WO2015090009A1 - 一种显示装置 - Google Patents

一种显示装置 Download PDF

Info

Publication number
WO2015090009A1
WO2015090009A1 PCT/CN2014/078926 CN2014078926W WO2015090009A1 WO 2015090009 A1 WO2015090009 A1 WO 2015090009A1 CN 2014078926 W CN2014078926 W CN 2014078926W WO 2015090009 A1 WO2015090009 A1 WO 2015090009A1
Authority
WO
WIPO (PCT)
Prior art keywords
laser
light source
display
module
display device
Prior art date
Application number
PCT/CN2014/078926
Other languages
English (en)
French (fr)
Inventor
王欢
辛武根
涂志中
尹傛俊
Original Assignee
京东方科技集团股份有限公司
合肥京东方光电科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 京东方科技集团股份有限公司, 合肥京东方光电科技有限公司 filed Critical 京东方科技集团股份有限公司
Priority to US14/426,004 priority Critical patent/US9900589B2/en
Publication of WO2015090009A1 publication Critical patent/WO2015090009A1/zh

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N13/00Stereoscopic video systems; Multi-view video systems; Details thereof
    • H04N13/30Image reproducers
    • H04N13/324Colour aspects
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N9/00Details of colour television systems
    • H04N9/12Picture reproducers
    • H04N9/31Projection devices for colour picture display, e.g. using electronic spatial light modulators [ESLM]
    • H04N9/3141Constructional details thereof
    • H04N9/315Modulator illumination systems
    • H04N9/3161Modulator illumination systems using laser light sources
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N13/00Stereoscopic video systems; Multi-view video systems; Details thereof
    • H04N13/30Image reproducers
    • H04N13/327Calibration thereof
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N13/00Stereoscopic video systems; Multi-view video systems; Details thereof
    • H04N13/30Image reproducers
    • H04N13/332Displays for viewing with the aid of special glasses or head-mounted displays [HMD]
    • H04N13/334Displays for viewing with the aid of special glasses or head-mounted displays [HMD] using spectral multiplexing
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N9/00Details of colour television systems
    • H04N9/12Picture reproducers
    • H04N9/31Projection devices for colour picture display, e.g. using electronic spatial light modulators [ESLM]
    • H04N9/3129Projection devices for colour picture display, e.g. using electronic spatial light modulators [ESLM] scanning a light beam on the display screen

Definitions

  • the present invention belongs to the field of display technologies, and in particular, to a display device. Background technique
  • Spectral separation technology is a relatively advanced stereo display technology, which is embodied in 3D display devices.
  • the 3D display device comprises: a display light source, wherein the display light source uses two or more sets of laser light sources separated by spectrum, and the peak wavelengths of the same color laser light emitted by each group of laser light sources are different.
  • each set of laser light sources includes three single primary color lasers, that is, a red light laser, a blue light laser, a green light laser, and two of the two sets of laser light sources are of the same color.
  • the peak wavelength of the laser emitted by the primary laser is different.
  • the red light emitted by the two red lasers is red laser 1 and red laser 2, respectively
  • the green light emitted by the two green lasers is green laser 1 and green laser 2, respectively, and two blue lasers.
  • the blue light emitted is blue laser 1 and blue laser 2, respectively.
  • the image composed of red laser 1, green laser 1 and blue laser 1 enters one eye of the person, red laser 2.
  • the image composed of the green laser 2 and the blue laser 2 enters the other eye of the person, thereby forming a stereoscopic image.
  • a device for receiving a red laser, a green laser, and a blue laser obtained after spectral separation is a narrow-band filter glasses.
  • the biggest difference between the spectral separation stereo imaging technology and the traditional stereo imaging technology is that it uses the spectral separation method to achieve the high separation of the left and right eye stereo images, and separates the images according to the wavelengths of different color lights. There is no signal conversion process.
  • the spectral separation display technology has the following advantages: 1.
  • the left and right stereo image pairs are strictly filtered and highly separated, and there is no ghost phenomenon when wearing glasses to view stereoscopic images; 2.
  • the image quality is good, no flickering , good comfort, no dizziness for long-term viewing;
  • glasses do not need to be equipped with electricity
  • the source and the complicated circuit, the glasses are light, so the comfort is better; 4.
  • the signal synchronization transmitter is not needed, the head can be moved freely, and the wearer does not interfere with each other, which can satisfy a large number of audience applications.
  • a set of single primary color lasers is required.
  • the lasers ie, red laser 1 and red laser 2, green laser 1 and green laser 2, blue laser 1 and blue laser 2
  • six single-primary lasers that is, a single-primary laser corresponds to a peak.
  • the wavelength of the laser is bulky and costly.
  • the technical problem to be solved by the present invention includes providing a compact and relatively low cost display device for the problems of the existing 3D display device.
  • a technical solution for solving the technical problem of the present invention is a display device comprising: a display light source, the display light source comprising at least one wavelength tunable single primary color laser, the single primary color displayed when displaying each 3D picture
  • the laser is capable of emitting at least a first laser at a first time and a second laser at a second time, and the first laser is different from a peak wavelength of the second laser, wherein the first time and the first The two moments are continuous, the first laser is used to display the first frame picture, and the second laser is used to display the second frame picture.
  • the single primary color laser in the display device of the present invention can emit the first laser at the first moment and the second laser at the second moment, and the peak wavelengths of the first laser and the second laser are different, so that it has two needs with the existing one.
  • the display device of the present embodiment has a more compact structure and reduces the production cost as compared with a display light source that emits two peak wavelengths of the same color laser at two adjacent moments.
  • the display source comprises three wavelength-tunable single-primary lasers, each of which is a red laser, a green laser, and a blue laser.
  • the first laser includes a first red laser, a first green laser, and a first blue a laser, wherein at the first moment, the red laser emits a first red laser, the green laser emits a first green laser, and the blue laser emits a first blue laser;
  • the second laser includes a second red laser, a second green laser, and a second blue laser, wherein at the second moment, the red laser emits a second red laser, and the green laser emits a second green laser.
  • the blue laser emits a second blue laser.
  • the display light source further includes: a signal generating module, a laser driving module, and a controller,
  • the controller controls the signal generating module to generate different current signals, the signal generating module provides the different current signals to the laser driving module, and the laser driving module generates according to different received current signals. Different driving currents are used to drive the corresponding single primary color laser to emit the first laser or the second laser.
  • the display light source further includes: a monitoring module, wherein the monitoring module is connected to the corresponding single primary color laser for detecting a peak wavelength of the laser light emitted by the single primary color laser, and the monitoring module The peak wavelength of the first laser or the second laser is fed back to the controller to adjust the current output of the laser drive module.
  • the display light source further includes: an automatic control module, wherein the monitoring module feeds back a peak wavelength of the first laser or the second laser to the controller through the automatic control module to adjust the laser driving module Current output.
  • the display light source further includes: a coupler
  • the single primary color lasers are respectively connected to the coupler through an optical fiber, and are configured to transmit the first laser light or the second laser light emitted at the same time to the display module via the coupler via the same propagation path, so that the display device Display the image.
  • the display light source further includes: a projection module, the projection module is disposed between the coupler and the display module, configured to process laser light output through the coupler, and project on The display module On, to display the target screen.
  • a projection module the projection module is disposed between the coupler and the display module, configured to process laser light output through the coupler, and project on The display module On, to display the target screen.
  • the display light source further comprises: at least one scattering rod and a light guide plate,
  • the scattering rod is used to diffuse laser light from the coupler and form a surface light source through the light guide plate.
  • the display light source further comprises a reflective lamp cover
  • the scattering bar comprises: a scattering rod cavity, and scattering particles disposed in the scattering rod cavity, and a laser inlet is disposed at one end of the scattering rod cavity, The other end is provided with a reflective sheet disposed on a side of the scattering rod cavity facing away from the light guide plate, and the reflective sheet cooperates with the emitting lamp cover to reflect the laser light onto the light guide plate.
  • the display light source is an array of laser light sources.
  • the laser light source array includes a spaced red laser light source, a green laser light source, and a blue laser light source, and the red laser light source, the green laser light source, and the blue laser light source each include at least one laser light. . DRAWINGS
  • FIG. 1 is a schematic view of a rear projection type display device according to Embodiment 1 of the present invention
  • FIG. 2 is a schematic view showing a liquid crystal display device according to Embodiment 1 of the present invention
  • FIG. 3 is a schematic diagram of a laser output according to Embodiment 1 of the present invention
  • Figure 4 is a schematic view of a coupler of Embodiment 1 of the present invention.
  • Figure 5 is a structural view of a display light source according to Embodiment 1 of the present invention
  • Figure 6 is a cross-sectional view of Figure 5 of Embodiment 1 of the present invention
  • Figure 7 is a structural view showing a scattering rod of Embodiment 1 of the present invention.
  • Figure 8 is a structural view showing another display light source according to Embodiment 1 of the present invention
  • Figure 9 is a schematic view showing a laser light source array according to Embodiment 1 of the present invention.
  • the reference numerals are: 101, red laser; 102, green laser; 103, blue laser; 104, coupler; 105, projection module; 106, optical fiber; 107, scattering rod; 108, interface; 109, light guide; 110, reflector lampshade; 111, scattering rod cavity; 112, scattering particles; 113, reflective sheet; 114, LED light source array; Diffuser; 116, optical diaphragm; 117, red laser source; 118, green laser source; 119, blue laser source. detailed description
  • the embodiment provides a display device, comprising: a display light source, wherein the display light source comprises at least one wavelength tunable single primary color laser, and the single primary color is displayed when displaying each 3D picture.
  • the laser is capable of emitting at least a first laser at a first time and a second laser at a second time, and the first laser is different from a peak wavelength of the second laser, wherein the first time and the first The two moments are continuous, the first laser is used to display the first frame picture, and the second laser is used to display the second frame picture.
  • the single primary color laser of the display light source in this embodiment can emit the first laser at the first moment and the second laser at the second moment, that is, a single primary laser can emit two peak wavelengths at two adjacent moments.
  • the display device of the present embodiment has a more compact structure and lowers the production cost as compared with the conventional display light source that requires two single primary color lasers to emit two peak wavelengths of the same color laser at two adjacent timings.
  • the display device provided in this embodiment needs to be viewed with corresponding narrow-band filter glasses when implementing 3D display
  • the lens of the narrow-band filter glasses is a filter having a band-pass function for a specific wavelength.
  • it is a filter having a band pass function for three colors of red, green and blue, in particular, a filter having a narrow band pass function for a spectrum of a specific band of red, green and blue, and is usually composed of a notch filter.
  • the 3D picture can be viewed only with the narrow-band filter glasses described above.
  • the display light source of the embodiment comprises three wavelength tunable single primary color lasers, and the three single primary color lasers include a red laser 101, a green laser 102 and a blue laser 103.
  • the red laser 101 launch a red laser
  • the green laser 102 emits a first green laser
  • the blue laser 103 emits a first blue laser
  • the first red laser, the first green laser, and the first blue laser are used to display the first frame
  • the red laser 101 emits a second red laser
  • the green laser 102 emits a second green laser
  • the blue laser 103 emits a second blue laser
  • the second green laser and the second blue laser are used to display the second frame picture.
  • the first frame picture and the second frame picture respectively enter the left and right eyes of the viewer to form a three-dimensional picture.
  • any one or both of the red laser 101, the green laser 102, and the blue laser 103 in the display source is used to be wavelength-tunable single-primary lasers.
  • the structure of the display device is compacter than that of the conventional 3D display device, and the cost is low.
  • the display light source further includes: a signal generating module, a laser driving module, and a controller, wherein the controller controls the signal generating module to generate different current signals, and the signal generating module will be different a current signal is provided to the laser driving module, the laser driving module generates different driving currents according to the received different current signals, and is configured to drive the corresponding single primary color laser to emit the first laser or the first Two lasers. That is to say, according to different driving currents, lasers of different peak wavelengths are emitted.
  • the display source includes a wavelength tunable red laser 101, a green laser 102, and a blue laser 103.
  • the red laser 101 emits a first red laser.
  • the green laser 102 emits a first green laser
  • the blue laser 103 emits a first blue laser
  • the first red laser, the first green laser, and the first blue laser are used to display a first frame of the image;
  • the red laser 101 emits a second red laser
  • the green laser 102 emits a second green laser
  • the blue laser 103 emits a second blue laser
  • the second red laser and the second green laser The second blue laser is used to display the second frame picture.
  • the first frame picture and the second frame picture are the same angles of the same picture, and the narrow-band filter glasses enter the left and right eyes of the viewer, respectively, so that a three-dimensional picture is formed.
  • the principle of tunable peak wavelength of laser light emitted by a single primary color laser will be specifically described below.
  • semiconductor materials have an extremely wide gain bandwidth, for example
  • InGaAsP/InP materials have a bandwidth of 50 nm and a quantum well material of 250 nm, so theoretically, semiconductor lasers can be adjusted within this range.
  • the wavelength corresponding to the refractive index and maximum gain of the semiconductor material is easily changed by changes in temperature, pressure, carrier concentration, and electric field strength. Among them, relying on changing the carrier concentration is the most common method for wavelength tuning.
  • Monolithic tunable semiconductor lasers have two structures, one based on Bragg reflection gratings, such as multi-band DBR, multi-electrode DFB, and the like. Their wavelength tuning principle is mainly achieved by changing the refractive index of the grating reflection region, and then changing the Bragg wavelength.
  • the maximum wavelength tuning range is limited by the maximum variation range of the refractive index of the grating region. At present, the maximum tuning range that such lasers can achieve by current injection is 10 nm. Within the cavity of this type of laser there is a grating for frequency selection and tuning.
  • Another type of coupling cavity or non-matching grating changes the relationship between wavelength variation and carrier concentration variation, greatly extending the tuning range.
  • vertical coupling filter type, super structure grating DBR, Y cavity laser, etc. their tuning range can reach tens to 100 nanometers.
  • the corresponding speed of other lasers is extremely short, far d, the corresponding speed of the projection system.
  • the wavelength of the laser emission wavelength is extremely narrow, the wavelength is in a small range. Tuning basically has no effect on the emission intensity, or even minor fluctuations will not affect the final viewing.
  • the basic principle of wavelength adjustment is that the refractive index of the semiconductor material changes with the difference in carrier concentration (current is different). There are three factors that change the refractive index with current concentration: 1.
  • the band filling effect that is, as the injected carriers increase, the Fermi level (Ef) of the conduction band and the valence band move to the high energy direction, which is equivalent to The band gap width is increased;
  • a multi-electrode DBR-LD tunable semiconductor laser As an example, its structure is generally divided into three regions: a gain region, a phase shift region, and a mode selection grating.
  • the Bragg distribution feedback grating selects a single longitudinal mode, and the gain region is used to adjust the output power.
  • the wavelength tuning range can be expressed by the following formula:
  • is the grating period, which is the effective refractive index change of the grating region
  • is the mode limiting factor
  • is the refractive index change caused by the unit carrier concentration
  • is the radiation composite coefficient
  • is the injection current density
  • the wavelength tuning range is also related to the composition of the waveguide layer. The closer the wavelength ⁇ of the component is to the lasing wavelength, the larger the tuning range.
  • the semiconductor materials of the red region are: GaAlAs/GaAs, InGaP/GaAsP, InGaAlP.
  • the laser in the green band is more difficult to obtain.
  • the methods for generating the green laser are as follows: 1. Using the frequency-doping of the Nd-doped laser, this is the most commonly used method for obtaining a green laser. The efficiency of such a laser is still Low, bulky, expensive, temperature sensitive, and therefore not suitable for widespread deployment in high volume applications; 2. InGaN semiconductor lasers on non-polarized and semi-polarized GaN substrates, currently such lasers can be continuous The output wavelength is extended to a green light region of 520 ⁇ 525 nm; 3.
  • VECSEL vertical external-cavity surface-emitting laser
  • VECSEL vertical external-cavity surface-emitting laser
  • the display light source further includes: a monitoring module, the monitoring module is connected to the corresponding single primary color laser for detecting a peak wavelength of the laser light emitted by the single primary color laser, and the monitoring module feeds back the peak wavelength of the first laser or the second laser Give the controller to adjust the current output of the laser driver module.
  • the monitoring module detects whether the peak wavelength of the first laser or the second laser emitted by the single primary laser meets the peak wavelength required for the image to be displayed, and feeds back to the controller the bias current signal of the laser, and then passes the laser.
  • the driver adjusts the drive current to control the peak wavelength of the laser emitted by the single primary laser.
  • the display light source further includes: an automatic control module, wherein the monitoring module feeds back a peak wavelength of the first laser or the second laser to the controller through the automatic control module to adjust the laser driving module Current output.
  • the display light source is further provided with a protection circuit, and the protection circuit is connected with the laser driving module for protecting the laser driving module, and providing corresponding horse area electrokinetic power for the single primary color laser;
  • the display light source further includes: a coupler 104, wherein the single primary color laser is connected to the coupler 104 through a corresponding optical fiber 106, respectively, for using the first laser or the second laser emitted at the same time.
  • a laser beam is synthesized via the coupler 104 and coupled to the display module via an optical fiber 106 for the display device to display an image.
  • the input light 1, the input light 2, and the input light 3 are respectively input to the coupler 104 through three different optical fibers 106, and then synthesized by the coupler 104, and output through an optical fiber 106.
  • the coupler 104 is generally a wavelength division multiplexer.
  • the input light 1, the input light 2, the input light 3 (that is, the laser light emitted by each single primary color laser) have a narrow band spectrum characteristic, and the first frame picture and the second frame picture formed by the laser light emitted in the adjacent time period The corresponding spectra do not overlap or overlap very little, and crosstalk is not easily generated.
  • the display device in this embodiment may be a rear projection system.
  • the display light source further includes: a projection module 105 , wherein the projection module 105 passes through an optical fiber 106 and the coupler
  • the 104 connection is configured to process a laser beam outputted through the coupler 104 and project a corresponding picture. That is, the screen to be displayed is projected onto a screen by the projection module 105, and the light is reflected into the eyes of the user, which can be applied to the projection apparatus.
  • the display device in the embodiment may be a rear projection display device, similar to the principle of FIG. 1 described above, except that the laser light from the coupler 104 is directly directed to the display device of the display device via the projection device. At this point, you can view the corresponding video screen.
  • the display device in this embodiment may be a liquid crystal display device, and the display light source is a backlight module in the liquid crystal display device. Further preferably, the display light source further includes: at least one scattering bar 107 and a light guide plate 109, the scattering rod 107 is connected to the coupler 104 via an optical fiber 106 for diffusing laser light from the coupler 104 and forming a surface light source through the light guide plate 109.
  • the scattering rod 107 When the scattering rod 107 is one, the scattering rod 107 can be disposed at the side of the light-emitting surface of the light guide plate 109, which is equivalent to the side-in type backlight module; when the scattering rod 107 is plural, this All the scattering rods 107 can be connected together on the side facing away from the light-emitting surface of the light guide plate 109, which is equivalent to the direct-lit backlight module.
  • the light source improves the utilization of light, which in turn makes the display device display better. As shown in FIG.
  • the scattering rod 107 comprises: a scattering rod cavity, and scattering particles 112 disposed in the scattering rod cavity, and is disposed at one end of the scattering rod cavity for
  • the optical fiber 106 is connected to the interface 108, and the other end thereof is provided with a reflective sheet 113.
  • the side of the scattering cavity facing away from the light guide plate 109 is wrapped by the reflector 110, and the reflective sheet 113 cooperates with the reflector 110 for The laser light is reflected onto the light guide plate 109.
  • the scattering particles 112 in the scattering rod cavity scatter light, and the scattering lamp cover half-wrapped the scattering rod cavity and cooperates with the reflection sheet 113 disposed at one end of the scattering rod 107 opposite to the optical fiber 106 interface 108.
  • the light is reflected off the scattering rod 107 and disposed on the side of the light guide plate 109.
  • the scattering particles 112 are acrylic particles, and may of course be other materials having scattering ability.
  • the display light source structure is not unique.
  • the display light source is a laser light source array 114
  • the laser light source array 114 includes a red laser light source 117, green.
  • the laser light source 118, the blue laser light source 119, and the red laser light source 117, the green laser light source 118, and the blue laser light source 119 each include at least one laser light.
  • a diffusing plate 115 is disposed above the laser light source array 114 for diffusing light from the laser light source array 114, so that the transmitted light is diffused, increasing the light-emitting angle, and passing through the diffusing plate 115 and the optical film.
  • Sheet 116 emits light.
  • the laser array is used as a display light source, which is similar to the position of the scattering rod 107, and can be disposed on a side of the light guide plate 109 facing away from the light emitting surface, that is, a direct type display light source, and can be disposed on the light guide plate 109.
  • a direct type display light source that is, a direct type display light source
  • the red laser light source 117, the green laser light source 118, and the blue laser light source 119 are both wavelength tunable, and the wavelength adjustment can be realized by current adjustment.
  • the implementation manner is the above embodiment. The method described is not described here. Of course, it is not limited to the red laser source 117, the green laser source 118, the blue laser source 119, or the laser source of other colors, as long as the wavelength is tunable.
  • both the rear projection display device and the display light source of the liquid crystal display device are compact in structure and low in cost. While an exemplary embodiment is employed, the invention is not limited thereto. Various modifications and improvements can be made by those skilled in the art without departing from the spirit and scope of the invention. These modifications and improvements are also considered to be within the scope of the invention.

Landscapes

  • Engineering & Computer Science (AREA)
  • Multimedia (AREA)
  • Signal Processing (AREA)
  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Projection Apparatus (AREA)
  • Semiconductor Lasers (AREA)

Abstract

一种显示装置,属于显示技术领域,其可解决现有的采用光谱分离的3D显示装置的体积较大,成本较高的问题。该显示装置包括:显示光源,所述显示光源包括至少一个波长可调谐的单基色激光器(101,102,103),在显示每幅3D画面时,所述单基色激光器(101,102,103)至少能够在第一时刻发射第一激光,并且在第二时刻发射第二激光,且所述第一激光与所述第二激光的峰值波长不同,其中,所述第一时刻与所述第二时刻连续,所述第一激光用于显示第一帧画面,所述第二激光用于显示第二帧画面。

Description

一种显示装置
技术领域
本发明属于显示技术领域, 具体涉及一种显示装置。 背景技术
光谱分离技术是目前较为先进的一种立体显示技术, 具体体 现在 3D显示装置中。
其中, 3D显示装置包括: 显示光源, 所述显示光源釆用光谱 分离的两组或多组激光光源, 且各组激光光源所发射的同色激光 的峰值波长不同。 以釆用两组激光光源为例, 具体的说, 每组激 光光源包括三个单基色激光器, 即红光激光器、 蓝光激光器、 绿 光激光器, 且所述两组激光光源中两个同色的单基色激光器所发 射的激光的峰值波长不同。 此时, 由两个红光激光器发射出来的 红光分别为红色激光 1和红色激光 2,由两个绿光激光器发射出来 的绿光分别为绿色激光 1和绿色激光 2,由两个蓝光激光器发射出 来的蓝光分别为蓝色激光 1和蓝色激光 2,两组激光光源之间没有 光谱重叠, 红色激光 1、绿色激光 1和蓝色激光 1组成的图像进入 人的一只眼睛, 红色激光 2、绿色激光 2和蓝色激光 2组成的图像 进入人的另外一只眼睛, 由此形成立体图像。 对光谱分离后得到 的红光激光、 绿光激光和蓝光激光进行接收的设备是窄带滤光眼 镜。 光谱分离立体成像技术与传统的立体成像技术最大的区别在 于它釆用光谱分离的方法实现左右眼立体像的高度分离, 根据不 同颜色光的波长不同将图像进行分离, 没有任何的信号转换处理 过程, 因此也被称为被动立体成像。 相对于传统的立体成像显示, 光谱分离显示技术具有以下优点: 1. 左右立体像对被严格滤波和 高度分离, 戴上眼镜观看立体图像时无重影现象; 2. 图象质量好, 无闪烁, 舒适性好, 持久观看无头晕现象; 3. 眼镜不需要配备电 源和复杂的电路, 眼镜轻便, 因此舒适感更好; 4. 不需信号同步 发射器, 头部可随意移动, 配戴者互相之间不会产生干扰, 可满 足大量观众场合应用。
发明人发现现有技术中至少存在如下问题: 产生一组激光光 源需要一组单基色激光器,以上述实现立体显示的 3D显示装置为 例, 简单地说, 两组激光光源, 发射六束单基色激光器 (即, 红 色激光 1和红色激光 2, 绿色激光 1和绿色激光 2, 蓝色激光 1和 蓝色激光 2 ), 需要六个单基色激光器, 也就说一个单基色激光器 对应发射一种峰值波长的激光。 进而导致 3D显示装置体积庞大、 成本较高。 发明内容
本发明所要解决的技术问题包括, 针对现有的 3D 显示装置 的问题, 提供一种结构紧凑, 成本相对较低的显示装置。
解决本发明技术问题所釆用的技术方案是一种显示装置, 其 包括: 显示光源, 所述显示光源包括至少一个波长可调谐的单基 色激光器, 在显示每幅 3D画面时, 所述单基色激光器至少能够在 第一时刻发射第一激光, 并且在第二时刻发射第二激光, 且所述 第一激光与所述第二激光的峰值波长不同, 其中, 所述第一时刻 与所述第二时刻连续, 所述第一激光用于显示第一帧画面, 所述 第二激光用于显示第二帧画面。
本发明的显示装置中的单基色激光器可以在第一时刻发射第 一激光, 在第二时刻发射第二激光, 且第一激光与第二激光的峰 值波长不同, 故其与现有的需要两个单基色激光器在两个相邻时 刻发射两种峰值波长的同色激光的显示光源相比, 本实施例的显 示装置的结构更加紧凑, 同时降低了生产成本。
优选的是, 所述显示光源包括三个波长可调谐的单基色激光 器, 所述单色激光器分别为红色激光器、 绿色激光器和蓝色激光 器中的任一种,
所述第一激光包括第一红色激光、 第一绿色激光和第一蓝色 激光, 其中在所述第一时刻, 所述红色激光器发射第一红色激光, 所述绿色激光器发射第一绿色激光, 所述蓝色激光器发射第一蓝 色激光;
所述第二激光包括第二红色激光、 第二绿色激光和第二蓝色 激光, 其中在所述第二时刻, 所述红色激光器发射第二红色激光, 所述绿色激光器发射第二绿色激光, 所述蓝色激光器发射第二蓝 色激光。
优选的是, 所述显示光源还包括: 信号发生模块、 激光器驱 动模块、 控制器,
所述控制器控制所述信号发生模块产生不同的电流信号, 所 述信号发生模块将所述不同的电流信号提供给所述激光器驱动模 块, 所述激光器驱动模块根据接收到的不同的电流信号产生不同 的驱动电流, 用于驱动相应的所述单基色激光器发射所述第一激 光或所述第二激光。
进一步优选的是, 所述显示光源还包括: 监控模块, 所述监控模块与对应的所单基色激光器连接, 用于检测所述 单基色激光器所发射的激光的峰值波长, 所述监控模块将所述第 一激光或第二激光的峰值波长反馈给控制器, 以调节激光器驱动 模块的电流输出。
更进一步优选的是, 所述显示光源还包括: 自动控制模块, 所述监控模块通过所述自动控制模块将所述第一激光或第二 激光的峰值波长反馈给控制器, 以调节激光器驱动模块的电流输 出。
优选的是, 所述显示光源还包括: 耦合器,
所述单基色激光器分别通过光纤与所述耦合器连接, 用于将 同一时刻所发射的第一激光或第二激光经由所述耦合器釆用同一 传播路径传递至显示模块, 以便所述显示装置显示图像。
进一步优选的是, 所述显示光源还包括: 投影模块, 所述投影模块设置在所述耦合器和所述显示模块之间, 用于 对经由所述耦合器输出的激光进行处理, 并投影在所述显示模块 上, 以显示 目应画面。
进一步优选的是, 所述显示光源还包括: 至少一个散射棒和 导光板,
所述散射棒用于将来自耦合器的激光进行扩散, 并通过导光 板形成面光源。
更进一步优选的是所述显示光源还包括反射灯罩, 所述散射 棒包括: 散射棒腔体, 以及设置在散射棒腔体内的散射粒子, 在 所述散射棒腔体的一端设置有激光入口, 其另一端上设置有反射 片, 所述反射灯罩设置在所述散射棒腔体背离导光板的一侧, 所 述反射片与所述发射灯罩配合将激光反射到导光板上。
优选的是, 所述显示光源为激光灯源阵列,
所述激光灯源阵列包括间隔设置的红色激光灯源、 绿色激光 灯源、 蓝色激光灯源, 且所述红色激光灯源、 绿色激光灯源、 蓝 色激光灯源均至少包括一个激光灯。 附图说明
图 1为本发明的实施例 1的背投式显示装置的示意图; 图 2为本发明的实施例 1的液晶显示装置的示意图; 图 3为本发明的实施例 1的激光输出的原理图;
图 4为本发明的实施例 1的耦合器的示意图;
图 5为本发明的实施例 1的一种显示光源的结构图; 图 6为本发明的实施例 1的图 5的截面图;
图 7为本发明的实施例 1的散射棒的结构图;
图 8为本发明的实施例 1的另一种显示光源的结构图; 图 9为本发明的实施例 1的激光灯源阵列的示意图。 其中附图标记为: 101、 红色激光器; 102、 绿色激光器; 103、 蓝色激光器; 104、 耦合器; 105、 投影模块; 106、 光纤; 107、 散射棒; 108、 接口; 109、 导光板; 110、 反射灯罩; 111、 散射 棒腔体; 112、散射粒子; 113、反射片; 114、 LED灯源阵列; 115、 扩散板; 116、 光学膜片; 117、 红色激光灯源; 118、 绿色激光灯 源; 119、 蓝色激光灯源。 具体实施方式
为使本领域技术人员更好地理解本发明的技术方案, 下面结 合附图和具体实施方式对本发明作进一步详细描述。 实施例 1 :
如图 1至 9所示, 本实施例提供一种显示装置, 其包括: 显 示光源, 所述显示光源包括至少一个波长可调谐的单基色激光器, 在显示每幅 3D画面时,所述单基色激光器至少能够在第一时刻发 射第一激光, 并且在第二时刻发射第二激光, 且所述第一激光与 所述第二激光的峰值波长不同, 其中, 所述第一时刻与所述第二 时刻连续, 所述第一激光用于显示第一帧画面, 所述第二激光用 于显示第二帧画面。
本实施例中的显示光源的单基色激光器能够在第一时刻发射 第一激光, 在第二时刻发射第二激光, 也就是说一个单基色激光 器可以在两个相邻时刻发射两种峰值波长的同色激光, 与现有的 需要两个单基色激光器在两个相邻时刻发射两种峰值波长的同色 激光的显示光源相比, 本实施例的显示装置的结构更加紧凑, 同 时降低了生产成本。
需要说明的是, 本实施例所提供的显示装置在实现 3D 显示 时需要配合相应的窄带滤光眼镜观看, 所述窄带滤光眼镜的镜片 是一种对特定波长具有带通功能的滤光片, 优选是对红绿蓝三色 具有带通功能的滤波片, 尤其是对红、 绿、 蓝三色的特定波段的 光谱具有窄带带通功能的滤波片, 通常由陷波滤波片构成。 配合 上述的窄带滤光眼镜才可以观看到 3D画面。
优选地, 本实施例的显示光源包括三个波长可调谐的单基色 激光器, 所述三个单基色激光器包括红色激光器 101、绿色激光器 102和蓝色激光器 103, 在第一时刻, 所述红色激光器 101发射第 一红色激光, 所述绿色激光器 102发射第一绿色激光, 所述蓝色 激光器 103发射第一蓝色激光, 且第一红色激光、 第一绿色激光、 第一蓝色激光用于显示第一帧画面; 在所述第二时刻, 所述红色 激光器 101发射第二红色激光, 所述绿色激光器 102发射第二绿 色激光, 所述蓝色激光器 103发射第二蓝色激光, 且第二红色激 光、 第二绿色激光、 第二蓝色激光用于显示第二帧画面。 第一帧 画面与第二帧画面分别进入观看者的左眼和右眼, 形成三维画面。
当然也可以是显示光源中的红色激光器 101、 绿色激光器 102、 蓝色激光器 103中任意一个或者任意两个为波长可调谐的单 基色激光器。 此时, 显示装置的结构均比现有的 3D显示装置的结 构紧凑, 成本低。
通常釆用电流调节来改变单基色激光器所发射激光的峰值波 长。 本实施例中优选地, 所述显示光源还包括: 信号发生模块、 激光器驱动模块、 控制器, 所述控制器控制所述信号发生模块产 生不同的电流信号, 所述信号发生模块将所述不同的电流信号提 供给所述激光器驱动模块, 所述激光器驱动模块根据接收到的不 同的电流信号产生不同的驱动电流, 用于驱动相应的所述单基色 激光器发射所述第一激光或所述第二激光。 也就说根据不同的驱 动电流, 进而发射出不同峰值波长的激光。
如图 1和 2所示, 具体地说, 显示光源包括波长可调谐的红 色激光器 101、 绿色激光器 102、 蓝色激光器 103, 在所述第一时 刻, 所述红色激光器 101发射第一红色激光, 所述绿色激光器 102 发射第一绿色激光, 所述蓝色激光器 103发射第一蓝色激光, 且 第一红色激光、 第一绿色激光、 第一蓝色激光用于显示第一帧画 面; 在所述第二时刻, 所述红色激光器 101发射第二红色激光, 所述绿色激光器 102发射第二绿色激光, 所述蓝色激光器 103发 射第二蓝色激光, 且第二红色激光、 第二绿色激光、 第二蓝色激 光用于显示第二帧画面。 第一帧画面与第二帧画面是同一画面的 不同角度的拍摄结果, 通过窄带滤光眼镜分别进入观看者的左眼 和右眼, 所以形成三维画面。 下面具体说明经单基色激光器发射的激光的峰值波长可调谐 的原理。 一般来说, 半导体材料具有极宽的增益带宽, 例如对于
InGaAsP/InP材料来说带宽为 50 nm, 对于量子阱材料来说是 250 nm, 所以理论上, 半导体激光可以在这个范围内调节。 半导体材 料的折射率和最大增益所对应的波长很容易受到温度、 压力、 载 流子浓度和电场强度的变化而变化。 其中, 依靠改变载流子浓度 是进行波长调谐最常用的方法。 单片可调谐半导体激光器有两种 结构, 一种是以布拉格反射光栅为基础, 例如多波段 DBR, 多电 极 DFB等。 它们的波长调谐原理主要依靠改变光栅反射区的折射 率, 进而改变布拉格波长来实现, 最大波长调谐范围受制于光栅 区折射率的最大变化范围。 目前此类激光器依靠电流注入可达的 最大调谐范围是 10nm。 在这类激光器的腔内有一个用于选频并进 行调谐的光栅。
另外一种釆用耦合腔或者非匹配光栅, 这改变了波长变化和 载流子浓度变化之间的关系, 大大扩展了调谐范围。 例如垂直耦 合滤波型, 超结构光栅 DBR, Y型腔激光器等, 它们的调谐范围 可以达到几十至一百纳米。
以下是几种可调谐半导体激光器的性能:
Figure imgf000009_0001
从表中可以看出, 除了集成 DFB的调谐速度为几 ms,其他激 光器的相应速度都极短, 远远 d、于投影系统的相应速度。
另外, 由于激光器发射波长线宽极窄, 所以波长在小范围内 调谐基本上对发射强度没有影响, 或者说即使有微小的波动也不 会对最终的观看造成影响。
波长调节的基本原理是随着载流子浓度的不同 (电流不同), 半导体材料的折射率会发生变化。 折射率随电流浓度变化的因素 有三个: 1.能带填充效应, 即随着注入载流子的增加, 导带与价带 的费米能级 (Ef ) 各自向高能方向移动, 等效于带隙宽度增加;
2.能带收缩效应, 它与能带填充效应所产生的结果相反; 3.等离子 效应。 这三个影响因素中以第一个的影响为最大。
以多电极 DBR-LD可调谐半导体激光器为例, 其结构一般分 为三个区域: 即增益区、 相移区和选模光栅。 相移区的作用是使 谐振波长 与布拉格波长 一致,即满足相位条件 Φ1 = Φ2 + 2 π«, 其中 Φ1是光栅区的相位变化, Φ2是增益区和相移区的相位变化。 布拉格分布反馈光栅选出单纵模, 增益区用于调节输出功率。 对 于可调谐 DBR-LD激光器来说, 波长调谐范围可以用以下公式表 示:
Αλ = 2MSnR ef = 2ΛΓ· (Jd I eBtf2
R'ef dN d 其中 Λ是光栅周期, 是光栅区有效折射率变化, Γ是模式 限制因子, ^是单位载流子浓度引起的折射率改变, β是辐射 复合系数, ^是注入电流密度。
由以上公式可见, 较大的 Γ, 即较厚的波导层对应较大的调 谐范围, 随注入电流的增加而变大, 但是过大的电流注入产生 的热效应会影响器件的工作, 所以注入电流不应过大。
此外, 波长调谐范围还和波导层的组分有关, 当该组分对应 的波长 ^越接近激射波长时, 调谐范围越大。
红光区的半导体材料有: GaAlAs/GaAs、 InGaP/GaAsP、 InGaAlP。
蓝光半导体材料有三种: SiC、 以 GaN为代表的氮化物和宽 带隙的 II-IV族半导体。 目前绿光波段的激光比较难获得, 目前可以产生绿光激光的 方法有: 1、 利用掺 Nd类激光器倍频得到, 这是目前获得绿光激 光器最常用的方法, 此类激光器的效率仍然过低, 而且体积笨重、 价格昂贵、 对温度非常敏感, 因此并不适合在大批量应用中广泛 部署; 2、 非极化和半极化 GaN基底上的 InGaN半导体激光器, 目前这类激光器可以将连续输出波长拓展到 520~525 nm的绿光区 域; 3、 VECSEL ( vertical external-cavity surface-emitting laser)激 光器, 此方法因为结合了半导体激光器和腔外倍频方法的便利性, 使得绿光激光器更加紧凑和小型化; 4、 直接利用近红外的半导体 激光器模块加上单次通过的倍频晶体组合得到绿光输出, 该方法 在成本上更加低廉, 且集成程度最高, 这种激光器模块长度仅为 3.6 mm。 以上介绍的方法 1和 4利用倍频原理得到的绿光激光器 并不容易进行波长调谐。
如图 3所示, 由于单基色激光器发射的激光的波长会发生漂 移, 且单基色激光器本身的输出功率也会有变化, 为了使得单基 色激光器所发射的激光稳定, 所述显示光源还包括: 监控模块, 所述监控模块与对应的所单基色激光器连接, 用于检测所述单基 色激光器所发射的激光的峰值波长, 所述监控模块将所述第一激 光或第二激光的峰值波长反馈给控制器, 以调节激光器驱动模块 的电流输出。 也就是说通过监控模块检测单基色激光器所发射的 第一激光或第二激光的峰值波长是否符合将要显示的图像所需要 的峰值波长, 反馈给控制器该激光的偏置电流信号, 再通过激光 驱动器调节驱动电流, 以控制单基色激光器所发射激光的峰值波 长。
更进一步优选地, 所述显示光源还包括: 自动控制模块, 所 述监控模块通过所述自动控制模块将所述第一激光或第二激光的 峰值波长反馈给控制器, 以调节激光器驱动模块的电流输出。 当 然该显示光源中还设有保护电路, 所述保护电路与激光器驱动模 块连接, 用于保护激光器驱动模块, 为单基色激光器提供相应的 马区动电;克。 优选地, 所述显示光源还包括: 耦合器 104, 所述单基色激 光器分别通过与各自对应的光纤 106与所述耦合器 104连接, 用 于将同一时刻所发射的第一激光或第二激光经由所述耦合器 104 合成一束激光, 再通过一光纤 106与显示模块连接, 以便所述显 示装置显示图像。 简单地说, 如图 4所示, 输入光 1、 输入光 2、 输入光 3分别通过三个不同的光纤 106输入到耦合器 104,再经过 耦合器 104合成处理后, 通过一根光纤 106输出光。 其中, 耦合 器 104—般为波分复用器。 且输入光 1、 输入光 2、 输入光 3 (也 就是各个单基色激光器所发射的激光) 具有窄带光谱的特性, 由 相邻时间段所发射的激光形成的第一帧画面与第二帧画面所对应 的光谱并没有重叠或者重叠很少, 并且不容易产生串扰。
如图 1所示,本实施例中的显示装置可以为一背投投影系统, 进一步优选地, 所述显示光源还包括: 投影模块 105, 所述投影模 块 105通过一光纤 106与所述耦合器 104连接, 用于对经由所述 耦合器 104输出的一束激光进行处理, 并投影显示相应画面。 也 就是说通过投影模块 105将要显示的画面投影到一个荧幕上, 将 光反射到使用者的眼睛中, 其可应用于投影设备中。
如图 2所示, 实施例中的显示装置可以为一背投式显示装置, 与上述中的图 1原理相似, 区别在于来自耦合器 104的激光, 经 投影设备直接射向显示装置的显示屏, 此时即可观看到相应的视 频画面。
如图 6所示,本实施例中的显示装置可以为一液晶显示装置, 所述显示光源也就是液晶显示装置中的背光模组, 进一步优选地, 所述显示光源还包括: 至少一个散射棒 107和导光板 109, 所述散 射棒 107通过一光纤 106与所述耦合器 104连接, 用于将来自耦 合器 104的激光进行扩散, 并通过导光板 109形成面光源。 当散 射棒 107为一个时, 此时该散射棒 107可以设于导光板 109的出 光面的侧边处, 也就相当于侧入式的背光模组; 当散射棒 107 为 多个时, 此时所有散射棒 107可以连接在一起设置于背离导光板 109出光面的一侧, 也就相当于直下式的背光模组, 本实例中的显 示光源提高了光的利用率, 进而使得显示装置显示效果更好。 如图 7所示, 其中, 更进一步优选地, 所述散射棒 107包括: 散射棒腔体, 以及设置在散射棒腔体内的散射粒子 112, 在所述散 射棒腔体的一端设置有用于与光纤 106连接的接口 108,其另一端 上设置有反射片 113,所述散射腔体背离导光板 109的一侧由反射 灯罩 110包裹, 所述反射片 113与所述反射灯罩 110配合用于将 激光反射到导光板 109上。 具体地说, 散射棒腔体中的散射粒子 112将光散射开, 由于散射灯罩将散射棒腔体半包裹, 并与设置于 散射棒 107与光纤 106接口 108相对的一端的反射片 113相配合, 将光反射出散射棒 107, 并设于导光板 109—侧, 其中, 所述散射 粒子 112为亚克力粒子, 当然也可以是其他具有散射能力的物质。
如图 8和 9所示, 当然作为显示光源结构也不是唯一的, 其 中优选地, 所述显示光源为激光灯源阵列 114, 所述激光灯源阵列 114包括间隔设置红色激光灯源 117、 绿色激光灯源 118、 蓝色激 光灯源 119, 且所述红色激光灯源 117、 绿色激光灯源 118、 蓝色 激光灯源 119均至少包括一个激光灯。 在激光灯源阵列 114上方 还设置有扩散板 115, 用于将来自激光灯源阵列 114的光扩散开, 可以使得透过的光线均勾扩散,增加发光角度,并通过扩散板 115、 光学膜片 116将光射出。 所述激光阵列作为显示光源, 其与上述 散射棒 107的设置位置相似, 其可以设置于导光板 109背离出光 面的一侧, 也就是直下式的显示光源, 可以设置于相对于导光板 109的出光面而言的侧边上。 需要说明的是, 红色激光灯源 117、 绿色激光灯源 118、蓝色激光灯源 119都是波长可调谐的, 也可以 通过电流调节来实现对波长的调节, 该实现方式为上述实施例中 所描述的方法, 在此不——赘述。 当然也不局限于红色激光灯源 117、 绿色激光灯源 118、 蓝色激光灯源 119, 也可以是其他颜色 的激光灯源, 只要波长可调谐即可。
在本实施例中无论是背投式显示装置还是液晶显示装置的显 示光源, 均结构紧凑, 成本较低。 而釆用的示例性实施方式, 然而本发明并不局限于此。 对于本领 域内的普通技术人员而言, 在不脱离本发明的精神和实质的情况 下, 可以做出各种变型和改进, 这些变型和改进也视为本发明的 保护范围。

Claims

1. 一种显示装置, 其包括: 显示光源, 其特征在于, 所述显 示光源包括至少一个波长可调谐的单基色激光器,
在显示每幅 3D 画面时, 所述单基色激光器至少能够在第一 时刻发射第一激光, 并且在第二时刻发射第二激光, 且所述第一 激光与所述第二激光的峰值波长不同, 其中, 所述第一时刻与所 述第二时刻连续, 所述第一激光用于显示第一帧画面, 所述第二 激光用于显示第二帧画面。
2. 根据权利要求 1所述的显示装置, 其特征在于, 所述显示 光源包括三个波长可调谐的单基色激光器, 所述单基色激光器分 别为红色激光器、 绿色激光器和蓝色激光器中的任一种,
所述第一激光包括第一红色激光、 第一绿色激光和第一蓝色 激光, 其中在所述第一时刻, 所述红色激光器发射第一红色激光, 所述绿色激光器发射第一绿色激光, 所述蓝色激光器发射第一蓝 色激光;
所述第二激光包括第二红色激光、 第二绿色激光和第二蓝色 激光, 其中在所述第二时刻, 所述红色激光器发射第二红色激光, 所述绿色激光器发射第二绿色激光, 所述蓝色激光器发射第二蓝 色激光。
3. 根据权利要求 1所述的显示装置, 其特征在于, 所述显示 光源还包括: 信号发生模块、 激光器驱动模块、 控制器,
所述控制器控制所述信号发生模块产生不同的电流信号, 所 述信号发生模块将所述不同的电流信号提供给所述激光器驱动模 块, 所述激光器驱动模块根据接收到的不同的电流信号产生不同 的驱动电流, 用于驱动相应的单基色激光器发射所述第一激光或 所述第二激光。
4. 根据权利要求 3所述的显示装置, 其特征在于, 所述显示 光源还包括: 监控模块,
所述监控模块与对应的所述单基色激光器连接, 用于检测所 述单基色激光器所发射的激光的峰值波长, 所述监控模块将所述 第一激光或第二激光的峰值波长反馈给控制器, 以调节激光器驱 动模块的电流输出。
5. 根据权利要求 4所述的显示装置, 其特征在于, 所述显示 光源还包括: 自动控制模块,
所述监控模块通过所述自动控制模块将所述第一激光或第二 激光的峰值波长反馈给控制器, 以调节激光器驱动模块的电流输 出。
6. 根据权利要求 1~5中任意一项所述的显示装置, 其特征在 于, 所述显示光源还包括: 耦合器,
所述单基色激光器分别通过光纤与所述耦合器连接, 用于将 同一时刻所发射的第一激光或第二激光经由所述耦合器釆用同一 传播路径传递至显示模块, 以便所述显示装置显示图像。
7. 根据权利要求 6所述的显示装置, 其特征在于, 所述显示 光源还包括: 投影模块,
所述投影模块设置在所述耦合器和所述显示模块之间, 用于 对经由所述耦合器输出的激光进行处理, 并投影在所述显示模块 上, 以显示 目应画面。
8. 根据权利要求 6所述的显示装置, 其特征在于, 所述显示 光源还包括: 至少一个散射棒和导光板,
所述散射棒用于将来自耦合器的激光进行扩散, 并通过导光 板形成面光源。
9. 根据权利要求 8所述的显示装置, 其特征在于, 所述显示 光源还包括反射灯罩, 所述散射棒包括: 散射棒腔体, 以及设置 在散射棒腔体内的散射粒子, 在所述散射棒腔体的一端设置有激 光入口, 其另一端上设置有反射片, 所述反射灯罩设置在所述散 射棒腔体背离导光板的一侧, 所述反射片与所述发射灯罩配合将 激光反射到导光板上。
10. 根据权利要求 1~5 中任意一项所述的显示装置, 其特征 在于, 所述显示光源为激光灯源阵列,
所述激光灯源阵列包括间隔设置红色激光灯源、 绿色激光灯 源、 蓝色激光灯源, 且所述红色激光灯源、 绿色激光灯源、 蓝色 激光灯源均至少包括一个激光灯。
PCT/CN2014/078926 2013-12-20 2014-05-30 一种显示装置 WO2015090009A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US14/426,004 US9900589B2 (en) 2013-12-20 2014-05-30 Display device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201310718373.8 2013-12-20
CN201310718373.8A CN103716614B (zh) 2013-12-20 2013-12-20 一种显示装置

Publications (1)

Publication Number Publication Date
WO2015090009A1 true WO2015090009A1 (zh) 2015-06-25

Family

ID=50409131

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2014/078926 WO2015090009A1 (zh) 2013-12-20 2014-05-30 一种显示装置

Country Status (3)

Country Link
US (1) US9900589B2 (zh)
CN (1) CN103716614B (zh)
WO (1) WO2015090009A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111537009A (zh) * 2020-05-28 2020-08-14 山东省科学院激光研究所 基于光谱分区的抛弃式光纤温度压力传感器及其传感系统

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103716614B (zh) * 2013-12-20 2016-01-13 合肥京东方光电科技有限公司 一种显示装置
CN104052989B (zh) * 2014-05-29 2015-12-02 合肥京东方光电科技有限公司 一种光谱变换装置、立体显示系统
CN104460019B (zh) * 2014-12-11 2017-04-12 合肥鑫晟光电科技有限公司 三维显示设备以及三维显示方法
CN206710751U (zh) * 2017-05-03 2017-12-05 合肥京东方光电科技有限公司 背光源模组和显示装置
CN109143453B (zh) * 2018-09-28 2019-12-24 中国科学院长春光学精密机械与物理研究所 半导体激光背光模组及液晶显示器
CN112118434B (zh) * 2019-06-20 2022-03-25 青岛海信激光显示股份有限公司 激光投影设备

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101795420A (zh) * 2010-04-07 2010-08-04 昆山龙腾光电有限公司 立体图像显示系统及其控制方法
US20110063574A1 (en) * 2009-09-16 2011-03-17 Microvision, Inc. Three-Dimensional Display Using an Invisible Wavelength Light Source
CN201886734U (zh) * 2010-12-17 2011-06-29 成都信息工程学院 可显示三维彩色图文信息的激光光幕装置
US20120105807A1 (en) * 2010-10-30 2012-05-03 David James Volpe Laser projector compatible with wavelength multiplexing passive filter techniques for stereoscopic 3D
CN102478217A (zh) * 2010-11-26 2012-05-30 中强光电股份有限公司 导光板及背光模组
CN102798979A (zh) * 2012-08-15 2012-11-28 京东方科技集团股份有限公司 一种3d显示装置及与其配合使用的眼镜
CN103048794A (zh) * 2012-12-21 2013-04-17 Tcl通力电子(惠州)有限公司 利用激光脉冲投影实现3d显示的方法和系统
CN103716614A (zh) * 2013-12-20 2014-04-09 合肥京东方光电科技有限公司 一种显示装置
CN203645134U (zh) * 2013-12-20 2014-06-11 合肥京东方光电科技有限公司 一种显示装置

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1805229A (zh) * 2005-11-16 2006-07-19 中国科学院武汉物理与数学研究所 微处理器控制的原子分子稳频半导体激光器及稳频方法
US7784938B2 (en) * 2007-05-09 2010-08-31 Dolby Laboratories Licensing Corporation Method and system for shaped glasses and viewing 3D images
US8184238B2 (en) * 2007-09-04 2012-05-22 Panasonic Corporation Planar illumination device and liquid crystal display device using the same
JP5332531B2 (ja) * 2008-11-18 2013-11-06 ソニー株式会社 画像表示装置と画像表示方法および画像表示システム
PL2687019T3 (pl) * 2011-03-14 2019-12-31 Dolby Laboratories Licensing Corporation System projekcji 3d
US10768449B2 (en) * 2012-01-17 2020-09-08 Imax Theatres International Limited Stereoscopic glasses using tilted filters
JP2013156466A (ja) * 2012-01-31 2013-08-15 Funai Electric Advanced Applied Technology Research Institute Inc レーザ走査型プロジェクタおよび立体表示システム
JP2014182192A (ja) * 2013-03-18 2014-09-29 Canon Inc 画像表示装置及びその制御方法

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110063574A1 (en) * 2009-09-16 2011-03-17 Microvision, Inc. Three-Dimensional Display Using an Invisible Wavelength Light Source
CN101795420A (zh) * 2010-04-07 2010-08-04 昆山龙腾光电有限公司 立体图像显示系统及其控制方法
US20120105807A1 (en) * 2010-10-30 2012-05-03 David James Volpe Laser projector compatible with wavelength multiplexing passive filter techniques for stereoscopic 3D
CN102478217A (zh) * 2010-11-26 2012-05-30 中强光电股份有限公司 导光板及背光模组
CN201886734U (zh) * 2010-12-17 2011-06-29 成都信息工程学院 可显示三维彩色图文信息的激光光幕装置
CN102798979A (zh) * 2012-08-15 2012-11-28 京东方科技集团股份有限公司 一种3d显示装置及与其配合使用的眼镜
CN103048794A (zh) * 2012-12-21 2013-04-17 Tcl通力电子(惠州)有限公司 利用激光脉冲投影实现3d显示的方法和系统
CN103716614A (zh) * 2013-12-20 2014-04-09 合肥京东方光电科技有限公司 一种显示装置
CN203645134U (zh) * 2013-12-20 2014-06-11 合肥京东方光电科技有限公司 一种显示装置

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111537009A (zh) * 2020-05-28 2020-08-14 山东省科学院激光研究所 基于光谱分区的抛弃式光纤温度压力传感器及其传感系统

Also Published As

Publication number Publication date
CN103716614A (zh) 2014-04-09
CN103716614B (zh) 2016-01-13
US9900589B2 (en) 2018-02-20
US20160014399A1 (en) 2016-01-14

Similar Documents

Publication Publication Date Title
WO2015090009A1 (zh) 一种显示装置
US10495808B2 (en) Backlight unit and method of lighiting backlight unit
US10614767B2 (en) Multi-primary backlight for multi-functional active-matrix liquid crystal displays
US7600893B2 (en) Display apparatus, method and light source
TWI569086B (zh) 用於照明投影機系統之紅綠藍雷射光源
JP2012230414A (ja) 帯域幅強調によるスペックル低減のためのシステム及び方法
JP2014516218A (ja) 4色3dlcd装置
US20120224147A1 (en) Light emitting element and projection display device provided with same
DE112010002177T5 (de) Laserbasiertes anzeigeverfahren und system
US20100265167A1 (en) Light emitting apparatus and display apparatus using light emitting apparatus
US9158122B2 (en) Light source module for stereoscopic display, imaging device for stereoscopic display and stereoscopic display system
CN203645134U (zh) 一种显示装置
US8630043B2 (en) Color light combiner
US20150309400A1 (en) Light source module and image projection device
US20130229448A1 (en) Display device for displaying stereoscopic images
JP2018078252A (ja) 発光装置および表示装置
JP2010169723A (ja) プロジェクター
JP2022101223A (ja) 半導体レーザ装置および光学機器装置
WO2023002689A1 (ja) 光源装置および電子機器
JP2007335183A (ja) 照明装置及びプロジェクタ

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 14426004

Country of ref document: US

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14872173

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 01/12/2016)

122 Ep: pct application non-entry in european phase

Ref document number: 14872173

Country of ref document: EP

Kind code of ref document: A1