WO2015091126A1 - Composition pulverulente a base de silice poreuse pour soudure ceramique et son procede d'obtention - Google Patents

Composition pulverulente a base de silice poreuse pour soudure ceramique et son procede d'obtention Download PDF

Info

Publication number
WO2015091126A1
WO2015091126A1 PCT/EP2014/077132 EP2014077132W WO2015091126A1 WO 2015091126 A1 WO2015091126 A1 WO 2015091126A1 EP 2014077132 W EP2014077132 W EP 2014077132W WO 2015091126 A1 WO2015091126 A1 WO 2015091126A1
Authority
WO
WIPO (PCT)
Prior art keywords
weight
porous
phase
siliceous particles
composition
Prior art date
Application number
PCT/EP2014/077132
Other languages
English (en)
Inventor
Osvaldo Di Loreto
Jacques Tirlocq
Original Assignee
Fib-Services Intellectual S.A.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fib-Services Intellectual S.A. filed Critical Fib-Services Intellectual S.A.
Publication of WO2015091126A1 publication Critical patent/WO2015091126A1/fr

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/64Burning or sintering processes
    • C04B35/65Reaction sintering of free metal- or free silicon-containing compositions
    • C04B35/651Thermite type sintering, e.g. combustion sintering
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B33/00Silicon; Compounds thereof
    • C01B33/113Silicon oxides; Hydrates thereof
    • C01B33/12Silica; Hydrates thereof, e.g. lepidoic silicic acid
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/14Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on silica
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/66Monolithic refractories or refractory mortars, including those whether or not containing clay
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B38/00Porous mortars, concrete, artificial stone or ceramic ware; Preparation thereof
    • C04B38/009Porous or hollow ceramic granular materials, e.g. microballoons
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F27FURNACES; KILNS; OVENS; RETORTS
    • F27DDETAILS OR ACCESSORIES OF FURNACES, KILNS, OVENS, OR RETORTS, IN SO FAR AS THEY ARE OF KINDS OCCURRING IN MORE THAN ONE KIND OF FURNACE
    • F27D1/00Casings; Linings; Walls; Roofs
    • F27D1/16Making or repairing linings increasing the durability of linings or breaking away linings
    • F27D1/1636Repairing linings by projecting or spraying refractory materials on the lining
    • F27D1/1642Repairing linings by projecting or spraying refractory materials on the lining using a gunning apparatus
    • F27D1/1647Repairing linings by projecting or spraying refractory materials on the lining using a gunning apparatus the projected materials being partly melted, e.g. by exothermic reactions of metals (Al, Si) with oxygen
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/60Particles characterised by their size
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2111/00Mortars, concrete or artificial stone or mixtures to prepare them, characterised by specific function, property or use
    • C04B2111/20Resistance against chemical, physical or biological attack
    • C04B2111/28Fire resistance, i.e. materials resistant to accidental fires or high temperatures
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3205Alkaline earth oxides or oxide forming salts thereof, e.g. beryllium oxide
    • C04B2235/3208Calcium oxide or oxide-forming salts thereof, e.g. lime
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/34Non-metal oxides, non-metal mixed oxides, or salts thereof that form the non-metal oxides upon heating, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3418Silicon oxide, silicic acids, or oxide forming salts thereof, e.g. silica sol, fused silica, silica fume, cristobalite, quartz or flint
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/42Non metallic elements added as constituents or additives, e.g. sulfur, phosphor, selenium or tellurium
    • C04B2235/428Silicon
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/54Particle size related information
    • C04B2235/5418Particle size related information expressed by the size of the particles or aggregates thereof
    • C04B2235/5427Particle size related information expressed by the size of the particles or aggregates thereof millimeter or submillimeter sized, i.e. larger than 0,1 mm
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/72Products characterised by the absence or the low content of specific components, e.g. alkali metal free alumina ceramics
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/74Physical characteristics
    • C04B2235/77Density
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/80Phases present in the sintered or melt-cast ceramic products other than the main phase

Definitions

  • the present invention relates to a pulverulent composition based on porous silica for ceramic welding, in particular by spraying, and to its production process.
  • Ceramic welding and its silica-based compositions are known from GB2233323, GB2170191 or US2599236.
  • GB2233323 discloses in fact a use of a ceramic welding powder to which particles of porosity-inducing material have been added to form a porous and insulating refractory mass, by means of a ceramic welding by spraying on a chosen surface .
  • the composition is transported in a gas, in the presence of a fuel formed of particles capable of forming a refractory oxide such as aluminum or silica.
  • Example 3 of GB2233323 an insulating refractory mass is formed on the surface of an inner wall of a glass furnace without having to stop the installation.
  • This wall is a sillimanite refractory wall.
  • Porous refractory particles are used to induce porosity in the resulting weld. These are porous silica particles obtained by grinding porous insulating silica bricks, the apparent density of insulating bricks being 0.95. The particles were crushed and sieved to a particle size of less than 2 mm and then mixed with combustible particles.
  • Porous siliceous refractory masses can be obtained from compositions containing porogenic elements (organic or carbonaceous); unfortunately, this method has the major disadvantage residing in the fact that the complete elimination of these pore-forming elements by combustion is difficult to control.
  • porous siliceous aggregates for example thermally pretreated pertite, is also known, but these rocks of volcanic origin have a variable composition, so they can not guarantee a high silica content and consequently a high refractoriness.
  • the object of the invention is to overcome the drawbacks of the state of the art by providing an invention that makes it possible to have no porogenic elements to be eliminated and to ensure a high silica content as well as a high refractoriness of the mass. refractory subsequently obtained.
  • the invention provides a composition as initially indicated in the form of a porous silica-based powder composition for ceramic welding, in particular by projection, comprising
  • porous siliceous particles having a d 50 of between 200 and 1000 ⁇ , preferably between 350 and 800 ⁇ .
  • the aim of the invention is to overcome the drawbacks of the state of the art by providing a method which makes it possible in particular to break down the dependence on the fraction of porous refractory parts that have been decommissioned as a source of porous siliceous particles, while at the same time providing a wide range of applications as well as a stability of the ceramic welding characteristics.
  • composition according to the present invention before projection already high cristobalite content and a suitable particle size for good projection conditions. Consequently, when this mixture is sprayed on refractory walls at a sufficiently high operating temperature (> 1450 ° C), rapidly reaches an almost total conversion to cristobalite in the ceramic weld.
  • said porous siliceous particles have a d 3 ma) ⁇ 1100 ⁇ ⁇ , preferably 1000 ⁇ .
  • the notation d x max represents a maximum diameter, expressed in ⁇ , with respect to which X% of the particles or grains measured are larger.
  • said siliceous particles have a d 3 min of 150 ⁇ " ⁇ , preferably 200 ⁇ , which leads to a composition where the content of fine particles is very limited .
  • the notation dx min represents a minimum diameter, expressed in pm, with respect to which X% of the particles or grains measured are smaller.
  • the porous siliceous particles have an open porosity of between 30 and 40% by volume, more particularly between 32 and 38% by volume and preferably between 34 and 36% by volume. measured according to EN 993-1.
  • said porous siliceous particles have an SiO 2 content greater than or equal to 97%, preferably greater than or equal to 98%, more preferably greater than or equal to 99% by weight. , based on the total weight of porous siliceous particles.
  • the purity of said siliceous particles is very high, improving the quality of the refractory obtained, in particular by ceramic welding.
  • the composition comprises from 20 to 85% by weight of phase of porous siliceous particles and from 80 to 15% by weight of binder phase, relative to the total weight of the composition.
  • the composition according to the present invention comprises from 50 to 85% by weight of porous siliceous particles phase and from 50 to 15% by weight of binder phase, relative to the total weight of the composition.
  • said binder phase of the composition according to the present invention comprises at least one of the following elements or compounds: Al, Si, Mg, Ca, Fe, Cr, Zr, the oxides Al 2 O 3 , SiO 2 , MgO, CaO , Fe 2 O 3 , Cr 2 O 3 , ZrO 2 , BaO, SrO, peroxides CaO 2 , MgO 2 , BaO 2 , SrO 2 .
  • the composition according to the present invention further comprises silica granules of different densities in order to make it possible to control the porosity of the refractory material obtained, which porosity has become adjustable by mixing silica granules with different porosities.
  • the invention also relates to a process for preparing a silica-based pulverulent composition for ceramic welding, in particular by spraying.
  • phase of porous siliceous particles comprising at least 80% by weight of cristobalite and at most 15% by weight of tridymite and residual amorphous phase, relative to the total weight of the phase of siliceous particles; b) mixing said phase of porous siliceous particles with one or more conventional additives forming a binder phase in ceramic welding,
  • said step of preparing said siliceous particle phase comprising firing flint-type silica stones at a high predetermined temperature with transformation of said flint-type silica stones into porous granules substantially based on cristobalite;
  • a heat treatment of silica stones of high temperature flint type is carried out, which leads to their transformation into said porous siliceous phase (porous granules) based on cristobalite; then, a grinding-screening of said porous cristobalite granules is carried out at the end of which a granulometric slice required by the production process is isolated.
  • the granulometric slice of porous granules of cristobalite is then incorporated into a mixture of raw materials for obtaining by ceramic welding a porous siliceous refractory mass.
  • the method according to the present invention thus makes it possible to avoid the presence of porogenic elements to be completely eliminated during the heat treatment while ensuring a reproducibility of the porosity provided by the heat treatment transformation of flint stones into porous granules of cristobalite.
  • the process according to the present invention makes it possible to achieve a high purity and a very high refractoriness of said porous cristobalite granules, and a fortiori of the siliceous porous refractory mass obtained by ceramic welding.
  • This kinetic energy of the particles may, for example, be characterized and adjusted by acoustic measurements made during the transport of the propellant mixture - powder composition for ceramic welding in order to avoid problems of segregation of said powder composition during its pneumatic transport (hose + lance projection) and a fortiori during its journey to the refractory wall to repair.
  • An optical characterization at the lance output by a high-speed shutter camera is a complementary means.
  • said flint-type silica stones have a d max of 1100 ⁇ m, preferably 1000 ⁇ m.
  • Said flint-type silica stones also have a ds min of 150 ⁇ m, preferably 200 ⁇ m, which makes it possible, from the start, to limit the amount of fines entering the particle size fraction of silica-type flint stones. in the process.
  • said flint-type silica stones have, prior to firing, an SiO 2 content greater than or equal to 97%, preferably greater than or equal to 98%, more preferably greater than or equal to 99% by weight, relative to the total weight of said flint-type silica stones.
  • said high predetermined cooking temperature is in the range of 1400 ° C to 1600 ° C, preferably 1450 ° C to 1550 ° C. This makes it possible to favor the cristobalite phase, which is stable from 1450 ° C. to the detriment of tridymite.
  • silica stones initially flint-type transformed into cristobalite, are crushed and screened.
  • said porous siliceous particles obtained have a d max of 1100 ⁇ m, preferably 1000 ⁇ m.
  • said porous siliceous particles obtained have a d 3 min of 150 ⁇ , preferably 200 ⁇ .
  • the porous siliceous particles have an open porosity of between 30 and 40% by volume, more particularly between 32 and 38% by volume and preferably between 34 and 36% by volume, measured according to the standard. EN 993-1.
  • said porous siliceous particles have an Si0 2 content greater than or equal to 97%, preferably greater than or equal to 98%, more preferably greater than or equal to 99% by weight, relative to total weight of porous siliceous particles, which represents a very high purity allowing a wide range of applications.
  • said phase of porous siliceous particles comprises at least 80% by weight of cristobalite and at most 15% by weight of tridymite and residual amorphous phase, relative to the total weight of the phase of porous siliceous particles .
  • the cristobalite content is also advantageously greater than 96%, preferably greater than 97%, more preferably greater than 98% and even more advantageously greater than or equal to 99% by weight. weight, relative to the total weight of siliceous particles
  • said binder phase comprises at least one of the following elements or compounds: Al, Si, Mg, Ca, Fe, Cr, Zr, Al 2 O 3 , SiO 2 oxides , MgO, CaO, Fe 2 O 3 , Cr 2 O 3 , ZrO 2 , the peroxides CaO 2 , MgO 2 , BaO 2 , SrO 2 .
  • said mixture of raw materials may contain both porous cristobalite granules and dense grains of converted silica (cristobalite and / or tridymite) in order to adjust the porosity of the material obtained by ceramic welding.
  • the present invention also relates to a use of a composition according to the present invention, during a ceramic welding, to obtain an insulating refractory material.
  • the ceramic solder mixture comprises 85% of this granulometric portion of porous cristobalite, 3% of CaO ( ⁇ ) and 12% of silicon powder ⁇ 50 ⁇ ).
  • Example 1 in which the porous cristobalite particle size slice was replaced by dense grains of cristobalite of the same particle size, is obtained after sputtering a material with an apparent density of 1.6 g / cm 3 and an open porosity of 22% by volume. It is thus possible by mixing to adjust the apparent density and the open porosity of the material obtained by ceramic welding.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Organic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Structural Engineering (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Inorganic Chemistry (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Compositions Of Oxide Ceramics (AREA)
  • Ceramic Products (AREA)
  • Silicon Compounds (AREA)

Abstract

Composition pulvérulente à base de silice poreuse pour soudure céramique, en particulier par projection, comprenant de 10 à 90 % d'une phase de particules siliceuses poreuse comprenant au moins 80 % en poids de cristobalite et au plus 15% en poids de tridymite et de phase amorphe résiduelle, par rapport au poids total de la composition, et de 90 à 10 % en poids d'additifs conventionnels formant une phase liante, par rapport au poids total de la dite composition, lesdites particules siliceuses poreuses présentant un d50 compris entre 200 et 1000 μm, de préférence entre 350 et 800μm.

Description

« COMPOSITION PULVERULENTE A BASE DE SILICE POREUSE POUR SOUDURE
CERAMIQUE ET SON PROCEDE D'OBTENTION »
La présente invention se rapporte à une composition pulvérulente à base de silice poreuse pour soudure céramique, en particulier par projection, et à son procédé d'obtention.
La soudure céramique et Ses compositions à base de silice sont connues des documents GB2233323, GB2170191 ou encore US2599236.
Le document GB2233323 divulgue en effet une utilisation d'une poudre de soudure céramique à laquelle on a ajouté des particules de matière induisant de la porosité pour former une masse réfractaire poreuse et isolante, au moyen d'une soudure céramique par projection sur une surface choisie.
Durant la projection, la composition est transportée dans un gaz, en présence d'un combustible formé de particules capables de former un oxyde réfractaire comme l'aluminium ou la silice.
Dans l'exemple 3 du document GB2233323, une masse réfractaire isolante est formée sur la surface d'une paroi interne d'un four de verrerie sans devoir arrêter l'installation. Cette paroi est une paroi réfractaire en sillimanite. On utilise des particules poreuses réfractaires pour induire de la porosité dans la soudure résultante. Ce sont des particules poreuses de silice obtenues par broyage de briques poreuses isolantes en silice, la densité apparente des briques isolantes étant de 0,95. Les particules ont été concassées et tamisées de manière à obtenir une granulométrie inférieure à 2mm et sont ensuite mélangées avec des particules combustibles.
Des masses réfractaires siliceuses poreuses peuvent être obtenues à partir de compositions contenant des éléments porogènes (organiques ou carbonés) ; malheureusement, ce procédé présente l'inconvénient majeur résidant dans le fait que l'élimination complète de ces éléments porogènes par combustion est difficile à contrôler. L'usage de granulats siliceux poreux, par exemple la pertite prétraitée thermiquement, est également connu, mais ces roches d'origine volcanique ont une composition variable, elles ne peuvent donc pas garantir une haute teneur en silice et par conséquent une réfractarité élevée
L'invention a pour but de pallier les inconvénients de l'état de la technique en procurant une invention permettant de ne pas avoir d'éléments porogènes à éliminer et d'assurer une haute teneur en silice ainsi qu'une réfractarité élevée de la masse réfractaire ultérieurement obtenue.
Pour résoudre ce problème, il est prévu suivant l'invention une composition telle qu'indiquée au début sous la forme d'une composition pulvérulente à base de silice poreuse pour soudure céramique, en particulier par projection, comprenant
a) de 10 à 90 % d'une phase de particules siliceuses poreuses comprenant au moins 80 % en poids de cristobalite et au plus 15% en poids de tridymite et de phase amorphe résiduelle, par rapport au poids total de la composition,
b) de 90 à 10 % en poids d'additifs conventionnels formant une phase liante, par rapport au poids total de la dite composition,
lesdites particules siliceuses poreuses présentant un d50 compris entre 200 et 1000 μιτι, de préférence entre 350 et 800 pm.
L'invention a pour but de pallier les inconvénients de l'état de la technique en procurant un procédé permettant notamment de briser la dépendance vis-à-vis de la fraction de pièces réfractaires poreuses déclassées comme source de particules siliceuses poreuses, tout en procurant une large gamme d'applications ainsi qu'une stabilité des caractéristiques de la soudure céramique.
Comme on peut le constater la composition selon la présente invention présente avant projection une teneur en cristobalite déjà élevée ainsi qu'une granulométrie adéquate pour de bonnes conditions de projection. En conséquence, lorsque ce mélange est projeté sur des parois réfractaires à une température de service suffisamment élevée (> 1450°C), on atteint rapidement une conversion presque totale en cristobalite dans la soudure céramique.
De plus, grâce à la composition selon l'invention, la présence d'éléments porogènes à éliminer complètement durant le traitement thermique est évitée.
Il est à remarquer que, durant le présent procédé, une porosité substantielle est apportée par la transformation par traitement thermique des pierres denses de silex en phase de particules siliceuses (granulats) transformées en cristobalite, ce qui permet d'obtenir une haute pureté et une réfractarité très élevée desdits granulats poreux de cristobalite et a fortiori de la masse réfractaire poreuse siliceuse obtenue par soudure céramique.
Avantageusement, dans la composition selon la présente invention, lesdites particules siliceuses poreuses présentent un d3 ma)< de 1100 μηη, de préférence de 1000 μιη.
La notation d x max représente un diamètre maximal, exprimé en μιη, par rapport auquel X % des particules ou grains mesurés sont plus grands.
Dans une forme de réalisation particulière, dans la composition selon la présente invention, lesdites particules siliceuses présentent un d3 min de 150 μη"ΐ, de préférence de 200 μιη, ce qui conduit à une composition où la teneur en particules fines est très limitée.
La notation d x min représente un diamètre minimal, exprimé en pm, par rapport auquel X % des particules ou grains mesurés sont plus petits.
Dans un mode de réalisation préféré de la présente invention, les particules siliceuses poreuses présentent une porosité ouverte comprise entre 30 et 40 % en volume, plus particulièrement comprise entre 32 et 38 % en volume et de manière préférentielle entre 34 et 36% en volume, mesurée selon la norme EN 993-1.
De préférence, dans la composition selon la présente invention, lesdites particules siliceuses poreuses présentent une teneur en Si02 supérieure ou égaie à 97%, de préférence, supérieure ou égale à 98%, de manière plus préférentielle supérieure ou égale à 99% en poids, par rapport au poids total de particules siliceuses poreuses. Ainsi la pureté desdites particules siliceuses est très élevée, améliorant la qualité du réfractaire obtenu, en particulier, par soudure céramique.
Avantageusement, selon la présente invention, la composition comprend de 20 à 85 % en poids de phase de particules siliceuses poreuses et de 80 à 15 % en poids de phase liante, par rapport au poids total de la composition.
De manière préférentielle, la composition selon la présente invention comprend de 50 à 85 % en poids de phase de particules siliceuses poreuses et de 50 à 15 % en poids de phase liante, par rapport au poids total de la composition.
Plus particulièrement, ladite phase liante de la composition selon la présente invention comprend au moins un des éléments ou composés suivants : Al, Si, Mg, Ca, Fe, Cr, Zr, les oxydes Al203, Si02, MgO, CaO, Fe203, Cr203, Zr02, BaO, SrO, les peroxydes Ca02, Mg02, Ba02, Sr02.
Avantageusement, la composition selon la présente invention comprend en outre des granulats de silice de différentes densités en vue de permettre de contrôler la porosité du matériau réfractaire obtenu, porosité devenue ajustable par mélange de granulats de silice de différentes porosités.
D'autres formes de réalisation de la composition suivant l'invention sont indiquées dans les revendications annexées.
L'invention a aussi pour objet un procédé de préparation d'une composition pulvérulente à base de silice pour soudure céramique, en particulier par projection.
Le procédé selon la présente invention est caractérisé en ce qu'il comprend les étapes de :
a) préparation d'une phase de particules siliceuses poreuses comprenant au moins 80 % en poids de cristobalite et au plus 15% en poids de tridymite et de phase amorphe résiduelle, par rapport au poids total de la phase de particules siliceuses ; b) mélange de ladite phase de particules siliceuses poreuses avec un ou plusieurs additifs conventionnels formant une phase liante en soudure céramique,
ladite étape de préparation de ladite phase de particules siliceuses comprenant une cuisson de pierres de silice de type silex à une température prédéterminée élevée avec transformation desdites pierres de silice de type silex en des granulats poreux sensiblement à base de cristobalite;
c) un broyage-criblage desdits granulats poreux sensiblement à base de cristobalite avec une isolation de particules siliceuses poreuses présentant un d50 compris entre 350 et 800 μηι, de préférence entre 400 et 600 μιη.
Dans le procédé selon la présente invention, un traitement thermique de pierres de silice de type silex à haute température est effectué, qui conduit à leur transformation en ladite phase siliceuse poreuse (granulats poreux) à base de cristobalite ; ensuite, un broyage-criblage desdits granulats poreux de cristobalite est réalisé à l'issue duquel une tranche granulométrique requise par le procédé d'obtention est isolée. La tranche granulométrique de granulats poreux de cristobalite est ensuite incorporée dans un mélange de matières premières pour l'obtention par soudure céramique d'une masse réfractaire poreuse siliceuse.
Le procédé selon la présente invention permet donc d'éviter la présence d'éléments porogènes à éliminer complètement durant le traitement thermique tout en assurant une reproductibiiité de la porosité apportée par ia transformation par traitement thermique des pierres de silex en granulats poreux de cristobalite. De plus, le procédé selon la présente invention permet d'atteindre une haute pureté et une réfractarité très élevée desdits granulats poreux de cristobalite et a fortiori de la masse réfractaire poreuse siliceuse obtenue par soudure céramique.
Enfin, il améliore les performances et la fiabilité du matériau obtenu par soudure céramique. En effet, lors d'une projection par soudure céramique, il est important de maîtriser la distribution granulométrique du méiange pulvérulent, car elle influence le débit massique dudit mélange projeté vers la paroi réfractaire à réparer.
Ceci revêt une grande importance pour garantir une énergie cinétique reproductible aux particules qui impartent la paroi réfractaire. Cette énergie cinétique des particules peut par exemple être caractérisée et ajustée par des mesures acoustiques réalisées durant le transport du mélange gaz propulseur - composition pulvérulente pour soudure céramique afin d'éviter des problèmes de ségrégation de ladite composition pulvérulente durant son transport pneumatique (tuyau + lance de projection) et a fortiori durant son trajet vers la paroi réfractaire à réparer. Une caractérisation optique en sortie de lance par une caméra à grande vitesse d'obturation est un moyen complémentaire. »
Avantageusement, lesdites pierres de silice de type silex présentent un dS max de 1100 pm, de préférence de 1000 pm. Lesdites pierres de silice de type silex présentent en outre, un ds min de 150 pm, de préférence de 200 pm permettant dès le départ, par le choix de la fraction granulométrique des pierres de silice de type silex, de limiter le taux de fines entrant dans le procédé.
De préférence, lesdites pierres de silice de type silex présentent avant cuisson, une teneur en Si02 supérieure ou égale à 97%, de préférence, supérieure ou égale à 98%, de manière plus préférentielle supérieure ou égale à 99% en poids, par rapport au poids total desdites pierres de silice de type silex.
Avantageusement, dans le procédé selon la présente invention, ladite température de cuisson prédéterminée élevée est comprise dans la plage allant de 1400°C à 1600°C, de préférence allant de 1450°C à 1550°C. Ceci permet de favoriser ia phase cristobaiite, laquelle est stable à partir de 1450°C au détriment de ia tridymite.
A l'issue de la cuisson, lesdites pierres de silice au départ de type silex transformées en cristobaiite, sont broyées et criblées.
Avantageusement, lesdites particules siliceuses poreuses obtenues présentent un d3 max e 1100 pm, de préférence de 1000 pm. De manière tout aussi avantageuse, lesdites particules siliceuses poreuses obtenues présentent un d3 min de 150 μηη, de préférence de 200 pm.
Dans une forme de réalisation particulière, les particules siliceuses poreuses présentent une porosité ouverte comprise entre 30 et 40 % en volume, plus particulièrement comprise entre 32 et 38 % en volume et de manière préférentielle entre 34 et 36% en volume, mesurée selon la norme EN 993-1.
Dans une forme de réalisation préférentielle, lesdites particules siliceuses poreuses présentent une teneur en Si02 supérieure ou égale à 97%, de préférence, supérieure ou égale à 98%, de manière plus préférentielle supérieure ou égale à 99% en poids, par rapport au poids total de particules siliceuses poreuses, ce qui représente une pureté très élevée permettant un large panel d'applications.
Dans un mode de réalisation particulièrement préférentiel, ladite phase de particules siliceuses poreuses comprend au moins 80 % en poids de cristobalite et au plus 15% en poids de tridymite et de phase amorphe résiduelle, par rapport au poids total de la phase de particules siliceuses poreuses.
Dans ces particules siliceuses poreuses, la teneur en cristobalite est d'ailleurs avantageusement supérieure à 96%, de préférence supérieure à 97%, de manière plus préférentielle, supérieure à 98% et de manière encore plus avantageuse, supérieure ou égaie à 99% en poids, par rapport au poids total de particules siliceuses
Avantageusement, dans le procédé selon la présente invention, lors de ladite étape de mélange, de 20 à 85 % en poids de phase de particules siliceuses poreuses et de 80 à 15 % en poids de phase liante, par rapport au poids total de la composition, sont amenés dans une cuve de mélange.
Préférentiellement, dans le procédé selon l'invention, lors de ladite étape de mélange, de 50 à 90 % en poids de phase de particules siliceuses poreuses et de 50 à 10 % en poids de phase liante, par rapport au poids total de la composition, sont amenés dans une cuve de mélange. Dans une forme de réalisation avantageuse du procédé selon la présente invention, ladite phase liante comprend au moins un des éléments ou composés suivants : Al, Si, M g, Ca, Fe, Cr, Zr, les oxydes Al203, Si02, MgO, CaO, Fe203, Cr203, Zr02, les peroxydes Ca02, Mg02, Ba02, Sr02.
Avantageusement, ledit mélange de matières premières peut contenir à la fois des granulats poreux de cristobalite et des grains denses de silice transformée (cristobalite et/ou tridymite) afin d'ajuster la porosité du matériau obtenu par soudure céramique.
D'autres formes de réalisation du procédé suivant l'invention sont indiquées dans les revendications annexées.
La présente invention se rapporte également à une utilisation d'une composition selon la présente invention, pendant une soudure céramique, pour obtenir un matériau réfractaire isolant.
D'autres formes d'utilisation selon la présente invention sont mentionnées dans les revendications annexées.
D'autres caractéristiques, détails et avantages de l'invention ressortiront de la description donnée ci-après, à titre non limitatif et en faisant référence aux exemples.
Exemples.- Exemple 1.-
Par un traitement thermique à haute température (entre 1500 et 1600°C), on réalise la transformation de pierres de silice de type silex en une phase siliceuse poreuse formée de granulats poreux de silice sous forme de cristobalite. Ceux-ci sont ensuite broyés et criblés pour isoler une tranche granulométrique comprise entre 1 et 0.2 mm.
Le mélange pour soudure céramique comprend 85% de cette tranche granulométrique de cristobalite poreuse, 3% de CaO (< ΙΟΟμιη) et 12% de poudre de silicium {< 50 μιη).
Après projection dans un courant d'oxygène dudit mélange sur un substrat réfractaire dans un four pilote maintenu à 950 °C, on obtient un matériau réfractaire siliceux de densité apparente égale à 1.35 g/cm3 et d'une porosité ouverte de 35% en volume. Exemple 2.-
On a reproduit l'exemple 1, dans lequel on a remplacé pour moitié la tranche granulométrique de cristobalite poreuse par des grains denses de cristobalite de même granulométrie, on obtient après projection par soudure céramique un matériau d'une densité apparente de 1.6 g/cm3 et d'une porosité ouverte de 22% en volume. On peut donc ainsi par mélange ajuster la densité apparente et la porosité ouverte du matériau obtenu par soudure céramique.
Il est bien entendu que la présente invention n'est en aucune façon limitée aux formes de réalisations décrites ci-dessus et que bien des modifications peuvent y être apportées sans sortir du cadre des revendications annexées.

Claims

« REVENDICATIONS »
1. Composition pulvérulente à base de silice poreuse pour soudure céramique, en particulier par projection, comprenant
c) de 10 à 90 % d'une phase de particules siliceuses poreuse comprenant au moins S0 % en poids de cristobalite et au plus 15% en poids de tridymite et de phase amorphe résiduelle, par rapport au poids total de la composition,
d) de 90 à 10 % en poids d'additifs conventionnels formant une phase liante, par rapport au poids total de la dite composition,
lesdites particules siliceuses poreuses présentant un d50 compris entre 200 et 1000 μιτ, de préférence entre 350 et 800μηι.
2. Composition selon la revendication 1, dans laquelle lesdites particules siliceuses poreuses présentent un d3 max de 1100 μηι, de préférence de 1000 μνη.
3. Composition selon la revendication 1 ou la revendication 2, dans laquelle lesdites particules siliceuses présentent un d3
„,jn de 150 μηι, de préférence de 200 μηι.
4. Composition selon l'une quelconque des revendications précédentes, dans laquelle les particules siliceuses poreuses présentent une porosité ouverte comprise entre 30 et 40 % en volume, plus particulièrement comprise entre 32 et 38 % en volume et de manière préférentielle entre 34 et 36% en volume, mesurée selon la norme EN 993-1.
5. Composition selon l'une quelconque des revendications précédentes, dans laquelle lesdites particules siliceuses poreuses présentent une teneur en Si02 supérieure ou égale à 97%, de préférence, supérieure ou égale à 98%, de manière plus préférentielle supérieure ou égale à 99% en poids, par rapport au poids total de particules siliceuses poreuses.
6. Composition selon Tune quelconque des revendications précédentes, comprenant de 20 à 85 % en poids de phase de particules siliceuses poreuses et de 80 à 15 % en poids de phase liante, par rapport au poids total de la composition.
7. Composition selon l'une quelconque des revendications précédentes, comprenant de 50 à 85 % en poids de phase de particules siliceuses poreuses et de 50 à 15 % en poids de phase liante, par rapport au poids total de la composition.
8. Composition selon l'une quelconque des revendications précédentes, dans laquelle ladite phase liante comprend au moins un des éléments ou composés suivants : Al, Si, g, Ca, Fe, Cr, Zr, les oxydes A1203, Si02, MgO, CaO, Fe203, Cr203, Zr02, BaO, SrO, les peroxydes Ca02, Mg02, Ba02, Sr02.
9. Composition selon l'une quelconque des revendications précédentes, comprenant en outre des granulats de silice de différentes densités.
10. Procédé de préparation d'une composition pulvérulente à base de silice pour soudure céramique, en particulier par projection comprenant les étapes de :
d) préparation d'une phase de particules siliceuses poreuses comprenant au moins 80 % en poids de cristobalite et au plus 15% en poids de tridymite et de phase amorphe résiduelle, par rapport au poids total de la phase de particules siliceuses ;
e) mélange de ladite phase de particules siliceuses poreuses avec un ou plusieurs additifs conventionnels formant une phase liante en soudure céramique,
ladite étape de préparation de ladite phase de particules siliceuses comprenant une cuisson de pierres de silice de type silex à une température prédéterminée élevée avec transformation desdites pierres de silice de type silex en des granulats poreux sensiblement à base de cristobalite un broyage-criblage desdits granulats poreux sensiblement à base de cristobalite avec une isolation de particules siliceuses poreuses présentant un d50 compris entre 350 et 800 pm, de préférence entre 400 et 600 pm
11. Procédé de préparation selon la revendication 10, dans lequel les dites lesdites pierres de silice de type silex présentent un d5 max de 1100 pm, de préférence de 1000 pm.
12. Procédé de préparation selon la revendication 10 ou la revendication 11, dans lequel lesdites pierres de silice de type silex présentent un ds min de 150 pm, de préférence de 200 pm.
13. Procédé de préparation selon l'une quelconque des revendications 10 à 12, dans lequel les particules siliceuses poreuses présentent une porosité ouverte comprise entre 30 et 40 % en volume, plus particulièrement comprise entre 32 et 38 % en volume et de manière préférentielle entre 34 et 36% en volume, mesurée selon la norme EN 993-1
14. Procédé de préparation selon l'une quelconque des revendications 10 à 13, dans lequel lesdites pierres de silice de type silex présentent avant cuisson, une teneur en Si02 supérieure ou égale à 97%, de préférence, supérieure ou égale à 98%, de manière plus préférentielle supérieure ou égale à 99% en poids, par rapport au poids total desdites pierres de silice de type silex.
15. Procédé de préparation selon l'une quelconque des revendications 10 à 14, dans lequel ladite température de cuisson prédéterminée élevée est comprise dans la plage allant de 1400°C à 1600°C, de préférence allant de 1450T à 1550°C.
16. Procédé de préparation selon l'une quelconque des revendications 10 à 15, dans lequel lesdites particules siliceuses poreuses présentent un d3 max de 1100 pm, de préférence de 1000 pm.
17. Procédé de préparation selon l'une quelconque des revendications 10 à 16, dans lequel lesdites particules siliceuses poreuses présentent un d3 min de 150 pm, de préférence de 200 pm.
18. Procédé de préparation selon l'une quelconque des revendications 10 à 17, dans lequel lesdites particules siliceuses poreuses présentent une teneur en Si02 supérieure ou égale à 97%, de préférence, supérieure ou égale à 98%, de manière plus préférentielle supérieure ou égale à 99% en poids, par rapport au poids total de particules siliceuses poreuses.
19. Procédé de préparation selon Tune quelconque des revendications 10 à 18, dans lequel ladite phase de particules siliceuses poreuses comprend au moins 80 % en poids de cristobalite et au plus 15% en poids de tridymite et de phase amorphe résiduelle, par rapport au poids total de la phase de particules siliceuses poreuses.
20. Procédé de préparation selon l'une quelconque des revendications 10 à 19, dans lequel lors de ladite étape de mélange, de 20 à 85 % en poids de phase de particules siliceuses poreuses et de 80 à 15 % en poids de phase liante, par rapport au poids total de la composition, sont amenés dans une cuve de mélange.
21. Procédé de préparation selon l'une quelconque des revendications 10 à 19, dans lequel lors de ladite étape de mélange, de 50 à 90 % en poids de phase de particules siliceuses poreuses et de 50 à 10 % en poids de phase liante, par rapport au poids total de la composition, sont amenés dans une cuve de mélange.
22. Procédé de préparation selon l'une quelconque des revendications 10 à 21, dans lequel ladite phase liante comprend au moins un des éléments ou composés suivants : Al, Si, Mg, Ca, Fe, Cr, Zr, les oxydes AI2O3, Si02, MgO, CaO, Fe203, Cr203, Zr02, les peroxydes Ca02, Mg02, Ba02, Sr02,
23. Procédé de préparation selon l'une quelconque des revendications 10 à 22, comprenant en outre, lors dudit mélange de ladite phase de particules siliceuses poreuses avec un ou plusieurs additifs conventionnels formant une phase liante en soudure céramique, une addition de grains denses de silice transformée, choisis dans le groupe des grains denses de cristobalite et/ou de tridymite afin d'ajuster la porosité du matériau obtenu par soudure céramique.
24. Utilisation d'une composition selon l'une quelconque des revendications 1 à 9, pendant une soudure céramique, pour obtenir un matériau réfractaire isolant.
PCT/EP2014/077132 2013-12-19 2014-12-10 Composition pulverulente a base de silice poreuse pour soudure ceramique et son procede d'obtention WO2015091126A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
LU92340A LU92340B1 (fr) 2013-12-19 2013-12-19 Composition pulvérulante à base de silice poreuse pour soudure céramique et son procédé d'obtention
LULU92340 2013-12-19

Publications (1)

Publication Number Publication Date
WO2015091126A1 true WO2015091126A1 (fr) 2015-06-25

Family

ID=49943443

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2014/077132 WO2015091126A1 (fr) 2013-12-19 2014-12-10 Composition pulverulente a base de silice poreuse pour soudure ceramique et son procede d'obtention

Country Status (3)

Country Link
JP (1) JP2015171987A (fr)
LU (1) LU92340B1 (fr)
WO (1) WO2015091126A1 (fr)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11629059B2 (en) 2019-08-29 2023-04-18 Covia Holdings Llc Ultra-white silica-based filler

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102228508B1 (ko) * 2018-12-31 2021-03-16 주식회사 인텍 고내용성을 가지는 세라믹 웰딩용 조성물

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2599236A (en) 1949-05-19 1952-06-03 C Otto & Company G M B H Dr Manufacture of silica brick from highly siliceous sands
GB1225629A (fr) * 1967-08-11 1971-03-17
GB2170191A (en) 1985-01-26 1986-07-30 Glaverbel Forming refractory masses
GB2233323A (en) 1989-06-30 1991-01-09 Glaverbel Process of forming a porous refractory mass and composition of matter for use in such process.
WO1992019566A1 (fr) * 1991-05-07 1992-11-12 Fib-Services Composition refractaire, procede de preparation et procede d'utilisation de cette composition
US5780114A (en) * 1994-11-28 1998-07-14 Glaverbel Production of a siliceous refractory mass

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2599236A (en) 1949-05-19 1952-06-03 C Otto & Company G M B H Dr Manufacture of silica brick from highly siliceous sands
GB1225629A (fr) * 1967-08-11 1971-03-17
GB2170191A (en) 1985-01-26 1986-07-30 Glaverbel Forming refractory masses
GB2233323A (en) 1989-06-30 1991-01-09 Glaverbel Process of forming a porous refractory mass and composition of matter for use in such process.
WO1992019566A1 (fr) * 1991-05-07 1992-11-12 Fib-Services Composition refractaire, procede de preparation et procede d'utilisation de cette composition
US5780114A (en) * 1994-11-28 1998-07-14 Glaverbel Production of a siliceous refractory mass

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11629059B2 (en) 2019-08-29 2023-04-18 Covia Holdings Llc Ultra-white silica-based filler

Also Published As

Publication number Publication date
LU92340B1 (fr) 2015-06-22
JP2015171987A (ja) 2015-10-01

Similar Documents

Publication Publication Date Title
CN108585810A (zh) 微孔陶瓷及其制备方法和雾化芯
EP3024799B1 (fr) Produit a haute teneur en alumine
CN103922768B (zh) 一种功能复合型氧化锆耐火制品及其制备方法
CA2715176C (fr) Poudre de bsas
US20130316129A1 (en) Silicon carbide material, honeycomb structure, and electric heating type catalyst carrier
JP2015105229A (ja) 石英ガラス又は石英品より成るコーティングされた構成部材の製造法
CN110526681A (zh) 一种高耐火极限发泡陶瓷及其制备方法
WO2015091126A1 (fr) Composition pulverulente a base de silice poreuse pour soudure ceramique et son procede d&#39;obtention
EP2139825B1 (fr) Bloc de beton refractaire tempere a deformation controlee
FR2959506A1 (fr) Materiau composite ceramique a base de beta-eucryptite et d&#39;un oxyde et procede de fabrication dudit materiau.
US20130109788A1 (en) Spherical alpha silicon carbide, the method for manufacturing the same, and a sintered body as well as an organic resin-based composite made from the silicon carbide
WO2019057729A1 (fr) Mousse ceramique
EP2114841A1 (fr) Procede de fabrication d&#39;un corps poreux ceramique a base de sic
WO2007074275A2 (fr) Melange refractaire autocoulable
EP3083523B1 (fr) Composition siliceuse et procede d&#39;obtention
JP5130334B2 (ja) 多結晶シリコンインゴット製造用角形シリカ容器並びに多孔質シリカ板体及びその製造方法
JP5108803B2 (ja) シリカ容器の製造方法
FR2886289A1 (fr) Produit d&#39;alumine frittee transparent au rayonnement infrarouge
JP5487259B2 (ja) シリカ容器
WO2013011432A1 (fr) Canal d&#39;alimentation de verre en fusion
JP5449808B2 (ja) シリカ容器及びその製造方法
JP2011236069A (ja) 多結晶シリコンインゴット製造用角形シリカ容器及びその製造方法
JP2013075774A (ja) 無機質多孔体及びその製造方法
JP5499118B2 (ja) シリカ容器の製造方法
OA17910A (en) Siliceous composition and method for obtaining same.

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14812438

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14812438

Country of ref document: EP

Kind code of ref document: A1