WO2012073507A1 - 葉面積指数計測システム、装置、方法およびプログラム - Google Patents

葉面積指数計測システム、装置、方法およびプログラム Download PDF

Info

Publication number
WO2012073507A1
WO2012073507A1 PCT/JP2011/006701 JP2011006701W WO2012073507A1 WO 2012073507 A1 WO2012073507 A1 WO 2012073507A1 JP 2011006701 W JP2011006701 W JP 2011006701W WO 2012073507 A1 WO2012073507 A1 WO 2012073507A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
plant
wavelength
light source
transmission amount
Prior art date
Application number
PCT/JP2011/006701
Other languages
English (en)
French (fr)
Inventor
石山 塁
Original Assignee
日本電気株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本電気株式会社 filed Critical 日本電気株式会社
Publication of WO2012073507A1 publication Critical patent/WO2012073507A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B11/00Measuring arrangements characterised by the use of optical techniques
    • G01B11/28Measuring arrangements characterised by the use of optical techniques for measuring areas
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01GHORTICULTURE; CULTIVATION OF VEGETABLES, FLOWERS, RICE, FRUIT, VINES, HOPS OR SEAWEED; FORESTRY; WATERING
    • A01G7/00Botany in general
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/25Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands
    • G01N21/31Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry
    • G01N21/314Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry with comparison of measurements at specific and non-specific wavelengths
    • G01N21/3151Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry with comparison of measurements at specific and non-specific wavelengths using two sources of radiation of different wavelengths
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/59Transmissivity

Definitions

  • the present invention relates to a leaf area index measuring system, a leaf area index measuring device, a leaf area index measuring method, and a leaf area index measuring program for measuring a leaf area index.
  • Leaf Area Index represents the sum of the area of leaves overlapping in a certain direction (eg, vertical direction) per unit area in an agricultural land or a plant community in a forest. LAI is used as an index for grasping the growth and cultivation status of plants in facility cultivation and the like.
  • LAI As a method of measuring LAI, for example, a method of indirectly measuring using an illuminance sensor has been proposed. In this method, for example, the illuminance is measured above and below the plant community, and the LAI is estimated based on the measured illuminance.
  • Patent Document 1 describes an indirect measurement method of LAI.
  • the indirect measurement system captures an image of a predetermined area for each of near-infrared light and red light using a wide-angle lens and an electronic image sensor.
  • the indirect measurement system obtains a luminance value for each of the near infrared light and the red light for each subdivided region obtained by subdividing the predetermined region.
  • an indirect measurement system calculates
  • an expensive illuminance sensor is required to grasp the LAI at multiple locations in the community structure, and measurement is performed multiple times while moving the illuminance sensor. Work is required. That is, a large amount of labor is required at a high cost.
  • the indirect measurement system can reduce the cost to some extent by using an electronic imaging device instead of the illuminance sensor.
  • an electronic imaging device instead of the illuminance sensor.
  • the irradiation direction of light from the light source cannot be freely controlled, and the direction in which the relative solar radiation amount can be measured is limited. That is, in the method described in Patent Document 1, the locations and directions in which the leaf area index can be obtained are limited.
  • An object of the present invention is to provide a leaf area index measurement system, a leaf area index measurement device, a leaf area index measurement method, and a leaf area index measurement program that can measure a leaf area index without any problem.
  • the leaf area index measurement system is arranged on the same side as the first light source with respect to the first light source for irradiating the measurement target plant with light of the first wavelength, and the first wavelength is A second light source that irradiates the measurement target plant with light of a different second wavelength, and is disposed on the opposite side of the measurement target plant from the first light source and the second light source.
  • a transmission amount calculating means for calculating a first transmission amount indicating the degree of light transmission and a second transmission amount indicating the degree of light transmission when the plant to be measured is irradiated with light of the second wavelength;
  • the first transmission amount and the second transmission amount calculated by the transmission amount calculation means Based on the amount, characterized in that a leaf area index calculation means for calculating the leaf area index.
  • the leaf area index measuring apparatus is arranged on the same side as the first light source with respect to the first light source for irradiating the measurement target plant with light of the first wavelength, and the first wavelength is A second light source that irradiates the measurement target plant with light of a different second wavelength, and is disposed on the opposite side of the measurement target plant from the first light source and the second light source.
  • a leaf area index measurement apparatus for measuring a leaf area index in a leaf area index measurement system comprising: an imaging unit that images a plant to be measured irradiated with light and outputs a captured image, wherein the imaging unit includes: Based on the captured image to be output, the measurement target plant is irradiated with the first transmission amount indicating the degree of light transmission when the measurement target plant is irradiated with the first wavelength light, and the second wavelength light. Second transmission indicating the degree of light transmission when And a leaf area index calculating means for calculating a leaf area index based on a difference amount between the first transmission amount and the second transmission amount calculated by the transmission amount calculation means. It is characterized by.
  • the leaf area index measurement method includes a first light source that irradiates a measurement target plant with light having a first wavelength, and is disposed on the same side as the first light source with respect to the measurement target plant.
  • a second light source that irradiates the plant to be measured with light having a second wavelength different from the first light source is disposed on the opposite side of the first light source and the second light source with respect to the plant to be measured.
  • a photographing means for photographing the plant to be measured irradiated by the light of the second wavelength and outputting a photographed image, and the plant to be measured by the light of the first wavelength based on the photographed image output by the photographing means.
  • a first transmission amount indicating the degree of light transmission when the light is irradiated and a second transmission amount indicating the degree of light transmission when the measurement target plant is irradiated with light of the second wavelength are calculated. Based on the calculated difference between the first transmission amount and the second transmission amount , And calculates the leaf area index.
  • the leaf area index measurement program according to the present invention is arranged on the same side as the first light source with respect to the first light source for irradiating the measurement target plant with light of the first wavelength, and the first wavelength Is arranged on the opposite side of the first light source and the second light source with respect to the plant to be measured, the second light source for irradiating the measurement target plant with the light of the second wavelength different from the first light and the second light
  • a leaf area index measurement program for measuring a leaf area index in a leaf area index measurement system comprising a photographing means for photographing a plant to be measured irradiated with light of a wavelength and outputting a photographed image.
  • the first transmission amount indicating the degree of transmission of light when the plant to be measured is irradiated with the light of the first wavelength and the light of the second wavelength based on the captured image output from the imaging unit to the computer.
  • the plant to be measured is irradiated Processing for calculating the second transmission amount indicating the degree of light transmission at the time, and processing for calculating the leaf area index based on the difference amount between the calculated first transmission amount and the second transmission amount Is for.
  • the present invention it is possible to automatically measure the leaf area index at a low cost and easily without being restricted by the measurement location and direction, and to be affected by an external noise-like light component.
  • the leaf area index can be measured.
  • FIG. 1 is a front view of a measurement system using an LAI measurement system (leaf area index measurement system) according to the present invention as seen from the front side with respect to a plant community.
  • FIG. 2 is a side view of the measurement system using the LAI measurement system as seen from the side with respect to the plant community.
  • the plant community 40 is a group of plants in which plants for agricultural products are arranged in a line.
  • the LAI measurement system measures LAI while moving a measurement set 30 to which a light source and a camera are attached in the depth direction.
  • the longitudinal direction of the plant community 40 is referred to as “depth direction”.
  • expressions such as “vertical direction” and “horizontal direction” are also used.
  • vertical direction indicates a direction perpendicular to the ground.
  • Horizontal direction refers to a direction horizontal to the ground.
  • the LAI measurement system is applied to an application for measuring the horizontal LAI of a plant community for crops (for example, tomatoes and cucumbers) in an agricultural field such as a field or a greenhouse is taken as an example.
  • crops for example, tomatoes and cucumbers
  • the embodiment is not limited to the example of the present embodiment.
  • the LAI measurement system may be applied to a purpose of measuring the LAI in the horizontal direction of a community of trees in the forest.
  • the measurement set 30 includes an array group of a plurality of light sources 10 ⁇ / b> A and 10 ⁇ / b> B arranged on one side so as to sandwich the plant community 40, and is opposite to the light sources 10 ⁇ / b> A and 10 ⁇ / b> B with respect to the plant community 40.
  • An array group of a plurality of cameras 20 is arranged on the side.
  • each of the light sources 10A and 10B is realized by a lamp or LED capable of irradiating light of a predetermined wavelength. As shown in FIG. 2, each light source 10A, 10B irradiates the plant community 40 direction. In the present embodiment, two types of light sources 10A and 10B having different wavelengths of light to be irradiated are used as light sources.
  • the wavelengths of light used in the two types of light sources 10A and 10B one uses light that is easily absorbed by the leaves in the plant community 40, and the other is hardly absorbed by the leaves in the plant community 40. It is desirable to use a material that easily transmits light.
  • a light source that emits green light for example, light having a wavelength of 495 to 570 nm
  • the light source 10B is transmitted in a completely different color from the leaves.
  • a light source that emits easily red light for example, light having a wavelength of 620 to 750 nm
  • a light source that emits light other than red for example, orange or yellow light
  • each light sources 10A and 10B is not restricted to what was shown by this embodiment.
  • four or more of each of the light sources 10A and 10B may be arranged, or only one of each of the light sources 10A and 10B may be arranged. That is, LAI can be measured with at least one light source 10A that emits green light and one light source 10B that emits red light.
  • Each camera 20 is specifically realized by a photographing device such as a digital camera capable of photographing a color image. Note that each camera 20 is not limited to one that shoots a still image as long as it can shoot a color image, and may be realized by, for example, a video camera that can shoot a moving image. As shown in FIG. 2, each camera 20 has a function of photographing the plant community 40 direction and outputting the photographed image to an LAI measuring device 50 (not shown in FIGS. 1 and 2) described later.
  • a photographing device such as a digital camera capable of photographing a color image. Note that each camera 20 is not limited to one that shoots a still image as long as it can shoot a color image, and may be realized by, for example, a video camera that can shoot a moving image. As shown in FIG. 2, each camera 20 has a function of photographing the plant community 40 direction and outputting the photographed image to an LAI measuring device 50 (not shown in FIGS. 1 and 2) described later.
  • the number of the cameras 20 is not restricted to what was shown in this embodiment.
  • six or more cameras 20 may be arranged, or only two cameras 20 may be arranged. That is, at least one camera 20 may be arranged so that the direction of the plant community 40 can be photographed.
  • LAI is measured in the horizontal direction
  • cameras arranged at substantially the same height (for example, within a few cm in height difference from the light source) with respect to the respective light sources 10A and 10B. 20 is preferably present.
  • FIG. 3 is a block diagram showing an example of the configuration of the LAI measurement system.
  • the LAI measurement system includes an LAI measurement device 50 in addition to the measurement set 30 shown in FIGS. 1 and 2. Further, as shown in FIG. 3, the captured image output by each camera 20 arranged in the measurement set 30 is output to the LAI measurement device 50.
  • the LAI measuring device 50 is specifically realized by an information processing device such as a personal computer that operates according to a program.
  • the LAI measurement device 50 includes an image analysis unit 51, a database 52, an LAI calculation unit 53, and an LAI output unit 54.
  • the image analysis means 51 is realized by a CPU of an information processing apparatus that operates according to a program.
  • the image analysis unit 51 has a function of calculating the luminance value of the captured image input from each camera 20.
  • the image analysis unit 51 may obtain the luminance value of the entire captured image input from each camera 20, or extracts a partial image from the entire captured image input from each camera 20, and the luminance value of the extracted partial image. You may ask for.
  • the image analysis means 51 may extract a partial image above the photographed image input from the camera 20 attached above and obtain the luminance value of the extracted partial image.
  • the image analysis means 51 has a function of converting the obtained luminance value into illuminance.
  • the image analysis unit 51 obtains the illuminance by extracting the illuminance corresponding to the luminance value calculated by the image analysis unit 51 from the illuminance conversion table stored in the database 52 described later.
  • the image analysis means 51 inputs from each camera 20 a photographed image when the light source 10A emits green light and a photographed image when the light source 10B emits red light.
  • the luminance value is calculated to obtain the illuminance.
  • the database 52 is realized by a storage device such as a magnetic disk device or an optical disk device.
  • the database 52 stores an illuminance conversion table for converting luminance values into illuminance.
  • the illuminance conversion table stored in the database 52 includes a luminance value and illuminance in association with each other.
  • the illuminance conversion table stored in the database 52 includes, for example, illuminance measured using a commonly used illuminance sensor and luminance values obtained from captured images, respectively, under some sample conditions. Built by setting.
  • the database 52 stores an LAI conversion table for converting the difference in illuminance into LAI.
  • the LAI conversion table stored in the database 52 includes an illuminance difference amount and an LAI in association with each other.
  • the difference amount between the illuminance when irradiated with green light and the illuminance when irradiated with red light is used as the difference in illuminance.
  • the LAI conversion table stored in the database 52 is, for example, an illuminance difference amount measured by using a commonly used illuminance sensor under some sample conditions, and the LAI obtained at that time.
  • the LAI calculation means 53 is realized by a CPU of an information processing apparatus that operates according to a program.
  • the LAI calculation unit 53 has a function of calculating LAI based on the illuminance calculated by the image analysis unit 51.
  • the LAI calculating unit 53 obtains the difference value of the illuminance obtained by the image analyzing unit 51.
  • the LAI calculating unit 53 calculates the difference between the illuminance when the green light is emitted from the light source 10A and the illuminance when the red light is emitted from the light source 10B. The difference value is calculated.
  • the LAI calculating unit 53 obtains the LAI by extracting the LAI corresponding to the calculated difference value of the illuminance from the LAI conversion table stored in the database 52.
  • the LAI output unit 54 is realized by a CPU of an information processing device that operates according to a program and a display device such as a display device.
  • the LAI output unit 54 has a function of outputting the LAI calculated by the LAI calculation unit 53.
  • the LAI output unit 54 displays the LAI calculated by the LAI calculation unit 53 on a display device such as a display device.
  • the method of outputting the LAI is not limited to that shown in the present embodiment.
  • the LAI output unit 54 may output a file including the LAI calculated by the LAI calculation unit 53 as a file.
  • the LAI output unit 54 may transmit the LAI calculated by the LAI calculation unit 53 to another terminal via a network such as a LAN.
  • the storage device of the LAI measuring device 50 stores various programs for measuring the LAI in the horizontal direction.
  • the storage device of the LAI measurement device 50 indicates the first degree of light transmission when the plant to be measured is irradiated with light of the first wavelength based on the photographed image output by the photographing means to the computer.
  • FIG. 4 is a flowchart illustrating an example of an operation for measuring the LAI in the horizontal direction using the LAI measurement system.
  • measurement is started from a state where the measurement set 30 is set at the leftmost end of the plant community 40, and sequentially at predetermined intervals (for example, 50 cm intervals). It is assumed that measurement is repeatedly performed while moving the measurement set 30 to the right in the depth direction.
  • predetermined intervals for example, 50 cm intervals
  • the LAI measurement system causes the light source 10A among the light sources 10A and 10B arranged in the measurement set 30 to emit light, and irradiates the plant community 40 with green light (step S10). Then, in a state where the plant community 40 is irradiated with the green light from the light source 10A, each camera 20 captures the direction of the plant community 40 (step S11).
  • the LAI measurement device 50 inputs a captured image from each camera 20.
  • the LAI measurement system stops the light emission of the light source 10A, causes the light source 10B to emit light among the light sources 10A and 10B arranged in the measurement set 30, and irradiates the plant community 40 with red light (step S12). .
  • each camera 20 image photographs the plant community 40 direction in the state which irradiated the red light from the light source 10B to the plant community 40 (step S13).
  • the LAI measurement device 50 inputs a captured image from each camera 20.
  • the order of shooting is not limited to that shown in the present embodiment, but after shooting in a state where the plant community 40 is first irradiated with red light, shooting is performed in a state where the plant community 40 is irradiated with green light. Also good.
  • the LAI measurement device 50 calculates the luminance value of the captured image (captured image irradiated with green light) input from each camera 20 in step S11, and the captured image input from each camera 20 (step S13).
  • the brightness value of the photographed image in a state where the red light is irradiated is calculated (step S14).
  • the LAI measurement device 50 converts the calculated luminance value into illuminance.
  • the LAI measuring apparatus 50 performs steps from the illuminance conversion table stored in the database 52 for each of the luminance value of the captured image in the state of green light irradiation and the luminance value of the captured image in the state of irradiation of red light. Illuminance corresponding to the luminance value calculated in S14 is extracted.
  • the LAI measurement device 50 calculates LAI based on the illuminance obtained in step S14 (step S15).
  • the LAI measurement device 50 obtains a difference value between the illuminance in a state where green light is irradiated and the illuminance in a state where red light is irradiated.
  • the LAI measurement device 50 obtains a subtraction value between the illuminance in the state irradiated with green light and the illuminance in the state irradiated with red light as the difference value of illuminance. Note that the method for calculating the difference value of illuminance is not limited to that shown in the present embodiment.
  • the LAI measuring apparatus 50 has a ratio between the illuminance in the state of irradiating green light and the illuminance in the state of irradiating red light. You may ask for. Then, the LAI measuring device 50 obtains the LAI by extracting the LAI corresponding to the calculated difference value of the illuminance from the LAI conversion table stored in the database 52.
  • the LAI measuring device 50 obtains the difference value between the luminance value in the state of irradiating the green light and the luminance value in the state of irradiating the red light, and the obtained luminance The LAI may be obtained based on the difference value.
  • a table in which the difference value of the luminance value is associated with the LAI is prepared in advance, and the LAI measuring apparatus 50 extracts the LAI corresponding to the obtained difference value of the luminance value from the table.
  • the LAI may be obtained by the following.
  • the LAI measuring apparatus 50 may obtain the LAI by performing arithmetic processing using the following formula (1).
  • I indicates the light intensity (specifically, illuminance, which may be a luminance value or the like) at a certain measurement point in the plant community 40.
  • I 0 indicates the intensity of light at a certain reference point in the plant community 40 (specifically, illuminance, which may be a luminance value or the like).
  • K represents an absorption coefficient, and the value differs for each plant, and even for the same plant, the value varies depending on external factors such as weather and time zone.
  • F is an integrated leaf area index.
  • the LAI measurement device 50 determines whether or not LAI measurement has been performed for all measurement points (step S16). For example, the number of measurement points is input in advance according to the user's input operation, and the number of measurement points is subtracted by 1 each time the processing of steps S10 to S15 is executed for each measurement point. In step S16, the LAI measurement device 50 may determine whether the number of measurement points is 0 or not. Further, for example, in step S16, the LAI measuring device 50 displays a confirmation message as to whether or not the measurement of all the measurement points has been completed on a display device such as a display device, and all the measurement points according to the input by the user operation. It may be determined whether or not LAI has been measured.
  • the measurement set 30 is moved by a predetermined interval (for example, 50 cm interval) (step S17), and the process returns to step S10 until the measurement of LAI is completed for all measurement points.
  • a predetermined interval for example, 50 cm interval
  • the LAI measurement device 50 displays the measured LAI on a display device such as a display device (step S18).
  • the LAI measurement device 50 may display the LAI value measured for each measurement point, for example.
  • the LAI measuring apparatus 50 may display a graph illustrating the transition of the LAI value with the depth direction as the horizontal axis, and can display the LAI measurement value by various display methods. Further, for example, the LAI measurement device 50 may output a file including the measured LAI value or may transmit the file to another terminal via a network.
  • the LAI measurement device 50 measures LAI based on the captured image from the camera 20 without using an expensive illuminance sensor. Further, the LAI measurement device 50 does not use sunlight as a light source, but performs LAI measurement using the light sources 10A and 10B arranged in the measurement set 30. Therefore, the LAI measuring apparatus 50 can automatically measure the LAI (leaf area index) easily at low cost without being restricted by the measurement location and direction.
  • the LAI measurement device 50 uses two types of light sources 10A and 10B that emit light having different wavelengths, and displays a photographed image when the two types of light sources 10A and 10B are irradiated.
  • a difference amount of the transmission amount (for example, illuminance, luminance value) obtained based on the obtained transmission amount is obtained, and LAI is measured based on the obtained transmission amount difference amount. Therefore, the LAI measuring apparatus 50 can measure the LAI by canceling the external noise-like light component by using the difference amount of the transmission amount when the two types of light sources are used.
  • the LAI measuring device 50 can measure the LAI without being affected by sunlight even in a situation where sunlight is irradiated in the daytime.
  • the LAI measuring apparatus 50 can automatically measure the leaf area index at a low cost and without being limited by the measurement location and direction, and can be externally noise-like.
  • LAI leaf area index
  • LAI leaf area index
  • the LAI measuring apparatus 50 can collectively measure the LAI in the vertical direction and the depth direction only by processing an image captured by the camera 20 without using an expensive illuminance sensor. Therefore, the LAI measuring device 50 can achieve both reducing the cost for LAI measurement and reducing the work load.
  • the LAI measuring device 50 can easily measure by simply arranging a large number of light sources 10. Therefore, the LAI measuring apparatus 50 can prevent the occurrence of work burdens and failures for maintenance work.
  • the case where the light source 10A that emits green light and the light source 10B that emits red light are used as the light source is shown.
  • the method of making the wavelengths of the two types of light sources different is not limited to that shown in the present embodiment, and may be made different by using blue light or yellow light other than green light and red light.
  • the case where two types of light sources 10A and 10B are used is shown.
  • a luminance value is obtained from each of the photographed image with the light source emitted and the photographed image with the light source turned off, and the transmission amount (for example, illuminance, for example) , Luminance value) difference amount may be obtained to measure LAI.
  • measurement is performed while moving the measurement set 30 using the measurement set 30 in which the light sources 10A and 10B are arranged on the same side with respect to the plant community 40 and the cameras 20 are arranged on the opposite side. I do.
  • the LAI measuring apparatus 50 can measure the LAI while moving the light sources 10A and 10B and the cameras 20 integrally in the depth direction (longitudinal direction) of the plant community 40. Therefore, the LAI measuring device 50 can easily measure the distribution state of the LAI with respect to the depth direction (longitudinal direction) of the plant community 40 while reducing the cost.
  • the light sources 10A and 10B and the camera 20 are vertically arranged at predetermined intervals (for example, 50 cm) in the depth direction of the plant community 40.
  • the minimum amount is required.
  • the distribution state of the LAI with respect to the depth direction (longitudinal direction) of the plant community 40 can be measured using the light sources 10A and 10B and the camera 20, and the cost can be minimized.
  • each camera 20 is disposed at substantially the same height as each of the light sources 10A and 10B, and LAI in the horizontal direction with respect to the ground can be measured.
  • LAI is used to grasp the degree of leaf overlap in the direction perpendicular to the ground.
  • leaves overlap each other also in the horizontal direction with respect to the ground. Therefore, in order to appropriately grasp the degree of leaf overlap in the plant community, it is desirable to obtain the LAI in the horizontal direction. Therefore, in the present embodiment, the LAI in the horizontal direction can be measured by arranging and measuring the cameras 20 and the light sources 10A and 10B at substantially the same height.
  • the LAI measuring device 50 can more appropriately grasp the degree of leaf overlap in the plant community 40 by determining by combining both the LAI in the vertical direction and the LAI in the horizontal direction. it can.
  • FIG. 5 is a block diagram illustrating a minimum configuration example of the LAI measurement system.
  • the LAI measurement system includes light sources 10 ⁇ / b> A and 10 ⁇ / b> B, a camera 20, an image analysis unit 51, and an LAI calculation unit 53.
  • the light source 10A irradiates a plant to be measured with light having a first wavelength (for example, green light).
  • the light source 10B is arranged on the same side as the light source 10A with respect to the plant to be measured, and irradiates the plant to be measured with light having a second wavelength different from the first wavelength (for example, red light).
  • the camera 20 is arranged on the opposite side of the light source 10A, 10B with respect to the plant to be measured, and takes a photographed image of the plant to be measured that is irradiated with the first wavelength light and the second wavelength light. The function to output is provided.
  • the image analysis means 51 is based on a captured image output from the camera 20 and has a first transmission amount (for example, illuminance) indicating the degree of light transmission when the measurement target plant is irradiated with light of the first wavelength. , Luminance value) and a second transmission amount (for example, illuminance, luminance value) indicating the degree of transmission of light when the plant to be measured is irradiated with light of the second wavelength.
  • the LAI calculating unit 53 has a function of calculating an LAI (leaf area index) based on the difference between the first transmission amount and the second transmission amount calculated by the image analysis unit 51.
  • the leaf area index can be automatically measured at a low cost and easily without being restricted by the measurement location and direction, and external noise is also measured.
  • the leaf area index can be measured without being affected by a typical light component.
  • the characteristic configuration of the LAI (leaf area index) measurement system as shown in the following (1) to (6) is shown.
  • the leaf area index measurement system includes a first light source (for example, a light source 10A) that irradiates a measurement target plant with light of a first wavelength (for example, green light), and a first light source for the measurement target plant.
  • a second light source (for example, light source 10B) that irradiates the measurement target plant with light of a second wavelength different from the first wavelength (for example, red light), and the measurement target plant
  • An imaging means for example, a camera 20 that is disposed on the opposite side of the first light source and the second light source and that captures the measurement target plant irradiated with the first wavelength light and the second wavelength light and outputs a captured image.
  • a first transmission amount (for example, illuminance, luminance value) indicating the degree of transmission of light when the plant to be measured is irradiated with light of the first wavelength based on the captured image output by the imaging unit.
  • the plant to be measured was irradiated by the light of the second wavelength
  • a transmission amount calculation means for example, realized by the image analysis means 51
  • a second transmission amount for example, illuminance, luminance value
  • the transmission amount calculation means A leaf area index calculating unit (for example, realized by the LAI calculating unit 53) that calculates a leaf area index based on a difference amount between the first transmission amount and the second transmission amount is provided.
  • the transmission amount calculation means calculates a luminance value of a photographed image when the plant to be measured is irradiated with light of the first wavelength as the first transmission amount, and the second transmission amount The brightness value of the photographed image when the measurement target plant is irradiated with the light of the second wavelength is calculated, and the leaf area index calculation means is calculated as the first transmission amount and the second transmission amount by the transmission amount calculation means.
  • a difference amount of luminance values may be calculated, and a leaf area index may be calculated based on the calculated difference amount.
  • the transmission amount calculation means calculates the illuminance based on the luminance value of the photographed image when the measurement target plant is irradiated with the light of the first wavelength as the first transmission amount, Illuminance is calculated based on the luminance value of the captured image when the plant to be measured is irradiated with light of the second wavelength as the second transmission amount, and the leaf area index calculation means is configured such that the transmission amount calculation means uses the first transmission amount. And the difference amount of the illuminance calculated as the second transmission amount may be calculated, and the leaf area index may be calculated based on the calculated difference amount.
  • the leaf area index measurement system includes a storage unit (for example, a database 52) that stores a leaf area index in association with a difference amount between the first transmission amount and the second transmission amount, and the leaf area index calculation unit includes: The leaf area index may be calculated by extracting the leaf area index corresponding to the difference between the first transmission amount and the second transmission amount calculated by the transmission amount calculation unit from the storage unit. .
  • the first light source and the second light source are arranged on the same side with respect to the plant group to be measured, and the first light source and the second light source are opposite to the plant group to be measured.
  • An imaging unit is arranged on the side, and the first light source, the second light source, and the imaging unit are integrally movable in the longitudinal direction of the plant group to be measured (for example, measurement is performed while moving the measurement set 30). It may be configured.
  • the leaf area index measurement system may be configured such that the photographing means is arranged at substantially the same height as the first light source and the second light source.
  • the present invention can be applied to the use of measuring LAI (leaf area index) in farmland or plant communities in forests.

Landscapes

  • Physics & Mathematics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Biochemistry (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Toxicology (AREA)
  • Biodiversity & Conservation Biology (AREA)
  • Botany (AREA)
  • Ecology (AREA)
  • Forests & Forestry (AREA)
  • Environmental Sciences (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)

Abstract

 第1波長の光を計測対象の植物に照射する第1光源と、第2波長の光を計測対象の植物に照射する第2光源と、計測対象の植物に対して第1光源および第2光源とは反対側に配置され、照射される計測対象の植物を撮影して撮影画像を出力する撮影手段とを備え、撮影手段が出力する撮影画像に基づいて、第1波長の光によって計測対象の植物が照射されたときの光の透過の度合いを示す第1透過量と、第2波長の光によって計測対象の植物が照射されたときの光の透過の度合いを示す第2透過量とを算出し、算出した第1透過量と第2透過量との差分量に基づいて、葉面積指数を算出する。

Description

葉面積指数計測システム、装置、方法およびプログラム
 本発明は、葉面積指数を計測する葉面積指数計測システム、葉面積指数計測装置、葉面積指数計測方法および葉面積指数計測用プログラムに関する。
 葉面積指数(以下、LAI:Leaf Area Index)は、農耕地や森林内の植物群落等における単位面積あたりのある方向(例えば、垂直方向)に重なる葉の面積の総和をあらわす。LAIは、施設栽培等において、植物の生育や栽培状況を把握するための一指標として用いられている。
 LAIを計測する方法として、例えば、照度センサを用いて間接的に計測する方法が提案されている。この方法では、例えば、植物群落内の上方と下方とで照度を計測し、計測したそれらの照度に基づいてLAIを推定する。
 また、これに関連する技術として、例えば、特許文献1には、LAIの間接計測方法が記載されている。
 特許文献1に記載された方法では、間接計測システムは、広角レンズおよび電子式撮像素子を用いて、近赤外光と赤色光とのそれぞれについて、所定領域の画像を撮影する。次いで、間接計測システムは、所定領域を細分した細分領域ごとに、近赤外光と赤色光とのそれぞれについて、輝度値を求める。そして、間接計測システムは、詳細領域ごとの近赤外光と赤色光との輝度値比を求め、輝度値比に基づいて相対日射量を推定し、相対日射量から葉面積指数を求める。
特開2007-171033号公報
 しかし、照度センサを用いて間接的にLAIを計測する場合、群落構造における複数箇所のLAIを把握するためには、高価な照度センサが必要になるとともに、照度センサを移動させながら複数回計測する作業が必要となる。すなわち、高コストで多大な労力が必要となる。
 また、特許文献1に記載された方法では、間接計測システムは、照度センサに代えて電子式撮像素子を用いることによって、ある程度コストを低減することができる。しかし、太陽光を利用しているため、光源からの光の照射方向を自由に制御することができず、相対日射量を計測可能な方向が制限される。すなわち、特許文献1に記載された方法では、葉面積指数を求めることができる箇所や方向が制限されることとなる。
 また、一般に、太陽光を光源として利用して計測を行う場合、光源からの光の光量や波長を自由に制御することができず、LAIを計測するときにノイズ的な光成分の影響を受けやすい。
 そこで、本発明は、計測箇所や方向の制限を受けることなく、低コストで、かつ簡易に葉面積指数を自動的に計測することができるとともに、外部のノイズ的な光成分の影響を受けることなく葉面積指数を計測することができる葉面積指数計測システム、葉面積指数計測装置、葉面積指数計測方法および葉面積指数計測用プログラムを提供することを目的とする。
 本発明による葉面積指数計測システムは、第1波長の光を計測対象の植物に照射する第1光源と、計測対象の植物に対して第1光源と同じ側に配置され、第1波長とは異なる第2波長の光を計測対象の植物に照射する第2光源と、計測対象の植物に対して第1光源および第2光源とは反対側に配置され、第1波長の光および第2波長の光によって照射される計測対象の植物を撮影して撮影画像を出力する撮影手段と、撮影手段が出力する撮影画像に基づいて、第1波長の光によって計測対象の植物が照射されたときの光の透過の度合いを示す第1透過量と、第2波長の光によって計測対象の植物が照射されたときの光の透過の度合いを示す第2透過量とを算出する透過量算出手段と、透過量算出手段が算出した第1透過量と第2透過量との差分量に基づいて、葉面積指数を算出する葉面積指数算出手段とを備えたことを特徴とする。
 本発明による葉面積指数計測装置は、第1波長の光を計測対象の植物に照射する第1光源と、計測対象の植物に対して第1光源と同じ側に配置され、第1波長とは異なる第2波長の光を計測対象の植物に照射する第2光源と、計測対象の植物に対して第1光源および第2光源とは反対側に配置され、第1波長の光および第2波長の光によって照射される計測対象の植物を撮影して撮影画像を出力する撮影手段とを備えた葉面積指数計測システムにおける、葉面積指数を計測する葉面積指数計測装置であって、撮影手段が出力する撮影画像に基づいて、第1波長の光によって計測対象の植物が照射されたときの光の透過の度合いを示す第1透過量と、第2波長の光によって計測対象の植物が照射されたときの光の透過の度合いを示す第2透過量とを算出する透過量算出手段と、透過量算出手段が算出した第1透過量と第2透過量との差分量に基づいて、葉面積指数を算出する葉面積指数算出手段とを備えたことを特徴とする。
 本発明による葉面積指数計測方法は、第1波長の光を計測対象の植物に照射する第1光源が設けられ、計測対象の植物に対して第1光源と同じ側に配置され、第1波長とは異なる第2波長の光を計測対象の植物に照射する第2光源が設けられ、計測対象の植物に対して第1光源および第2光源とは反対側に配置され、第1波長の光および第2波長の光によって照射される計測対象の植物を撮影して撮影画像を出力する撮影手段が設けられ、撮影手段が出力する撮影画像に基づいて、第1波長の光によって計測対象の植物が照射されたときの光の透過の度合いを示す第1透過量と、第2波長の光によって計測対象の植物が照射されたときの光の透過の度合いを示す第2透過量とを算出し、算出した第1透過量と第2透過量との差分量に基づいて、葉面積指数を算出することを特徴とする。
 本発明による葉面積指数計測用プログラムは、第1波長の光を計測対象の植物に照射する第1光源と、計測対象の植物に対して第1光源と同じ側に配置され、第1波長とは異なる第2波長の光を計測対象の植物に照射する第2光源と、計測対象の植物に対して第1光源および第2光源とは反対側に配置され、第1波長の光および第2波長の光によって照射される計測対象の植物を撮影して撮影画像を出力する撮影手段とを備えた葉面積指数計測システムにおける、葉面積指数を計測するための葉面積指数計測用プログラムであって、コンピュータに、撮影手段が出力する撮影画像に基づいて、第1波長の光によって計測対象の植物が照射されたときの光の透過の度合いを示す第1透過量と、第2波長の光によって計測対象の植物が照射されたときの光の透過の度合いを示す第2透過量とを算出する処理と、算出した第1透過量と第2透過量との差分量に基づいて、葉面積指数を算出する処理とを実行させるためのものである。
 本発明によれば、計測箇所や方向の制限を受けることなく、低コストで、かつ簡易に葉面積指数を自動的に計測することができるとともに、外部のノイズ的な光成分の影響を受けることなく葉面積指数を計測することができる。
本発明によるLAI計測システムを用いた計測系を植物群落に対して正面側から見た正面図である。 LAI計測システムを用いた計測系を植物群落に対して側面側から見た側面図である。 LAI計測システムの構成の一例を示すブロック図である。 LAI計測システムを用いて水平方向のLAIを計測する動作の一例を示すフローチャートである。 LAI計測システムの最小の構成例を示すブロック図である。
 以下、本発明の実施形態を図面を参照して説明する。図1は、本発明によるLAI計測システム(葉面積指数計測システム)を用いた計測系を植物群落に対して正面側から見た正面図である。また、図2は、LAI計測システムを用いた計測系を植物群落に対して側面側から見た側面図である。図1に示すように、本実施形態では、植物群落40は、農作物用の植物が一列に配置された一群の植物群である。
 図1に示すように、本実施形態では、LAI計測システムは、光源やカメラが取り付けられた計測セット30を奥行き方向に移動させながらLAIの計測を行う。なお、本実施形態では、図1に示すように、植物群落40の長手方向を「奥行き方向」という。また、本実施形態では、「垂直方向」や「水平方向」という表現も用いられるが、図2に示すように、「垂直方向」は、地面に対して垂直な方向を指す。「水平方向」は、地面に対して水平な方向を指す。
 なお、本実施形態では、田畑やビニールハウス等の農耕地内の農作物(例えば、トマトやキュウリ)用の植物群落の水平方向のLAIを計測する用途にLAI計測システムが適用される場合を例にする。しかし、本実施形態の例にかぎらず、例えば、森林内の樹木の群落の水平方向のLAIを計測する用途にLAI計測システムを適用してもよい。
 図2に示すように、計測セット30は、植物群落40を挟み込むように一方の側に複数の光源10A,10Bの配列群が配置され、植物群落40に対して光源10A,10B群とは反対側に複数のカメラ20の配列群が配置されている。
 各光源10A,10Bは、具体的には、所定波長の光を照射可能なランプやLEDによって実現される。図2に示すように、各光源10A,10Bは、植物群落40方向を照射する。本実施形態では、光源として、照射する光の波長が相互に異なる2種類の光源10A,10Bが用いられる。
 ここで、2種類の光源10A,10Bで用いられる光の波長として、一方は植物群落40内の葉によって殆ど光が吸収されやすいものを用い、他方は植物群落40内の葉によって吸収されにくく殆ど光が透過されやすいものを用いるのが望ましい。本実施形態では、光源10Aとして、葉と同系色で吸収されやすい緑色光(例えば、波長495~570nmの光)を発光する光源を用いるものとし、光源10Bとして、葉と全く異なる色で透過されやすい赤色光(例えば、波長620~750nmの光)を発光する光源を用いるものとする。なお、本実施形態で示したものにかぎらず、例えば、トマト等の赤色の農作物用の植物群落である場合には、赤色以外の光(例えば、橙色や黄色の光)を発光する光源を用いるようにしてもよい。
 なお、図2に示す例では、3つの光源10Aと3つの光源10Bとを配置する場合を示しているが、各光源10A,10Bの数は、本実施形態で示したものにかぎられない。例えば、各光源10A,10Bがそれぞれ4つ以上配置されていてもよいし、各光源10A,10Bがそれぞれ1つだけ配置されていてもよい。すなわち、最低限、緑色光を発光する光源10Aが1つと、赤色光を発光する光源10Bが1つあれば、LAIの計測を行うことが可能である。
 各カメラ20は、具体的には、カラー画像を撮影可能なデジタルカメラ等の撮影装置によって実現される。なお、各カメラ20は、カラー画像を撮影可能なものであれば、静止画像を撮影するものにかぎらず、例えば、動画像を撮影可能なビデオカメラによって実現されてもよい。図2に示すように、各カメラ20は、植物群落40方向を撮影し、撮影画像を後述するLAI計測装置50(図1および図2において図示せず)に出力する機能を備える。
 なお、図1および図2に示す例では、5つのカメラ20が配置されている場合を示しているが、カメラ20の数は、本実施形態で示したものにかぎられない。例えば、カメラ20が6つ以上配置されていてもよいし、カメラ20が2つだけ配置されていてもよい。すなわち、最低限、植物群落40方向を撮影可能に1つのカメラ20が配置されていればよい。ただし、本実施形態では、水平方向のLAIの計測を行うものであるため、それぞれの光源10A,10Bに対して略同じ高さ(例えば、光源と高低差数cm以内)に配置されているカメラ20が存在することが望ましい。
 図3は、LAI計測システムの構成の一例を示すブロック図である。図3に示すように、LAI計測システムは、図1及び図2に示した計測セット30に加えて、LAI計測装置50を含む。また、図3に示すように、計測セット30に配置された各カメラ20が出力する撮影画像は、LAI計測装置50に出力される。なお、LAI計測装置50は、具体的には、プログラムに従って動作するパーソナルコンピュータ等の情報処理装置によって実現される。図3に示すように、LAI計測装置50は、画像分析手段51、データベース52、LAI算出手段53、及びLAI出力手段54を含む。
 画像分析手段51は、具体的には、プログラムに従って動作する情報処理装置のCPUによって実現される。画像分析手段51は、各カメラ20から入力した撮影画像の輝度値を算出する機能を備える。なお、画像分析手段51は、各カメラ20から入力した撮影画像全体の輝度値を求めてもよいし、各カメラ20から入力した撮影画像全体から部分画像を抽出し、抽出した部分画像の輝度値を求めてもよい。例えば、画像分析手段51は、上方に取り付けられたカメラ20から入力した撮影画像については、その撮影画像の上方の部分画像を抽出し、抽出した部分画像の輝度値を求めてもよい。
 また、画像分析手段51は、求めた輝度値を照度に変換する機能を備える。本実施形態では、画像分析手段51は、後述するデータベース52が記憶する照度変換テーブルから、画像分析手段51が算出した輝度値に対応する照度を抽出することによって、照度を求める。
 なお、本実施形態では、画像分析手段51は、光源10Aが緑色光を発光しているときの撮影画像と、光源10Bが赤色光を発光しているときの撮影画像とを各カメラ20から入力し、それぞれ輝度値を算出し照度を求めるものとする。
 データベース52は、具体的には、磁気ディスク装置や光ディスク装置等の記憶装置によって実現される。本実施形態では、データベース52は、輝度値を照度に変換するための照度変換テーブルを記憶する。具体的には、データベース52が記憶する照度変換テーブルは、輝度値と照度とを対応付けて含む。なお、データベース52が記憶する照度変換テーブルは、例えば、予め、いくつかのサンプルとなる条件下において、それぞれ、一般に用いられる照度センサを用いて計測した照度と、撮影画像から求めた輝度値とを設定することによって構築される。
 また、データベース52は、照度の差分量をLAIに変換するためのLAI変換テーブルを記憶する。具体的には、データベース52が記憶するLAI変換テーブルは、照度の差分量とLAIとを対応付けて含む。なお、本実施形態では、照度の差分量として、緑色光で照射されたときの照度と赤色光で照射されたときの照度との差分量が用いられる。また、データベース52が記憶するLAI変換テーブルは、例えば、予め、いくつかのサンプルとなる条件下において、それぞれ、一般に用いられる照度センサを用いて計測した照度の差分量と、その時に求めたLAIとを設定することによって構築される。
 LAI算出手段53は、具体的には、プログラムに従って動作する情報処理装置のCPUによって実現される。LAI算出手段53は、画像分析手段51が算出した照度に基づいて、LAIを算出する機能を備える。具体的には、LAI算出手段53は、画像分析手段51が求めた照度の差分値を求める。なお、本実施形態では、LAI算出手段53は、照度の差分値として、光源10Aによって緑色光が照射されているときの照度と、光源10Bによって赤色光が照射されているときとの照度との差分値を算出する。そして、LAI算出手段53は、データベース52が記憶するLAI変換テーブルから、算出した照度の差分値に対応するLAIを抽出することによって、LAIを求める。
 LAI出力手段54は、具体的には、プログラムに従って動作する情報処理装置のCPU、及びディスプレイ装置等の表示装置によって実現される。LAI出力手段54は、LAI算出手段53が算出したLAIを出力する機能を備える。例えば、LAI出力手段54は、LAI算出手段53が算出したLAIをディスプレイ装置等の表示装置に表示する。なお、LAIの出力の仕方は、本実施形態で示したものに限らず、例えば、LAI出力手段54は、LAI算出手段53が算出したLAIを含むファイルをファイル出力するものであってもよい。また、例えば、LAI出力手段54は、LAI算出手段53が算出したLAIを、LAN等のネットワークを介して他の端末に送信するものであってもよい。
 なお、本実施形態において、LAI計測装置50の記憶装置は、水平方向のLAIを計測するための各種プログラムを記憶している。例えば、LAI計測装置50の記憶装置は、コンピュータに、撮影手段が出力する撮影画像に基づいて、第1波長の光によって計測対象の植物が照射されたときの光の透過の度合いを示す第1透過量と、第2波長の光によって計測対象の植物が照射されたときの光の透過の度合いを示す第2透過量とを算出する処理と、算出した第1透過量と第2透過量との差分量に基づいて、葉面積指数を算出する処理とを実行させるためのLAI(葉面積指数)計測用プログラムを記憶している。
 次に、LAI計測システムの動作を説明する。図4は、LAI計測システムを用いて水平方向のLAIを計測する動作の一例を示すフローチャートである。本実施形態では、図1に示すように、正面方向から見たときに、計測セット30を植物群落40の最も左端にセットした状態から計測を開始し、所定間隔(例えば、50cm間隔)で順に計測セット30を奥行き方向の右方に移動させながら繰り返し計測を行うものとする。
 まず、LAI計測システムは、計測セット30に配置されている各光源10A,10Bのうち光源10Aを発光させて、緑色光を植物群落40に照射させる(ステップS10)。そして、光源10Aからの緑色光を植物群落40に照射させた状態で、各カメラ20は、植物群落40方向を撮影する(ステップS11)。LAI計測装置50は、各カメラ20から撮影画像を入力する。
 次いで、LAI計測システムは、光源10Aの発光を停止し、計測セット30に配置されている各光源10A,10Bのうち光源10Bを発光させて、赤色光を植物群落40に照射させる(ステップS12)。そして、光源10Bからの赤色光を植物群落40に照射させた状態で、各カメラ20は、植物群落40方向を撮影する(ステップS13)。LAI計測装置50は、各カメラ20から撮影画像を入力する。
 なお、撮影の順は、本実施形態で示したものにかぎらず、最初に赤色光を植物群落40に照射した状態で撮影した後で、緑色光を植物群落40に照射した状態で撮影してもよい。
 次いで、LAI計測装置50は、ステップS11で各カメラ20から入力した撮影画像(緑色光を照射した状態の撮影画像)の輝度値を算出するとともに、ステップS13で各カメラ20から入力した撮影画像(赤色光を照射した状態の撮影画像)の輝度値を算出する(ステップS14)。また、LAI計測装置50は、算出した輝度値を照度に変換する。本実施形態では、LAI計測装置50は、緑色光を照射した状態の撮影画像の輝度値および赤色光を照射した状態の撮影画像の輝度値それぞれについて、データベース52が記憶する照度変換テーブルから、ステップS14で算出した輝度値に対応する照度を抽出する。
 次いで、LAI計測装置50は、ステップS14で求めた照度に基づいて、LAIを算出する(ステップS15)。本実施形態では、LAI計測装置50は、緑色光を照射した状態の照度と赤色光を照射した状態の照度との差分値を求める。なお、本実施形態では、LAI計測装置50は、照度の差分値として、緑色光を照射した状態の照度と赤色光を照射した状態の照度との減算値を求めるものとする。なお、照度の差分値の算出方法は、本実施形態で示したものにかぎらず、例えば、LAI計測装置50は、緑色光を照射した状態の照度と赤色光を照射した状態の照度との比を求めてもよい。そして、LAI計測装置50は、データベース52が記憶するLAI変換テーブルから、算出した照度の差分値に対応するLAIを抽出することによって、LAIを求める。
 なお、本実施形態では、予め照度の差分値とLAIとを対応付けたLAI変換テーブルを用いてLAIを求める場合を示したが、LAIの算出の仕方は、本実施形態で示したものにかぎられない。例えば、撮影画像の輝度値を照度に変換することなく、LAI計測装置50は、緑色光を照射した状態の輝度値と赤色光を照射した状態の輝度値との差分値を求め、求めた輝度値の差分値にもとづいてLAIを求めるようにしてもよい。この場合、例えば、予め輝度値の差分値とLAIとを対応付けたテーブルを用意しておくようにし、LAI計測装置50は、求めた輝度値の差分値に対応するLAIをテーブルから抽出することによって、LAIを求めるようにすればよい。
 また、例えば、LAI計測装置50は、以下に示す式(1)を用いた演算処理を行うことによって、LAIを求めるようにしてもよい。
 I/I=e-KF ・・・ 式(1)
 ここで、式(1)において、Iは、植物群落40のうちのある計測点における光の強さ(具体的には、照度。なお、輝度値等であってもよい。)を示しており、Iは、植物群落40のうちのある基準点における光の強さ(具体的には、照度。なお、輝度値等であってもよい。)を示している。また、Kは、吸収計数を示しており、植物毎に値が異なるとともに、同じ植物であっても天候や時間帯等の外部要因によっても値が異なる。また、Fは積算葉面積指数である。
 次いで、LAI計測装置50は、全ての計測ポイントについてLAIの計測を行ったか否かを判断する(ステップS16)。例えば、予めユーザの入力操作に従って計測ポイント数を入力しておき、計測ポイント毎にステップS10~S15の処理を実行する毎に計測ポイント数を1ずつ減算していき、ステップS16において、LAI計測装置50は、計測ポイント数が0となっているか否かを判断するようにすればよい。また、例えばステップS16において、LAI計測装置50は、全計測ポイントの計測を終了したか否かの確認メッセージをディスプレイ表示装置等の表示装置に表示するようにし、ユーザ操作による入力に従って全ての計測ポイントについてLAIの計測を行ったか否かを判断してもよい。
 まだ全計測ポイントについてLAIの計測を終わっていなければ、計測セット30を所定間隔(例えば、50cm間隔)移動させ(ステップS17)、ステップS10に戻り、全計測ポイントについてLAIの計測を終了するまでステップS10~S15の処理を繰り返し実行する。
 全計測ポイントについてLAIの計測を終了した場合には、LAI計測装置50は、計測したLAIをディスプレイ装置等の表示装置に表示する(ステップS18)。この場合、LAI計測装置50は、例えば、計測ポイント毎に計測したLAIの値を表示してもよい。また、LAI計測装置50は、例えば、奥行き方向を横軸としてLAIの値の推移を図示したグラフを表示してもよく、様々な表示方法でLAIの計測値を表示することができる。また、例えば、LAI計測装置50は、計測したLAIの値を含むファイルを出力したり、ネットワークを介して他の端末に送信したりしてもよい。
 以上に説明したように、本実施形態では、LAI計測装置50は、高価な照度センサを用いることなく、カメラ20からの撮影画像に基づいてLAIの計測を行う。また、LAI計測装置50は、太陽光を光源として用いるのではなく、計測セット30に配置された光源10A,10Bを用いてLAIの計測を行う。そのため、LAI計測装置50は、計測箇所や方向の制限を受けることなく、低コストで、かつ簡易にLAI(葉面積指数)を自動的に計測することができる。
 また、本実施形態では、LAI計測装置50は、相互に波長の異なる光を発光する2種類の光源10A,10Bを用いて、それら2種類の光源10A,10Bによって照射されたときの撮影画像に基づいて求めた透過量(例えば、照度、輝度値)の差分量を求め、求めた透過量の差分量に基づいてLAIを計測する。そのため、LAI計測装置50は、2種類の光源を用いたときの透過量の差分量を用いることによって、外部のノイズ的な光成分を相殺してLAIを計測することができる。例えば、LAI計測装置50は、昼間の時間帯で太陽光の照射がある状況下であっても、太陽光の影響を受けることなくLAIを計測することができる。
 従って、本実施形態では、LAI計測装置50は、計測箇所や方向の制限を受けることなく、低コストで、かつ簡易に葉面積指数を自動的に計測することができるとともに、外部のノイズ的な光成分の影響を受けることなくLAI(葉面積指数)を計測することができる。
 なお、計測作業の手間を軽減するという観点から考えると、例えば、照度センサを垂直方向や奥行き方向に複数配置してLAIの計測を行うことも考えられるが、そのように構成してしまうと、高価な照度センサを多数用いなければならなくなり、コストが上昇してしまう。本実施形態では、LAI計測装置50は、高価な照度センサを用いる必要なく、かつカメラ20の撮影画像を画像処理するだけで垂直方向や奥行き方向のLAIを一括して計測できる。そのため、LAI計測装置50は、LAI計測にかかるコストを低減することと作業負担を軽減することとを両立することができる。
 また、照度センサを農耕地や森林等の屋外に配置すると、照度センサに汚れ等が付着しやすく、却って保守作業のための作業負担がかかったり故障を生じやすくなる。しかし、本実施形態では、LAI計測装置50は、光源10を多数配置するだけで簡易に計測ができる。そのため、LAI計測装置50は、保守作業のための作業負担の発生や障害を防止することができる。
 また、本実施形態では、光源として緑色光を発光する光源10Aと赤色光を発光する光源10Bとを用いる場合を示した。しかし、2種類の光源の波長の異ならせ方は、本実施形態で示したものにかぎらず、緑色光や赤色光以外の青色光や黄色光等を用いて異ならせてもよい。
 また、本実施形態では、2種類の光源10A,10Bを用いる場合を示した。しかし、例えば、1種類の光源のみを用いるようにし、光源を発光した状態の撮影画像と光源を消灯した状態の撮影画像とからそれぞれ輝度値を求め、それらの輝度値から透過量(例えば、照度、輝度値)の差分量を求めてLAIを計測するようにしてもよい。
 また、本実施形態では、植物群落40に対して同じ側に各光源10A,10Bが配置され、反対側に各カメラ20が配置された計測セット30を用いて、計測セット30を移動させながら計測を行う。そのようにすることによって、LAI計測装置50は、各光源10A,10Bおよび各カメラ20を植物群落40の奥行き方向(長手方向)に一体に移動させながら、LAIの計測を行うことができる。そのため、LAI計測装置50は、植物群落40の奥行き方向(長手方向)に対するLAIの分布状況もコストを軽減しつつ容易に計測することができる。
 なお、本実施形態で示したように計測セット30を移動させながら計測するのではなく、植物群落40の奥行き方向に所定間隔(例えば、50cm)毎に光源10A,10Bやカメラ20を垂直方向に線状に配列してLAIの計測を行うようにしてもよい。ただし、そのように構成すれば、光源10A,10Bやカメラ20を多数配置する必要が生じるが、本実施形態で示したように計測セット30を移動させながら計測するようにすれば、最小限の光源10A,10Bおよびカメラ20を用いて植物群落40の奥行き方向(長手方向)に対するLAIの分布状況を計測することができ、コストを最小限に抑えることができる。
 また、本実施形態によれば、各カメラ20が各光源10A,10Bと略同じ高さに配置されており、地面に対して水平方向のLAIを計測することができる。一般に、LAIは、地面に対して垂直方向の葉の重なり具合を把握するために用いられている。しかしながら、植物群落内では地面に対して水平方向にも葉が互いに重なり合っているのが一般的である。よって、植物群落内での葉の重なり具合を適切に把握するためには、水平方向に対するLAIも求めるようにすることが望ましい。そこで、本実施形態では、各カメラ20と各光源10A,10Bとを略同じ高さに配置して計測することによって、水平方向のLAIの計測を可能としている。
 なお、例えば、光源とカメラとが高低差があるように配置して垂直方向のLAIを計測する計測方法も併用して、LAIの計測を行うことが望ましい。そのようにすれば、LAI計測装置50は、垂直方向のLAIと水平方向のLAIとの両方を組み合わせて判断することによって、植物群落40内での葉の重なり具合をより適切に把握することができる。
 次に、本発明によるLAI(葉面積指数)計測システムの最小構成について説明する。図5は、LAI計測システムの最小の構成例を示すブロック図である。図5に示すように、LAI計測システムは、光源10A,10Bと、カメラ20と、画像分析手段51と、LAI算出手段53とを含む。
 光源10Aは、第1波長の光(例えば、緑色光)を計測対象の植物に照射する。また、光源10Bは、計測対象の植物に対して光源10Aと同じ側に配置され、第1波長とは異なる第2波長の光(例えば、赤色光)を計測対象の植物に照射する。また、カメラ20は、計測対象の植物に対して光源10A,10Bとは反対側に配置され、第1波長の光および第2波長の光によって照射される計測対象の植物を撮影して撮影画像を出力する機能を備える。また、画像分析手段51は、カメラ20が出力する撮影画像に基づいて、第1波長の光によって計測対象の植物が照射されたときの光の透過の度合いを示す第1透過量(例えば、照度、輝度値)と、第2波長の光によって計測対象の植物が照射されたときの光の透過の度合いを示す第2透過量(例えば、照度、輝度値)とを算出する機能を備える。また、LAI算出手段53は、画像分析手段51が算出した第1透過量と第2透過量との差分量に基づいて、LAI(葉面積指数)を算出する機能を備える。
 図5に示した最小構成のLAI計測システムによれば、計測箇所や方向の制限を受けることなく、低コストで、かつ簡易に葉面積指数を自動的に計測することができるとともに、外部のノイズ的な光成分の影響を受けることなく葉面積指数を計測することができる。
 なお、上記に示した実施形態では、以下の(1)~(6)に示すようなLAI(葉面積指数)計測システムの特徴的構成が示されている。
(1)葉面積指数計測システムは、第1波長の光(例えば、緑色光)を計測対象の植物に照射する第1光源(例えば、光源10A)と、計測対象の植物に対して第1光源と同じ側に配置され、第1波長とは異なる第2波長の光(例えば、赤色光)を計測対象の植物に照射する第2光源(例えば、光源10B)と、計測対象の植物に対して第1光源および第2光源とは反対側に配置され、第1波長の光および第2波長の光によって照射される計測対象の植物を撮影して撮影画像を出力する撮影手段(例えば、カメラ20)と、撮影手段が出力する撮影画像に基づいて、第1波長の光によって計測対象の植物が照射されたときの光の透過の度合いを示す第1透過量(例えば、照度、輝度値)と、第2波長の光によって計測対象の植物が照射されたときの光の透過の度合いを示す第2透過量(例えば、照度、輝度値)とを算出する透過量算出手段(例えば、画像分析手段51によって実現される)と、透過量算出手段が算出した第1透過量と第2透過量との差分量に基づいて、葉面積指数を算出する葉面積指数算出手段(例えば、LAI算出手段53によって実現される)とを備えたことを特徴とする。
(2)葉面積指数計測システムにおいて、透過量算出手段は、第1透過量として第1波長の光によって計測対象の植物が照射されたときの撮影画像の輝度値を算出し、第2透過量として第2波長の光によって計測対象の植物が照射されたときの撮影画像の輝度値を算出し、葉面積指数算出手段は、透過量算出手段が第1透過量および第2透過量として算出した輝度値の差分量を算出し、算出した当該差分量に基づいて葉面積指数を算出するように構成されていてもよい。
(3)葉面積指数計測システムにおいて、透過量算出手段は、第1透過量として第1波長の光によって計測対象の植物が照射されたときの撮影画像の輝度値に基づいて照度を算出し、第2透過量として第2波長の光によって計測対象の植物が照射されたときの撮影画像の輝度値に基づいて照度を算出し、葉面積指数算出手段は、透過量算出手段が第1透過量および第2透過量として算出した照度の差分量を算出し、算出した当該差分量に基づいて葉面積指数を算出するように構成されていてもよい。
(4)葉面積指数計測システムは、葉面積指数を第1透過量と第2透過量との差分量に対応付けて記憶する記憶手段(例えば、データベース52)を備え、葉面積指数算出手段は、透過量算出手段が算出した第1透過量と第2透過量との差分量に対応する葉面積指数を記憶手段から抽出することによって、葉面積指数を算出するように構成されていてもよい。
(5)葉面積指数計測システムは、計測対象の植物群に対して同じ側に第1光源および第2光源が配置され、計測対象の植物群に対して第1光源および第2光源とは反対側に撮影手段が配置され、第1光源、第2光源および撮影手段は、測定対象の植物群の長手方向に一体に移動可能である(例えば、計測セット30を移動させながら計測する)ように構成されていてもよい。
(6)葉面積指数計測システムは、撮影手段は、第1光源および第2光源と略同じ高さに配置されているように構成されていてもよい。
 以上、実施形態及び実施例を参照して本願発明を説明したが、本願発明は上記実施形態および実施例に限定されるものではない。本願発明の構成や詳細には、本願発明のスコープ内で当業者が理解し得る様々な変更をすることができる。
 この出願は、2010年12月2日に出願された日本特許出願2010-269720を基礎とする優先権を主張し、その開示の全てをここに取り込む。
 本発明は、農耕地や森林内の植物群落におけるLAI(葉面積指数)を計測する用途に適用できる。
10A,10B 光源
20 カメラ
30 計測セット
40 植物群落
50 LAI計測装置
51 画像分析手段
52 データベース
53 LAI算出手段
54 LAI出力手段

Claims (9)

  1.  第1波長の光を計測対象の植物に照射する第1光源と、
     前記計測対象の植物に対して前記第1光源と同じ側に配置され、前記第1波長とは異なる第2波長の光を前記計測対象の植物に照射する第2光源と、
     前記計測対象の植物に対して前記第1光源および前記第2光源とは反対側に配置され、前記第1波長の光および前記第2波長の光によって照射される前記計測対象の植物を撮影して撮影画像を出力する撮影手段と、
     前記撮影手段が出力する前記撮影画像に基づいて、前記第1波長の光によって前記計測対象の植物が照射されたときの光の透過の度合いを示す第1透過量と、前記第2波長の光によって前記計測対象の植物が照射されたときの光の透過の度合いを示す第2透過量とを算出する透過量算出手段と、
     前記透過量算出手段が算出した前記第1透過量と前記第2透過量との差分量に基づいて、葉面積指数を算出する葉面積指数算出手段とを備えた
     ことを特徴とする葉面積指数計測システム。
  2.  透過量算出手段は、第1透過量として第1波長の光によって計測対象の植物が照射されたときの撮影画像の輝度値を算出し、第2透過量として第2波長の光によって前記計測対象の植物が照射されたときの撮影画像の輝度値を算出し、
     葉面積指数算出手段は、前記透過量算出手段が前記第1透過量および前記第2透過量として算出した輝度値の差分量を算出し、算出した当該差分量に基づいて葉面積指数を算出する
     請求項1記載の葉面積指数計測システム。
  3.  透過量算出手段は、第1透過量として第1波長の光によって計測対象の植物が照射されたときの撮影画像の輝度値に基づいて照度を算出し、第2透過量として第2波長の光によって前記計測対象の植物が照射されたときの撮影画像の輝度値に基づいて照度を算出し、
     葉面積指数算出手段は、前記透過量算出手段が前記第1透過量および前記第2透過量として算出した照度の差分量を算出し、算出した当該差分量に基づいて葉面積指数を算出する
     請求項1記載の葉面積指数計測システム。
  4.  葉面積指数を第1透過量と第2透過量との差分量に対応付けて記憶する記憶手段を備え、
     葉面積指数算出手段は、透過量算出手段が算出した第1透過量と第2透過量との差分量に対応する葉面積指数を前記記憶手段から抽出することによって、前記葉面積指数を算出する
     請求項1から請求項3のうちのいずれか1項に記載の葉面積指数計測システム。
  5.  計測対象の植物群に対して同じ側に第1光源および第2光源が配置され、
     前記計測対象の植物群に対して前記第1光源および前記第2光源とは反対側に撮影手段が配置され、
     前記第1光源、前記第2光源および前記撮影手段は、前記測定対象の植物群の長手方向に一体に移動可能である
     請求項1から請求項4のうちのいずれか1項に記載の葉面積指数計測システム。
  6.  撮影手段は、第1光源および第2光源と略同じ高さに配置されている
     請求項1から請求項5のうちのいずれか1項に記載の葉面積指数計測システム。
  7.  第1波長の光を計測対象の植物に照射する第1光源と、前記計測対象の植物に対して前記第1光源と同じ側に配置され、前記第1波長とは異なる第2波長の光を前記計測対象の植物に照射する第2光源と、前記計測対象の植物に対して前記第1光源および前記第2光源とは反対側に配置され、前記第1波長の光および前記第2波長の光によって照射される前記計測対象の植物を撮影して撮影画像を出力する撮影手段とを備えた葉面積指数計測システムにおける、葉面積指数を計測する葉面積指数計測装置であって、
     前記撮影手段が出力する前記撮影画像に基づいて、前記第1波長の光によって前記計測対象の植物が照射されたときの光の透過の度合いを示す第1透過量と、前記第2波長の光によって前記計測対象の植物が照射されたときの光の透過の度合いを示す第2透過量とを算出する透過量算出手段と、
     前記透過量算出手段が算出した前記第1透過量と前記第2透過量との差分量に基づいて、葉面積指数を算出する葉面積指数算出手段とを備えた
     ことを特徴とする葉面積指数計測装置。
  8.  第1波長の光を計測対象の植物に照射する第1光源が設けられ、
     前記計測対象の植物に対して前記第1光源と同じ側に配置され、前記第1波長とは異なる第2波長の光を前記計測対象の植物に照射する第2光源が設けられ、
     前記計測対象の植物に対して前記第1光源および前記第2光源とは反対側に配置され、前記第1波長の光および前記第2波長の光によって照射される前記計測対象の植物を撮影して撮影画像を出力する撮影手段が設けられ、
     前記撮影手段が出力する前記撮影画像に基づいて、前記第1波長の光によって前記計測対象の植物が照射されたときの光の透過の度合いを示す第1透過量と、前記第2波長の光によって前記計測対象の植物が照射されたときの光の透過の度合いを示す第2透過量とを算出し、
     算出した前記第1透過量と前記第2透過量との差分量に基づいて、葉面積指数を算出する
     ことを特徴とする葉面積指数計測方法。
  9.  第1波長の光を計測対象の植物に照射する第1光源と、前記計測対象の植物に対して前記第1光源と同じ側に配置され、前記第1波長とは異なる第2波長の光を前記計測対象の植物に照射する第2光源と、前記計測対象の植物に対して前記第1光源および前記第2光源とは反対側に配置され、前記第1波長の光および前記第2波長の光によって照射される前記計測対象の植物を撮影して撮影画像を出力する撮影手段とを備えた葉面積指数計測システムにおける、葉面積指数を計測するための葉面積指数計測用プログラムであって、
     コンピュータに、
     前記撮影手段が出力する前記撮影画像に基づいて、前記第1波長の光によって前記計測対象の植物が照射されたときの光の透過の度合いを示す第1透過量と、前記第2波長の光によって前記計測対象の植物が照射されたときの光の透過の度合いを示す第2透過量とを算出する処理と、
     算出した前記第1透過量と前記第2透過量との差分量に基づいて、葉面積指数を算出する処理とを
     実行させるための葉面積指数計測用プログラム。
PCT/JP2011/006701 2010-12-02 2011-11-30 葉面積指数計測システム、装置、方法およびプログラム WO2012073507A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010269720 2010-12-02
JP2010-269720 2010-12-02

Publications (1)

Publication Number Publication Date
WO2012073507A1 true WO2012073507A1 (ja) 2012-06-07

Family

ID=46171469

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/006701 WO2012073507A1 (ja) 2010-12-02 2011-11-30 葉面積指数計測システム、装置、方法およびプログラム

Country Status (1)

Country Link
WO (1) WO2012073507A1 (ja)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103278112A (zh) * 2013-05-17 2013-09-04 中国科学院对地观测与数字地球科学中心 一种基于遥感图像的叶面积指数反演方法及装置
CN103528920A (zh) * 2013-10-23 2014-01-22 中国科学院遥感与数字地球研究所 一种叶面积体密度测量装置与方法
CN103760111A (zh) * 2014-01-14 2014-04-30 安徽省烟草公司池州市公司 烟叶摘取监控方法
WO2014103181A1 (ja) * 2012-12-26 2014-07-03 日本電気株式会社 画像計測方法、システム、装置およびプログラム
CN103942459A (zh) * 2014-05-13 2014-07-23 扬州大学 一种遥感监测小麦叶面积指数的方法
CN103983230A (zh) * 2014-05-29 2014-08-13 福州大学 一种地面叶面积指数间接测量验证方法
CN104778693A (zh) * 2015-04-08 2015-07-15 云挺 基于投影算法和活动轮廓模型的叶面积指数计算
JPWO2015093054A1 (ja) * 2013-12-20 2017-03-16 千代田化工建設株式会社 作物の生育状態判別方法、生育方法並びに作物生育装置および植物工場
CN107750562A (zh) * 2017-11-17 2018-03-06 华南农业大学 一种基于林果茶园植物叶面积指数的精准喷雾装置
CN108120374A (zh) * 2017-11-30 2018-06-05 甘肃省治沙研究所 植物叶面积数据采集叶片夹与植物叶片面积无损求算方法
CN109059808A (zh) * 2018-08-15 2018-12-21 华南农业大学 叶片面积测量方法、系统、存储介质及移动终端

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62165546U (ja) * 1987-04-06 1987-10-21
JP2005052045A (ja) * 2003-08-01 2005-03-03 Japan Science & Technology Agency 植物が環境に及ぼす影響の定量的評価システム
WO2007069736A1 (ja) * 2005-12-15 2007-06-21 Yamaguchi University 樹体生産能力を評価する方法、樹体生産能力を評価するための撮像装置及び樹体生産能力を評価するためのプログラム

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62165546U (ja) * 1987-04-06 1987-10-21
JP2005052045A (ja) * 2003-08-01 2005-03-03 Japan Science & Technology Agency 植物が環境に及ぼす影響の定量的評価システム
WO2007069736A1 (ja) * 2005-12-15 2007-06-21 Yamaguchi University 樹体生産能力を評価する方法、樹体生産能力を評価するための撮像装置及び樹体生産能力を評価するためのプログラム

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
MASATOSHI AOKI ET AL.: "Remote sensing of chlorophyll content of leaf II, Effective spectral reflection characteristics for evaluations of chlorophyll content and leaf area index of plant community", ENVIRONMENT CONTROL IN BIOLOGY, vol. 24, 1986, pages 33 - 39 *
ZHANG Y ET AL.: "Leaf chlorophyll content retrieval from airborne hyperspectral remote sensing imagery", REMOTE SENSING OF ENVIRONMENT, vol. 112, no. 7, 15 July 2008 (2008-07-15), pages 3234 - 3247 *

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9646223B2 (en) 2012-12-26 2017-05-09 Nec Corporation Image measuring method, system, device, and program
WO2014103181A1 (ja) * 2012-12-26 2014-07-03 日本電気株式会社 画像計測方法、システム、装置およびプログラム
JPWO2014103181A1 (ja) * 2012-12-26 2017-01-12 日本電気株式会社 画像計測方法、システム、装置およびプログラム
CN103278112A (zh) * 2013-05-17 2013-09-04 中国科学院对地观测与数字地球科学中心 一种基于遥感图像的叶面积指数反演方法及装置
CN103528920A (zh) * 2013-10-23 2014-01-22 中国科学院遥感与数字地球研究所 一种叶面积体密度测量装置与方法
JPWO2015093054A1 (ja) * 2013-12-20 2017-03-16 千代田化工建設株式会社 作物の生育状態判別方法、生育方法並びに作物生育装置および植物工場
CN103760111A (zh) * 2014-01-14 2014-04-30 安徽省烟草公司池州市公司 烟叶摘取监控方法
CN103942459A (zh) * 2014-05-13 2014-07-23 扬州大学 一种遥感监测小麦叶面积指数的方法
CN103983230A (zh) * 2014-05-29 2014-08-13 福州大学 一种地面叶面积指数间接测量验证方法
CN104778693A (zh) * 2015-04-08 2015-07-15 云挺 基于投影算法和活动轮廓模型的叶面积指数计算
CN107750562A (zh) * 2017-11-17 2018-03-06 华南农业大学 一种基于林果茶园植物叶面积指数的精准喷雾装置
CN108120374A (zh) * 2017-11-30 2018-06-05 甘肃省治沙研究所 植物叶面积数据采集叶片夹与植物叶片面积无损求算方法
CN109059808A (zh) * 2018-08-15 2018-12-21 华南农业大学 叶片面积测量方法、系统、存储介质及移动终端

Similar Documents

Publication Publication Date Title
WO2012073507A1 (ja) 葉面積指数計測システム、装置、方法およびプログラム
US9207072B2 (en) Leaf area index measurement system, device, method, and program
JP6245181B2 (ja) 画像計測方法、システム、装置およびプログラム
JP5920224B2 (ja) 葉面積指数計測システム、装置、方法及びプログラム
JP5979567B1 (ja) 植物ストレス検出装置及び植物ストレス検出方法
US11047793B2 (en) Signal processing apparatus, signal processing method, and progress
JP2007171033A (ja) 葉面積指数の間接測定方法および間接測定システム
WO2017199757A1 (ja) 光学装置および情報処理方法
CN107977950B (zh) 基于多尺度指导滤波的快速有效视频图像融合方法
Křížová et al. Using a single-board computer as a low-cost instrument for SPAD value estimation through colour images and chlorophyll-related spectral indices
WO2016203689A1 (ja) 撮像装置
Kutteruf et al. Video rate nine-band multispectral short-wave infrared sensor
US11398060B2 (en) Information processing device, information processing method, and program
Spooren et al. RGB-NIR active gated imaging
CN109783973A (zh) 一种基于图像退化模型的大气能见度计算方法
JP2006208111A (ja) 光放射評価装置
JP5033741B2 (ja) 色特性変換係数の決定方法およびプリズムセット、ならびに撮像装置
Sahba et al. Non-contact laser spectroscopy for plant discrimination in terrestrial crop spraying
TWI785976B (zh) 植物健康度評估裝置與評估方法
JP2015106859A (ja) 紫外線可視化カメラ
Kicherer et al. Phenoliner: a multi-sensor field phenotyping platform
Kamarianakis et al. Design and Implementation of a Low-Cost, Linear Robotic Camera System, Targeting Greenhouse Plant Growth Monitoring
CN116539606A (zh) 植物健康度评估装置与评估方法
Regnault Search For Type Ia Supernovae At Redshift Z~ 0.1 With Eros2
Regnault Search for type Ia supernovae at redshift z $\sim $0.1 with EROS2

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11845417

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11845417

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP