WO2015093054A1 - 作物の生育状態判別方法、生育方法並びに作物生育装置および植物工場 - Google Patents

作物の生育状態判別方法、生育方法並びに作物生育装置および植物工場 Download PDF

Info

Publication number
WO2015093054A1
WO2015093054A1 PCT/JP2014/006305 JP2014006305W WO2015093054A1 WO 2015093054 A1 WO2015093054 A1 WO 2015093054A1 JP 2014006305 W JP2014006305 W JP 2014006305W WO 2015093054 A1 WO2015093054 A1 WO 2015093054A1
Authority
WO
WIPO (PCT)
Prior art keywords
crop
light
planting plate
growth
illuminance
Prior art date
Application number
PCT/JP2014/006305
Other languages
English (en)
French (fr)
Inventor
登 安藤
麻子 桐生
睦 永瀬
皆見 武志
靖 溝渕
Original Assignee
千代田化工建設株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 千代田化工建設株式会社 filed Critical 千代田化工建設株式会社
Priority to JP2015553379A priority Critical patent/JP6656925B2/ja
Publication of WO2015093054A1 publication Critical patent/WO2015093054A1/ja

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01GHORTICULTURE; CULTIVATION OF VEGETABLES, FLOWERS, RICE, FRUIT, VINES, HOPS OR SEAWEED; FORESTRY; WATERING
    • A01G7/00Botany in general
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01GHORTICULTURE; CULTIVATION OF VEGETABLES, FLOWERS, RICE, FRUIT, VINES, HOPS OR SEAWEED; FORESTRY; WATERING
    • A01G7/00Botany in general
    • A01G7/04Electric or magnetic or acoustic treatment of plants for promoting growth
    • A01G7/045Electric or magnetic or acoustic treatment of plants for promoting growth with electric lighting

Definitions

  • the present invention relates to a method for determining the growth state of a crop grown under artificial lighting indoors, such as a plant factory, a growth method, a crop growth apparatus, and a plant factory.
  • plant factories etc. have been established in various places to grow crops in a planned manner using artificial lighting.
  • the plant factory lays a flat plate-planting plate over a wide area, and a hole is formed at a predetermined interval in the planting plate so that the hole has water permeability and the roots of the crop easily enter.
  • Filling materials, planting crop seedlings etc. on each material, supplying nutrient solution by hydroponic or drip, and irradiating artificial light from the lighting device provided above the planting plate Nurturing
  • the leaf area index (LAI) is known as an index for grasping the growth and cultivation state of crops in institutional cultivation and the like.
  • This leaf area index originally represents the total sum of leaf areas per unit area as seen from one direction in arable land or plant communities in the forest.
  • the 1st light source and 2nd light source from which a wavelength mutually differs are arrange
  • a leaf area index measurement system has been proposed that calculates a second transmission amount indicating the degree of transmission of light from the light source and calculates the leaf area index (LAI) based on the difference between the two.
  • the first and second light sources are arranged on one side of the plant group and photographed on the other side in the horizontal direction with the plant group interposed therebetween.
  • the means and photographing the plant group irradiated with the light from the first and second light sources By arranging the means and photographing the plant group irradiated with the light from the first and second light sources, the first and second light sources and the photographing means are moved along the plant group, thereby moving the plant group.
  • the leaf area index in can be measured.
  • one of the light source and the photographing means is arranged above the plant leaf.
  • a function of calculating a luminance value from an image captured by the imaging unit a function of converting the obtained luminance value into illuminance, a function of calculating LAI from the illuminance, and these It is necessary to provide various databases necessary for executing the function, and there are problems that the system is complicated and the cost required to measure the LAI increases.
  • the present invention has been made in view of the above circumstances, and in a narrow space such as a plant factory, a growing state determination method for a crop that can easily determine the growing state of a crop in real time with simple equipment. It is an object of the present invention to provide a growing method, a crop growing apparatus, and a plant factory.
  • the invention according to claim 1 is characterized in that the plant seeds, seedlings or fungus beds are planted at regular intervals on a fixed planting plate installed indoors, A method for determining the growth state of the crop in parallel, wherein the upper surface of the fixed planting plate is formed in advance so that the reflectance of light is different from the reflectance of the crop, and the fixed planting plate over time.
  • the growth state of the crop is determined by irradiating irradiation light toward the side, measuring the illuminance of the reflected light, and observing the change with time.
  • the invention according to claim 2 is the invention according to claim 1, wherein the illuminance of the reflected light has the highest measurement sensitivity in the directional characteristics of each illuminometer using two or more illuminometers. The angle between the direction and the fixed planting plate is measured from different directions.
  • the invention described in claim 3 is the invention described in claim 1 or 2, characterized in that the irradiation light is red light or blue light emitted from an LED.
  • the invention according to claim 4 is the invention according to any one of claims 1 to 3, wherein the artificial light for growing the crop is irradiated from above the fixed planting plate, and the irradiation light is It is the above-mentioned artificial light for growing crops.
  • the plant seeds, seedlings or fungus beds are planted at regular intervals on a planting plate installed indoors, and artificial light is irradiated from above the planting plate to produce the crop.
  • the upper surface of the fixed planting plate is formed in advance in a color having a light reflectance different from that of the crop, and irradiation light is irradiated toward the fixed planting plate side over time, and the reflection is performed.
  • the invention described in claim 6 is characterized in that, in the invention described in claim 5, the irradiation light is red light or blue light emitted from an LED.
  • the crop growing device includes a planting plate in which crop seeds, seedlings or fungi beds are planted at intervals, and the reflectance of light on the upper surface is different from the reflectance of the crop.
  • the plant factory according to the present invention as set forth in claim 8 is characterized in that the plant growing apparatus according to claim 7 is installed indoors.
  • the difference in light reflectance is preferably at least 50%, more preferably 70% or more.
  • the upper surface of the planting board for planting the seedlings of the crop since the upper surface of the planting board for planting the seedlings of the crop is formed so as to have a light reflectance different from that of the crop, it faces the planting board.
  • the degree of growth of the crop for example, the degree of change in leaf size, can be determined by the difference between the reflection rate from the crop and the reflection from the fixed planting board. That is, the illuminance of the reflected light from the crop and the planting plate gradually increases as the crop grows, covers the upper surface of the planting plate, and changes as the interval between the crops decreases. Therefore, if the upper surface of the fixed planting board is formed so that the reflectance is higher than that of the crop, the illuminance of the reflected light decreases with time as the crop becomes larger.
  • the irradiation light irradiated on the planting plate will be described.
  • a planting plate having a high reflectance with respect to the irradiation light As the irradiation light has a smaller reflection from the crop, it accompanies the growth of the crop. The rate of change in reflected light over time can be increased. For this reason, as in the invention described in claim 2, as irradiation light for obtaining reflected light, light that is absorbed in the crop and has little reflection and is used for photosynthesis in the crop is used as the irradiation light. It is preferable to use it.
  • the light source for the irradiation light is preferably an artificial light source such as a fluorescent lamp, an incandescent lamp, an LED, a laser, a CCLF (cold cathode tube), or a high-pressure mercury lamp. Since such artificial light has less change in illuminance than natural light, it is easy to measure the change in reflectance caused by the growth of crops.
  • an artificial light red light or blue light from the LED is used as artificial light for growing a crop in an indoor facility such as a plant factory targeted by the present invention.
  • the artificial light can be used as the irradiation light, and as a result, the facility can be further simplified.
  • the growth of the crop can be understood as a two-dimensional (area) change.
  • the reflected light from the planting plate and the crop is measured from two or more illuminometers from the direction in which the measurement sensitivity in the directional characteristics of each illuminometer is the largest and the angle between the planting plate and each other. May be.
  • the illuminometer can measure the illuminance change from an angle different from that of the first illuminometer, the growth situation of the crop can be determined by comprehensively judging the illuminance change measured by the first and second illuminometers. Can be measured with higher accuracy.
  • the illuminance of the reflected light from the fixed planting plate is determined by using two or more illuminometers and the direction in which the measurement sensitivity is maximized in the directivity characteristic of each illuminometer. Since the angle formed with the board is measured from different directions, the growth situation of the crop can be understood as a three-dimensional (volume) change.
  • the installation of the illuminometer is easy on the equipment and the size of the crop leaves in the horizontal direction.
  • a change in (area) and a change in size (area) in the vertical direction can be grasped.
  • synthesizing the change in the illuminance of the reflected light from both directions it is possible to grasp the growth of the leaves of the crop as the change in the volume of the leaves.
  • FIG. 1 is a schematic diagram for explaining a first embodiment of the present invention.
  • FIG. 2 is a graph showing the relationship between the number of cultivation days and the change in the photon flux density of reflected light in Example 1 of the present invention.
  • FIG. 3 is a photograph showing changes in the growth state of the leaves of the crops depending on the number of cultivation days in FIG.
  • FIG. 4 is a schematic diagram for explaining a second embodiment of the present invention.
  • FIG. 5 is a graph showing the relationship between the number of cultivation days and the change in illuminance of reflected light in Example 2 of the present invention.
  • FIG. 1 is a schematic diagram for explaining a first embodiment in which a growing state determination method, a growing method, a crop growing apparatus, and a plant factory according to the present invention are applied to growing a leaf crop. .
  • a fixed planting board 1 made of a plate material of polystyrene (especially polystyrene foam) is laid over a wide range.
  • the upper surface 1a of the fixed planting board 1 is formed in white having the highest light reflectance.
  • the hole part is drilled in this fixed planting board 1 with predetermined space
  • a nutrient solution supply means for supplying a nutrient solution by hydroponics or drip to the material on which seedlings and the like of the crop 2 are planted.
  • An LED illumination device 3 for irradiating artificial red light or blue light for growing 2 is disposed.
  • an illuminometer 4 for measuring the photon flux density ( ⁇ mol / m 2 / s) of the reflected light of the light irradiated from the lighting device 3 toward the fixed planting plate 1 side is adjacent to the lighting device 3. is set up.
  • the crop 2 gradually grows as the crop 2 grows.
  • the value of the photon flux density of the reflected light from the leaf surface of the crop 2 and the upper surface 1a of the fixed planting plate 1 gradually decreases.
  • the photon flux density of the reflected light from the leaves of the planting plate 1 and the crop 2 with time and observing the change the growth tendency of the leaves of the crop can be grasped.
  • the rate of change in the photon flux density with time gradually decreases to below a certain value, or when the change in the measured photon flux density becomes small, the crop 2 has grown sufficiently. As a result, it is possible to judge the harvest time.
  • the growing state determination method or the growing method of the crop having the above-described configuration since the red light or the blue light for growing the crop 2 is used as the irradiation light with which the fixed planting plate 1 is irradiated, By adding a simple facility such as 4 in total, it is possible to easily determine the harvest time in real time in parallel with the growth of the crop 2, especially when a slow-growing section is found. It becomes possible to investigate the cause.
  • the upper surface 1a of the planting plate 1 is made white with the highest light reflectance, and red light or blue light with less reflection from the leaf surface of the crop 2 is used as irradiation light to be irradiated to the planting plate 1. Therefore, the rate of change of reflected light over time accompanying the growth of the crop 2 can be increased.
  • the difference between the crop growing device and the plant factory of the present embodiment from the first embodiment shown in FIG. 1 is that it is adjacent to the LED lighting device 3 for growing the crop 2 arranged above the fixed planting board 1.
  • the illuminometer 4 for measuring the photon flux density ( ⁇ mol / m 2 / s) of the reflected light from the fixed planting plate 1 installed the crop 2 A similar illuminometer 5 is installed at a position facing in the horizontal direction.
  • red light or blue light with a constant illuminance is continuously applied from the LED lighting device 3 toward the planting plate 1 side.
  • the crop 2 is grown by irradiation or intermittently, and in parallel with this, the photon flux density of the reflected light from the upper surface 1a of the planting plate 1 and the leaves of the crop 2 of the irradiation light is Measurement is performed by the illuminometer 4 and the illuminometer 5.
  • the illumination intensity meter 5 measures the illumination intensity of the reflected light to a horizontal direction. Therefore, it is possible to grasp the change in the size (area) of the leaves of the crop 2 in the horizontal direction and the change in the size (area) in the vertical direction. As a result, by synthesizing the change in the illuminance of the reflected light from both directions, it is possible to grasp the growth of the leaves of the crop as the change in the volume of the leaves.
  • the volume V of the crop 2 is estimated by the above equation (1) until the elapsed days t when the leaf bodies of adjacent strains overlap, and after exceeding the elapsed days t, the crop 2 is calculated by the following equation (2).
  • the volume V of can be forbidden.
  • Vt is the volume of the crop 2 obtained by the above equation (1) at the elapsed time t
  • P Vt and P Ht are values of Vt and P V at the elapsed days t
  • ⁇ 2 is measured. It is a proportionality constant arbitrarily set based on the optical environment at the place.
  • the present invention is not limited to this, and the illuminance meter 4 measures the illuminance (look) of the reflected light, or the spectral irradiance meter measures the radiant intensity of the reflected light. Can also be implemented.
  • the irradiation light for obtaining the reflected light may be from a light source different from the artificial light for growing the crop 2 irradiated from the lighting device 3. This is because, as in the case of growing moss as the crop 2, the artificial light for growing the crop 2 may not be required. Further, the illuminance of the irradiation light may not be constant. In this case, the growth situation can be similarly observed by correcting the photon flux density of the measured reflected light corresponding to the change in illuminance of the irradiation light.
  • the measurement target may be reflectance.
  • natural light such as sunlight can be used as the irradiation light.
  • the reflected light improves the measurement accuracy of the reflectance by measuring only a certain wavelength, and grasps the growth state of the crop more accurately be able to.
  • the planting plate 1 is preferably non-translucent, but the color is not limited to the white color used in the above-described embodiment, and the color that reflects the irradiation light emitted from the illumination device 3 is reflected. If so, various colors can be used.
  • the difference in reflectance is preferably at least 50% or more, and more preferably 70% or more.
  • the reflectance with respect to the irradiation light of the fixed planting plate 1 can be adjusted by surface processing such as coating of the upper surface 1a, polishing and roughening treatment in addition to the color and material of the fixed planting plate.
  • surface processing such as coating of the upper surface 1a, polishing and roughening treatment
  • a diamond film sheet or the like that totally reflects light is attached to the surface of the fixed planting plate 1, it is preferable from the viewpoint of obtaining high reflectance and light efficiency.
  • the higher the lightness the higher the reflectance.
  • a general-purpose one such as resin or metal can be used as the fixed planting board 1.
  • the plant used as crops such as lettuce
  • the cultivated crops which the plant cultivation method etc. which concern on this invention target are specifically limited.
  • the cultivation form of these plants is not particularly limited, and may be hydroponics, soil cultivation, hydroponics, solid medium cultivation, or the like.
  • Vegetables include lettuce, leek, mikuna, saladana, shungiku, parsley, honey bee, komatsuna, mustarded beetle, mustard, wasabi, watercress, Chinese cabbage, tsukena, chingensai, cabbage, cauliflower, broccoli, medicinal cabbage, onion, garlic, rakkyo , Leek, asparagus, celery, spinach, seri, udo, myoga, buffalo, perilla, barley and various herbs. Further, leaf vegetables such as Detroit, Lolo Rossa, Arugula, Pinot Green, Red Romaine, and Chicory, which are called “baby leaves” and are eaten mainly by young leaves, can also be mentioned.
  • the lettuce includes head-letter lettuce, non-head-letter lettuce and hemi-head lettuce and the like.
  • leaf lettuce frill lettuce, sunny lettuce, romaine, green wave, green leaf, red leaf, frill ice (registered trademark), Examples include River Green (registered trademark), frilled leaf, fringe green, no chip, mocoretas, sanchu, chima sanchu.
  • Various herbs include, for example, basil and Italian parsley.
  • medicinal plants such as licorice, carrot, purple hu, ashwaganda, echinacea, linden, St. John's wort and chamomile can be cultivated.
  • fruit vegetables such as tomato, melon, cucumber, strawberry, pumpkin, watermelon, eggplant, pepper, okra, sweet bean, broad bean, pea, shrimp, corn, radish, turnip, burdock, carrot, potato, taro, sweet potato, yam, Root vegetables such as ginger, wasabi and lotus root can also be targeted for cultivation.
  • Potatoes include potatoes, sweet potatoes, taro, Nagatoro, yam, cassava, konjac potatoes, taro, kikuimo, and apios.
  • mushrooms include shiitake mushrooms, enokitake mushrooms, shimeji mushrooms, matsutake mushrooms, truffles, sea cucumbers, mushrooms, maitake mushrooms, eringi, oyster mushrooms and the like.
  • Fruits include mango, pineapple, figs, blueberries, raspberries, blackberries, boysenberries, grapes, leeks, cranberries, lotus cups, currants, red currants, papayas, passion fruits, dragon fruits and the like.
  • cereals examples include amaranth, millet, oat, barley, millet, wheat, rice, sticky rice, buckwheat, corn, pearl barley, barnyard millet, and rye.
  • Moss includes moss belonging to the Magoke class. For example, moss belonging to the genus Shimmofurigoceae (Grimmiales), so-called sand moss, such as Racomitriumjaponicum.
  • moss belonging to the Magoke class For example, moss belonging to the genus Shimmofurigoceae (Grimmiales), so-called sand moss, such as Racomitriumjaponicum.
  • various ornamental plants including ferns such as Asian Tam, Puteris, and Siwahiba can be targeted for cultivation as ornamental plants.
  • Example 1 Using the crop growth state determination method shown in the first embodiment, the growth state of lettuce was determined.
  • the growth state of the lettuce is determined by determining the photon flux density of the reflected light from the leaf surface of the planting plate 1 and the crop 2 while the crop 2 is grown by irradiating the red light from the LED lighting device 3 with a constant illuminance.
  • the photon flux density of the reflected light from the leaves of the planting plate 1 and the crop 2 is measured while the crop 2 is grown by irradiating the blue light from the LED illumination device 3 with a constant illuminance from the illuminometer 4. It implemented about the case where it measured with the illumination meter 4.
  • red light or blue light having a certain illuminance is irradiated from the LED lighting device 3 toward the planting plate 1 side to grow the crop 2, and at the same time, the illuminometer 4 and the upper surface 1 a of the planting plate 1 and the crop are grown. 2.
  • Measure the photon flux density (illuminance) of the reflected light from the leaf surface observe the change over time in the photon flux density, and when the decrease rate reaches a preset value, harvest the crop 2 It becomes possible to judge as the time.
  • Example 2 The growth state of lettuce was determined in the same manner as in Example 1 using the method for determining the growth state of the crop shown in the second embodiment.
  • the growth state of the lettuce is determined by determining the photon flux density of the reflected light from the leaf surface of the planting plate 1 and the crop 2 while the crop 2 is grown by irradiating the red light from the LED lighting device 3 with a constant illuminance. Measurement was performed with the illuminometer 4 and the illuminometer 5.
  • the predicted crop weight is calculated from the measured values of the illuminometer 4, and the above (1) from the measured values of the illuminometer 4 and the illuminometer 5.
  • the volume V was calculated from the equation and the equation (2). Then, by multiplying the volume V by the assumed density of the crop 2, these calculation results were compared with the actually measured values of the crop weight.
  • FIG. 5 shows this result.
  • the horizontal axis is the number of days elapsed
  • the left vertical axis is the value measured by the illuminometers 4 and 5 divided by the value measured by the illuminometers 4 and 5 before planting, and multiplied by 10.
  • Illuminance dimensionless number
  • the right vertical axis shows the crop weight.
  • the predicted crop weight calculated by the above formulas (1) and (2) from the measured values of the illuminometer 4 and the illuminometer 5 shows a value close to the actually measured value, and grasps the growing state of the crop with higher accuracy. I was able to.

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Biodiversity & Conservation Biology (AREA)
  • Botany (AREA)
  • Ecology (AREA)
  • Forests & Forestry (AREA)
  • Environmental Sciences (AREA)
  • Cultivation Of Plants (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)

Abstract

植物工場のような狭隘な空間においても、簡易な設備によって容易に作物の生育状況をリアルタイムで判別することができる作物の生育状態判別方法を提供する。本発明によれば、屋内に設置された定植板(1)に、間隔をおいて作物2の種または苗を定植し、定植板(1)の上方から人工光を照射して作物(2)を生育させつつ、これと併行して作物(2)の生育状態を判別するための方法であって、予め定植板(1)の上面(1a)を、光の反射率が作物2の反射率と異なるように形成するとともに、経時的に定植板(1)側に向けて照射光を照射し、その反射光の照度を測定してその経時変化を観察することにより、作物(2)の生育状態を判別する。

Description

作物の生育状態判別方法、生育方法並びに作物生育装置および植物工場
 本発明は、植物工場等の屋内において人工照明下で生育される作物の生育状態判別方法、生育方法並びに作物生育装置および植物工場に関するものである。
 近年、人工照明によって作物を計画的に育成する植物工場等が各所に設けられている。上記植物工場は、一般に、平板状の定植板を広範囲に敷設し、この定植板に所定間隔を置いて穴部を穿設して、当該穴部に通水性を有するとともに作物の根が入り込みやすい素材を充填し、各々の素材上に作物の苗等を定植して、水耕あるいは点滴によって養液を供給しつつ、上記定植板の上方に設けた照明装置から人工光を照射して上記作物を育成するものである。
 ところで、従来の上記植物工場においては、生育した作物の収穫時期を、勘や経験則あるいは播種からの時間管理のみによって決定していた。このため、上記作物の未成育や過生育によって、作物自体の生産品質の低下を招いたり、あるいは上記作物が生育し過ぎて光合成の効率が低下することにより生産性の非効率化を招いたりするという問題点があった。
 さらに、工場設備における養液の供給不良や人工光の照明不良等によって部分的な生育不足等が生じた場合にも、これにきめ細かく対応することが難しいために、計画的な栽培が行い難く、自動化を図るための障害となっていた。
 一方、施設栽培等において、作物の生育や栽培状態を把握するための一指標として、葉面積指数(LAI)が知られている。この葉面積指数は、もともと農耕地や森林内の植物群落等における一方向から見た単位面積当たりに重なる葉の面積の総和を示すものである。
 そして、下記特許文献1においては、植物の一方の側に互いに波長が異なる第1光源および第2光源を配置し、上記植物に対して上記第1光源および第2光源とは反対側に当該第1光源および第2光源からの光によって照射される上記植物を撮影して、得られた撮影画像に基づいて、第1光源からの光の透過の度合いを示す第1透過量と、第2光源からの光の透過の度合いを示す第2透過量とを算出して、両者の差分量に基づいて上記葉面積指数(LAI)を算出する葉面積指数計測システムが提案されている。
 上記葉面積指数計測システムによれば、例えば植物群落において、植物群の一方の側部に上記第1および第2光源を配置し、上記植物群を間に挟んだ水平方向の他側部に撮影手段を配置して、上記第1および第2光源からの光によって照射される植物群を撮影しつつ、第1および第2光源および撮影手段を植物群に沿って移動させることにより、当該植物群における葉面積指数を計測することができる。
 しかしながら、上記葉面積指数計測システムを用いて、上述した植物工場における植物の生育状況、すなわち葉の繁り方の変化を判別しようとすると、光源および撮影手段の一方を、植物の葉の上方に配置するとともに、他方を定植板と植物の葉との間の狭隘なスペースに配置して、定植板に沿って移動させる必要があり、現実的には実施することが困難である。
 加えて、上記葉面積指数計測システムにおいては、撮影手段によって撮影した画像から輝度値を算出する機能、得られた輝度値を照度に変換する機能、および上記照度からLAIを算出する機能、ならびにこれらの機能を実行する際に必要な各種のデータベースを具備する必要があり、システムが複雑であるとともに、LAIを計測するために要するコストが嵩むという問題点もある。
WO2012/073507 A1公報
 本発明は、上記事情に鑑みてなされたものであり、植物工場のような狭隘な空間においても、簡易な設備によって容易に作物の生育状況をリアルタイムで判別することができる作物の生育状態判別方法、生育方法並びに作物生育装置および植物工場を提供することを課題とするものである。
 上記課題を解決するため、請求項1に記載の発明は、屋内に設置された定植板に、間隔をおいて作物の種、苗または菌床を定植し、上記作物を生育させつつ、これと併行して当該作物の生育状態を判別するための方法であって、予め上記定植板の上面を、光の反射率が上記作物の反射率と異なるように形成するとともに、経時的に上記定植板側に向けて照射光を照射し、その反射光の照度を測定してその経時変化を観察することにより、上記作物の生育状態を判別することを特徴とするものである。
 また、請求項2に記載の発明は、請求項1に記載の発明において、上記反射光の照度を、2以上の照度計を用いて、各々の照度計の指向特性において測定感度が最も大きくなる方向と上記定植板とのなす角度が互いに異なる方向から測定することを特徴とするものである。
 さらに、請求項3に記載の発明は、請求項1または2に記載の発明において、上記照射光が、LEDから発せられる赤色光または青色光であることを特徴とするものである。
 また、請求項4に記載の発明は、請求項1~3のいずれかに記載の発明において、上記定植板の上方から上記作物の生育用の人工光を照射するとともに、上記照射光は、上記作物の生育用の上記人工光であることを特徴とするものである。
 次いで、請求項5に記載の発明は、屋内に設置された定植板に、間隔をおいて作物の種、苗または菌床を定植し、上記定植板の上方から人工光を照射して上記作物を生育させるための方法であって、予め上記定植板の上面を上記作物と光の反射率が異なる色に形成するとともに、経時的に上記定植板側に向けて照射光を照射し、その反射光の照度を測定してその経時変化を観察することにより、上記作物の生育状態を判別し、収穫またはさらに生育を継続することを特徴とするものである。
 請求項6に記載の発明は、請求項5に記載の発明において、上記照射光が、LEDから発せられる赤色光または青色光であることを特徴とするものである。
 次いで、請求項7に記載の発明に係る作物育成装置は、間隔をおいて作物の種、苗または菌床が定植されるとともに上面の光の反射率が上記作物の反射率と異なる定植板と、この定植板の上方に配置されて上記作物を生育させる人工光を照射する照明装置と、上記定植板および上記作物から反射される反射光の照度を測定する照度計とを備えてなることを特徴とするものである。
 さらに、請求項8に記載の本発明に係る植物工場は、屋内に、請求項7に記載の作物生育装置が設置されていることを特徴とするものである。
 請求項1~8のいずれかに記載の発明において、定植板の上面と作物との光の反射率の差は、大きい程、反射光の照度の経時変化が大きくなって測定精度が向上するために、生育状態の判断が容易になる。このような観点から、上記反射率の差は、少なくとも50%以上であることが望ましく、さらに70%以上にすることがより好ましい。
 請求項1~8のいずれかに記載の発明においては、作物の苗を定植する定植板の上面を、上記作物と光の反射率が異なるように形成しているために、上記定植板に向けて照射光を照射した際の、作物からの反射と定植板からの反射の率の差によって、作物の生育の程度、例えば葉の大きさの変化の度合いが判る。すなわち、作物および定植板からの反射光の照度が、作物が生育することにより次第に大きくなって定植板の上面を覆い、作物間の間隔が狭くなるにしたがって変化する。したがって、上記定植板の上面を、作物よりも反射率が高くなるように形成しておけば、上記作物が大きくなるにつれて上記反射光の照度が経時的に低下してゆく。
 したがって、上記定植板からの反射光の照度を経時的に計測し、その変化を観察することにより、作物の生育傾向を把握することができる。この結果、簡易な設備によって、上記作物の栽培状況あるいは収穫時期を容易に判断することができるとともに、特に生育の遅い区画が見出された場合には、早期にその原因の追究を行う等の不具合の検出およびその対応が可能になる。
 ここで先ず、定植板に照射する照射光について説明すると、照射光に対する反射率の高い定植板を用いる場合には、当該照射光としては、作物からの反射が少ないもの程、作物の生育に伴う経時的な反射光の変化率を大きくすることができる。このため、請求項2に記載の発明のように、反射光を得るための照射光として、上記作物における吸収が多くて反射が少なく、かつ作物における光合成に使用される光を、前記照射光として用いることが好ましい。
 また、上記照射光の光源としては、蛍光灯、白熱電球、LED、レーザー、CCLF(冷陰極管)、高圧水銀灯等の人工光の光源が好ましい。このような人工光は、自然光に比べて照度の変化が少ないため、作物の生長に起因する反射率の変化を測定することが容易となる。上記人工光のなかでも、LEDからの赤色光あるいは青色光は、本発明が対象とする植物工場等の屋内の施設において作物の生育のための人工光として用いられているために、請求項4に記載の発明のように、上記照射光として上記人工光を用いることができ、この結果設備の一層の簡易化を図ることが可能になる。
 ところで、上記定植板および作物からの反射光を一方向から測定する場合には、作物の生育を2次元(面積)の変化として捉えることができる。さらに、上記定植板および作物からの反射光を2以上の照度計を用いて、各々の照度計の指向特性において測定感度が最も大きくなる方向と上記定植板とのなす角度が互いに異なる方向から測定してもよい。例えば、作物の生育が進み隣接して定植された作物同士の一部が接触又は重複した後、第1の照射計から測定した反射光の照度変化が極めて小さくなった場合においても、第2の照射計により第1の照度計とは異なる角度からの照度変化を測定することができるため、第1および第2の照度計が計測する照度変化を総合して判断することにより、作物の生育状況をより高い精度で計測することができる。
 すなわち、請求項2に記載の発明においては、上記定植板からの反射光の照度を、2以上の照度計を用いて、各々の照度計の指向特性において測定感度が最も大きくなる方向と上記定植板とのなす角度が互いに異なる方向から測定しているために、作物の生育状況を3次元(体積)の変化として捉えることが可能になる。
 特に、上記定植板から上方への反射光の照度および水平方向への反射光の照度を測定すれば、設備上、照度計の設置が容易であるとともに、作物の葉の水平方向への大きさ(面積)の変化および鉛直方向への大きさ(面積)の変化を把握することができる。この結果、両方向からの反射光の照度の変化を合成することにより、作物の葉の生育を当該葉の体積の変化として把握することが可能になる。
図1は、本発明の第1の実施形態を説明するための概略図である。 図2は、本発明の実施例1における栽培日数と反射光の光量子束密度の変化との関係を示すグラフである。 図3は、図2の栽培日数による作物の葉の生育状態の変化を示す写真である。 図4は、本発明の第2の実施形態を説明するための概略図である。 図5は、本発明の実施例2における栽培日数と反射光の照度の変化との関係を示すグラフである。
(第1の実施形態)
 図1は、本発明に係る作物の生育状態判別方法、生育方法並びに作物生育装置および植物工場を、葉物作物を育成する場合に適用した第1の実施形態を説明するための概略図である。
 先ず、本発明に係る作物生育装置および植物工場の第1の実施形態について説明すると、この植物工場においては、広範囲にわたって、ポリスチレン(特にポリスチレンフォーム等)の板材からなる定植板1が敷設されており、この定植板1の上面1aは、光の反射率が最も高い白色に形成されている。そして、この定植板1に所定間隔を置いて穴部が穿設され、各々の穴部に、ウレタンのスポンジやロックウール等の通水性を有するとともに作物の根が入り込みやすい素材が充填されている。
 そして、各々の素材上に、レタス等の作物となる作物2の苗等が定植されている。また、定植板1に隣接して、作物2の苗等が定植された素材に水耕あるいは点滴によって養液を供給する養液供給手段が設けられるとともに、定植板1の上方には、上記作物2を生育するための人工の赤色光または青色光を照射するLED照明装置3が配置されている。さらに、この照明装置3に隣接して、照明装置3から定植板1側に向けて照射された光の反射光の光量子束密度(μmol/m2/s)を測定するための照度計4が設置されている。
 次に、以上の構成からなる植物工場を用いた本発明に係る作物の生育状態判別方法または生育方法の一実施形態について説明する。
 上記植物工場において生育されている作物2の生育状態を判別するには、LED照明装置3から定植板1側に向けて一定照度の赤色光または青色光を連続的に、あるいは断続的に照射して、作物2を生育させるとともに、これと併行して、上記照射光の上記定植板1の上面1aおよび作物2の葉からの反射光の光量子束密度を、照度計4によって計測する。そして、得られた光量子束密度のデータを、例えば横軸を生育日数とし、縦軸を計測された光量子束密度とするグラフにプロットすることにより、上記反射光の光量子束密度の経時変化を観察する。
 すると、定植板1の上面1aを、作物2の葉よりも光の反射率が高い白色に形成しているために、作物2が生育することにより次第に大きくなって、その葉が定植板1の上面1aを覆う面積が増えて行くにしたがって、作物2の葉の面および定植板1の上面1aからの反射光の光量子束密度の値が次第に低下してゆく。
 したがって、定植板1および作物2の葉からの反射光の光量子束密度を経時的に計測し、その変化を観察することにより、作物の葉の生長傾向を把握することができる。この結果、例えば光量子束密度の経時的な変化率が徐々に低下して一定値以下となった際、または測定される光量子束密度の変化が小さくなった際に、作物2が十分に生育したとして、その収穫時期と判断することが可能になる。
 これに対して、上記光量子束密度の経時的な変化率の低下が鈍い場合には、当該照度計4の設置個所における作物2の生育が異常に遅いと判断して、早期にその原因の追究を行うことが可能になる。
 このように、上記構成からなる作物の生育状態判別方法または生育方法によれば、定植板1に照射する照射光として、作物2の生育用の赤色光または青色光を用いているために、照度計4といった簡易な設備の追加によって、作物2の生育と併行して、リアルタイムでその収穫時期を容易に判断することができるとともに、特に生育の遅い区画が見出された場合に、早期にその原因の追究を行うことが可能になる。
 しかも、定植板1の上面1aを、最も光の反射率が高い白色とし、かつ定植板1に照射する照射光として、作物2の葉の面からの反射が少ない赤色光または青色光を用いているために、作物2の生育に伴う経時的な反射光の変化率を大きくすることができる。
(第2の実施形態)
 図4は、本発明に係る作物の生育状態判別方法、生育方法並びに作物生育装置および植物工場を、葉物作物を育成する場合に適用した第2の実施形態を説明するための概略図で、図1に示したものと同一構成部分に付いては、以下同一符号を付してその説明を簡略化する。
 本実施形態の作物生育装置および植物工場が、図1に示した第1の実施形態と異なる点は、定植板1の上方に配置された作物2を生育するためのLED照明装置3に隣接して設置された定植板1からの光の反射光の光量子束密度(μmol/m2/s)を測定するための照度計4に加えて、さらに定植板1の側方であって作物2を水平方向に臨む位置に、同様の照度計5を設置したことにある。
 以上の構成からなる植物工場を用いた作物の生育状態判別方法または生育方法の第2の実施形態においては、LED照明装置3から定植板1側に向けて一定照度の赤色光または青色光を連続的に、あるいは断続的に照射して、作物2を生育させるとともに、これと併行して、上記照射光の上記定植板1の上面1aおよび作物2の葉からの反射光の光量子束密度を、照度計4および照度計5によって計測する。
 そして、作物2が生育することにより次第にその葉が大きくなって、定植板1の上面1aを覆う面積が増えて行くにしたがって、照度計4によって測定された作物2の葉の面および定植板1の上面1aからの反射光の光量子束密度の値が次第に低下し、隣接する株の葉体が重複すると、上記光量子束密度の経時的な変化率が緩やかになって一定値に収束する。
 この生育状態においても、作物2が生育することにより、その葉が上方に向けて成長してゆく。すると、照度計5によって測定された作物2の葉の面からの反射光の光量子束密度の値が、経時的に低下して行く。そして、最終的に照度計5によって測定される光量子束密度の変化率が所定の値以下に小さくなった際に、作物2が十分に生育したとして、その収穫時期と判断することが可能になる。
 このように、上記第2の実施形態においては、照度計4によって定植板1から上方への反射光の照度を測定するとともに、照度計5によって水平方向への反射光の照度を測定しているために、作物2の葉の水平方向への大きさ(面積)の変化および鉛直方向への大きさ(面積)の変化を把握することができる。この結果、両方向からの反射光の照度の変化を合成することにより、作物の葉の生育を当該葉の体積の変化として把握することが可能になる。
 さらに、照度計4によって得られた測定値をPH、照度計5によって得られた測定値をPVとすると、作物2の体積Vは、次式によって近似させることができる。
 V=α×(PV0-PV)×(PH0-PH1/2        (1)
 ここで、PV0、PH0は、それぞれPV、PHの初期の値であり、αは測定場所における光学的環境に基づき任意に設定される比例定数である。
 また、上述したように、作物2の生育によって隣接する株の葉体が重複すると、照度計4または5によって測定された反射光の光量子束密度における経時的な変化率が緩やかになって一定値に収束する場合がある。したがって、隣接する株の葉体が重複する経過日数tまでは、上記(1)式によって作物2の体積Vを推定し、上記経過日数tを超えた後は、次式(2)によって作物2の体積Vを禁じさせることができる。
 V=Vt+α×(PVt-PV)×(PHt-PH)         (2)
 ここで、Vtは、経過日数t時における上記(1)式によって得られた作物2の体積であり、PVt、PHtは、それぞれVt、PVの経過日数tにおける値、αは測定場所における光学的環境に基づき任意に設定される比例定数である。
 上記(1)式および(2)式を用いて作物2の体積Vを推定することにより、より一層高い精度で作物の収穫時期等を判断することが可能になる。
 なお、上記第1および第2の実施形態においては、反射光の照度の測定を、照度計4、または照度計4と照度計5を用いて光量子束密度を測定することによって実施した場合についてのみ説明したが、本発明はこれに限定されるものではなく、照度計4によって反射光の照度(ルックス)を測定したり、あるいは分光放射照度計によって上記反射光の放射強度を測定したりすることによって実施することも可能である。
 また、反射光を得るための照射光についても、照明装置3から照射される作物2を育成するための人工光とは別の光源からのものを用いてもよい。これは、上記作物2として茸類を生育する場合のように、当該作物2を育成するための人工光を必要としない場合があるからである。また、照射光の照度についても、一定でなくてもよい。この場合には、上記照射光の照度変化に対応して、測定した反射光の光量子束密度を補正することによって、同様に生育状況を観察することができるためである。
 また、測定対象は反射率でもよい。さらには、上記照射光として、太陽光等の自然光も用いることが可能である。自然光等の複数の波長を含む照射光を用いる場合には、一定の波長のみを対象として測定することにより、反射光は反射率の測定精度を向上させて作物の生育状態をより正確に把握することができる。
 さらに、定植板1は、非透光性であることが好ましいが、色については上述の実施形態において使用した白色に限定されるものではなく、照明装置3から照射される照射光を反射する色であれば、様々な色のものを用いることが可能である。
 ただし、上述したように、定植板1の上面1aと作物2の葉との光の反射率の差は、大きい程、反射光の照度の経時変化が大きくなって測定精度が向上する。このため、上記反射率の差は、少なくとも50%以上であることが望ましく、さらに70%以上にすることがより好ましい。
 また、定植板1の照射光に対する反射率は、定植板の色や材質以外にも、上面1aへの塗料の塗布、研磨および粗化処理等の表面加工によって調整することも可能である。特に、定植板1の表面に、光を全反射するダイヤモンドフィルムシートなどを貼れば、高い反射率や光効率を得る観点から好ましい。一般的に、明度の高い色ほど反射率が高くなる傾向があるが、使用する照射光の波長を考慮して、適宜選択することが好ましい。ちなみに、上記定植板1としては、樹脂製や金属製等の汎用のものを用いることができる。
 さらに、上記第1および第2の実施形態においては、定植板1として、生育する作物より照射光に対する反射率が高いものを用いた場合について説明したが、その逆であっても本発明の課題を達成することができる。例えば、照明装置3から照射される一定照度の照射光に対して高い反射率を有する作物を生育する場合には、当該作物よりも上記照射光に対して反射率の低い上面を有する定植板を選択することにより、作物の生育に伴い照度計により測定される反射光の照度が増加することにより、作物の生育状態を判別することができる。
 また、上記実施形態においては、本発明に係る判別方法によってレタス等の作物となる植物を例示しているが、本発明に係る植物栽培方法等が対象とする栽培作物は、特に限定されることなく、野菜類、いも類、きのこ類、果物類、豆類、穀物類、種実類、観賞用植物類、シダ類、コケ類などとできる。また、これらの植物の栽培形態も、特に限定されることなく、水耕栽培、土耕栽培、養液栽培、固形培地耕などであってもよい。
 野菜類としては、レタス類、ネギ、ミズナ、サラダナ、シュンギク、パセリ、ミツバ、コマツナ、カラシミズナ、カラシナ、ワサビナ、クレソン、ハクサイ、ツケナ類、チンゲンサイ、キャベツ、カリフラワー、ブロッコリー、メキャベツ、タマネギ、ニンニク、ラッキョウ、ニラ、アスパラガス、セルリー、ホウレンソウ、セリ、ウド、ミョウガ、フキ、シソ、オオバ、各種ハーブ等が挙げられる。また、いわゆる「ベービーリーフ」と称され、主として若葉で食されるデトロイト、ロロロッサ、ルッコラ、ピノグリーン、レッドロメイン、チコリー等の葉菜類も挙げられる。
 レタス類には、結球性レタス、非結球レタス及び半結球レタスなどが含まれ、例えば、リーフレタス、フリルレタス、サニーレタス、ロメイン、グリーンウェーブ、グリーンリーフ、レッドリーフ、フリルアイス(登録商標)、リバーグリーン(登録商標)、フリルリーフ、フリンジグリーン、ノーチップ、モコレタス、サンチュ、チマ・サンチュが挙げられる。
 各種ハーブには、例えば、バジル、イタリアンパセリなどが含まれる。さらに、甘草、人参、紫胡、アシュワガンダ、エキナセア、リンデン、セントジョーンズワート、カモミールなどの薬用植物の栽培も可能である。
 また、トマト、メロン、キュウリ、イチゴ、カボチャ、スイカ、ナス、ピーマン、オクラ、サヤインゲン、ソラマメ、エンドウ、エダマメ、トウモロコシ等の果菜類、ダイコン、カブ、ゴボウ、ニンジン、ジャガイモ、サトイモ、サツマイモ、ヤマイモ、ショウガ、ワサビ、レンコン等の根菜類なども栽培対象とすることができる。
 いも類としては、じゃがいも、さつまいも、里芋、長芋、山芋、キャッサバ、こんにゃくいも、タロイモ、キクイモ、アピオス等が挙げられる。
 きのこ類としては、シイタケ、エノキタケ、シメジ類、マツタケ、トリュフ、ナメコ、マッシュルーム、マイタケ、エリンギ、ヒラタケ等が挙げられる。
 果物類としては、マンゴー、パイナップル、イチジク、ブルーベリー、ラズベリー、ブラックベリー、ボイセンベリー、ブドウ、ユスラウメ、クランベリー、ハスカップ、スグリ、フサスグリ、パパイア、パッションフルーツ、ドラゴンフルーツ等が挙げられる。
 穀類としては、アマランサス、アワ、エンバク、オオムギ、キビ、コムギ、コメ、モチゴメ、ソバ、トウモロコシ、ハトムギ、ヒエ、ライムギを例示することができる。
 コケ類としては、マゴケ綱に属するコケ類が含まれる。例えば、エゾスナゴケ(Racomitriumjaponicum)等、いわゆる砂苔と称される、キボウシゴケ目(Grimmiales)ギボウシゴケ科シモフリゴケ属のコケ類が挙げられる。
 また、観賞用植物としては、バラ、ミニバラ、リンドウなどに加えて、アジアンタム、プテリス、イワヒバなどのシダ類を含む種々の観葉植物を栽培対象とすることができる。
(実施例1)
 上記第1の実施形態に示した作物の生育状態判別方法を用いて、レタスの生育状態の判別を行った。このレタスの生育状態の判別は、LED照明装置3から、赤色光を一定の照度で照射して作物2を生育させつつ、定植板1および作物2の葉面からの反射光の光量子束密度を照度計4で計測した場合と、LED照明装置3から、青色光を一定の照度で照射して作物2を生育させつつ、定植板1および作物2の葉面からの反射光の光量子束密度を照度計4で計測した場合とについて実施した。
 図2および図3は、この結果を示すものである。図2に示すグラフおよび図3に示す作物2の葉の生育状態の写真から、作物2の定稙(0日目)から生育16日目までは、葉の増加によって定植板1の上面1aが徐々に覆われ、これに伴って反射する光の量が減少して行くことにより、照度計4によって計測された反射光の光量子束密度の値が大きな比率で低下していることが判る。
 そして、生育17日目以降は、定植板1の上面1aのほぼ全面が作物2の葉によって覆われ、以降は上記葉の量が増加するのみであることから、照度計4によって計測された反射光の光量子束密度の値が緩やかな比率で低下し、20日目以降は概ね一定の値に収束していることが判る。
 したがって、LED照明装置3から一定照度の赤色光または青色光を定植板1側に向けて照射して作物2を生育させるとともに、これと併行して照度計4により定植板1の上面1aおよび作物2の葉面からの反射光の光量子束密度(照度)を測定し、当該光量子束密度の経時的な変化を観察して、その減少率が予め設定した値になった時に、作物2の収穫時期として判断することが可能になる。
(実施例2)
 上記第2の実施形態に示した作物の生育状態判別方法を用いて、実施例1と同様にレタスの生育状態の判別を行った。このレタスの生育状態の判別は、LED照明装置3から、赤色光を一定の照度で照射して作物2を生育させつつ、定植板1および作物2の葉面からの反射光の光量子束密度を照度計4および照度計5によって計測した。
 また、上記照度計4および照度計5によって得られた測定値に基づいて、照度計4の測定値から予測作物重量を算出するとともに、照度計4および照度計5の測定値から上記(1)式および(2)式により体積Vを算出した。そして、前記体積Vに作物2の仮定密度を乗じることにより、これらの算出結果と当該作物重量の実測値とを比較した。
 図5は、この結果を示すものであり、横軸が経過日数、左縦軸が照度計4、5による測定値を作物定植前の照度計4、5による測定値で除して10を乗じた照度(無次元数)であり、右縦軸が作物重量を示すものである。
 同図から、作物2の生育によって隣接する株の葉体が重複した経過日数t(本実施例において経過日数14日)以降は、上方の照度計4によって測定された反射光の照度の変化は小さくなった。一方、水平方向の照度計5によって測定された反射光の照度は継続して減少することが確認され、隣接する株の葉体が重複した後も植物の生育状態の変化を確認することができた。さらに、照度計4および照度計5の測定値から上記(1)式および(2)式により算出した予測作物重量は、実測値に近い値を示し、より高い精度で作物の生育状態を把握することができた。
 植物工場等の屋内において人工照明下で生育される作物の生育状態を判別するために用いられる。
 1 定植板
 1a 上面
 2 作物
 3 LED照明装置
 4、5 照度計
 

Claims (8)

  1.  屋内に設置された定植板に、間隔をおいて作物の種、苗または菌床を定植し、上記作物を生育させつつ、これと併行して当該作物の生育状態を判別するための方法であって、
     予め上記定植板の上面を、光の反射率が上記作物の反射率と異なるように形成するとともに、経時的に上記定植板側に向けて照射光を照射し、その反射光の照度を測定してその経時変化を観察することにより、上記作物の生育状態を判別することを特徴とする作物の生育状態判別方法。
  2.  上記反射光の照度を、2以上の照度計を用いて、各々の照度計の指向特性において測定感度が最も大きくなる方向と上記定植板とのなす角度が互いに異なる方向から測定することを特徴とする請求項1に記載の作物の生育状態判定方法。
  3.  上記照射光は、LEDから発せられる赤色光または青色光であることを特徴とする請求項1または2に記載の作物の生育状態判別方法。
  4.  上記定植板の上方から上記作物の生育用の人工光を照射するとともに、上記照射光は、上記作物の生育用の上記人工光であることを特徴とする請求項1ないし3のいずれかに記載の作物の生育状態判別方法。
  5.  屋内に設置された定植板に、間隔をおいて作物の種、苗または菌床を定植し、上記定植板の上方から人工光を照射して上記作物を生育させるための方法であって、
     予め上記定植板の上面を上記作物と光の反射率が異なる色に形成するとともに、経時的に上記定植板側に向けて照射光を照射し、その反射光の照度を測定してその経時変化を観察することにより、上記作物の生育状態を判別し、収穫またはさらに生育を継続することを特徴とする作物の生育方法。
  6.  上記照射光は、LEDから発せられる赤色光または青色光であることを特徴とする請求項5に記載の作物の生育方法。
  7.  間隔をおいて作物の種、苗または菌床が定植されるとともに上面の光の反射率が上記作物の反射率と異なる定植板と、この定植板の上方に配置されて上記作物を生育させる人工光を照射する照明装置と、上記定植板および上記作物から反射される反射光の照度を測定する照度計とを備えてなることを特徴とする作物生育装置。
  8.  屋内に、請求項7に記載の作物生育装置が設置されていることを特徴とする植物工場。
     
PCT/JP2014/006305 2013-12-20 2014-12-17 作物の生育状態判別方法、生育方法並びに作物生育装置および植物工場 WO2015093054A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015553379A JP6656925B2 (ja) 2013-12-20 2014-12-17 作物の生育状態判別方法および生育方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013263394 2013-12-20
JP2013-263394 2013-12-20

Publications (1)

Publication Number Publication Date
WO2015093054A1 true WO2015093054A1 (ja) 2015-06-25

Family

ID=53402421

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/006305 WO2015093054A1 (ja) 2013-12-20 2014-12-17 作物の生育状態判別方法、生育方法並びに作物生育装置および植物工場

Country Status (2)

Country Link
JP (1) JP6656925B2 (ja)
WO (1) WO2015093054A1 (ja)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015223101A (ja) * 2014-05-27 2015-12-14 日本電気株式会社 植物状態判定装置、植物状態判定方法及び植物状態判定プログラム
CN113940206A (zh) * 2021-09-24 2022-01-18 中国农业科学院都市农业研究所 一种用于农业照明的扫描设备及方法
US11291165B2 (en) * 2017-07-31 2022-04-05 Signify Holding B.V. Dimming method for constant light intensity
WO2023171673A1 (ja) * 2022-03-08 2023-09-14 千代田化工建設株式会社 生育状態推定方法及び栽培装置
JP7445969B2 (ja) 2020-05-29 2024-03-08 国立研究開発法人農業・食品産業技術総合研究機構 推定装置、推定方法、及びプログラム

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62215326A (ja) * 1986-03-17 1987-09-22 三菱電機株式会社 植物生長現状計測装置
JP2008076346A (ja) * 2006-09-25 2008-04-03 Ebara Corp 植物の生育度測定装置及び生育度測定方法
JP2012179009A (ja) * 2011-03-01 2012-09-20 Osaka Prefecture Univ 植物栽培方法及び体内時計最適化植物栽培装置
JP2012247235A (ja) * 2011-05-26 2012-12-13 Topcon Corp 植物用センサ装置

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2095017A1 (en) * 2006-12-20 2009-09-02 Philips Intellectual Property & Standards GmbH Illuminating device
DE102010034603B4 (de) * 2010-08-13 2013-01-31 Franke Gmbh Sensorsystem und Verfahren zur Bestimmung einer optischen Eigenschaft einer Pflanze
WO2012073507A1 (ja) * 2010-12-02 2012-06-07 日本電気株式会社 葉面積指数計測システム、装置、方法およびプログラム

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62215326A (ja) * 1986-03-17 1987-09-22 三菱電機株式会社 植物生長現状計測装置
JP2008076346A (ja) * 2006-09-25 2008-04-03 Ebara Corp 植物の生育度測定装置及び生育度測定方法
JP2012179009A (ja) * 2011-03-01 2012-09-20 Osaka Prefecture Univ 植物栽培方法及び体内時計最適化植物栽培装置
JP2012247235A (ja) * 2011-05-26 2012-12-13 Topcon Corp 植物用センサ装置

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015223101A (ja) * 2014-05-27 2015-12-14 日本電気株式会社 植物状態判定装置、植物状態判定方法及び植物状態判定プログラム
US11291165B2 (en) * 2017-07-31 2022-04-05 Signify Holding B.V. Dimming method for constant light intensity
JP7445969B2 (ja) 2020-05-29 2024-03-08 国立研究開発法人農業・食品産業技術総合研究機構 推定装置、推定方法、及びプログラム
CN113940206A (zh) * 2021-09-24 2022-01-18 中国农业科学院都市农业研究所 一种用于农业照明的扫描设备及方法
CN113940206B (zh) * 2021-09-24 2022-12-13 中国农业科学院都市农业研究所 一种用于农业照明的扫描设备及方法
WO2023171673A1 (ja) * 2022-03-08 2023-09-14 千代田化工建設株式会社 生育状態推定方法及び栽培装置

Also Published As

Publication number Publication date
JP6656925B2 (ja) 2020-03-04
JPWO2015093054A1 (ja) 2017-03-16

Similar Documents

Publication Publication Date Title
WO2015093054A1 (ja) 作物の生育状態判別方法、生育方法並びに作物生育装置および植物工場
CN108449988B (zh) 用于精准农业的反向散射成像
RU2640960C2 (ru) Интерфейс для освещения в растениеводстве для взаимодействия по меньшей мере с одной системой освещения
US11291165B2 (en) Dimming method for constant light intensity
JP2018121589A (ja) 人工光による植物苗の栽培方法
Li et al. Responses of two Anthurium cultivars to high daily integrals of diffuse light
Demirel et al. Yield estimate using spectral indices in eggplant and bell pepper grown under deficit irrigation
Yang et al. Canopy structure and light interception partitioning among shoots estimated from virtual trees: comparison between apple cultivars grown on different interstocks on the Chinese Loess Plateau
Franco et al. Competition and the formation of spatial pattern in spacing gradients: an example using Kochia scoparia
de Oliveira França et al. Peanut yield under irrigation levels in off-season cultivation
JP7130203B2 (ja) 植物栽培システム
JP7134428B2 (ja) 植物栽培装置
Ohashi et al. Estimation of the light interception of a cultivated tomato crop canopy under different furrow distances in a greenhouse using the ray tracing
Evers et al. Functional—Structural plant modeling of plants and crops
Mah Exploring light for growth control in ornamental plant production using LEDs in controlled environments
Gagne The effects of daily light integral on the growth and development of hydroponically grown baby leaf vegetables
Meena et al. Evaluation of Bambara groundnut (Vigna subterranea) landraces for their agronomic and physiological traits
Trubakova et al. The influence of solar activity on the formation of plant phytomass in dry steppe conditions
Katsoulas et al. Detection of salinity stress in soilless tomato based on crop reflectance
Takahashi et al. Development of LAI and fruit load estimation method using a three-dimensional shape measurement sensor
Cavalcante et al. Radish production under different shading screens and mulching
Walne Quantifying the effects of abiotic stress on early season growth, development, and physiological characteristics in corn
WADA et al. Simulation model for predicting fruit yield of tomatoes grown on a single-truss system under shade in summer
Katsoulas et al. Transpiration of a sweet pepper crop under screenhouse conditions
Wamiq et al. Chapter-10 Modern Technologies in Horticulture

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14871884

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2015553379

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14871884

Country of ref document: EP

Kind code of ref document: A1