WO2015089883A1 - 一种显示器 - Google Patents

一种显示器 Download PDF

Info

Publication number
WO2015089883A1
WO2015089883A1 PCT/CN2013/091087 CN2013091087W WO2015089883A1 WO 2015089883 A1 WO2015089883 A1 WO 2015089883A1 CN 2013091087 W CN2013091087 W CN 2013091087W WO 2015089883 A1 WO2015089883 A1 WO 2015089883A1
Authority
WO
WIPO (PCT)
Prior art keywords
polarization
polarizing plate
display
liquid crystal
polarizer
Prior art date
Application number
PCT/CN2013/091087
Other languages
English (en)
French (fr)
Inventor
方斌
陈剑鸿
杨智名
Original Assignee
深圳市华星光电技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市华星光电技术有限公司 filed Critical 深圳市华星光电技术有限公司
Priority to US14/238,734 priority Critical patent/US9432660B2/en
Publication of WO2015089883A1 publication Critical patent/WO2015089883A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N13/00Stereoscopic video systems; Multi-view video systems; Details thereof
    • H04N13/30Image reproducers
    • H04N13/356Image reproducers having separate monoscopic and stereoscopic modes
    • H04N13/359Switching between monoscopic and stereoscopic modes
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B30/00Optical systems or apparatus for producing three-dimensional [3D] effects, e.g. stereoscopic images
    • G02B30/20Optical systems or apparatus for producing three-dimensional [3D] effects, e.g. stereoscopic images by providing first and second parallax images to an observer's left and right eyes
    • G02B30/22Optical systems or apparatus for producing three-dimensional [3D] effects, e.g. stereoscopic images by providing first and second parallax images to an observer's left and right eyes of the stereoscopic type
    • G02B30/25Optical systems or apparatus for producing three-dimensional [3D] effects, e.g. stereoscopic images by providing first and second parallax images to an observer's left and right eyes of the stereoscopic type using polarisation techniques
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B30/00Optical systems or apparatus for producing three-dimensional [3D] effects, e.g. stereoscopic images
    • G02B30/20Optical systems or apparatus for producing three-dimensional [3D] effects, e.g. stereoscopic images by providing first and second parallax images to an observer's left and right eyes
    • G02B30/26Optical systems or apparatus for producing three-dimensional [3D] effects, e.g. stereoscopic images by providing first and second parallax images to an observer's left and right eyes of the autostereoscopic type
    • G02B30/27Optical systems or apparatus for producing three-dimensional [3D] effects, e.g. stereoscopic images by providing first and second parallax images to an observer's left and right eyes of the autostereoscopic type involving lenticular arrays
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B30/00Optical systems or apparatus for producing three-dimensional [3D] effects, e.g. stereoscopic images
    • G02B30/20Optical systems or apparatus for producing three-dimensional [3D] effects, e.g. stereoscopic images by providing first and second parallax images to an observer's left and right eyes
    • G02B30/26Optical systems or apparatus for producing three-dimensional [3D] effects, e.g. stereoscopic images by providing first and second parallax images to an observer's left and right eyes of the autostereoscopic type
    • G02B30/30Optical systems or apparatus for producing three-dimensional [3D] effects, e.g. stereoscopic images by providing first and second parallax images to an observer's left and right eyes of the autostereoscopic type involving parallax barriers
    • G02B30/31Optical systems or apparatus for producing three-dimensional [3D] effects, e.g. stereoscopic images by providing first and second parallax images to an observer's left and right eyes of the autostereoscopic type involving parallax barriers involving active parallax barriers
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/133528Polarisers
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/1336Illuminating devices
    • G02F1/13362Illuminating devices providing polarized light, e.g. by converting a polarisation component into another one
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1347Arrangement of liquid crystal layers or cells in which the final condition of one light beam is achieved by the addition of the effects of two or more layers or cells
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N13/00Stereoscopic video systems; Multi-view video systems; Details thereof
    • H04N13/30Image reproducers
    • H04N13/332Displays for viewing with the aid of special glasses or head-mounted displays [HMD]
    • H04N13/337Displays for viewing with the aid of special glasses or head-mounted displays [HMD] using polarisation multiplexing
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/133528Polarisers
    • G02F1/133531Polarisers characterised by the arrangement of polariser or analyser axes

Definitions

  • the present invention relates to 3D display technology, and more particularly to a display that can switch display between 2D/3D.
  • the existing 3D display technology can be divided into two types: a naked eye display and a glasses display, and the naked eye display mode is widely concerned because it can obtain the effect of 3D display without wearing extra equipment.
  • the acquisition and display process of the existing naked-eye 3D display is as shown in FIG. 1 and FIG. 2, and a solid-state grating baffle 200 is placed between the collected object 101 and the image sensor 300, and the light emitted by the collected object 101 passes through the solid-state grating block.
  • the element image array is displayed on a display, such as an LCD, and a solid-state grating barrier 200 is placed in front of the element image array in the same stage as the acquisition phase. Since the light is reversible, it can be reconstructed separately.
  • the two images received by the left eye 102 and the right eye 103 implement the naked eye 3D.
  • the display using this structure can only display 3D images, and can not be used for viewing 2D images, which is not conducive to the promotion and application of 3D display technology, and also brings inconvenience to users.
  • An object of the present invention is to provide a display capable of switching display between 2D/3D in order to solve the above problems in view of the drawback that the conventional 3D display cannot directly display 2D images.
  • the solution to the above problem is to construct a display including a first polarizing plate and a second polarizing plate whose polarization directions are perpendicular to each other, and a liquid crystal for displaying an image between the first polarizing plate and the second polarizing plate.
  • the display further includes a polarization control layer laminated on the second polarizer for controlling the optical path difference; and a third polarizer laminated on the polarization control layer; and the third polarizer includes an array of non-polarization regions.
  • the non-polarization zone is a circular hole, a rectangular hole, a triangular hole or a hexagonal hole arranged in an array.
  • the non-polarization zone is a strip-shaped groove spaced apart.
  • the display of the present invention further includes a backlight assembly laminated under the first polarizer for providing a backlight.
  • the polarization control layer has an optical path difference of 0 to ⁇ /2, where ⁇ is the wavelength of the light emitted by the liquid crystal layer.
  • the polarization control layer is an electrically controlled liquid crystal layer
  • the electronically controlled liquid crystal layer comprises TN (Twisted) Nematic, twisted nematic phase), STN (Super Twisted Nematic), OCB (Optically Compensated) At least one of Bend, optically compensated bending, or VA (Vertical Alignment).
  • the polarization direction of the third polarizing plate is the same as the polarization direction of the first polarizing plate or the second polarizing plate.
  • Another display provided by the present invention includes a first polarizing plate and a second polarizing plate whose polarization directions are perpendicular to each other; and a liquid crystal layer for displaying an image which is sequentially laminated between the first polarizing plate and the second polarizing plate,
  • the polarization control layer and the third polarizer are controlled to control the optical path difference, and the third polarizing plate includes an unpolarized region arranged in the array.
  • the non-polarization zone is a circular hole, a rectangular hole, a triangular hole or a hexagonal hole arranged in an array.
  • the non-polarization zone is a strip-shaped groove spaced apart.
  • the display of the present invention further includes a backlight assembly laminated under the first polarizer for providing a backlight.
  • the polarization control layer has an optical path difference of 0 to ⁇ /2, where ⁇ is the wavelength of the light emitted by the liquid crystal layer.
  • the polarization control layer is an electrically controlled liquid crystal layer
  • the electronically controlled liquid crystal layer comprises TN (Twisted) Nematic, twisted nematic phase), STN (Super Twisted Nematic), OCB (Optically Compensated) At least one of Bend, optically compensated bending, or VA (Vertical Alignment).
  • the polarization direction of the third polarizing plate is the same as the polarization direction of the first polarizing plate or the second polarizing plate.
  • the display embodying the present invention changes the optical path difference of the polarization control layer by applying a voltage to the polarization control layer, thereby changing the polarization direction of the light; thereby enabling the third polarizer to function as a grating or a common light-transmissive plate.
  • switching between the 2D and 3D display modes is realized. Users can view 2D and 3D images on one display, improving ease of use.
  • FIG. 1 is a schematic diagram of collecting a naked eye 3D image in the prior art
  • FIG. 2 is a schematic diagram showing the display of a naked eye 3D image in the prior art
  • Figure 3 is a side elevational view of the display of the first embodiment of the present invention.
  • FIG. 4 is a schematic view showing a 3D image when the first embodiment of the present invention is displayed
  • FIG. 5 is a schematic diagram of a second embodiment of the present invention when displaying a 2D image
  • Figure 6 is a side elevational view of the display of the second embodiment of the present invention.
  • Figure 7 is a schematic view showing a 3D image when a second embodiment of the present invention is displayed.
  • Figure 8 is a schematic view showing a 2D image when the second embodiment of the present invention is displayed
  • Figure 9 is a front elevational view showing a first embodiment of a third polarizing plate of the present invention.
  • Figure 10 is a front elevational view showing a second embodiment of the third polarizing plate of the present invention.
  • the present invention provides a first embodiment as shown in FIG.
  • the display includes a plurality of components stacked in sequence: a backlight assembly 400 for providing a backlight source when the display is in operation; and a first polarizing plate 500 stacked on the backlight assembly 400, for example, an array of arrays (Array)
  • Array array of arrays
  • a general 2D image may be displayed, or an element image array for 3D display may be displayed;
  • the polarizing plate 700 for example, a color filter (Color) Filter, CF), and the polarization direction of the first polarizing plate 500 and the polarization direction of the second polarizing plate 700 are perpendicular to each other.
  • the display constitutes a classic liquid crystal display structure capable of displaying a general 2D image, and then, based on this, the polarization control layer 800 and the third polarizing film 900 are continuously laminated on the second polarizing plate 700 to form the present embodiment. monitor.
  • the polarization control layer 800 is an electrically controlled liquid crystal layer filled with liquid crystals capable of undergoing molecular arrangement change with voltage or current, such as TN, STN, OCB, VA, etc., or may be these liquid crystals.
  • the mixed material is such that it can generate 0 to ⁇ /2 ( ⁇ is the wavelength of the emitted light) of the light emitted from the second polarizing plate 700 under the action of the external voltage/current.
  • the polarization direction of the light emitted from the second polarizing plate 700 will remain unchanged; and when the optical path difference is adjusted to ⁇ /2, The polarization direction of the light emitted from the second polarizing plate 700 will be rotated by 90°.
  • the third polarizing plate 900 is provided with an array of non-polarized regions 901, for example, excavating an array of through holes on a polarizing plate or depolarizing a predetermined position on a monolithic polarizing plate to form an array row.
  • the non-polarized region of the cloth may be a grating after the polarizing treatment is performed on the fixed grating 200 in FIGS. 1 and 2.
  • the polarization direction of the third polarizing plate 900 can be variously placed, and is preferably placed in the same direction as one of the first polarizing plate 500 and the second polarizing plate 700. When the polarization direction of the third polarizing plate 900 is the same as one of the first polarizing plate 500 and the second polarizing plate 700, the polarization controlling layer 800 is switched between two optical path differences of 0 and ⁇ /2.
  • the polarization angles of the first polarizing plate 500 and the second polarizing plate 700 are 0° and 90°, and the polarization direction of the third polarizing plate 900 is 90°, that is, the polarization direction of the third polarizing plate 900 and the second.
  • the polarizing plate 700 has the same polarization direction, and the optical path difference of the polarization control layer 800 is ⁇ /2 by voltage/current control. Since the polarization direction of the light passing through the polarization control layer 800 is rotated by 90°, the light emitted from the second polarizing plate 700 can only be emitted from the non-polarization region 901.
  • the light of the third polarizing plate 900 will be imaged into left and right images and received by the left eye 102 and the right eye 103, respectively, to form a 3D image.
  • the process of imaging is similar to the imaging process in Figure 2.
  • the polarization control layer 800 in FIG. 4 is controlled by voltage/current, the optical path difference is 0, and the light-emitting effect will be as shown in FIG. 5. Since the polarization direction of the third polarizing plate 900 is the same as the polarization direction of the second polarizing plate 700, and the polarization controlling layer 800 having an optical path difference of 0 does not cause any change in the polarization direction of the light, the entire third polarizing plate 900 pairs of second polarizing plates 700 are in a state of being light transmissive. At this time, the liquid crystal layer 600 displays a normal 2D image.
  • the optical path difference of the polarization control layer 800 in the 2D and 3D modes is opposite to that in FIGS. 4 and 5: In the 2D mode, the optical path difference of the polarization control layer 800 needs to be adjusted to ⁇ /2; in the 3D mode, the optical path difference of the polarization control layer 800 needs to be adjusted to zero.
  • the third polarizing plate 900 is switched between the two states of the grating and the ordinary transparent sheet with respect to the second polarizing plate 700, thereby realizing display switching between the 3D and 2D images.
  • the present invention provides a second embodiment as shown in FIG.
  • the display includes various functional layers from bottom to top: a backlight assembly 400 for providing a backlight source required for display display; a first polarizing plate 500 and a liquid crystal layer 600 stacked on the backlight assembly 400.
  • the polarization control layer 800 is directly laminated, and above the polarization control layer 800 is a third polarizing plate 900 and a second polarizing plate 700. That is, compared to the first embodiment, the present embodiment extracts the second polarizing plate 700 from between the liquid crystal layer 600 and the polarization controlling layer 800, and then places the extracted second polarizing plate 700 at the top.
  • the display effect is as shown in FIG. 7.
  • the light for backlight display is emitted by the backlight assembly 400, and after entering the liquid crystal display layer 600 through the polarizing of the first polarizing film 500. in.
  • the liquid crystal display layer 600 displays an array of element images, and the light emitted from the liquid crystal display layer 600 enters into the polarization control layer 800, and is adjusted by the optical path of the polarization control layer 800, and the light reaches the third polarizing plate.
  • the polarization direction is adjusted to be perpendicular to the polarization direction of the third polarizing layer 900, and the light can only be emitted from the non-polarization region 901 on the third polarizing plate 900, and finally through the light distribution of the second polarizing plate 700, and imaged into left and right.
  • the images are received by the left eye 102 and the right eye 103, respectively, to form a 3D image. .
  • the polarization directions of the respective polarizing plates are set as follows: the polarization angle of the first polarizing plate 500 is 0°, the polarization angle of the second polarizing plate 700 is 90°, and the polarization of the third polarizing plate 900.
  • the direction is 0° or 90°
  • the optical path difference of the polarization control layer 800 is adjusted to ⁇ /2, in which the optical path difference is Next, the polarization direction of the light will be rotated by 90°, and the polarization direction of the light at this time is perpendicular to the direction of the third polarizing plate 900, and can only be emitted from the non-polarization region 901. If the polarization direction of the third polarizer 900 is selected to be 90°, the optical path difference of the polarization control layer 800 is adjusted to 0.
  • the polarization direction When passing through the polarization control layer 800, the polarization direction does not change, and therefore, the third polarization is reached.
  • the polarization of the light before the sheet 900 is 90° to the direction of the third polarizer 900, and the light can only exit from the non-polarization region 901.
  • the display effect is as shown in FIG. 8.
  • the light for backlight display is emitted by the backlight assembly 400, and after entering the liquid crystal display layer 600 through the polarizing of the first polarizing film 500. .
  • the liquid crystal display layer 600 displays a general 2D image, and the light emitted from the liquid crystal display layer 600 enters into the polarization control layer 800, and the optical path of the polarization control layer 800 is adjusted, and the light reaches the third polarization.
  • the polarization direction is adjusted to be the same as the polarization direction of the third polarizing layer 900.
  • the light can be emitted from the entire third polarizing plate 900, and finally through the light distribution of the second polarizing plate 700 to form a 2D image. Since the light distribution of the second polarizing plate 700 is present at the top of the third polarizing plate 900, even if the mura phenomenon occurs in the non-polarizing region 901 on the third polarizing plate 900, it can be effectively performed by the outermost second polarizing plate 700. Suppression.
  • the polarization directions of the respective polarizing plates are set as follows: the polarization angle of the first polarizing plate 500 is 0°, the polarization angle of the second polarizing plate 700 is 90°, and the polarization of the third polarizing plate 900.
  • the direction is 0° or 90°
  • the polarization direction of the third polarizing plate 900 is selected to be 0°
  • the optical path difference of the polarization control layer 800 is adjusted to 0, and under the optical path difference,
  • the polarization direction of the light will remain unchanged, and the polarization direction of the light at this time is the same as the direction of the third polarizing plate 900, and can be emitted from the entire third polarizing plate 900.
  • the optical path difference of the polarization control layer 800 is adjusted to ⁇ /2, and when passing through the polarization control layer 800, the polarization direction is rotated by 90°, thus reaching the third
  • the direction of polarization of the light before the polarizing plate 900 is the same as the direction of the third polarizing plate 900, and the light can be emitted from the entire third polarizing plate 900.
  • the light emitted from the polarization control layer 800 is made by providing the third polarizing plate 900 and the polarization control layer 800.
  • the polarization direction when reaching the third polarizing plate 900 is the same as the polarization direction of the third polarizing plate 900.
  • the polarization direction of the light emitted from the polarization control layer 800 when reaching the third polarizer 900 and the third polarizer 900 are set by the third polarizing plate 900 and the polarization control layer 800.
  • the polarization direction is vertical such that light can only exit from the non-polarization region 901 of the third polarizer 900.
  • the polarization angle of the third polarizing plate 900 is set to be the same as the polarization direction of the first polarizing plate 500 or the second polarizing plate 700.
  • the polarization direction of the third polarizing plate 900 can be arbitrarily set, as long as the optical path difference of the polarization controlling layer 800 is adjusted, so that the polarization angle of the light reaching the incident surface of the third polarizing plate 900 is displayed at the time of 2D display.
  • the three polarizing plates 900 are identical; at the time of 3D display, the polarization angle of the light reaching the incident surface of the third polarizing plate 900 may be perpendicular to the third polarizing plate 900.
  • the non-polarization region 901 of the third polarizer 900 may be an array of non-polarized apertures, as shown in FIG.
  • the third polarizing plate 900 of FIG. 9 circular holes having the same size and array are arranged, and there is no polarization orientation on the circular holes, and light of any polarization direction can pass through the circular holes.
  • other shapes of non-polarized apertures such as triangles, rectangles, hexagons, etc., may be employed.
  • the present invention can also adopt non-polarization regions of other structures to realize the reduction of the element image array into images for the left and right eyes respectively in the 3D mode, as shown in FIG.
  • the non-polarization zone 901 is a strip-shaped groove arranged at intervals, and the adjacent strip-shaped grooves are equally spaced apart.
  • the strip groove may be inclined at an angle to the edge of the panel as needed, or may be parallel to the edge of the panel.
  • the strip groove is longitudinally oriented, parallel to the left and right sides of the panel.
  • non-polarized holes arranged in the array and the strip-shaped grooves arranged in the interval are only two achievable modes of the third polarizing plate of the present invention, and those skilled in the art restore the element image array to the left and right.
  • Other structured third polarizers realized by the images received by the eyes, respectively, are also within the scope of the present invention.

Abstract

一种显示器,包括偏振方向相互垂直的第一偏振片(500)和第二偏振片(700),以及位于第一偏振片(500)和第二偏振片(700)之间、用于显示图像的液晶层(600);还包括层叠在第二偏振片(700)上、用于控制光程差的偏振控制层(800);偏振控制层(800)上还层叠有第三偏振片(900),第三偏振片(900)上包括阵列设置的非偏振区(901)。因此,通过在偏振控制层(800)施加电压,使得偏振控制层(800)的光程差发生改变,进而改变光线的偏振方向;从而使得第三偏振片(900)能够起到光栅或者普通透光板的作用,进而实现2D和3D两种显示模式的切换,所以,使用者能够在一个显示器上观看2D和3D,提高了使用方便性。

Description

一种显示器 技术领域
本发明涉及3D显示技术,更具体地说,涉及一种可在2D/3D之间进行切换显示的显示器。
背景技术
随着显示技术的不断发展,具有3D显示功能的显示器逐渐在市场上流行起来。现有的3D显示技术可以分为裸眼显示和眼镜显示两种,而其中的裸眼显示方式由于无需佩戴额外的装备就能获得3D显示的效果而被广泛关注。
现有的裸眼式3D显示的采集和显示过程如图1和图2所示,被采集物体101和图像传感器300之间放置一块固态光栅挡板200,被采集物体101发出的光线经过固态光栅挡板200上的针孔阵列,落在图像传感器300上,形成元素图像(Elemental Image)阵列。而在显示阶段,则在显示器,例如LCD上显示该元素图像阵列,并且在元素图像阵列的前方放置一个与采集阶段相同的固态光栅挡板200,由于光线可逆,可以重构出分别被人的左眼102和右眼103接收的两个图像,实现裸眼3D。
但是采用了这种结构的显示器就只能显示3D图像,不能用于观看2D影像,这不利于3D显示技术的推广和应用,也给使用者带来使用上的不便。
发明内容
本发明的目的在于,针对现有的3D显示器不能直接显示2D影像的缺陷,提供一种能够在2D/3D之间进行切换显示的显示器,以解决上述的问题。
本发明解决上述问题的方案是,构造一种显示器,包括偏振方向相互垂直的第一偏振片和第二偏振片,以及位于第一偏振片和第二偏振片之间、用于显示图像的液晶层;显示器还包括层叠在第二偏振片上、用于控制光程差的偏振控制层;以及层叠在偏振控制层上的第三偏振片;第三偏振片上包括阵列排布的非偏振区。
本发明的显示器,非偏振区为阵列排布的圆形孔、矩形孔、三角形孔或六角形孔。
本发明的显示器,非偏振区为间隔排布的条形槽。
本发明的显示器,还包括层叠在第一偏振片下方,用于提供背光的背光组件。
本发明的显示器,偏振控制层的光程差为0至λ/2,其中λ为液晶层出射光的波长。
本发明的显示器,其中偏振控制层为电控液晶层,电控液晶层包括TN(Twisted Nematic,扭曲向列相)、STN(Super Twisted Nematic,超扭曲向列相)、OCB(Optically Compensated Bend,光学补偿弯曲)或VA(Vertical Alignment,垂直排列)中的至少一种。
本发明的显示器,所述第三偏振片的偏振方向与所述第一偏振片或第二偏振片的偏振方向相同。
本发明提供的另一种显示器,包括偏振方向相互垂直的第一偏振片和第二偏振片;以及依次层叠在第一偏振片和第二偏振片之间的用于显示图像的液晶层、用于控制光程差的偏振控制层和第三偏振片,第三偏振片上包括阵列排布的非偏振区。
本发明的显示器,非偏振区为阵列排布的圆形孔、矩形孔、三角形孔或六角形孔。
本发明的显示器,非偏振区为间隔排布的条形槽。
本发明的显示器,还包括层叠在第一偏振片下方,用于提供背光的背光组件。
本发明的显示器,偏振控制层的光程差为0至λ/2,其中λ为液晶层出射光的波长。
本发明的显示器,其中偏振控制层为电控液晶层,电控液晶层包括TN(Twisted Nematic,扭曲向列相)、STN(Super Twisted Nematic,超扭曲向列相)、OCB(Optically Compensated Bend,光学补偿弯曲)或VA(Vertical Alignment,垂直排列)中的至少一种。
本发明的显示器,所述第三偏振片的偏振方向与所述第一偏振片或第二偏振片的偏振方向相同。
实施本发明的显示器,通过在偏振控制层施加电压,使得偏振控制层的光程差发生改变,进而改变光线的偏振方向;从而使得第三偏振片能够起到光栅或者普通透光板的作用,进而实现2D和3D两种显示模式的切换。使用者能够在一个显示器上观看2D和3D图像,提高了使用方便性。
附图说明
以下结合附图对本发明进行详细说明,其中:
图1为现有技术中裸眼3D图像的采集示意图;
图2为现有技术中裸眼3D图像的显示示意图;
图3为本发明第一实施例的显示器的侧面示意图;
图4为本发明第一实施例在显示3D图像时的示意图;
图5为本发明第一实施例在显示2D图像时的示意图;
图6为本发明的第二实施例的显示器的侧面示意图;
图7为本发明的第二实施例显示3D图像时的示意图;
图8为本发明的第二实施例显示2D图像时的示意图;
图9为本发明第三偏振片的第一实施例的正面示意图;
图10为本发明第三偏振片的第二实施例的正面示意图。
具体实施方式
以下通过附图和具体实施方式,对本发明进行详细说明。
为了克服图1、图2中的现有技术只能针对3D图像进行处理,无法同时适配2D和3D图像的缺陷,本发明提供了如图3所示的第一实施例。在本实施例中,显示器包括以下依次层叠的多个组件:背光组件400,用于提供显示器工作时的背光光源;层叠在背光组件400之上为第一偏振片500,例如选用阵列片(Array),使得背光组件400发出的光形成线偏振光;液晶层600,用于显示图像,在本实施例中,可以显示一般的2D图像,也可以显示用于3D显示的元素图像阵列;第二偏振片700,例如选用彩色滤色片(Color Filter,CF),并且第一偏振片500的偏振方向与第二偏振片700的偏振方向相互垂直。至此,显示器构成了经典的液晶显示器结构,能够显示一般的2D图像,然后在此基础上,在第二偏振片700上继续层叠偏振控制层800和第三偏振片900,形成本实施例提供的显示器。
在本实施例中,偏振控制层800为电控液晶层,内部填充有能够随电压或电流而发生分子排列改变的液晶,例如TN、STN、OCB、VA等类型的液晶,也可以是这些液晶的混合材料,只要其能够在外界电压/电流的作用下对从第二偏振片700出射的光产生0至λ/2(λ为出射的光的波长)即可。特别的,当外界电压/电流的作用下,光程差为0时,从第二偏振片700出射的光的偏振方向将保持不变;而当光程差被调节到λ/2时,从第二偏振片700出射的光的偏振方向将会旋转90°。
第三偏振片900上开设有阵列排布的非偏振区901,例如在一块偏振片上开挖阵列排布的通孔或者是在一整块的偏振片上的预定位置进行退偏振处理,形成阵列排布的非偏振区域,也可是图1、图2中的固定光栅200进行起偏透光处理后的光栅。第三偏振片900的偏振方向可以有多种放置方式,较佳的放置方式为与第一偏振片500、第二偏振片700中的一个方向相同。当第三偏振片900偏振方向与第一偏振片500、第二偏振片700中的一个方向相同时,偏振控制层800对应为0和λ/2两个光程差之间切换。
以下以图4和图5为例,详细说明本发明的第一实施例如何进行2D/3D图像显示的切换。
在图4中,第一偏振片500、第二偏振片700的偏振角度为0°和90°,第三偏振片900的偏振方向为90°,即第三偏振片900的偏振方向与第二偏振片700的偏振方向相同,通过电压/电流的控制,使得偏振控制层800的光程差为λ/2。由于经过偏振控制层800的光的偏振方向会转过90°,从第二偏振片700出射的光只能够从非偏振区901处出射,若此时的液晶层600显示元素图像阵列,那么经过了第三偏振片900的光将会成像成左右图像,并分别被左眼102和右眼103接收,从而形成3D图像。其成像的过程与图2中的成像过程相似。
若在图4中的偏振控制层800通过电压/电流的控制,使得的光程差为0,其出光效果将如图5所示。由于第三偏振片900的偏振方向与第二偏振片700的偏振方向相同,并且光程差为0的偏振控制层800不会对光的偏振方向产生任何的改变,整一块的第三偏振片900对第二偏振片700都是透光的状态。此时液晶层600显示普通的2D图像。
若将图4、图5中的第三偏振片900的偏振方向改为0°,则在2D和3D模式下的偏振控制层800的光程差与图4、图5中的选择相反:在2D模式下,需要将偏振控制层800的光程差调节为λ/2;在3D模式下,需要将偏振控制层800的光程差调节为0。
可见,通过调节偏振控制层800的光程差,第三偏振片900相对于第二偏振片700会在光栅和普通透光片的两种状态间切换,从而实现3D和2D图像间的显示切换。
在图3所示的实施例中,位于最外侧的是第三偏振片900,采用这种层叠方式在进行2D现实的时候,很可能在非偏振区901的位置出现亮度不均匀(mura)或者是显示斑点等异常情况。为了克服这一缺陷,本发明提供如图6所示的第二实施例。在本实施例中,显示器包括了自下而上的各个功能层:背光组件400,用于提供显示器显示时候需要的背光光源;在背光组件400之上层叠有第一偏振片500和液晶层600,而在液晶层600之上,直接层叠偏振控制层800,偏振控制层800之上为第三偏振片900和第二偏振片700。即相比于第一实施例,本实施例将第二偏振片700从液晶层600和偏振控制层800之间抽出,然后将抽出的第二偏振片700放置在最顶部。
当使用第二实施例进行3D图像的显示时,其显示效果如图7所示,由背光组件400发出用于背光显示的光线,经过第一偏振片500的起偏后进入到液晶显示层600中。在显示3D的模式下,液晶显示层600显示元素图像阵列,从液晶显示层600出射的光会进入到偏振控制层800中,经过偏振控制层800的光程调节,光线在到达第三偏振片900前,偏振方向被调节成与第三偏振层900的偏振方向垂直,光线只能从第三偏振片900上的非偏振区901出射,最后经过第二偏振片700的配光,成像成左右图像,并分别被左眼102和右眼103接收,从而形成3D图像。。
在本实施例进行3D显示的时候,各个偏振片的偏振方向如下设置:第一偏振片500的偏振角度为0°,第二偏振片700的偏振角度为90°;第三偏振片900的偏振方向有两种选择:角度为0°或者是90°,当第三偏振片900的偏振方向选择为0°时,偏振控制层800的光程差被调节成λ/2,在该光程差下,光的偏振方向将会旋转90°,此时的光的偏振方向与第三偏振片900的方向相垂直,只能从非偏振区901处出射。若第三偏振片900的偏振方向选着为90°,则偏振控制层800的光程差被调节成0,经过偏振控制层800的时候,偏振方向不会发生改变,因此,到达第三偏振片900之前的光的偏振方向会与第三偏振片900的方向成90°,光线只能从非偏振区901处出射。
当使用第二实施例进行2D显示的时候,其显示效果如图8所示,由背光组件400发出用于背光显示的光线,经过第一偏振片500的起偏后进入到液晶显示层600中。在显示2D的模式下,液晶显示层600显示一般的2D图像,从液晶显示层600出射的光会进入到偏振控制层800中,经过偏振控制层800的光程调节,光线在到达第三偏振片900前,偏振方向被调节成与第三偏振层900的偏振方向相同,光线可以从整一块第三偏振片900出射,最后经过第二偏振片700的配光,形成2D的图像。由于在第三偏振片900的顶部会有第二偏振片700的配光,即使在第三偏振片900上的非偏振区901产生mura现象,也可以由最外侧的第二偏振片700进行有效的抑制。
在本实施例进行2D显示的时候,各个偏振片的偏振方向如下设置:第一偏振片500的偏振角度为0°,第二偏振片700的偏振角度为90°;第三偏振片900的偏振方向有两种选择:角度为0°或者是90°,当第三偏振片900的偏振方向选择为0°时,偏振控制层800的光程差被调节成0,在该光程差下,光的偏振方向将会保持不变,此时的光的偏振方向与第三偏振片900的方向相同,可以从整块第三偏振片900出射。若第三偏振片900的偏振方向选着为90°,则偏振控制层800的光程差被调节成λ/2,经过偏振控制层800的时候,偏振方向旋转90°,因此,到达第三偏振片900之前的光的偏振方向会与第三偏振片900的方向相同,光线可以从整块第三偏振片900出射。
从上述的两个实施例的2D/3D显示的切换可知:若使用本发明进行2D的显示,则要通过设置第三偏振片900和偏振控制层800,使得从偏振控制层800出射的光在到达第三偏振片900时的偏振方向与第三偏振片900的偏振方向相同。而在进行3D的显示的时候,则要通过设置第三偏振片900和偏振控制层800,使得从偏振控制层800出射的光在到达第三偏振片900时的偏振方向与第三偏振片900的偏振方向垂直,使得光线只能从第三偏振片900的非偏振区901进行出射。
在以上的各个实施例中,将第三偏振片900的偏振角度设置成与第一偏振片500或者是第二偏振片700的偏振方向相同。而实际上第三偏振片900的偏振方向是可以任意设置的,只要通过调节偏振控制层800的光程差,使得在2D显示的时候,到达第三偏振片900入射面的光线偏振角度与第三偏振片900相同;在3D显示的时候,到达第三偏振片900入射面的光线偏振角度与第三偏振片900垂直即可。
在以上的两个实施例中,第三偏振片900的非偏振区901可以是阵列排布的非偏振孔,如图9所示。在图9的第三偏振片900上,开设有阵列排布的具有相同尺寸大小的圆形孔,在该圆形孔上无偏振取向,任意偏振方向的光都能够通过该圆形孔。本领域的技术人员应当理解,除了圆形孔作为非偏振区901,也可以采用三角形、矩形、六角形等其他形状的非偏振孔。除了阵列排布的孔状非偏振区外,本发明还可以采用其他结构的非偏振区,以实现在3D模式下,将元素图像阵列还原成供左右眼分别接收的图像,如图10所示为非偏振区901的另一种实现方式,非偏振区901为间隔排布的条形槽,相邻条形槽的间隔距离相等。条形槽根据需要可以是与面板边缘夹有一定角度的倾斜设置,也可以是与面板边缘平行,例如在图10中,条形槽为纵向走向,与面板的左右两边相平行。
需要说明的是,阵列排布的非偏振孔和间隔排布的条形槽仅为本发明的第三偏振片的两种可实现方式,本领域的技术人员依据将元素图像阵列还原成供左右眼分别接收的图像来实现的其他结构的第三偏振片,也均在本发明的保护范围之内。
以上仅为本发明具体实施方式,不能以此来限定本发明的范围,本技术领域内的一般技术人员根据本创作所作的均等变化,以及本领域内技术人员熟知的改变,都应仍属本发明涵盖的范围。

Claims (14)

  1. 一种显示器,包括偏振方向相互垂直的第一偏振片和第二偏振片,以及位于所述第一偏振片和第二偏振片之间、用于显示图像的液晶层;所述显示器还包括层叠在所述第二偏振片上、用于控制光程差的偏振控制层;以及层叠在所述偏振控制层上的第三偏振片;所述第三偏振片上包括阵列排布的非偏振区。
  2. 根据权利要求1所述的显示器,其中,还包括层叠在所述第一偏振片下方,用于提供背光的背光组件。
  3. 根据权利要求1的显示器,其中,所述偏振控制层的光程差为0至λ/2,所述λ为所述液晶层出射光的波长。
  4. 根据权利要求3所述的显示器,其中,所述偏振控制层为电控液晶层,所述电控液晶层包括扭曲向列相、超扭曲向列相、光学补偿弯曲或垂直排列中的至少一种。
  5. 根据权利要求3所述的显示器,其中,所述第三偏振片的偏振方向与所述第一偏振片或第二偏振片的偏振方向相同。
  6. 根据权利要求1所述的显示器,其中,非偏振区为阵列排布的圆形孔、矩形孔、三角形孔或六角形孔。
  7. 根据权利要求1所述的显示器,其中,非偏振区为间隔排布的条形槽。
  8. 一种显示器,包括偏振方向相互垂直的第一偏振片和第二偏振片;以及依次层叠在所述第一偏振片和第二偏振片之间的用于显示图像的液晶层、用于控制光程差的偏振控制层和第三偏振片,所述第三偏振片上包括阵列排布的非偏振区。
  9. 根据权利要求8所述显示器,其中,还包括层叠在所述第一偏振片下方,用于提供背光的背光组件。
  10. 根据权利要求8所述的显示器,其中,所述偏振控制层的光程差为0至λ/2,所述λ为液晶层出射光的波长。
  11. 根据权利要求10所述的显示器,其中,所述偏振控制层为电控液晶层,所述电控液晶层包括扭曲向列相、超扭曲向列相、光学补偿弯曲或垂直排列中的至少一种。
  12. 根据权利要求10所述的显示器,其中,所述第三偏振片的偏振方向与所述第一偏振片或第二偏振片的偏振方向相同。
  13. 根据权利要求8所述的显示器,其中,非偏振区为阵列排布的圆形孔、矩形孔、三角形孔或六角形孔。
  14. 根据权利要求8所述的显示器,其中,非偏振区为间隔排布的条形槽。
PCT/CN2013/091087 2013-12-19 2013-12-31 一种显示器 WO2015089883A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US14/238,734 US9432660B2 (en) 2013-12-19 2013-12-31 Display device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN2013107033266 2013-12-19
CN201310703326.6A CN103676178B (zh) 2013-12-19 2013-12-19 一种显示器

Publications (1)

Publication Number Publication Date
WO2015089883A1 true WO2015089883A1 (zh) 2015-06-25

Family

ID=50314240

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2013/091087 WO2015089883A1 (zh) 2013-12-19 2013-12-31 一种显示器

Country Status (3)

Country Link
US (1) US9432660B2 (zh)
CN (1) CN103676178B (zh)
WO (1) WO2015089883A1 (zh)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6062965B2 (ja) * 2013-01-25 2017-01-18 パイオニア株式会社 発光システム
CN104965332B (zh) * 2015-07-14 2019-03-12 武汉华星光电技术有限公司 显示模组及显示装置
CN107490891A (zh) * 2016-06-13 2017-12-19 湖南创图视维科技有限公司 一种可切换显示状态的显示面板及其显示状态切换方法
KR20180081197A (ko) * 2017-01-05 2018-07-16 삼성디스플레이 주식회사 편광판 제조방법 및 편광판을 구비하는 표시장치
EP3584630A1 (en) * 2017-02-17 2019-12-25 FUJIFILM Corporation Liquid crystal display device
CN110095899A (zh) * 2019-05-29 2019-08-06 京东方科技集团股份有限公司 显示面板及其驱动方法、显示模组、显示装置
CN110389454B (zh) * 2019-07-28 2024-03-26 成都航空职业技术学院 基于矩形偏振阵列的集成成像双视3d显示装置
CN110275312B (zh) * 2019-07-28 2024-03-26 成都航空职业技术学院 基于矩形偏振阵列的集成成像3d显示装置
CN112859368B (zh) * 2021-04-01 2022-11-15 成都航空职业技术学院 基于阶梯渐变孔径针孔阵列的双视3d显示方法
CN112859363B (zh) * 2021-04-01 2022-11-15 成都航空职业技术学院 基于双显示屏的3d显示方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1804681A (zh) * 2006-01-19 2006-07-19 汕头超声显示器有限公司 一种自动立体显示器
CN1885096A (zh) * 2005-06-25 2006-12-27 三星电子株式会社 二维和三维图像显示设备
US20080259232A1 (en) * 2007-04-19 2008-10-23 Beom-Shik Kim Electronic display device
JP2011043544A (ja) * 2009-08-19 2011-03-03 Konica Minolta Holdings Inc 立体視用光学部材及び立体視画像表示装置
CN102854626A (zh) * 2011-06-29 2013-01-02 四川大学 一种裸视光栅二维三维兼容显示装置

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7557871B2 (en) * 2002-09-26 2009-07-07 Sharp Kabushiki Kaisha Patterning phase difference plate, production method for patterning phase difference plate, 2D/3D switching type liquid crystal display panel, and 2D/3D switching type liquid crystal display unit
JP3865762B2 (ja) * 2002-10-15 2007-01-10 シャープ株式会社 パララックスバリア素子、その製造方法および表示装置
CN100561292C (zh) * 2005-07-11 2009-11-18 夏普株式会社 显示装置
US8823668B2 (en) * 2009-12-08 2014-09-02 Sharp Kabushiki Kaisha Liquid crystal device
JP2012212110A (ja) * 2011-02-15 2012-11-01 Fujifilm Corp バリア素子及び3d表示装置
CN103135239A (zh) * 2011-11-22 2013-06-05 深圳市亿思达显示科技有限公司 立体显示装置
JP5865149B2 (ja) * 2012-03-23 2016-02-17 株式会社ジャパンディスプレイ 表示装置、電子装置
JP5860761B2 (ja) * 2012-05-09 2016-02-16 株式会社ジャパンディスプレイ 3次元画像表示装置の製造方法
CN103293726B (zh) * 2012-06-29 2016-05-04 上海天马微电子有限公司 液晶盒、3d触控显示装置及其控制方法
CN103424924B (zh) * 2013-08-09 2015-12-09 京东方科技集团股份有限公司 可切换二维与三维显示模式的显示装置
CN103399427B (zh) * 2013-08-21 2016-02-24 福州大学 一种视点数可控的立体显示装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1885096A (zh) * 2005-06-25 2006-12-27 三星电子株式会社 二维和三维图像显示设备
CN1804681A (zh) * 2006-01-19 2006-07-19 汕头超声显示器有限公司 一种自动立体显示器
US20080259232A1 (en) * 2007-04-19 2008-10-23 Beom-Shik Kim Electronic display device
JP2011043544A (ja) * 2009-08-19 2011-03-03 Konica Minolta Holdings Inc 立体視用光学部材及び立体視画像表示装置
CN102854626A (zh) * 2011-06-29 2013-01-02 四川大学 一种裸视光栅二维三维兼容显示装置

Also Published As

Publication number Publication date
CN103676178B (zh) 2018-05-29
US20150350633A1 (en) 2015-12-03
US9432660B2 (en) 2016-08-30
CN103676178A (zh) 2014-03-26

Similar Documents

Publication Publication Date Title
WO2015089883A1 (zh) 一种显示器
CN107636517B (zh) 视角可切换的液晶显示装置及视角切换方法
CN106647048B (zh) 光学结构、显示装置及其工作方法
WO2011147162A1 (zh) 液晶光栅模组及平面/立体可切换型液晶显示装置
US20160048055A1 (en) Liquid crystal display, special eyeglasses and display apparatus
WO2017173687A1 (zh) 液晶透镜及3d显示装置
KR20150092424A (ko) 표시 장치
JP2006276569A5 (zh)
JPS60175027A (ja) 電気光学スイツチング装置
US9958688B2 (en) Stereoscopic display
TW201003221A (en) Liquid crystal display device and electronic apparatus
JP2007156085A (ja) 液晶表示装置
KR20160085399A (ko) 액정 표시 장치
TW201303422A (zh) 顯示器
KR101994052B1 (ko) 터치 패널 부착 액정 표시 장치
US11378852B2 (en) Display panel and method of driving image display in display panel
KR20070077675A (ko) 편광판 및 편광판이 부착된 액정 표시 패널
TW201229638A (en) Pixel structure and display panel
KR101948827B1 (ko) 투명 액정표시장치
KR102315968B1 (ko) 배리어 패널을 포함하는 입체 영상 표시 장치
KR20160085970A (ko) 액정 표시 장치
JP2007121642A (ja) 液晶表示装置
KR100881359B1 (ko) 횡전계방식 액정 표시 소자
JP2004151714A (ja) 液晶表示装置
KR101971142B1 (ko) 터치패널 타입 액정표시장치

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 14238734

Country of ref document: US

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13899642

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13899642

Country of ref document: EP

Kind code of ref document: A1