블레이드 회전 반대 방향으로 기울어져 형성되는 것을 특징으로 하는 나셀 펜스를 갖는 풍력발전기.
  4. 제 1항에 있어서,
    상기 나셀 펜스는,
    상기 블레이드의 회전축을 중심으로 다수 개가 방사상으로 구비되는 것을 특징으로 하는 나셀 펜스를 갖는 풍력발전기.
  5. 제 1항에 있어서,
    상기 나셀 펜스는,
    펜스 상류단 종단면과 나셀이 이루는 각도가 수직이며, 펜스 하류단으로 갈수록 나셀 펜스의 종단면과 나셀이 이루는 각도가 점점 감소하도록 형성되는 것을 특징으로 하는 나셀 펜스를 갖는 풍력발전기.
  6. 제 1항에 있어서,
    상기 나셀 펜스는,
    상기 로터블레이드의 하류 방향으로 일정거리 이격 형성되되 상기 타워의 상류측에 형성되는 것을 특징으로 하는 나셀 펜스를 갖는 풍력발전기.
PCT/KR2012/011248 2011-12-23 2012-12-21 나셀 펜스를 갖는 풍력발전기 WO2013095033A1 (ko)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US14/368,004 US9683547B2 (en) 2011-12-23 2012-12-21 Wind turbine having nacelle fence
DE112012005432.6T DE112012005432T5 (de) 2011-12-23 2012-12-21 Windturbine mit Gondelzaun

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020110140703A KR101179277B1 (ko) 2011-12-23 2011-12-23 나셀 펜스를 갖는 풍력발전기
KR10-2011-0140703 2011-12-23

Publications (1)

Publication Number Publication Date
WO2013095033A1 true WO2013095033A1 (ko) 2013-06-27

Family

ID=47073693

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2012/011248 WO2013095033A1 (ko) 2011-12-23 2012-12-21 나셀 펜스를 갖는 풍력발전기

Country Status (4)

Country Link
US (1) US9683547B2 (ko)
KR (1) KR101179277B1 (ko)
DE (1) DE112012005432T5 (ko)
WO (1) WO2013095033A1 (ko)

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11300003B2 (en) 2012-10-23 2022-04-12 General Electric Company Unducted thrust producing system
EP2912270B1 (en) * 2012-10-23 2023-04-26 General Electric Company Unducted thrust producing system
WO2014104978A1 (en) * 2012-12-28 2014-07-03 Nanyang Technological University A turbine
US11391298B2 (en) 2015-10-07 2022-07-19 General Electric Company Engine having variable pitch outlet guide vanes
EP3565967B1 (en) * 2017-02-15 2021-03-17 Siemens Gamesa Renewable Energy A/S Building structure comprising a vortex generator to reduce induced vibrations
WO2019028492A1 (en) * 2017-08-09 2019-02-14 Eamon Bergin GENERATOR ACTUATED BY THE FLOTTABILITY OF A GAS
DE102018100511A1 (de) 2018-01-11 2019-07-11 Mehmet Güncü Rotorblatt für Windkraftanlagen
US20210108597A1 (en) * 2019-10-15 2021-04-15 General Electric Company Propulsion system architecture
US11492918B1 (en) 2021-09-03 2022-11-08 General Electric Company Gas turbine engine with third stream
US11834995B2 (en) 2022-03-29 2023-12-05 General Electric Company Air-to-air heat exchanger potential in gas turbine engines
US11834954B2 (en) 2022-04-11 2023-12-05 General Electric Company Gas turbine engine with third stream
US11834992B2 (en) 2022-04-27 2023-12-05 General Electric Company Heat exchanger capacity for one or more heat exchangers associated with an accessory gearbox of a turbofan engine
US11680530B1 (en) 2022-04-27 2023-06-20 General Electric Company Heat exchanger capacity for one or more heat exchangers associated with a power gearbox of a turbofan engine

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR200244751Y1 (ko) * 2001-01-05 2001-09-25 김형돈 풍력발전기
KR20050090295A (ko) * 2004-03-08 2005-09-13 원인호 병합발전 하우스와 시스템
US7214029B2 (en) * 2004-07-01 2007-05-08 Richter Donald L Laminar air turbine
KR20100096575A (ko) * 2009-02-24 2010-09-02 이용인 가변피치제어식 다익형 풍차

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7345376B2 (en) * 2004-11-30 2008-03-18 Distributed Energy Systems Corporation Passively cooled direct drive wind turbine
TWM279736U (en) * 2005-07-14 2005-11-01 Jetpo Technology Inc Improved mechanism of a wind power generator
US20110008164A1 (en) * 2007-03-23 2011-01-13 Flodesign Wind Turbine Corporation Wind turbine
GB0908355D0 (en) * 2009-05-15 2009-06-24 Bailey Ralph Peter S Wind turbine diffuser
US8033794B2 (en) * 2009-05-26 2011-10-11 Jia-Yuan Lee Wind turbine
US8461713B2 (en) * 2009-06-22 2013-06-11 Johann Quincy Sammy Adaptive control ducted compound wind turbine
US8106528B2 (en) * 2009-07-08 2012-01-31 Houly Co., Ltd. Horizontal axis wind turbine with rotatable tower

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR200244751Y1 (ko) * 2001-01-05 2001-09-25 김형돈 풍력발전기
KR20050090295A (ko) * 2004-03-08 2005-09-13 원인호 병합발전 하우스와 시스템
US7214029B2 (en) * 2004-07-01 2007-05-08 Richter Donald L Laminar air turbine
KR20100096575A (ko) * 2009-02-24 2010-09-02 이용인 가변피치제어식 다익형 풍차

Also Published As

Publication number Publication date
US9683547B2 (en) 2017-06-20
DE112012005432T5 (de) 2014-09-04
KR101179277B1 (ko) 2012-09-03
US20150003993A1 (en) 2015-01-01

Similar Documents

Publication Publication Date Title
WO2013095033A1 (ko) 나셀 펜스를 갖는 풍력발전기
CN100453803C (zh) 屋顶风力发电装置
WO2010134690A2 (ko) 수직축 풍차용 회전 조립체
WO2006123951A1 (en) A wind turbine
CN201159141Y (zh) 两用风力发电机
KR20110010241A (ko) 편심축을 가진 멀티 사이클로이드 곡선 시스템을 구현하는 풍력발전장치
WO2014051277A1 (ko) 가변 형 수평 날개를 갖는 소형 풍력발전기 및 이의 출력 제어방법
WO2023282532A1 (ko) 풍력 발전장치
WO2013154225A1 (ko) 풍력발전기 블레이드의 팁 에어포일
WO2011049280A1 (ko) 수직축 풍력발전 시스템
WO2015093641A1 (ko) 풍력 발전 유니트 및 수직 적층형 풍력 발전 시스템
WO2009107101A2 (en) Turbine
CN101949354B (zh) 一种垂直轴风力机
EP3899248B1 (en) Turbine system with lift-producing blades
CN108150356A (zh) 一种风力发电设备
KR101049452B1 (ko) 풍력발전시스템
WO2018199583A1 (ko) 전기 자동차에 장착되는 양력을 이용한 풍력 발전 장치
WO2010077035A2 (ko) 수직형 풍력발전용 풍력증폭 및 역저항 제거장치
KR20130058209A (ko) 보조발전유닛이 구비된 풍력 발전기
WO2014104697A1 (ko) 피치 가변 블레이드를 갖는 풍력발전기
WO2014109496A1 (ko) 종축형 풍력발전기 및 그 제어방법
RU2693554C1 (ru) Ветроэнергогенерирующая установка
KR20100090023A (ko) 풍력 발전 장치용 로터 블레이드
ITBS20010114A1 (it) Aerogeneratore per la produzione di energia elettrica
KR102066031B1 (ko) 2축 수직형 풍력발전장치

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12860987

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 14368004

Country of ref document: US

Ref document number: 1120120054326

Country of ref document: DE

Ref document number: 112012005432

Country of ref document: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12860987

Country of ref document: EP

Kind code of ref document: A1