WO2015089880A1 - 一种低矮型超长冲程智能控制卷扬式提拉采油系统及工作方法 - Google Patents

一种低矮型超长冲程智能控制卷扬式提拉采油系统及工作方法 Download PDF

Info

Publication number
WO2015089880A1
WO2015089880A1 PCT/CN2013/090925 CN2013090925W WO2015089880A1 WO 2015089880 A1 WO2015089880 A1 WO 2015089880A1 CN 2013090925 W CN2013090925 W CN 2013090925W WO 2015089880 A1 WO2015089880 A1 WO 2015089880A1
Authority
WO
WIPO (PCT)
Prior art keywords
oil
rope
depth
stage plunger
current
Prior art date
Application number
PCT/CN2013/090925
Other languages
English (en)
French (fr)
Inventor
鄂德刚
赵鑫
张义端
Original Assignee
鄂德刚
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 鄂德刚 filed Critical 鄂德刚
Publication of WO2015089880A1 publication Critical patent/WO2015089880A1/zh

Links

Classifications

    • EFIXED CONSTRUCTIONS
    • E21EARTH DRILLING; MINING
    • E21BEARTH DRILLING, e.g. DEEP DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B43/00Methods or apparatus for obtaining oil, gas, water, soluble or meltable materials or a slurry of minerals from wells
    • E21B43/12Methods or apparatus for controlling the flow of the obtained fluid to or in wells
    • E21B43/121Lifting well fluids
    • E21B43/126Adaptations of down-hole pump systems powered by drives outside the borehole, e.g. by a rotary or oscillating drive

Definitions

  • the invention relates to an oil production device, in particular to a low-profile ultra-long stroke intelligent control winch type oil extraction system and a working method.
  • the beam pumping unit is the most important pumping unit of the rod pumping unit. Its disadvantages are: 1. The stroke limited by the structure is generally 6-8m, and the stroke loss is large; 2. The pumping unit is bulky. More consumables, 3, equipment operation and maintenance costs and oil production tons of liquid costs; 4, not suitable for deep wells, low permeability wells, heavy oil wells and gas-bearing wells. With the continuous development of most of China's oilfields entering the middle and late stages of mining, especially low-permeability wells, ultra-deep wells, and heavy oil wells, the beam pumping unit is not suitable for post-production production. In recent years, a pull-type oil pumping device has emerged.
  • the oil production method is a full-well operation mode in which a flexible oil-absorbing rope is used to drive a pumping plunger from a bottom hole to a wellhead to draw a well fluid in a pipe string composed of a fuel pipe.
  • the disadvantages are: 1. Due to the whole well operation mode, the pipe string passing through the pump requires special treatment, and the cost of the oil pipe treatment is high. 2. Due to the whole well operation mode, a large number of flexible pumping ropes need to be wound on the reel and have a large load. Only large-sized reels and high and thick derricks can be selected. The whole machine is bulky, consumables, and cost. High, not easy to transport. 3.
  • the long flexible oil wicking rope is easy to be entangled on the reel, and a large rope arranging device is needed to further increase the volume and weight of the whole machine. 4.
  • Pumping The upper and lower reciprocating strokes are long, the friction loss is large, the production needs to be stopped, the well maintenance is required, and the maintenance is time-consuming, laborious and delays production. 5, the pump is prone to encounter resistance in long-distance operation. 6.
  • the flexible pumping rope is used throughout the whole process. After the wear, it needs to be replaced. It is not only costly, but also not suitable for deep wells exceeding 2000 meters. Because of the high temperature in the deep well, it is easy to cause injection molding and melting. Summary of the invention
  • the object of the present invention is to overcome the practical problems existing in the prior art in the production, and to provide a low-profile ultra-long stroke intelligent control winch type oil extraction system and working method, which utilizes a multi-stage plunger ultra-long stroke
  • the oil pump makes the stroke of the pumping unit arbitrarily set between ten meters and several hundred meters, breaking the limit of only 6-8 meters of stroke of the rod pump, realizing the operation mode of the ultra-long stroke non-full well, which can overcome the beam
  • the pumping unit has limited stroke and is not suitable for low-yield oil wells, deep wells, and large gas-containing wells. It can also avoid the existing bulk and weight of the existing winch type oil extraction device due to the whole well operation mode.
  • the pumping loss is fast, the fuel pipe processing cost is high, and the flexible oil-pumping rope needs to be replaced and the replacement cost is too large.
  • the packer is used to seal the oil jacket annular space, and the multi-stage plunger can be used.
  • the oil pipe above the pump barrel of the ultra-long stroke pumping pump can reduce the one-time investment cost of the oil well, so that the whole machine can reduce the cost by nearly 40%.
  • a low-profile ultra-long stroke intelligent control winch type oil extraction system includes: power drive assembly (1), fixed pulley assembly (2), control assembly (3), derrick assembly (4), slip Pendulum device (5), pressure rope device (8), wellhead device Description
  • the steel wire rope or the sucker rod (10) in the pipe string (9) is connected by a clamp to form a full well pumping rope;
  • the other end of the wire rope or sucker rod (10) is connected to the multi-stage plunger of the downhole multi-stage plunger super long stroke pump (7);
  • the fixed sheave assembly (2) and the slip are mounted on the derrick assembly (4)
  • the wellhead device (6) is connected with the column (9), and the column (9) is connected with the ultra-long pump barrel of the downhole multi-stage plunger super long stroke pump (7);
  • the plunger super long stroke pump (7) consists of an extra long pump barrel and a multi-stage plunger with a multi-stage plunger placed in the ultra-long pump barrel;
  • the control assembly (3) is made up of a rotary encoder (3) -1) and pressure sensor (3-2); pressure sensor (3-2) through the eccentric wellhead (6-2) into the oil casing annular space at the bottom of the well.
  • the ultra-long pump cylinder of the downhole multi-stage plunger super long stroke oil pump (7) is composed of a plurality of pump cylinders (76) "--type" connection; the connection manner of the plurality of pump cylinders (76) is: Two pump cylinders that meet the requirements of pump parameters after finish rolling and honing
  • the steel multi-stage plunger of the downhole multi-stage plunger super long stroke pump (7) comprises a sealed cavity portion (71 weight portion (72) and a plurality of steel single-stage plungers (74) connected in series;
  • the sealing sleeve (71-1), the sealant (71-2) and the pressure rope head (71-3) press the wire rope or the sucker rod (10) in the upper section (71-4) of the sealing chamber to seal
  • the pressure sleeve (71-1 seal chamber upper section (71-4), seal chamber (71-5), upper reduction diameter (71-6) are threaded in sequence, and the seal ring is sealed to form the seal chamber portion of the plunger (71)
  • the number of the series weighting rods (72-2) is determined by the weight; the lower diameter (72-1 multiple weighting rods (72-2), the lower end of the weighting rods (72-3) are threaded to form the plunger
  • the structure of the steel single-stage plunger (74) is:
  • the liner (74-6) and the lower joint (74-7) constitute a steel-type single-stage plunger (74); a plurality of steel-type single-stage plungers (74) of the same structure are sequentially followed.
  • the upper hanging body (74-2) of the lower-stage steel single-stage plunger (74) is hung in the lower cavity of the lower joint (74-7) of the upper-stage steel single-stage plunger (74); Welded by the weldment (74-10) and the lower joint (74-7), the upper hanging body (74-2) is suspended in the cavity of the lower joint (74-7); similarly connected to the third and fourth stages
  • the upper hanging body (74-2) of the last-stage steel single-stage plunger (74) is connected to the central pipe (74-5) through the external thread of the coupling (74-9), and the last-stage steel single-stage column
  • the lower joint (74-7) of the plug (74) is replaced by the lower Versail seat (75-3); the upper and lower ends of the lower Versail seat (75-3) are
  • Valve ball (74-3) and Versail ball seat (74-4), Versail ball seat (74-4) is limited by the platform on the inner wall of the lower Versail block (75_3), and will be the Paris
  • the ball (74-3) is defined in its cavity; the middle of the lower Versail (75-3) There is an axial through hole (75-4) connecting the upper and lower cavities; the upper end of the lower Versail seat (75-3) is screwed to the central tube (74-5), and the lower end and the tube wall are filled with liquid.
  • the weight joint (75-6) of the hole (75-5) is connected; the weight joint (75-6) is connected with the lower reduction diameter (72-1) of the weight portion (72); the first stage steel body single stage column
  • the rounded portion of the upper hanging body (74-2) of the plug (74) is hung on the upper joint (75-1) having a lower cavity, and the welded part (75-2) and the upper joint (75-1) are Tube wall welding, the round head of the upper hanging body (74-2) is defined in the cavity; the upper joint (75-1) and the sealed chamber portion
  • the upper reduction diameter (71-6) of ( 71 ) is threaded to form a steel multi-stage plunger.
  • the number of series of single-stage plungers (74) in series is determined by the length of the contact surface of the steel single-stage plunger (74) with the pump barrel and industry specifications.
  • the power drive assembly (1) includes a geared motor (1-1), a reel (1-2), and a brake assembly (1-4); the output shaft of the reduction motor (1-1) is equipped with a sprocket (1- 3); The reel (1-2) with the reel sprocket (1-5) on the shaft is mounted on the reel base (1-6), and the pressure cord device (8) abuts the reel (1-2) , and installed on the reel base (1-6) to prevent the reel (1-2) from being disordered; reel base (1-6), geared motor (1-1), brake assembly (1- 4) Fixed on the ground base (1-8); the reel sprocket (1-5) is in the same plane as the sprocket (1-3) and passes through the drive chain
  • Wellhead unit (6) includes blowout prevention box (6-1), eccentric wellhead (6-2), single flow valve (6-3) and oil pipeline (6-4).
  • the sliding device (5) is used in combination with the pressing device (8); the structure of the sliding device (5) is: Instruction manual
  • the front end of the T-type swing rod (5-1) is placed side by side with two guide wheels (5-2), the swing rod (5-1) and the two sliding bases with the chute (5-5) (5) -3) Connected to the shaft (5-4), the sliding base (5-3) is bolted to the derrick beam (4-4); the shaft (5-4) of the swing rod (5-1) can be slid
  • the longitudinal adjustment of the groove (5-5) is fixed to adjust the angle between the flexible oil wicking rope (11) and the fixed pulley (2-1); the flexible oil wicking rope (11) passes through the two guiding wheels (5) -2) a through hole formed, the swing lever (5-1) swings laterally on the shaft (5-4) as the flexible oil drawstring (11) is wound or released on the spool (1-2);
  • the structure of the pressure rope device (8) is: a fixed rope device (8) is fixedly mounted on a drum base (1-6) remote from the geared motor (1-1), and the structure of the rope device (8) is: A forked crossbar (8-1) with two ears is
  • the flexible oil sucking rope (11) is a heatable flexible oil sucking rope containing a heating cable, and the temperature sensor of the downhole end portion of the flexible oil sucking rope can be heated; the length of the heatable flexible oil sucking rope should exceed the pipe string At the waxing point, the flexible oil wicking rope can be connected to the steel wire rope or the sucker rod (10) in the pipe string (9) by a clamp; the corresponding pipe string (9) at the waxing point is coated to prevent heat loss. Insulation coating; control device (3) according to the temperature signal monitored by the temperature sensor of the heatable flexible oil slinger and the set temperature to control the heating of the flexible flexible oil sling; the heating flexible oil sling and the coating The column (9) of the layer is used together.
  • the downhole string (9) can be installed with a packer (9-2) and a hand (9-1) outside the tubing (9-3) of the upper part of the pump barrel of the multistage plunger super long stroke pump (7). ), threaded.
  • control assembly (3) controls the motor (1-1) to stop waiting according to the set up buffer time; according to the pressure sensor inside the casing ( 3-2) The monitored pressure value controls the motor to descend; the multi-stage plunger super long stroke pump (7) calculated from the rotary encoder (3-1) mounted on the shaft of the geared motor (1-1) is lowered into the well depth.
  • the number is compared with the set maximum depth of the down line to control the motor (1-1) to stop down and rotate in the opposite direction to raise the well fluid; the upstroke calculated according to the rotary encoder (3-1) and the set maximum upstream depth comparison To control the geared motor (1-1) to stop rotating; at the same time, the control assembly (3) also controls the brake assembly (1-4) to brake or release the drum (1-2);
  • the wick (11) repeatedly raises or lowers the multi-stage plunger of the multi-stage plunger super long stroke pump (7) to raise the well fluid within the set stroke, changing It is stated that the plunger of the hoisting oil extraction system is lifted from the bottom of the well to the full well operation mode of the wellhead, and the ultra-long stroke non-full well operation mode in which the plunger is repeatedly operated up and down only in the pump cylinder is realized.
  • the control flow of the control assembly (3) is:
  • the system starts, set the well depth to 0 m, the downhole depth is negative; through the keyboard input, start pressure, maximum depth, maximum depth, stop waiting time T, maximum current; pressure sensor (3-2),
  • the current monitoring module, the encoder (3-1) is in an active state, and various signals are transmitted to the circuit board CPU at a time;
  • Circuit control board CPU stop motor (1-1), hydraulic pusher (1-41) brake;
  • the circuit control board CPU determines whether the value of the pressure sensor (3-2) in the casing is greater than or equal to the starting pressure
  • C2 In-casing pressure sensor (3_2) value starts pressure, CPU releases hydraulic pusher (1-41) brake; d, hydraulic pusher (1-41) energizes, releases brake;
  • the motor (1-1) starts and reverses, under the action of the multi-stage plunger and the weight of the weighting rod, the multi-stage plunger descends;
  • the CPU receives the multi-stage column from the encoder (3-1)
  • the pulse signal of the downstream depth is calculated, and the number of pulses is calculated, and the current depth of the multi-stage plunger is less than or equal to the maximum depth of the downlink;
  • the CPU stops the motor (1-1) and the hydraulic pusher (1-41) brakes;
  • the CPU logically judges the internal timer and the uplink buffer time T;
  • the CPU receives the digital signal of the power monitoring module from time to time, processes and analyzes the digital signal, obtains the current current magnitude, and makes a logical judgment on whether the current current is greater than or equal to the maximum current or whether the current depth of the multi-stage plunger is greater than or equal to the maximum depth of the uplink;
  • the control flow of the control assembly (3) is: a, the system is started, the well depth is set to 0 m, and the downhole depth is a negative value; Input by keyboard: starting pressure, maximum depth of descent, maximum depth of upstream, set temperature, maximum current; temperature sensor, pressure sensor (3-2) module, encoder (3-2) is in working state, various signals are always available Transfer to the circuit board CPU;
  • the circuit control board CPU determines whether the value of the pressure sensor (3-2) in the casing is greater than or equal to the starting pressure.
  • the motor (1-1) reverses the start, under the action of the multi-stage plunger and the weight of the weighting rod, the multi-stage plunger descends;
  • the CPU receives the pulse signal from the encoder (3-1) reflecting the descending depth of the multi-stage plunger, calculates the number of pulses, and makes a logical judgment on whether the current depth of the multi-stage plunger is less than or equal to the maximum depth of the downlink;
  • the CPU stops the motor (1-1) and the hydraulic pusher (1-41) brakes;
  • the CPU makes a logical judgment according to the liquid temperature and the set temperature returned by the temperature sensor installed in the heatable flexible oil sling;
  • the CPU receives the digital signal of the power monitoring module from time to time, and processes and analyzes the digital signal to obtain the current current magnitude, and makes a logical judgment on whether the current current is greater than or equal to the maximum current or whether the current depth of the plunger is greater than or equal to the maximum depth of the uplink;
  • the control flow returns b. Because the invention adopts the downhole multi-stage plunger ultra long stroke pump, the existing winch type oil extraction device is used to upgrade the well fluid from the bottom of the well to the wellhead, which has a series of beneficial effects and Significant economic benefits.
  • the multi-stage plunger only runs in the pump cylinder, the stroke is short, the wear is greatly reduced, and the number of repairs is reduced; 2), the joint connection is adopted between the plurality of single-stage plungers, so that the multi-stage plunger can be freely adjusted to adapt
  • the axial deviation of the ultra-long pump cylinder solves the problem of the plunger encountering resistance; 3), except for the pump cylinder, the whole well oil pipe is a common oil pipe, especially for deep wells, which can greatly reduce the cost of oil pipe treatment; 4)
  • the separator can further save the downhole oil pipe and reduce the one-time investment cost of the oil well again; 5), the reeling on the reel is only a flexible oil sling rope, and the remaining part of the oil wicking rope can be a steel wire rope or a sucker rod, which is different from the previous pulling
  • the oil production device must have a whole flexible pumping rope in the whole well.
  • the non-full well operation mode allows only a limited length of flexible pumping on the drum.
  • the wick is entangled, eliminating the need for large reels and bulky rope arranging devices, reducing consumables and greatly reducing the weight and volume of the machine;
  • non-full well operation mode reduces the system energy consumption, and the power saving effect is obvious;
  • the whole well only has a certain length of flexible oil sling through the blowout prevention box as the injection molded flexible oil sling or the injection flexible pumping with heating cable
  • the rope, the remaining section can be ordinary steel wire rope or other sucker rods, which not only reduces the use cost of expensive injection molded flexible oil wicking rope, but also makes the system of the invention more widely applicable to deep wells and heavy oil wells, using flexible oil wicking ropes containing heating cables. It can effectively increase the oil export temperature of oil wells, save a lot of oilfield heating and heat investment, and effectively solve the problem of oil well wax blockage or heavy oil blockage.
  • the pressure sensor is placed in the annular space of the oil jacket, the oil casing annular space is in good working condition, achieving precise control and measurement; 11), the load is reduced, the energy consumption is reduced, and the power saving effect is remarkable; 12), the liquid production capacity can be performed Large adjustment of the number of pumping times; suitable for oil wells of different mining periods; 13), long strokes can produce strong negative pressure, obvious effect of unblocking and increasing production; 14), equipment running more smoothly, less noise; 15), many The interaction of many advantages arising from the improvement of the structure has greatly reduced the one-time input cost of the oil well, and the whole machine can reduce the cost by nearly 40%.
  • FIG. 1 is a schematic view showing the overall structure of a low-profile ultra-long stroke intelligent control winch type oil extraction system according to the present invention
  • FIG. 2 is a low-profile ultra-long stroke intelligent control winch type pulling and oil recovery system of the present invention
  • 3 is a front view of the fixed pulley assembly and the sliding device of the present invention
  • Figure 4 is a side view of the sliding device of the present invention.
  • Figure 5-1 is a front elevational view of the reel and the tether device of the present invention.
  • Figure 5-2 is a plan view of the reel and the rope pressing device of the present invention
  • 6 is a schematic structural view of a brake assembly of the present invention
  • Figure 7-1 is a structural view of the upper half of the steel multi-stage plunger of the present invention.
  • Figure 7-2 is a structural view of the lower half of the steel body multi-stage plunger of the present invention.
  • Figure 8 is a schematic view showing the connection structure of the two pump cylinders of the downhole ultra long pump cylinder of the present invention.
  • Figure 9 is a control flow chart of the control assembly when the flexible oil wicking rope of the present invention is a non-heatable flexible oil wicking rope;
  • Figure 10 is a control assembly of the flexible oil wicking rope of the present invention which is a heatable flexible oil wicking rope
  • Figure 11-1 is a schematic view showing a partial structure of a downhole tubular string of a tubing installation packer of the present invention;
  • Fig. 11-2 is a schematic view showing the partial structure of the downhole tubular string after the packer of the present invention is sealed.
  • a low-profile ultra-long stroke intelligent control winch type oil extraction system comprises: a power drive assembly 1, a fixed pulley assembly 2, a control assembly 3, a derrick total 4, sliding device 5, rope device 8, wellhead device 6, downhole string 9, flexible oil sucking rope 11, wire rope or sucker rod 10 and downhole multi-stage plunger super long stroke pump 7; 1 includes a reduction motor 1-1, a reel 1-2, and a brake assembly 1-4, and the structure is: the output shaft of the reduction motor 1-1 is provided with a sprocket 1-3 and an encoder 3-1; Reel 1-2 of reel sprocket 1-5 The instructions are mounted on the reel base 1-6, the reel base 1-6, the geared motor 1-1, and the brake assembly 1-4 are fixed to the ground base.
  • reel sprocket 1-5 is located in the same plane as the sprocket 1-3 and is connected by the transmission chain 1-7;
  • the structure of the fixed pulley assembly 2 is:
  • the shaft of the fixed pulley 2-1 is mounted on the two ears 2-2, two ears
  • the structure of the derrick assembly 4 is:
  • the derrick 4-5 equipped with the derrick lower rib 4-2 and the derrick platform 4-3 is welded with the derrick beam 4-4 at the upper end, and the fixed pulley support 4-1 is bolted.
  • the adjusting bolt 4-7 Fixed on the derrick beam 4-4, the adjusting bolt 4-7 applies a horizontal force to the fixed pulley support 4-1 to relieve the force of the bolt fixing the fixed pulley support 4-1, the diagonal rod 4
  • the two ends of the 6 are bolted to the derrick 4-5 and the ground base 1-8, respectively, and support the derrick 4-5.
  • the structure of the sliding device 5 is: the front end of the T-shaped swinging rod 5-1 is arranged side by side with two guiding wheels 5-2, and the swinging rod 5-1 and the sliding groove 5-5
  • the two sliding bases 5-3 are connected by a shaft 5_4, and the sliding base 5_3 is bolted to the derrick beam 4-4; the shaft 5-4 of the swinging rod 5-1 can be longitudinally adjusted and fixed in the sliding slot 5-5.
  • the pendulum rod 5-1 also oscillates laterally on the shaft 5-4 with the flexible wicking rope 11.
  • the pressure cord device 8 is fixedly mounted on a reel base 1-6 remote from the reduction motor 1-1.
  • the structure of the compression cord device 8 is: a fork-shaped crossbar 8-1 with two ears It is connected to the shaft of the pole 8-2, and the lower end of the pole 8-2 is fixed on the drum base 1-6, and the two ends of the spring 8-3 are respectively fixed on the crossbar 8-1 and the pole 8-2,
  • the rod 8_1 is pulled
  • the pressure roller 8-4 is mounted on the two ears of the fork-shaped crossbar 8-1, parallel to the axis of the reel 1-2, and is of equal length and located at the upper rear of the reel 1-2,
  • the reel faces of the reels 1-2 are maintained at an appropriate distance; the swaying device 5 cooperates with the slinging device 8 to prevent the flexible wicking ropes 11 from being tangled.
  • the wellhead assembly 6 includes a blowout prevention box 6-1, an eccentric wellhead 6-2, a single flow valve 6-3, and an oil delivery line 6-4.
  • the column 9 is connected to the ultra-long pump barrel of the downhole multi-stage plunger super long stroke pumping pump 7.
  • the pressure sensor 3-2 is lowered into the annular space of the oil well at the bottom of the oil well by using the eccentric wellhead 6-2, and the pressure of the liquid liquid column is monitored, and the monitoring data is transmitted back to the control assembly 3 through the data line.
  • the control assembly 3 simultaneously controls the activation and deactivation of the electric hydraulic pushers 1-41 of the brake assemblies 1-4; when the electric hydraulic pushers 1-41 are activated, the pusher brackets 1-42 brakes the brakes The lever 1-45 drives the brake band assembly 1-46 to leave the reel 1-2, and the reel 1-2 operates; conversely, when the electric hydraulic pusher 1-41 is stopped, the spring 1_43 pulls the spring weighted arm 1-44 , the brake link 1-45 drives the brake band assembly 1-46 to contact and rub the reel 1_2, and the reel 1-2 stops.
  • a flexible drawstring 11 having a slightly longer stroke than the downhole multistage plunger super long stroke pump 7 is wound on the reel 1-2 at one end and through the two guide wheels 5-2 at the other end.
  • Hole, and bypassing the fixed pulley 2-1, passing through the blowout prevention box 6-1, the eccentric wellhead 6-2, the downhole string 9 and the wire rope or the sucker rod 10 in the column 9 are connected, the wire rope or the pumping
  • the other end of the oil rod 10 is connected with a multi-stage plunger of the downhole multi-stage plunger super long stroke pump 7 to drive the multi-stage plunger to pump the well fluid.
  • the control assembly 3 controls the motor 1-1 to stop according to the set up buffer time; the motor is controlled according to the pressure value monitored by the pressure sensor 3-2 in the casing;
  • the installed rotary encoder 3-1 calculates the multi-stage plunger super long stroke pump 7 to enter the well depth and set the maximum down depth comparison result to control the motor 1-1 to stop down and reverse rotation, raise the well fluid ;
  • the plunger of the lifting oil recovery system is lifted from the bottom of the well to the full well operation mode of the wellhead, and the ultra-long stroke non-full well operation mode in which the plunger is repeatedly operated up and down
  • the downhole tubular string 9 can be installed with a packer 9-2 and a throwing hand 9-1 outside the oil pipe 9-3 of the upper portion of the pump cylinder of the multistage plunger super long stroke oil pump 7. connection.
  • the packer 9-2 is gradually stepped up to seal the annular space of the oil jacket, and the upper oil pipe 9-3 of the packer 9-2 is taken out by the lost hand 9-1.
  • the downhole multi-stage plunger super long stroke pump 7 pumping well fluid flows in the casing, which can greatly reduce the one-time investment cost of the oil well and produce huge economic benefits.
  • a system start, set the well depth to 0 m, the downhole depth is negative; through the keyboard input, start pressure, maximum depth, maximum depth, stop waiting time T, maximum current; pressure sensor 3-2, current monitoring Module, encoder 3-1 is in working state, and constantly transmits various signals to the circuit board CPU;
  • the circuit control board CPU logically judge whether the value of the pressure sensor 3-2 in the casing is greater than or equal to the starting pressure
  • the motor 1-1 starts, reverses, under the action of the multi-stage plunger and the weight of the weighting rod, the multi-stage plunger descends;
  • the instruction f and the CPU receive the pulse signal reflected by the encoder 3-1 and reflect the descending depth of the multi-stage plunger, calculate the number of pulses, and perform a logic judgment on whether the current depth of the multi-stage plunger is less than or equal to the maximum depth of the downlink;
  • the CPU stops the motor 1-1 and the hydraulic pusher 1-4 brakes;
  • the CPU stops the motor 1-1, the hydraulic pusher 1-4 brakes;
  • the CPU logically judges the internal timer and the uplink buffer time T;
  • the CPU receives the digital signal of the power monitoring module from time to time, processes and analyzes the digital signal, obtains the current current magnitude, and makes a logical judgment on whether the current current is greater than or equal to the maximum current or whether the current depth of the multi-stage plunger is greater than or equal to the maximum depth of the uplink;
  • the flexible drawstring 11 can be a flexible drawstring with a heating cable.
  • the temperature sensor of the lower end of the heatable flexible oil wick is installed, and the heated flexible oil wick having a length exceeding the waxing point is connected with the wire rope or the sucker rod 10 in the column 9; the upper column 9 corresponding to the waxing point is coated Insulation coating to prevent heat loss; due to the non-full well operation mode, a large amount of well fluid remains in the column 9; the control assembly 3 can control the heatable flexible pumping according to the temperature signal uploaded by the temperature sensor.
  • the rope is heated to the well fluid; the heating flexible oil-increasing rope is matched with the pipe column 9 coated with the heat-insulating coating, which is beneficial to the decontamination of the wax-column and the thick oil well of the pipe column 9, when the heating facility such as the floor heating furnace fails, It can temporarily replace the heating equipment without stopping production; it can even replace the heating equipment such as the floor heating furnace, so that the outlet temperature of the well fluid can reach the temperature of the oil supply, and reduce the investment cost of the ground facilities.
  • the CPU of the control assembly 3 performs intelligent control on the entire unit according to the signals uploaded by the temperature sensor, the encoder 3-1 and the pressure sensor 3-2 in the annular space of the oil jacket, and the specific control flow is:
  • the system starts, set the well depth to 0 m, the downhole depth is negative; through the keyboard input: starting pressure, maximum depth of the descending, maximum depth of the upstream, set temperature, maximum current; temperature sensor, pressure sensor 3-2, Electricity Description Book flow monitoring module, encoder 3-1 is in working state, and various signals are transmitted to the circuit board CPU at all times;
  • Circuit control board CPU stops motor 1-1, hydraulic pusher 1-4 brakes;
  • the circuit control board CPU determines whether the value of the pressure sensor 3-2 in the casing is greater than or equal to the starting pressure.
  • the CPU receives the pulse signal from the encoder 3-1 which reflects the descending depth of the multi-stage plunger, calculates the number of pulses, and makes a logical judgment on whether the current depth of the multi-stage plunger is less than or equal to the maximum depth of the downlink;
  • the CPU stops the motor 1-1 and the hydraulic pusher 1-4 brakes;
  • the CPU stops the motor 1-1, the hydraulic pusher 1-4 brakes;
  • the CPU makes a logical judgment according to the temperature of the liquid returned by the temperature sensor installed in the heatable flexible oil slinger and the set outlet temperature;
  • the CPU receives the digital signal of the power monitoring module from time to time, and processes and analyzes the digital signal to obtain the current current magnitude, and makes a logical judgment on whether the current current is greater than or equal to the maximum current or whether the current depth of the plunger is greater than or equal to the maximum depth of the uplink;
  • the flexible oil wicking rope 11 can be a flexible oil wicking rope manufactured by the company's ZL 201010164396. 5 a flexible oil wicking rope manufacturing method; the heatable flexible oil wicking rope can be ZL200920002662 developed by the company.
  • the specification relates to a heat-sinkable injection-molded composite steel cord, and can also be a heated flexible drawstring of other structures.
  • the downhole multi-stage plunger super long stroke pump 7 consists of a steel multi-stage plunger and an ultra-long pump barrel.
  • the steel-type multi-stage plunger includes a sealed chamber portion 71, a weighted portion 72, and a plurality of steel-type single-stage plungers 74 connected in series; a sealing sleeve 71-1, a sealant 71-2 and the pressure rope head 71-3 press the wire rope or the sucker rod 10 in the upper portion 71-4 of the sealing chamber, the sealing sleeve 71-1, the upper portion 71-4 of the sealing chamber, the sealing chamber 71_5, the upper portion
  • the diameters 71-6 are sequentially threaded, and the sealing ring is sealed to constitute the sealing chamber portion 71 of the plunger;
  • the number of the series weighting rods 72-2 is determined by the weight, the lower reducing diameter 72-1, and the plurality of weighting rods 72-2
  • the lower end 72-3 of the weighting rod is sequentially screwed to form a weighted portion 72 of the plunger;
  • the structure of the steel single-stage plunger 74 is: the lower part of the upper hanging body
  • the lower end of the lower joint 74_7 of the grade steel single-stage plunger 74 is welded; the upper joint 74-2 is welded to the lower joint 74-7 by the welding member 74-10, and the upper hanging body 74-2 is hung in the cavity of the lower joint 74_7.
  • the round head of the body 74_2 can be rotated and rotated 360 degrees in the cavity; similarly, the third stage and the fourth stage are connected, and the upper hanging body 74-2 and the center tube 74-5 of the last-stage steel-type single-stage plunger 74 pass.
  • the coupling 74_9 is externally threaded, and the lower joint 74-7 of the last-stage steel-type single-stage plunger 74 is replaced by the lower Versailral body 75-3; the upper and lower ends of the lower Versailral body 75_3 are cavities, underneath Placed in the cavity Valve ball 74-3 and Versail ball seat 74-4, Versail ball seat 74-4 is limited by the platform on the inner wall of the lower Versailral body 75-3, and the valve is limited to 74-3 In the cavity thereof; an axial through hole 75-4 connecting the upper and lower cavities is opened in the middle of the lower Versailral body 75-3; the upper end of the lower Versailral body 75-3 is screwed to the central tube 74-5, The lower end is connected with a weight joint 75-6 having a liquid inlet hole 75-5 on the pipe wall; the weight joint 75-6 is connected with the lower reduction diameter 72-1 of the weight portion 72; the first stage steel body single stage column The rounded portion of the upper hanging body 74-2 of the plug
  • the length of the steel-plated single-stage plunger 74 is determined by the length of the contact surface of the steel-plated single-stage plunger 74.
  • the specification stipulates that the pipe column needs to reach 1.2 m, then The book requires four or more steel-type single-stage plungers 74 to be connected in series.
  • each steel-type single-stage plunger 74 is hung in the structure of the upper hanging body 74-2, the multi-stage plunger has a good automatic adjustment capability to adapt to the axial deviation of the ultra-long pump cylinder, and the plunger is solved in the super The problem of resistance in the operation of the long pump cylinder.
  • Multiple single-stage plungers are connected in series to ensure the need for tubing pairs, reduce leakage and improve pump efficiency; and extend the service life of multi-stage plungers.
  • the ultra-long pump cylinder is composed of a plurality of pump cylinders 76--shaped connection, and the connection manner is as follows: the ports of the two pump cylinders 76, 76' satisfying the requirements of the pump cylinder after finishing rolling and honing
  • the slit 76-4 is cut, and the port portion of the two pump cylinders has external threads 76-1, 76-1 ';
  • the two ends of the inner wall of the coupling 76-2 have internal threads 76_3 matched with the two pump cylinders 76, 76' , 76-3 ', a retaining ring is left in the middle of the coupling 76-2;
  • the two pump cylinders 76, 76' are screwed to the coupling 76_2, the clearance is 0.01 and the centering of the mouth is aligned, the two cylinders 76, 76
  • the straightness of the rear end face of the butt joint is limited to 0.
  • the two pump cylinders 76, 76 ', coupling 76_2 performs the labeling of the connection sequence; according to the same process, the plurality of pump cylinders 76 are connected until the total length of the plurality of pump cylinders 76 connected together is greater than the stroke length set by the oil well, forming an ultra-long pump cylinder.
  • the stroke of the multi-stage plunger super long stroke pump of the present invention can be tens of meters to hundreds of meters, or even hundreds of meters, depending on the production volume and cost of the oil well.
  • the stroke can be set to tens of meters or more than 100 meters, using the oil recovery mode of non-full well operation, which has produced many beneficial effects and greatly reduced the whole Machine cost.
  • the winding flexible oil wicking rope 11 becomes shorter, the size of the reel 1-2 is greatly reduced;
  • the simple sliding device 5 and the pressing rope device 8 can replace the cumbersome arranging device, and reduce the weight of the whole machine; c.
  • the derrick and reel load is reduced, the derrick is shortened, and the consumables are reduced; the whole structure is more compact and light, and the overall height is reduced from more than 5 meters to less than 3 meters; d, reel 1-2
  • the flexible slinging rope 11 is repeatedly wound on the upper part, and only the flexible wicking rope 11 can be replaced after the wear, and the replacement is simpler; e. replacing most of the flexible wicking rope with the wire rope or the sucker rod, thereby greatly reducing the cost.
  • it can overcome the problem of injection molding melt of flexible pumping ropes in high temperature wells; f.
  • the length of the pump barrel to be treated is greatly shortened, which greatly reduces the one-time investment of oil wells.
  • Cost; g due to the shortened total stroke of the plunger, prolonged service life of the plunger, and the complementary action of multiple plungers, greatly reducing the frequency of plunger replacement and reducing the number of workover operations.
  • the invention was field tested on the D45-8-1 oil well in Jilin Oilfield.
  • the oil well is 1600 meters deep, the stroke is set at 100 meters, and the diameter of the pump cylinder is 44.
  • the test shows:
  • the power saving effect is remarkable; the power consumption of the original well is about 110 degrees, and the power consumption is now 32 degrees, saving 70.9%.
  • the current number of pumping times in the stationary period is 36 times/day, which can adapt to the oil well production in different mining stages.
  • the current production liquid 1. 6 square. (072) /
  • the pumping stroke is 90 meters, the theoretical displacement is 0. 09 square / time, the casing level is lowered by 8-9 meters, the actual displacement is 0. 064 square / time - 0. 072 square /
  • the pump efficiency is 71%-80%.
  • the wear of the plunger is greatly reduced; the cumulative running time of the day is 4.8 hours.
  • (6) reduce the cost of pump inspection; replacement of the plunger is simple and convenient, the above mentioned wellhead replacement can be achieved, to achieve the pump does not move the column.
  • the current oil recovery method requires the treatment of the 1600-meter oil production pipeline. The invention only needs to treat the 100-meter pump cylinder, saving investment of more than 20,000 yuan.
  • the well fluid pumped by the multi-stage plunger super long stroke pump can flow in the casing.
  • the cumulative length of the tubing can be saved. Up to 1,400 meters, saving nearly 80,000 yuan;
  • the load is reduced, the energy consumption is reduced, and the power is saved.
  • the existing equipment consumes 50 degrees, and the power consumption of the invention is 32 degrees.
  • the ground equipment is compact, short, and greatly reduced in weight.
  • the height of the whole machine is reduced from more than 5 meters to less than 3 meters, and the weight is reduced by more than 1 ton; (7), the flexible flexible oil wicking rope can be replaced by 1500 meters of steel wire rope or sucker rod, which can save costs by more than 30,000 yuan; ), wire rope or sucker rod replaces the injection molded flexible flexible oil sling in the downhole, which can solve the problem of injection melting of deep flexible flexible oil wicking rope; (9), heatable flexible oil sling rope and oil pipe coated with thermal insulation coating In combination, it not only helps the decontamination of wax and heavy oil wells in the tubing, but also replaces the heat tracing facilities of the surface oil pipelines, greatly reducing the production cost of the wells; (10), the equipment runs more smoothly and the noise is small; (11) Comprehensive The combination of the above factors can reduce the one-time investment cost of oil wells by nearly 40% and generate huge economic benefits.

Abstract

一种低矮型超长冲程智能控制卷扬式提拉采油系统,主要包括电机(1-1)、卷筒(1-2)、定滑轮(2-1)、井架(4-5)、滑摆装置(5)、控制总成(3)、抽油绳(11)和井下多级柱塞超长冲程抽油泵(7)。还公开一种低矮型超长冲程智能控制卷扬式提捞采油系统的工作方法,控制总成(3)根据设定的冲程、井下液体压力、停机等待时间等参数来控制电机(1-1)启动、正反向转动和停机等待;从而带动卷筒(1-2)正反向旋转和停止,使卷筒(1-2)上的抽油绳(11)带动井下多级柱塞超长冲程抽油泵(7)的多级柱塞在超长泵筒(76)内以设定的冲程反复运行,改变现有卷扬式提捞抽油装置的柱塞从井底将井液一直提升到井口的全井运行模式,实现非全井运行模式,使整个机组结构紧凑、体积小,减少耗材,节能降成本显著,可降低油井一次性投资近40%。该低矮型超长冲程智能控制卷扬式提捞采油系统及工作方法适用于深井、低产井、稠油井,并对油井增产效果显著。

Description

说 明 书 一种低矮型超长冲程智能控制卷扬式提拉采油系统及工作方法 技术领域
本发明涉及一种采油设备, 尤其涉及一种低矮型超长冲程智能控制卷扬式提拉采油 系统及工作方法。
背景技术
目前, 游梁式抽油机是杆式抽油机最主要的抽油设备, 其缺点是: 1、 受结构限制冲 程一般为 6-8m, 冲程损失较大; 2、 抽油机体积大, 耗材多, 3、 设备运行维护费用及采 油吨液费用大; 4、 不适于深井、 低渗透井、 稠油井和含气的井。 随着我国大部分油田进 入开采的中、 后期, 尤其是低渗透井、 超深井、 稠油井的不断开发, 游梁式抽油机已不 适于采油后期生产需要。 近年来出现了提拉式抽油装置, 采油方式是在油管组成的管柱 内利用柔性抽油绳带动抽油柱塞从井底到井口提拉井液的全井运行模式。 缺点是: 1、 由 于全井运行模式, 抽子经过的管柱需要特殊处理, 油管处理成本高。 2、 由于全井运行模 式, 大量的柔性抽油绳需在卷筒上缠绕且负荷大, 只能选择大尺寸的卷筒和又高又粗的 井架等, 整机体积大, 耗材多, 成本高, 也不便于运输。 3、 超长的柔性抽油绳在卷筒上 缠绕易出现乱缠现象, 需配备大型的排绳装置, 进一步增加整机的体积和重量。 4、 抽子 上、 下往复行程长, 摩擦损耗大, 需停产、 起井维修, 维修费时、 费力且耽误生产。 5、 抽子在长距离运行中易出现遇阻现象。 6、 全程使用柔性抽油绳, 磨损后需要整条更换, 不但成本高, 且不适于超过 2000米的深井, 因为深井井下温度高, 易造成注塑熔化等。 发明内容
本发明的目的就是为了克服上述现有技术在生产中存在的实际问题, 提供一种低矮 型超长冲程智能控制卷扬式提拉采油系统及工作方法, 利用井下多级柱塞超长冲程抽油 泵, 使抽油机冲程在十几米至几百米间任意设定, 打破有杆泵冲程仅为 6-8米的限制, 实现超长冲程的非全井运行模式, 既能克服游梁式抽油机冲程受限和不适宜低产油井、 深井, 含气大井的缺点, 又能避免现有的卷扬式提拉采油装置因全井运行模式而存在的 整机体积和重量大, 耗材多且不便运输; 抽子损耗快、 油管处理成本高, 柔性抽油绳磨 损后需整条更换成本过大等缺点, 尤其是利用封隔器封堵油套环形空间, 可将多级柱塞 超长冲程抽油泵泵筒以上的油管取出, 可再次降低油井一次性投资成本, 使整机可降成 本近 40%。
一种低矮型超长冲程智能控制卷扬式提拉采油系统包括: 动力驱动总成 (1 )、 定滑 轮总成 (2)、 控制总成 (3)、 井架总成 (4)、 滑摆装置 (5 )、 压绳装置 (8)、 井口装置 说 明 书
(6)、 井下管柱 (9)、 柔性抽油绳 (11)、 钢丝绳或抽油杆 (10)和井下多级柱塞超长冲 程抽油泵 (7); 动力驱动总成 (1) 驱动的柔性抽油绳 (11) 的长度大于设定冲程长度, 柔性抽油绳(11)的一端缠绕在动力驱动总成的卷筒(1-2)上, 另一端穿过滑摆装置(5) 的两导向轮 (5-2) 间的通孔, 并绕过定滑轮 (2-1), 依次穿过井口装置 (6) 的防喷盒
(6-1)、 偏心井口 (6-2)、 井下管柱 (9) 后, 与管柱 (9) 内的钢丝绳或抽油杆 (10) 用卡箍连接, 构成全井抽油绳; 钢丝绳或抽油杆 (10) 的另一端与井下多级柱塞超长冲 程抽油泵(7) 的多级柱塞连接; 井架总成(4)上安装定滑轮总成(2)和滑摆装置(5); 所述的井口装置 (6) 与管柱 (9) 连接, 管柱 (9) 与井下多级柱塞超长冲程抽油泵 (7) 的超长泵筒连接; 井下多级柱塞超长冲程抽油泵 (7) 由超长泵筒和多级柱塞构成, 其多 级柱塞置于超长泵筒内; 所述的控制总成(3) 由旋转编码器(3-1)和压力传感器(3-2) 组成; 压力传感器 (3-2) 通过偏心井口 (6-2) 下入油井底部的油套环形空间内。
所述的井下多级柱塞超长冲程抽油泵 (7) 的超长泵筒是由多个泵筒(76) "—字型" 连接构成; 多个泵筒 (76) 的连接方式是: 经精轧和珩磨后满足泵筒参数要求的两泵筒
( 76、 76 ' )的端口处切有切口 ( 76-4、 76-4 ' ),两泵筒的端口部车有外螺纹 ( 76- 1、 76- ) 接箍 (76-2) 内壁两端车有与两泵筒 (76、 76')相匹配的内螺纹 (76_3、 76_3'), 接箍
(76-2)中间留有止口;两泵筒(76、 76')与接箍(76_2)螺纹连接,配合间隙为 0.01mm, 且止口对中定位; 两泵筒(76、 76') 的对接后两端面间最大缝隙限制在 0.1〜0.2 对 接后的两泵筒 (76、 76') 的直线度 0.04 /m; 两泵筒 (76、 76') 装配接箍 (76_2) 后用通径规通试, 若两泵筒 (76、 76') 对接后直线度〉0.04mm/m, 则需进行珩磨校正, 确保直线度 0.04mm/m, 并对两泵筒 (76、 76')、 接箍 (76_2) 进行连接顺序的标注; 按照同样工序, 将多个泵筒 (76) 进行连接, 直至连接在一起的多个泵筒 (76) 的总长 度大于油井设定的冲程长度为止。
所述的井下多级柱塞超长冲程抽油泵 (7) 的钢体式多级柱塞包括密封腔部分(71 加重部分(72)和串连的多个钢体式单级柱塞(74); 密封压套(71-1)、密封胶敦(71-2) 和压绳头(71-3)将钢丝绳或抽油杆(10)在密封腔上节(71-4)内压紧,密封压套(71-1 密封腔上节 (71-4)、 密封腔 (71-5)、 上变径 (71-6) 依次螺纹连接, 密封圈密封, 构 成柱塞的密封腔部分(71); 串接加重杆(72-2)的数量由配重需要决定; 下变径(72-1 多个加重杆 (72-2)、 加重杆下端 (72-3) 依次螺纹连接, 构成柱塞的加重部分 (72); 钢体式单级柱塞 (74) 的结构是: 顶部车有圆头的上挂体 (74-2) 的下部为空腔, 与空 腔对应的管壁上开有出液通孔(74-1); 在上挂体(74-2)的空腔内置放凡尔阀球(74-3) 说 明 书 和凡尔阀球座 (74-4); 凡尔阀球座 (74-4) 被上挂体 (74-2) 空腔内壁上的档台限位, 并将凡尔阀球 (74-3 ) 限定在上挂体 (74-2) 的空腔内; 外衬钼铬合金衬套 (74-6 ) 的 中心管(74-5)的上端与上挂体(74-2)的下端以螺纹连接,并紧紧顶住凡尔阀球座(74-4), 中心管 (74-5 ) 的下端与下接头 (74-7) 的上端以螺纹连接; 下接头 (74-7 ) 的管壁上 开有进液孔 (74-8 ); 上挂体 (74-2)、 凡尔阀球 (74-3 )、 凡尔阀球座 (74-4)、 中心管
( 74-5 )、 衬管 (74-6 ) 和下接头 (74-7 ) 构成了钢体式单级柱塞 (74); 结构相同的多 个钢体式单级柱塞 (74) 顺次按照下一级钢体式单级柱塞 (74) 的上挂体 (74-2) 内挂 在上一级钢体式单级柱塞 (74) 的下接头 (74-7) 的下部空腔内; 利用焊接件 (74-10) 与下接头 (74-7) 焊接, 将上挂体 (74-2) 悬挂在下接头 (74-7 ) 的空腔内; 同理连接 第三级、第四级 ,最后一级钢体式单级柱塞(74)的上挂体(74-2)与中心管(74-5) 通过接箍 (74-9) 外螺纹连接, 最后一级钢体式单级柱塞 (74) 的下接头 (74-7 ) 被下 凡尔座体 (75-3) 替代; 下凡尔座体 (75-3) 的上、 下两端为空腔, 其下腔体内放置放 凡尔阀球 (74-3) 和凡尔阀球座 (74-4), 凡尔阀球座 (74-4) 被下凡尔座体 (75_3) 内 壁上的档台限位, 并将凡尔阀球 (74-3 ) 限定在其空腔内; 下凡尔座体 (75-3) 的中间 开有连通上、 下腔体的轴向通孔 (75-4); 下凡尔座体 (75-3) 的上端与中心管 (74-5) 螺纹连接,其下端与管壁上开有进液孔(75-5)的配重接头(75-6)连接;配重接头(75-6) 与加重部分(72)的下变径(72-1 )连接; 第一级钢体式单级柱塞(74)的上挂体(74-2) 的圆头部分内挂在下部为空腔的上接头 (75-1 ) 上, 焊接件 (75-2) 与上接头 (75-1 ) 的管壁焊接, 将上挂体 (74-2 ) 的圆头限定在其腔体内; 上接头 (75-1 ) 与密封腔部分
( 71 ) 的上变径 (71-6) 螺纹连接, 构成钢体式多级柱塞。
所述的串连的钢体式单级柱塞 (74) 的数量由钢体式单级柱塞 (74) 与泵筒的接触 面长度和行业规范要求决定。
动力驱动总成 (1 ) 包括减速电机 (1-1 )、 卷筒 (1-2)、 制动器总成 (1-4); 减速电 机 (1-1 ) 的输出轴上装有链轮 (1-3); 轴上装有卷筒链轮 (1-5) 的卷筒 (1-2) 安装在 卷筒底座 (1-6) 上, 压绳装置 (8) 紧靠卷筒 (1-2), 并安装在卷筒底座 (1-6) 上, 防 止卷筒 (1-2) 缠绳乱序; 卷筒底座 (1-6 )、 减速电机 (1-1 )、 制动器总成 (1-4) 固定 在地面基座 (1-8) 上; 卷筒链轮 (1-5) 与链轮 (1-3) 位于同一平面内且通过传动链条
( 1-7)连接; 井口装置 (6) 包括防喷盒 (6-1 )、 偏心井口 (6-2)、 单流阀 (6-3) 和输 油管线 (6-4)。
所述的滑摆装置 (5) 与压绳装置 (8) 配合使用; 所述的滑摆装置 (5) 的结构是: 说 明 书
T型摆杆(5-1 ) 的前端并排紧靠装有两个导向轮(5-2), 摆杆(5-1 )与带有滑槽(5-5) 的两滑摆底座 (5-3) 以轴 (5-4) 连接, 滑摆底座 (5-3) 以螺栓固定在井架横梁 (4-4) 上; 摆杆(5-1 )的轴(5-4)可在滑槽(5-5)内纵向调节固定,用于调整柔性抽油绳(11 ) 与定滑轮 (2-1 ) 之间的夹角; 柔性抽油绳 (11 ) 穿过两个导向轮 (5-2) 形成的通孔, 摆杆 (5-1 ) 随着柔性抽油绳 (11 ) 在卷筒 (1-2) 上的缠绕或释放而在轴 (5-4) 上横向 摆动; 所述压绳装置 (8) 的结构是: 在远离减速电机 (1-1 ) 的卷筒底座 (1-6) 上固定 安装压绳装置(8),压绳装置(8)的结构是: 带有两支耳的叉形横杆(8-1 )与立杆(8-2) 轴连接, 立杆 (8-2) 下端固定在卷筒底座 (1-6) 上, 弹簧 (8-3) 的两端分别固定在横 杆 (8-1 ) 和立杆 (8-2) 上, 对横杆 (8-1 ) 起牵引作用, 压轮 (8-4) 安装在叉形横杆 (8-1 ) 的两支耳上, 与卷筒 (1-2) 的轴平行、 等长且位于卷筒 (1-2) 的上后方, 与卷 筒 (1-2) 的卷筒面保持适当的间距。
所述的柔性抽油绳(11)为含有加热电缆的可加热柔性抽油绳, 可加热柔性抽油绳的 井下端头部位内装温度传感器; 可加热柔性抽油绳的长度应超过管柱的结蜡点处, 可加 热柔性抽油绳与管柱 (9) 内的钢丝绳或抽油杆 (10)用卡箍连接; 结蜡点处对应的以上 管柱 (9)涂有防止热量散失的保温涂层; 控制装置 (3) 根据可加热柔性抽油绳的温度传 感器监测的温度信号与设定温度对比来控制可加热柔性抽油绳加热; 可加热柔性抽油绳 与涂有保温涂层的管柱 (9) 配合使用。
所述井下管柱 (9) 可在多级柱塞超长冲程抽油泵 (7) 的泵筒上部的油管 (9-3) 外安装封隔器 (9-2) 和丢手 (9-1 ), 以螺纹连接。
井下设备安装完毕后, 将封隔器 (9-2) 逐步涨封, 封堵油套环形空间, 利用丢手 (9-1 )将封隔器 (9-2) 上部油管 (9-3)起出, 井下多级柱塞超长冲程抽油泵 (7)抽 汲的井液在套管内流动, 可以大大降低油井一次性投资成本。
一种低矮型超长冲程智能控制卷扬式提拉采油系统的工作方法, 控制总成(3)根 据设定的上行缓冲时间控制电机(1-1 )停机等待; 根据套管内压力传感器(3-2)监测 的压力值控制电机下行; 根据减速电机(1-1 )轴上安装的旋转编码器(3-1 )计算出的 多级柱塞超长冲程抽油泵(7)下入井深数与设定的下行最大深度对比来控制电机( 1-1 ) 停止下行并反向旋转, 提升井液; 根据旋转编码器 (3-1 ) 计算出的上行行程和设定的 上行最大深度对比来控制减速电机(1-1 )停止转动; 同时控制总成 (3)也相应控制制 动器总成(1-4)对卷筒(1-2)进行制动或解除制动; 进而使柔性抽油绳(11 )在设定的冲 程内反复提升或下放井下的多级柱塞超长冲程抽油泵 (7)的多级柱塞提升井液, 改变以 说 明 书 往卷扬式提拉采油系统的柱塞从井底一直提升至井口的全井运行模式,实现柱塞只在泵 筒内反复上、 下运行的超长冲程的非全井运行模式。
所述的控制总成 (3 ) 的控制流程是:
a、 系统启动, 设定井口深度为 0米, 井下深度为负值; 通过键盘输入, 启动压力, 下行最大深度, 上行最大深度, 停机等待时间 T, 最大电流; 压力传感器 (3-2), 电流监 测模块, 编码器 (3-1)处于工作状态, 时时将各种信号传送到电路控制板 CPU;
b、 电路控制板 CPU, 将电机(1-1)停转, 液压推动器(1-41)制动;
c、电路控制板 CPU,对套管内压力传感器 (3-2)的值是否大于等于启动压力进行逻辑 判断;
cl : 套管内压力传感器 (3-2 ) 值<启动压力, 控制流程返回 b;
c2: 套管内压力传感器 (3_2)值 启动压力, CPU解除液压推动器(1-41)制动; d、 液压推动器(1-41)通电, 解除制动;
e、 电机(1-1)启动、 反转, 在多级柱塞及加重杆重力作用下, 多级柱塞下行; f、 CPU时时接收编码器 (3-1)传来的反映多级柱塞下行深度的脉冲信号,对脉冲数进 行计算, 并对多级柱塞当前深度是否小于等于下行最大深度进行逻辑判断;
fl、 若多级柱塞当前深度〉下行最大深度, 控制流程返回 e;
f2、若多级柱塞当前深度 下行最大深度, CPU将电机(1-1)停转,液压推动器(1-41) 制动;
g、 CPU将电机(1-1)停转, 液压推动器(1-41)制动;
h、 CPU启动内部计时器;
i、 CPU将内部定时器与上行缓冲时间 T进行逻辑判断;
11、 若缓冲时间 <T, 控制流程返回 g ;
12、 若上行缓冲时间 T, CPU解除液压推动器(1-41)制动;
j、 计时器停止;
k、 液压推动器(1-41)通电, 解除制动;
L、 电机(1-1)正转启动, 在柔性抽油绳(11)拉力作用下, 多级柱塞上行;
m、 CPU时时接收电力监测模块的数字信号, 对数字信号进行处理分析, 得到当前电 流大小, 并对当前电流是否大于等于最大电流或多级柱塞当前深度是否大于等于上行最 大深度进行逻辑判断;
ml、若当前电流 最大电流或多级柱塞当前深度 上行最大深度时,控制流程返回 b; 说 明 书 m2、若当前电流 <最大电流且多级柱塞当前深度<上行最大深度时,控制流程返回 L。 柔性抽油绳 (11 ) 为可加热的柔性抽油绳时, 所述的控制总成 (3) 的控制流程为: a、 系统启动, 设定井口深度为 0米, 井下深度为负值; 通过键盘输入: 启动压力、 下行最大深度、 上行最大深度、 设定温度、 最大电流; 温度传感器、 压力传感器 (3-2) 模块, 编码器 (3-2)处于工作状态, 时时将各种信号传送到电路控制板 CPU;
b、 电路控制板 CPU将电机(1-1)停转, 液压推动器(1-41)制动;
c、电路控制板 CPU,对套管内压力传感器 (3-2)值是否大于等于启动压力进行逻辑判 断;
cl : 套管内压力传感器 (3_2)值<启动压力, 控制流程返回 b;
c2: 套管内压力传感器 (3_2)值 启动压力, CPU解除液压推动器(1-41)制动; d、 CPU将液压推动器(1-41)解除制动;
e、 电机(1-1)反转启动, 在多级柱塞及加重杆重力作用下, 多级柱塞下行;
f、 CPU时时接收编码器 (3-1)传来的反映多级柱塞下行深度的脉冲信号,对脉冲数进 行计算, 并对多级柱塞当前深度是否小于等于下行最大深度进行逻辑判断;
fl、 若多级柱塞当前深度〉下行最大深度, 控制流程返回 e;
f2、若多级柱塞当前深度 下行最大深度, CPU将电机(1-1)停转,液压推动器(1-41) 制动;
g、 CPU将电机(1-1)停转, 液压推动器(1-41)制动;
h、 CPU根据可加热的柔性抽油绳内安装的温度传感器传回的液体温度与设定温度进 行逻辑判断;
hl、 若温度传感器监测温度小于设定温度;
i、 启动可加热的柔性抽油绳的加热电缆加热; 控制流程返回 g ;
h2、 若温度传感器监测温度大于等于设定温度,
j、 可加热的柔性抽油绳停止加热;
k、 CPU将液压推动器 (1-41 ) 解除制动;
L、 电机 (1-1 ) 正转, 多级柱塞上行;
m、 CPU时时接收电力监测模块的数字信号, 通过对数字信号进行处理、 分析, 得到 当前电流大小, 并对当前电流是否大于等于最大电流或柱塞当前深度是否大于等于上行 最大深度进行逻辑判断;
ml、 若当前电流 最大电流或多级柱塞当前深度 上行最大深度时, 控制流程返回 说 明 书 k ;
m2、若当前电流 <最大电流且多级柱塞当前深度<上行最大深度时,控制流程返回 b。 由于本发明采用了井下多级柱塞超长冲程抽油泵, 改变了现有卷扬式提拉采油装置 将井液从井底提升至井口的全井运行模式,产生了一系列的有益效果和显著的经济效益。 1 )、 多级柱塞只在泵筒内运行, 行程短、 磨损大幅降低, 减少维修次数; 2)、 多个单级 柱塞间采用活节连接, 使多级柱塞可自由调整以适应超长泵筒的轴向偏差, 解决柱塞遇 阻问题; 3)、 除泵筒外全井油管均为普通油管, 尤其对于深井, 可大大降低油管处理成 本; 4)、 利用逐步涨封封隔器可还可进一步节省井下油管, 再次降低油井一次性投资成 本; 5)、 卷筒上反复缠绕只是柔性抽油绳, 井下其余部分抽油绳可为钢丝绳或抽油杆, 区别以往提拉采油装置必须全井整根柔性抽油绳, 一旦损坏必须更换整绳, 该结构磨损 后更换简单, 省时、 省费用; 6)、 非全井运行模式使卷筒上只有有限长度的柔性抽油绳 在缠绕, 无需大尺寸的卷筒和笨重的排绳装置, 减少耗材, 可大幅减轻整机重量和体积; 7)、 卷筒和井架的荷载减少, 井架变轻、 高度降低, 整机结构紧凑, 不但节省材料, 降 低成本, 亦方便运输。 8)、 非全井运行模式使系统耗能减少, 节电效果明显; 9)全井只 有通过防喷盒的一定长度柔性抽油绳为注塑柔性抽油绳或含加热电缆的注塑柔性抽油 绳, 其余段可为普通钢丝绳或其它抽油杆, 不但减少昂贵注塑柔性抽油绳的使用成本, 也使本发明系统可更加广泛适用于深井和稠油井, 用含有加热电缆的柔性抽油绳能有效 地提高油井原油出口温度, 节省大量油田加热拌热投资, 更能有效地解决油井蜡堵或稠 油堵塞问题。 10)、 压力传感器置于油套环形空间内, 油套环形空间工况良好, 实现精确 控制和计量; 11 )、 负载减少, 耗能降低, 节电效果显著; 12 )、 能进行产液量和抽油次 数的大幅调整; 适合不同开采时期的油井; 13)、 超长冲程可产生强大负压, 解堵和增产 效果明显; 14)、 设备运行更平稳, 噪声更小; 15)、 诸多结构的改进所产生的诸多优点 的互相作用, 大幅度降低了油井一次性投入成本, 整机可降成本近 40%。
附图说明
图 1是本发明一种低矮型超长冲程智能控制卷扬式提拉采油系统的整体结构示意图; 图 2是本发明一种低矮型超长冲程智能控制卷扬式提拉采油系统的俯视图; 图 3是本发明的定滑轮总成和滑摆装置的主视图;
图 4是本发明的滑摆装置的侧视图;
图 5-1是本发明的卷筒及压绳装置的主视图;
图 5-2是本发明的卷筒及压绳装置的俯视图; 说 明 书 图 6为本发明的制动器总成的结构示意图;
图 7-1 为本发明的钢体式多级柱塞的上半部结构图;
图 7-2为本发明的钢体式多级柱塞的下半部结构图;
图 8为本发明的井下超长泵筒的两泵筒的连接结构示意图;
图 9本发明的柔性抽油绳为非可加热的柔性抽油绳时的控制总成的控制流程图; 图 10本发明的柔性抽油绳为可加热的柔性抽油绳时的控制总成的控制流程图; 图 11-1本发明的油管外安装封隔器的井下管柱局部结构示意图;
图 11-2本发明封隔器涨封后井下管柱局部结构示意图。
附图标记说明: 1、 动力驱动总成, 1-1、 电机, 1-2、 卷筒, 1-3、 链轮, 1-4、 制动 器总成, 1-41、 液压推动器, 1-42、 推动器支板, 1-43、 弹簧, 1_44、 弹簧配重支臂, 1-45、 刹车连杆, 1-46、 刹车带总成, 1-5、 卷筒链轮, 1-6、 卷筒底座, 1_7、 传动链条, 1-8、 地面基座, 2、 定滑轮总成, 2-1、 定滑轮, 2-2、 支耳, 3、 控制总成, 3_1、 编码 器, 3-2、 压力传感器, 4、 井架总成, 4-1、 定滑轮支撑座, 4-2、 井架下筋板, 4-3、 井 架平台, 4-4、 井架横梁, 4-5、井架, 4-6、斜拉杆, 4-7、 调整螺栓, 5、滑摆装置, 5_1、 摆杆, 5-2、 导向轮, 5-3、 滑摆底座, 5-4、 轴, 5-5、 滑槽, 8、 压绳装置, 8_1、 横杆, 8-2、 立杆, 8-3、 弹簧, 8-4、 压轮, 6、 井口装置, 6-1、 防喷盒, 6-2、 偏心井口, 6-3、 单流阀, 6-4、 输油管线, 7、 多级柱塞超长冲程抽油泵, 71、 密封腔部分, 71-1、 密封 压套, 71-2、 密封胶敦, 71-3、 压绳头, 71-4、 密封腔上节, 71_5、 密封腔, 71_6、 上 变径, 72、 加重部分, 72-1、 下变径, 72-2、 加重杆, 72_3、 加重杆下端, 74、 钢体式 单级柱塞, 74-1、 出液孔, 74-2、 上挂体, 74-3、 凡尔阀球, 74_4、 凡尔阀球座, 74-5、 中心管, 74-6、衬套, 74-7、下接头, 74-8、进液孔, 74_9、接箍, 74-10、焊接件, 75-1 、 上接头, 75-2、 焊接件, 75-3、 下凡尔座体, 75-4、 轴向通孔, 75-5、 进液孔, 75-6、 配重接头, 76、 泵筒, 76-1、 外螺纹, 76-2、 接箍, 76-3、 内螺纹, 76-4、 切口, 11、 柔性抽油绳, 9、 井下管柱, 9-1、 丢手接头, 9-2、 封隔器, 9-3、 油管, 10、 钢丝绳。 具体实施方式:
参见图 1、 图 2和图 5, 本发明一种低矮型超长冲程智能控制卷扬式提拉采油系统包 括: 动力驱动总成 1、 定滑轮总成 2、控制总成 3、井架总成 4、滑摆装置 5、压绳装置 8、 井口装置 6、 井下管柱 9、 柔性抽油绳 11、 钢丝绳或抽油杆 10和井下多级柱塞超长冲程 抽油泵 7; 动力驱动总成 1包括减速电机 1-1、 卷筒 1-2、 制动器总成 1-4, 结构是: 减 速电机 1-1的输出轴上装有链轮 1-3和编码器 3-1 ; 轴上装有卷筒链轮 1-5的卷筒 1-2 说 明 书 安装在卷筒底座 1-6上, 卷筒底座 1-6、 减速电机 1-1、 制动器总成 1-4固定在地面基座
1- 8上; 卷筒链轮 1-5与链轮 1-3位于同一平面内且通过传动链条 1-7连接;
参见图 3, 定滑轮总成 2的结构是: 定滑轮 2-1的轴安装在两支耳 2-2上, 两支耳
2- 2与定滑轮支撑座 4-1螺栓连接。
参见图 1, 井架总成 4的结构是: 配有井架下筋板 4-2和井架平台 4-3的井架 4-5 上端焊有井架横梁 4-4, 定滑轮支撑座 4-1用螺栓固定在井架横梁 4-4上, 调整螺栓 4-7 对定滑轮支撑座 4-1施加一个水平方向的力, 以减轻固定定滑轮支撑座 4-1的螺栓所受 的力, 斜拉杆 4-6的两端分别与井架 4-5和地面基座 1-8螺栓连接, 对井架 4-5起支撑 作用。
参见图 3、 图 4, 滑摆装置 5的结构是: T型摆杆 5-1的前端并排紧靠装有两个导向 轮 5-2,摆杆 5-1与带有滑槽 5-5的两滑摆底座 5-3以轴 5_4连接,滑摆底座 5_3以螺栓 固定在井架横梁 4-4上; 摆杆 5-1的轴 5-4可在滑槽 5-5内纵向调节固定, 用于调整柔 性抽油绳 11与定滑轮 2-1之间的夹角; 由于柔性抽油绳 11在两个导向轮 5-2之间形成 的通孔穿过, 当柔性抽油绳 11在卷筒 1-2上缠绕或释放时, 摆杆 5-1也随着柔性抽油绳 11在轴 5-4上横向摆动。
参见图 1、 图 5, 在远离减速电机 1-1的卷筒底座 1-6上固定安装压绳装置 8, 压绳 装置 8的结构是: 带有两支耳的叉形横杆 8-1与立杆 8-2轴连接, 立杆 8-2下端固定在 卷筒底座 1-6上, 弹簧 8-3的两端分别固定在横杆 8-1和立杆 8-2上, 对横杆 8_1起牵 引作用, 压轮 8-4安装在叉形横杆 8-1的两支耳上, 与卷筒 1-2的轴平行、 等长且位于 卷筒 1-2的上后方, 与卷筒 1-2的卷筒面保持适当的间距; 滑摆装置 5与压绳装置 8共 同作用, 可防止柔性抽油绳 11乱缠。
参见图 1, 井口装置 6包括防喷盒 6-1、 偏心井口 6-2、 单流阀 6-3和输油管线 6-4。 管柱 9与井下多级柱塞超长冲程抽油泵 7的超长泵筒连接。 利用偏心井口 6-2将压力传 感器 3-2下入油井底部油套环形空间内, 对井下液体液柱压力进行监测, 并将监测数据 通过数据线传回控制总成 3。
参见图 6, 控制总成 3同时控制制动器总成 1-4的电力液压推动器 1-41的启动和 关闭; 当电力液压推动器 1-41启动时, 推动器支板 1-42使刹车连杆 1-45带动刹车带总 成 1-46离开卷筒 1-2, 卷筒 1-2运转; 反之, 当电力液压推动器 1-41停止时, 弹簧 1_43 拉动弹簧配重支臂 1-44, 使刹车连杆 1-45带动刹车带总成 1-46接触并摩擦卷筒 1_2, 卷筒 1-2停转。 说 明 书 参见图 1, 比井下多级柱塞超长冲程抽油泵 7的冲程略长的柔性抽油绳 11一端缠绕 在卷筒 1-2上, 另一端穿过两导向轮 5-2间的通孔, 并绕过定滑轮 2-1、依次穿过防喷盒 6-1、 偏心井口 6-2井下管柱 9后与管柱 9内的钢丝绳或抽油杆 10卡箍连接, 钢丝绳或 抽油杆 10的另一端与井下多级柱塞超长冲程抽油泵 7的多级柱塞连接,带动多级柱塞抽 汲井液。
参见图 1、 图 9, 控制总成 3根据设定的上行缓冲时间控制电机 1-1停机等待; 根据 套管内压力传感器 3-2监测的压力值控制电机下行; 根据减速电机 1-1轴上安装的旋转 编码器 3-1计算出的多级柱塞超长冲程抽油泵 7下入井深数与设定的下行最大深度对比 结果来控制电机 1-1停止下行并反向旋转, 提升井液; 根据旋转编码器 3-1计算出的上 行行程和设定的最大深度进行对比来控制减速电机 1-1停止转动; 同时控制总成 3也相 应控制制动器总成 1-4对卷筒 1-2进行制动或解除制动;进而使柔性抽油绳 11在设定的 冲程内反复提升或下放井下多级柱塞超长冲程抽油泵 7的多级柱塞提升井液, 改变以往 卷扬式提拉采油系统的柱塞从井底一直提升至井口的全井运行模式, 实现柱塞只在泵筒 内反复上、 下运行的超长冲程的非全井运行模式。
参见图 11-1,所述井下管柱 9可在多级柱塞超长冲程抽油泵 7的泵筒上部的油管 9-3 外安装封隔器 9-2和丢手 9-1, 以螺纹连接。
参见图 11-2, 井下设备安装完毕后, 将封隔器 9-2逐步涨封, 封堵油套环形空间, 利用丢手 9-1将封隔器 9-2上部油管 9-3起出, 井下多级柱塞超长冲程抽油泵 7抽汲的 井液在套管内流动, 可以大大降低油井一次性投资成本, 产生巨大的经济效益。
控制总成的 CPU的具体控制流程是:
a、 系统启动, 设定井口深度为 0米, 井下深度为负值; 通过键盘输入, 启动压力, 下行最大深度, 上行最大深度, 停机等待时间 T, 最大电流; 压力传感器 3-2, 电流监测 模块, 编码器 3-1处于工作状态, 时时将各种信号传送到电路控制板 CPU;
b、 电路控制板 CPU, 将电机 1-1停转, 液压推动器 1-4制动;
c、 电路控制板 CPU, 对套管内压力传感器 3-2值是否大于等于启动压力进行逻辑判 断;
cl : 套管内压力传感器 3-2的值 <启动压力, 控制流程返回 b;
c2: 套管内压力传感器 3-2的值 启动压力, CPU解除液压推动器 1-4制动; d、 液压推动器 1-4通电, 解除制动;
e、 电机 1-1启动、 反转, 在多级柱塞及加重杆重力作用下, 多级柱塞下行; 说 明 书 f、 CPU时时接收编码器 3-1传来的反映多级柱塞下行深度的脉冲信号, 对脉冲数进 行计算, 并对多级柱塞当前深度是否小于等于下行最大深度进行逻辑判断;
fl、 若多级柱塞当前深度〉下行最大深度, 控制流程返回 e;
f2、 若多级柱塞当前深度 下行最大深度, CPU将电机 1-1 停转, 液压推动器 1-4 制动;
g、 CPU将电机 1-1停转, 液压推动器 1-4制动;
h、 CPU启动内部计时器;
i、 CPU将内部定时器与上行缓冲时间 T进行逻辑判断;
11、 若缓冲时间 <T, 控制流程返回 g ;
12、 若上行缓冲时间 T, CPU解除液压推动器 1-4制动;
j、 计时器停止;
k、 液压推动器 1-4通电, 解除制动;
L、 电机 1-1正转启动, 在柔性抽油绳 11的拉力作用下, 多级柱塞上行;
m、 CPU时时接收电力监测模块的数字信号, 对数字信号进行处理分析, 得到当前电 流大小, 并对当前电流是否大于等于最大电流或多级柱塞当前深度是否大于等于上行最 大深度进行逻辑判断;
ml、若当前电流 最大电流或多级柱塞当前深度 上行最大深度时,控制流程返回 b; m2、若当前电流 <最大电流且多级柱塞当前深度<上行最大深度时,控制流程返回 L。 参见图 1、 图 10,柔性抽油绳 11可为含加热电缆的柔性抽油绳。 可加热柔性抽油绳 的下端安装温度传感器, 长度超过结蜡点的加热柔性抽油绳与管柱 9 内的钢丝绳或抽油 杆 10用卡箍连接; 结蜡点对应的以上管柱 9涂有防止热量散失的保温涂层; 由于非全井 运行模式, 使管柱 9内始终有大量的井液存留其中; 控制总成 3可根据温度传感器上传 的温度信号, 控制可加热的柔性抽油绳对井液加热; 加热柔性抽油绳与涂有保温涂层的 管柱 9配套使用, 有利于管柱 9清蜡和稠油井降稠, 当地面加热炉等伴热设施出现故障 时, 可以起到临时顶替加热设备的作用, 而无需停产; 甚至完全可以取代地面加热炉等 伴热设施, 使井液的出口温度达到输油温度度的要求, 并减少地面设施的投资成本。
此时, 控制总成 3的 CPU根据温度传感器、 编码器 3-1和油套环形空间内的压力传 感器 3-2上传的信号, 对整个机组实行智能控制, 具体控制流程为:
a、 系统启动, 设定井口深度为 0米, 井下深度为负值; 通过键盘输入: 启动压力、 下行最大深度、 上行最大深度、 设定温度、 最大电流; 温度传感器、 压力传感器 3-2, 电 说 明 书 流监测模块, 编码器 3-1处于工作状态, 时时将各种信号传送到电路控制板 CPU;
b、 电路控制板 CPU将电机 1-1停转, 液压推动器 1-4制动;
c、 电路控制板 CPU, 对套管内压力传感器 3-2的值是否大于等于启动压力进行逻辑 判断;
cl : 套管内压力传感器 3-2的值 <启动压力, 控制流程返回 b;
c2: 套管内压力传感器 3-2的值 启动压力, CPU解除液压推动器 1-4制动; d、 CPU将液压推动器 1-4解除制动;
e、 电机 1-1反转启动, 在多级柱塞及加重杆重力作用下, 多级柱塞下行;
f、 CPU时时接收编码器 3-1传来的反映多级柱塞下行深度的脉冲信号, 对脉冲数进 行计算, 并对多级柱塞当前深度是否小于等于下行最大深度进行逻辑判断;
fl、 若多级柱塞当前深度〉下行最大深度, 控制流程返回 e;
f2、 若多级柱塞当前深度 下行最大深度, CPU将电机 1-1停转, 液压推动器 1-4 制动;
g、 CPU将电机 1-1停转, 液压推动器 1-4制动;
h、 CPU根据可加热柔性抽油绳内安装的温度传感器传回的液体温度与设定的出口温 度进行逻辑判断;
hl、 若液体温度小于设定温度,
i、 启动可加热的柔性抽油绳的加热电缆加热; 控制流程返回 g ;
h2、 若液体温度大于等于设定温度,
j、 可加热的柔性抽油绳停止加热;
k、 CPU将液压推动器 1-4解除制动;
L、 电机 1-1正转, 多级柱塞上行;
m、 CPU时时接收电力监测模块的数字信号, 通过对数字信号进行处理、 分析, 得到 当前电流大小, 并对当前电流是否大于等于最大电流或柱塞当前深度是否大于等于上行 最大深度进行逻辑判断;
ml、 若当前电流 最大电流或多级柱塞当前深度 上行最大深度时, 控制流程返回 b ;
m2、若当前电流 <最大电流且多级柱塞当前深度<上行最大深度时,控制流程返回 L。 柔性抽油绳 11可为由本公司研制的 ZL 201010164396. 5一种柔性抽油绳的制造方法 所制造的柔性抽油绳; 可加热的柔性抽油绳, 可为由本公司研制的 ZL200920002662. 7— 说 明 书 种可加热的注塑复合钢丝绳, 也可为其他结构的可加热的柔性抽油绳。
井下多级柱塞超长冲程抽油泵 7由钢体式多级柱塞和超长泵筒组成。
参见图 7-1, 图 7-2, 钢体式多级柱塞包括密封腔部分 71、 加重部分 72和串连的多 个钢体式单级柱塞 74; 密封压套 71-1、密封胶敦 71-2和压绳头 71-3将钢丝绳或抽油杆 10在密封腔上节 71-4内压紧, 密封压套 71-1、 密封腔上节 71-4、 密封腔 71_5、 上变径 71-6依次螺纹连接, 密封圈密封, 构成柱塞的密封腔部分 71 ; 串接加重杆 72-2的数量 由配重需要决定, 下变径 72-1、 多个加重杆 72-2、 加重杆下端 72-3依次螺纹连接, 构 成柱塞的加重部分 72; 钢体式单级柱塞 74的结构是: 顶部车有圆头的上挂体 74-2的下 部为空腔,与空腔对应的管壁上开有出液通孔 74-1 ;在上挂体 74-2的空腔内置放凡尔阀 球 74-3和凡尔阀球座 74-4;凡尔阀球座 74-4被上挂体 74_2空腔内壁上的档台限位,并 将凡尔阀球 74-3限定在上挂体 74-2的空腔内; 外衬钼铬合金衬套 74-6的中心管 74-5 的上端与上挂体 74-2的下端以螺纹连接, 并紧紧顶住凡尔阀球座 74-4, 中心管 74-5的 下端与下接头 74-7的上端以螺纹连接; 下接头 74-7的管壁上开有进液孔 74-8; 上挂体 74-2、 凡尔阀球 74-3、 凡尔阀球座 74-4、 中心管 74-5、衬套 74-6和下接头 74-7构成了 钢体式单级柱塞 74;结构相同的多个钢体式单级柱塞 74顺次按照下一级钢体式单级柱塞 74的上挂体 74-2内挂在上一级钢体式单级柱塞 74的下接头 74_7的下空腔内;利用焊接 件 74-10与下接头 74-7焊接,将上挂体 74-2悬挂在下接头 74_7的空腔内,上挂体 74_2 的圆头可在空腔内 360度转动调整; 同理连接第三级、 第四级 , 最后一级钢体式单 级柱塞 74的上挂体 74-2与中心管 74-5通过接箍 74_9外螺纹连接, 最后一级钢体式单 级柱塞 74的下接头 74-7被下凡尔座体 75-3替代; 下凡尔座体 75_3的上、 下两端为空 腔, 其下腔体内放置放凡尔阀球 74-3和凡尔阀球座 74-4, 凡尔阀球座 74-4被下凡尔座 体 75-3内壁上的档台限位, 并将凡尔阀球 74-3限定在其空腔内; 下凡尔座体 75-3的中 间开有连通上、 下腔体的轴向通孔 75-4; 下凡尔座体 75-3的上端与中心管 74-5螺纹连 接, 其下端与管壁上开有进液孔 75-5的配重接头 75-6连接; 配重接头 75-6与加重部分 72的下变径 72-1连接;第一级钢体式单级柱塞 74的上挂体 74-2的圆头部分内挂在下部 为空腔的上接头 75-1上, 焊接件 75-2与上接头 75-1的管壁焊接, 将上挂体 74_2的圆 头限定在其腔体内, 上挂体 74-2的圆头可在空腔内自如转动调整; 上接头 75-1与密封 腔部分 71的上变径 71-6螺纹连接, 构成钢体式多级柱塞。
串连的钢体式单级柱塞 74的数量由钢体式单级柱塞 74与泵筒的接触面的长度决定, 例如, 钢体式单级柱塞 74的柱塞长为 0. 4, 因为行业规范规定管柱副需达到 1. 2米, 则 说 明 书 需串连 4个以上钢体式单级柱塞 74。
由于各钢体式单级柱塞 74采用上挂体 74-2内挂在结构,使多级柱塞具有很好的自 动调节能力, 以适应超长泵筒的轴向偏差, 解决柱塞在超长泵筒内运行遇阻问题。 多个 单级柱塞串连, 既保证了油管副需要, 减少漏失量, 提高泵效; 又能延长多级柱塞的使 用寿命。
参见图 8, 超长泵筒是由多个泵筒 76 "—字型"连接构成, 其连接方式为: 经精轧 和珩磨后满足泵筒参数要求的两泵筒 76、 76 ' 的端口处切有切口 76-4, 两泵筒的端口部 车有外螺纹 76-1、76-1 ';接箍 76-2内壁两端车有与两泵筒 76、76 '相匹配的内螺纹 76_3、 76-3 ', 接箍 76-2中间留有止口; 两泵筒 76、 76 ' 与接箍 76_2螺纹连接, 配合间隙为 0. 01 且止口对中定位, 两泵筒 76、 76 ' 的对接后端面最大缝隙限制在 0. 1〜0. 2 对接后的两泵筒 76、 76 ' 的直线度 0. 04mm/m; 两泵筒 76、 76 ' 装配接箍 76_2后用通 径规通试, 若两泵筒 76、 76 ' 对接后直线度〉0. 04mm/m, 则需进行珩磨校正, 确保直线 度 0. 04mm/m, 并对两泵筒 76、 76 '、 接箍 76_2进行连接顺序的标注; 按照同样工序, 将多个泵筒 76进行连接, 直至连接在一起的多个泵筒 76的总长度大于油井设定的冲程 长度为止, 构成超长泵筒。
根据油井采油需要, 本发明井下多级柱塞超长冲程抽油泵的冲程可为几十米至百余 米, 甚至几百米, 具体根据油井产液量和成本投入统筹设定。
利用井下多级柱塞超长冲程抽油泵 7, 冲程可以设定为几十米或百余米, 采用非全 井运行的采油模式, 由此产生了诸多的有益效果, 并大幅地降低了整机成本。 a、 缠绕的 柔性抽油绳 11变短, 卷筒 1-2的尺寸大幅减小; b、结构简单的滑摆装置 5和压绳装置 8 可取代笨重的排绳装置, 减轻整机重量; c、采用非全井运行模式, 井架和卷筒负荷减轻, 井架变矮、 耗材减少; 整机结构更紧凑、 轻便, 整体高度由 5米多降低到不足 3米; d、 卷筒 1-2上反复缠绕的是柔性抽油绳 11,磨损后只需更换此段柔性抽油绳 11即可,更换 更简便; e、 用钢丝绳或抽油杆替代大部分柔性抽油绳, 大幅降低成本, 尤其对于深井, 除降低成本明显外, 还可克服柔性抽油绳在高温井下注塑融化问题; f、 采用非全井运行 模式, 需处理的泵筒长度大幅縮短, 大大降低了油井的一次性投入成本; g、 由于柱塞总 行程縮短, 柱塞使用寿命延长, 再加之多个柱塞互补作用, 大大降低了柱塞更换频率, 减少了修井作业次数。
本发明在吉林油田 D45-8-1油井上进行了现场试验。 油井井深 1600米, 设定冲程 100米, 泵筒直径为 44 在满足生产需要的前提下, 试验表明: 说 明 书 与游梁式抽油机相比, 其优点是: (1 )、 节电效果显著; 原井耗电日约 110度, 现耗 电 32度电, 节约 70. 9%。 (2)、 能进行产量和抽油次数的大幅调整; 投产初期产液量为 6 方 /日, 现平稳期产液量为 1. 6方/日; 投产初期抽油次数是 72次 /日, 现平稳期抽油次 数是 36次 /日, 可适应不同开采阶段的油井采油。 (3)、 显著的增产效果; 由于超长冲程 在油管内产生强大的负压, 造成液面浮动大, 可以解堵, 并对地层污染物有排除效果, 增产明显, 原井日产液约 1方, 现日产液 1. 6方。 (4)、 泵效大幅提高; 抽子行程为 90 米, 理论排量 0. 09方 /次, 套管液面下降 8-9米, 实际排量 0. 064方 /次 -0. 072方 /次, 泵效为 71%-80%。 (5)、 柱塞磨损大幅降低; 日累计运行时间 4. 8小时。 (6)、 减少检泵作 业费用; 更换柱塞简单方便, 上提到井口更换即可, 实现检泵时不动管柱。
与现有的卷扬式提拉抽油机相比, 其优点是: (1 )、 多级柱塞的磨耗大幅降低; 现有 采油方式, 柱塞日运行累计米数为 1600米 *6次 /日 =9600米, 本发明的日运行累计米数 为 100米 *36次 /日 =3600米, 抽子运行磨耗减少 62. 5%。 (2)、 柱塞磨损小, 可减少修井 次数。 (3)、 降低油管处理成本, 现采油方式需要对 1600米的采油管进行处理, 本发明 只需对 100米泵筒进行处理, 节省投资 2万余元。 (4) 利用封隔器涨封, 将油套环形空 间封堵后, 多级柱塞超长冲程抽油泵抽汲的井液可在套管内流动, 以本井为例, 可节省 油管累计长度达 1400米, 节省资金近 8万元; (5)、 由于非全井运行模式, 载荷减少, 耗能减少, 节省电能, 现有设备耗电 50度, 本发明耗电为 32度。 (6)、 地面整机设备结 构紧凑、 变矮、 重量大幅减轻。 整机高度由 5米多降低到 3米以下, 重量减轻 1吨多; (7)、 用 1500米的钢丝绳或抽油杆替代挠性柔性抽油绳, 可节省成本 3万余元; (8)、 钢 丝绳或抽油杆替换井下的注塑挠性柔性抽油绳, 可解决深井挠性柔性抽油绳的注塑融化 问题; (9)、 可加热柔性抽油绳与涂有保温涂层的油管配合使用, 不但有利于油管内清蜡 和稠油井的降稠, 还可以替代地面输油管线的伴热设施, 大幅降低油井生产成本; (10)、 设备运行更平稳, 噪声小; (11 )综合以上诸多因素共同作用, 可使油井一次性投资成本 降低近 40%, 产生巨大的经济效益。

Claims

权 利 要 求 书
1、 一种低矮型超长冲程智能控制卷扬式提拉采油系统包括: 动力驱动总成 (1)、 定滑 轮总成(2)、 控制总成(3)、井架总成(4)、滑摆装置(5)、 压绳装置(8)、井口装置(6 井下管柱 (9)、 柔性抽油绳 (11)、 钢丝绳或抽油杆 (10)和井下多级柱塞超长冲程抽油泵
(7); 其特征在于, 动力驱动总成 (1) 驱动的柔性抽油绳 (11) 的长度大于设定冲程长 度, 柔性抽油绳 (11) 的一端缠绕在动力驱动总成的卷筒(1-2) 上, 另一端穿过滑摆装置
(5)的两导向轮(5-2)间的通孔,并绕过定滑轮(2-1),依次穿过井口装置的防喷盒(6-1 偏心井口 (6-5)、 井下管柱 (9) 后, 与管柱 (9) 内的钢丝绳或抽油杆 (10)用卡箍连接, 构成全井抽油绳; 钢丝绳或抽油杆(10) 的另一端与井下多级柱塞超长冲程抽油泵 (7) 的 多级柱塞连接; 井架总成 (4) 上安装定滑轮总成 (2) 和滑摆装置 (5); 所述的井口装置
(6) 与管柱 (9)连接, 管柱 (9) 与井下多级柱塞超长冲程抽油泵 (7) 的超长泵筒连接; 井下多级柱塞超长冲程抽油泵(7) 由超长泵筒和多级柱塞构成, 其多级柱塞置于超长泵筒 内;所述的控制总成(3)由旋转编码器(3-1)和压力传感器(3-2)组成;压力传感器(3-2) 通过偏心井口 (6-2) 下入油井底部的油套环形空间内。
2、根据权利要求 1所述的一种低矮型超长冲程智能控制卷扬式提拉采油系统, 其特征 在于: 所述的井下多级柱塞超长冲程抽油泵 (7) 的超长泵筒是由多个泵筒(76) "一字型" 连接构成;多个泵筒(76)的连接方式是:经精轧和珩磨后满足泵筒参数要求的两泵筒(76、 76,) 的端口处切有切口 (76-4、 76-4'), 两泵筒的端口部车有外螺纹 (76-1、 76_1'); 接 箍(76-2)内壁两端车有与两泵筒(76、 76')相匹配的内螺纹(76_3、 76_3'),接箍(76-2) 中间留有止口; 两泵筒 (76、 76') 与接箍 (76-2) 螺纹连接, 配合间隙为 0.01mm, 且止 口对中定位; 两泵筒 (76、 76') 的对接后两端面间最大缝隙限制在 0.1〜0.2 对接后 的两泵筒 (76、 76') 的直线度 0.04 /m; 两泵筒 (76、 76') 装配接箍 (76-2) 后用通 径规通试, 若两泵筒(76、 76')对接后直线度〉0.04mm/m, 则需进行珩磨校正, 确保直线 度 0.04mm/m, 并对两泵筒 (76、 76')、 接箍 (76_2) 进行连接顺序的标注; 按照同样工 序, 将多个泵筒 (76) 进行连接, 直至连接在一起的多个泵筒 (76) 的总长度大于油井设 定的冲程长度为止。
3、根据权利要求 1或 2所述的一种低矮型超长冲程智能控制卷扬式提拉采油系统, 其 特征在于: 所述的井下多级柱塞超长冲程抽油泵 (7) 的多级柱塞可为钢体式多级柱塞; 包 括密封腔部分(71)、加重部分(72)和串连的多个钢体式单级柱塞(74);密封压套(71-1 密封胶敦 (71-2) 和压绳头 (71-3) 将钢丝绳或抽油杆 (10) 在密封腔上节 (71-4) 内压 紧, 密封压套 (71-1)、 密封腔上节 (71-4)、 密封腔 (71-5)、 上变径 (71_6) 依次螺纹连 权 利 要 求 书 接, 密封圈密封, 构成柱塞的密封腔部分 (71 ); 串接加重杆 (72-2) 的数量由配重需要决 定; 下变径 (72-1 )、 多个加重杆 (72-2)、 加重杆下端 (72-3) 依次螺纹连接, 构成柱塞 的加重部分 (72); 钢体式单级柱塞 (74) 的结构是: 顶部车有圆头的上挂体 (74-2) 的下 部为空腔, 与空腔对应的管壁上开有出液通孔 (74-1 ); 在上挂体(74-2) 的空腔内置放凡 尔阀球 (74-3) 和凡尔阀球座 (74-4); 凡尔阀球座 (74-4) 被上挂体 (74-2) 空腔内壁上 的档台限位, 并将凡尔阀球 (74-3) 限定在上挂体 (74-2) 的空腔内; 外衬钼铬合金衬套 ( 74-6) 的中心管 (74-5) 的上端与上挂体 (74-2 ) 的下端以螺纹连接, 并紧紧顶住凡尔 阀球座(74-4), 中心管(74-5)的下端与下接头(74-7)的上端以螺纹连接; 下接头(74_7) 的管壁上开有进液孔 (74-8); 上挂体 (74-2)、 凡尔阀球 (74-3)、 凡尔阀球座 (74-4)、 中心管 (74-5 )、 衬管 (74-6 ) 和下接头 (74-7 ) 构成了钢体式单级柱塞 (74); 结构相同 的多个钢体式单级柱塞 (74) 顺次按照下一级钢体式单级柱塞 (74) 的上挂体 (74-2) 内 挂在上一级钢体式单级柱塞 (74) 的下接头 (74-7) 的下部空腔内; 利用焊接件 (74-10) 与下接头 (74-7) 焊接, 将上挂体 (74-2) 悬挂在下接头 (74-7) 的空腔内; 同理连接第 三级、 第四级 , 最后一级钢体式单级柱塞 (74) 的上挂体 (74-2) 与中心管 (74-5) 通过接箍 (74-9) 外螺纹连接, 最后一级钢体式单级柱塞 (74) 的下接头 (74-7) 被下凡 尔座体 (75-3) 替代; 下凡尔座体 (75-3) 的上、 下两端为空腔, 其下腔体内放置放凡尔 阀球 (74-3) 和凡尔阀球座 (74-4), 凡尔阀球座 (74-4) 被下凡尔座体 (75_3) 内壁上的 档台限位, 并将凡尔阀球 (74-3) 限定在其空腔内; 下凡尔座体 (75-3) 的中间开有连通 上、 下腔体的轴向通孔 (75-4); 下凡尔座体 (75-3) 的上端与中心管 (74-5) 螺纹连接, 其下端与管壁上开有进液孔 (75-5) 的配重接头 (75-6) 连接; 配重接头 (75-6 ) 与加重 部分 (72) 的下变径 (72-1 ) 连接; 第一级钢体式单级柱塞 (74) 的上挂体 (74-2) 的圆 头部分内挂在下部为空腔的上接头 (75-1 ) 上, 焊接件 (75-2) 与上接头 (75-1 ) 的管壁 焊接, 将上挂体 (74-2) 的圆头限定在其腔体内; 上接头 (75-1 ) 与密封腔部分 (71 ) 的 上变径 (71-6) 螺纹连接, 构成钢体式多级柱塞。
4、根据权利要求 3所述的一种低矮型超长冲程智能控制卷扬式提拉采油系统, 其特征 在于: 所述的串连钢体式单级柱塞 (74) 的数量由钢体式单级柱塞 (74) 与泵筒的接触面 长度和行业规范要求决定。
5、根据权利要求 1所述的一种低矮型超长冲程智能控制卷扬式提拉采油系统, 其特征 在于: 动力驱动总成 (1 ) 包括减速电机 (1-1 )、 卷筒 (1-2)、 制动器总成 (1-4); 减速电 机 (1-1 ) 的输出轴上装有链轮 (1-3); 轴上装有卷筒链轮 (1-5) 的卷筒 (1-2) 安装在卷 权 利 要 求 书 筒底座 (1-6) 上, 压绳装置 (8) 紧靠卷筒 (1-2), 并安装在卷筒底座 (1-6) 上, 防止卷 筒 (1-2) 缠绳乱序; 卷筒底座 (1-6)、 减速电机 (1-1 )、 制动器总成 (1-4) 固定在地面 基座 (1-8) 上; 卷筒链轮 (1-5 ) 与链轮 (1-3) 位于同一平面内且通过传动链条 (1-7) 连接;井口装置(6)包括防喷盒(6-1 )、偏心井口(6-5)、单流阀(6-3)和输油管线(6-4)。
6、根据权利要求 1所述的一种低矮型超长冲程智能控制卷扬式提拉采油系统, 其特征 在于: 所述的滑摆装置 (5) 与压绳装置 (8) 配合使用; 所述的滑摆装置 (5) 的结构是: T型摆杆 (5-1 ) 的前端并排紧靠装有两个导向轮 (5-2), 摆杆 (5-1 ) 与带有滑槽 (5-5) 的两滑摆底座 (5-3) 以轴 (5-4) 连接, 滑摆底座 (5-3) 以螺栓固定在井架横梁 (4-4) 上; 摆杆(5-1 ) 的轴(5-4)可在滑槽(5-5) 内纵向调节固定, 用于调整柔性抽油绳(11 ) 与定滑轮 (2-1 ) 之间的夹角; 柔性抽油绳 (11 ) 穿过两个导向轮 (5-2) 形成的通孔, 摆 杆(5-1 )随着柔性抽油绳(11 )在卷筒(1-2)上的缠绕或释放而在轴(5-4)上横向摆动; 所述压绳装置 (8) 的结构是: 在远离减速电机 (1-1 ) 的卷筒底座 (1-6) 上固定安装压绳 装置(8), 压绳装置(8) 的结构是: 带有两支耳的叉形横杆(8-1 )与立杆(8-2)轴连接, 立杆 (8-2) 下端固定在卷筒底座 (1-6) 上, 弹簧 (8-3) 的两端分别固定在横杆 (8-1 ) 和立杆 (8-2 ) 上, 对横杆 (8-1 ) 起牵引作用, 压轮 (8-4) 安装在叉形横杆 (8-1 ) 的两 支耳上, 与卷筒 (1-2) 的轴平行、 等长且位于卷筒 (1-2) 的上后方, 与卷筒 (1-2) 的卷 筒面保持适当的间距。
7、根据权利要求 1所述的一种低矮型超长冲程智能控制卷扬式提拉采油系统, 其特征 在于: 所述的柔性抽油绳(11)为含有加热电缆的可加热柔性抽油绳, 加热柔性抽油绳的井 下端头部位内装温度传感器; 可加热柔性抽油绳的长度应超过管柱的结蜡点处, 可加热柔 性抽油绳与管柱(9)内的钢丝绳或抽油杆(10)用卡箍连接; 结蜡点处对应的以上管柱 (9) 涂有防止热量散失的保温涂层; 控制装置(3)根据温度传感器监测的温度信号控制可加热 柔性抽油绳加热; 可加热柔性抽油绳与涂有保温涂层的管柱 (9) 配合使用。
8、 根据权利要求 1所述的一种低矮型超长冲程智能控制卷扬式提拉采油系统, 其特征 在于: 所述井下管柱 (9)在多级柱塞超长冲程抽油泵 (7) 的泵筒上部油管 (9-3)外安装 封隔器 (9-2) 和丢手 (9-1 ), 以螺纹连接。
9、 一种低矮型超长冲程智能控制卷扬式提拉采油系统的工作方法, 其特征在于, 控制 总成(3)根据设定的上行缓冲时间控制电机(1-1 )停机等待;根据套管内压力传感器(3-2 ) 监测的压力值控制电机下行; 根据减速电机 (1-1 ) 轴上安装的旋转编码器 (3-1 ) 计算出 的多级柱塞超长冲程抽油泵(7)下入井深数与设定的下行最大深度对比来控制电机(1-1 ) 权 利 要 求 书 停止下行并反向旋转, 提升井液; 根据旋转编码器(3-1 )计算出的上行行程和设定的上行 最大深度对比来控制减速电机 (1-1 ) 停止转动; 同时控制总成 (3 ) 也相应控制制动器总 成(1-4)对卷筒(1-2)进行制动或解除制动; 进而使柔性抽油绳 (11 ) 在设定的冲程内反复 提升或下放井下的多级柱塞超长冲程抽油泵 (7)的多级柱塞提升井液,改变以往卷扬式提拉 采油系统的柱塞从井底一直提升至井口的全井运行模式, 实现柱塞只在泵筒内反复上、 下 运行的超长冲程的非全井运行模式。
10、 根据权利要求 9所述的一种低矮型超长冲程智能控制卷扬式提拉采油系统的工作 方法, 所述的控制总成 (3 ) 的控制流程是:
a、 系统启动, 设定井口深度为 0米, 井下深度为负值; 通过键盘输入, 启动压力, 下 行最大深度, 上行最大深度, 停机等待时间 T, 最大电流; 压力传感器 (3-2), 电流监测模 块, 编码器 (3-1)处于工作状态, 时时将各种信号传送到电路控制板 CPU;
b、 电路控制板 CPU, 将电机(1-1)停转, 液压推动器(1-41)制动;
c、 电路控制板 CPU, 对套管内压力传感器 (3-2)的值是否大于等于启动压力进行逻辑 判断;
cl : 套管内压力传感器 (3-2 ) 值<启动压力, 控制流程返回 b;
c2: 套管内压力传感器 (3_2)值 启动压力, CPU解除液压推动器(1-41)制动; d、 液压推动器(1-41)通电, 解除制动;
e、 电机(1-1)启动、 反转, 在多级柱塞及加重杆重力作用下, 多级柱塞下行;
f、 CPU 时时接收编码器 (3-1)传来的反映多级柱塞下行深度的脉冲信号, 对脉冲数进 行计算, 并对多级柱塞当前深度是否小于等于下行最大深度进行逻辑判断;
fl、 若多级柱塞当前深度〉下行最大深度, 控制流程返回 e;
f2、 若多级柱塞当前深度 下行最大深度, CPU将电机(1-1)停转, 液压推动器(1-41) 制动;
g、 CPU将电机(1-1)停转, 液压推动器(1-41)制动;
h、 CPU启动内部计时器;
i、 CPU将内部定时器与上行缓冲时间 T进行逻辑判断;
11、 若缓冲时间 <T, 控制流程返回 g ;
12、 若上行缓冲时间 T, CPU解除液压推动器(1-41)制动;
j、 计时器停止;
k、 液压推动器(1-41)通电, 解除制动; 权 利 要 求 书
L、 电机(1-1)正转启动, 在柔性抽油绳(11)拉力作用下, 多级柱塞上行;
m、 CPU时时接收电力监测模块的数字信号, 对数字信号进行处理分析, 得到当前电流 大小, 并对当前电流是否大于等于最大电流或多级柱塞当前深度是否大于等于上行最大深 度进行逻辑判断;
ml、 若当前电流 最大电流或多级柱塞当前深度 上行最大深度时, 控制流程返回 b; m2、 若当前电流 <最大电流且多级柱塞当前深度<上行最大深度时, 控制流程返回 L。
11、 根据权利要求 9所述的一种低矮型超长冲程智能控制卷扬式提拉采油系统的工作 方法, 其特征在于: 柔性抽油绳 (11 ) 为可加热的柔性抽油绳时, 所述的控制总成 (3) 的 控制流程为:
a、 系统启动, 设定井口深度为 0米, 井下深度为负值; 通过键盘输入: 启动压力、 下 行最大深度、 上行最大深度、 设定温度、最大电流; 温度传感器、 压力传感器(3-2)模块, 编码器 (3-2)处于工作状态, 时时将各种信号传送到电路控制板 CPU;
b、 电路控制板 CPU将电机(1-1)停转, 液压推动器(1-41)制动;
c、 电路控制板 CPU, 对套管内压力传感器 (3-2)值是否大于等于启动压力进行逻辑判 断;
cl : 套管内压力传感器 (3_2)值<启动压力, 控制流程返回 b;
c2: 套管内压力传感器 (3_2)值 启动压力, CPU解除液压推动器(1-41)制动; d、 CPU将液压推动器(1-41)解除制动;
e、 电机(1-1)反转启动, 在多级柱塞及加重杆重力作用下, 多级柱塞下行;
f、 CPU 时时接收编码器 (3-1)传来的反映多级柱塞下行深度的脉冲信号, 对脉冲数进 行计算, 并对多级柱塞当前深度是否小于等于下行最大深度进行逻辑判断;
fl、 若多级柱塞当前深度〉下行最大深度, 控制流程返回 e;
f2、 若多级柱塞当前深度 下行最大深度, CPU将电机(1-1)停转, 液压推动器(1-41) 制动;
g、 CPU将电机(1-1)停转, 液压推动器(1-41)制动;
h、 CPU根据可加热的柔性抽油绳内安装的温度传感器传回的液体温度与设定温度进行 逻辑判断;
hl、 若温度传感器监测温度小于设定温度;
i、 启动可加热的柔性抽油绳的加热电缆加热; 控制流程返回 g ;
h2、 若温度传感器监测温度大于等于设定温度, 权 利 要 求 书 j、 可加热的柔性抽油绳停止加热;
k、 CPU将液压推动器 (1-41 ) 解除制动;
L、 电机 (1-1 ) 正转, 多级柱塞上行;
m、 CPU时时接收电力监测模块的数字信号, 通过对数字信号进行处理、 分析, 得到当 前电流大小, 并对当前电流是否大于等于最大电流或柱塞当前深度是否大于等于上行最大 深度进行逻辑判断;
ml、 若当前电流 最大电流或多级柱塞当前深度 上行最大深度时, 控制流程返回 k ; m2、 若当前电流 <最大电流且多级柱塞当前深度<上行最大深度时, 控制流程返回 b。
PCT/CN2013/090925 2013-12-19 2013-12-30 一种低矮型超长冲程智能控制卷扬式提拉采油系统及工作方法 WO2015089880A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201310703088.9A CN103643922A (zh) 2013-12-19 2013-12-19 一种低矮型超长冲程智能控制卷扬式提拉采油系统及工作方法
CN201310703088.9 2013-12-19

Publications (1)

Publication Number Publication Date
WO2015089880A1 true WO2015089880A1 (zh) 2015-06-25

Family

ID=50249194

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2013/090925 WO2015089880A1 (zh) 2013-12-19 2013-12-30 一种低矮型超长冲程智能控制卷扬式提拉采油系统及工作方法

Country Status (2)

Country Link
CN (2) CN103643922A (zh)
WO (1) WO2015089880A1 (zh)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106089178A (zh) * 2016-08-18 2016-11-09 中国矿业大学(北京) 一种注气点移动控制装置及其控制方法
CN110863804A (zh) * 2019-12-02 2020-03-06 安徽物迅科技有限公司 一种采油设备
CN111648763A (zh) * 2020-07-15 2020-09-11 重庆科技学院 一种随钻井漏预测及漏点测量短节
CN111852335A (zh) * 2020-08-24 2020-10-30 重庆科技学院 一种多分支增产工具管内导向工具
CN114673491A (zh) * 2022-03-09 2022-06-28 西安聚盛石油科技有限公司 一种抽汲系统遇阻、遇卡的判定及自动化处理方法
CN115263251A (zh) * 2022-07-28 2022-11-01 中国石油化工股份有限公司 一种抽油机远程自动刹车装置

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103899521A (zh) * 2014-04-04 2014-07-02 天津机辆轨道交通装备有限责任公司 一种自动间歇煤层气排水产气方法及其装置
CN104632592B (zh) * 2014-12-04 2017-01-04 丁新建 超长行程采油泵
CN106593361B (zh) * 2017-01-18 2017-11-03 华运隆腾机械制造有限公司 一种抽油泵智能驱动装置及卷扬式抽油机系统
CN107461174B (zh) * 2017-09-26 2023-07-21 西南石油大学 一种井下安全阀
CN108397162A (zh) * 2018-05-18 2018-08-14 青岛新胜石油机械有限公司 采油设备及采油系统
CN110700796A (zh) * 2019-09-17 2020-01-17 大庆市汇成科技开发有限公司 一种智能碳纤维连续柔性抽油杆长冲程大泵深抽采油系统
CN112097853B (zh) * 2020-09-24 2024-04-12 山东向海慧通科技有限公司 地下水资源在线监测系统
CN113406762B (zh) * 2021-07-16 2023-01-17 中海石油(中国)有限公司 一种井下光缆连续下入方法及装置
CN114735608B (zh) * 2022-04-25 2022-10-28 青岛新胜石油机械有限公司 一种具备耐磨性柔性光杆的节能双卷扬抽油机构

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1033404A (zh) * 1988-10-19 1989-06-14 西南石油学院 齿轮式无游梁抽油机
CN2067772U (zh) * 1990-03-30 1990-12-19 大庆石油管理局第三采油厂 复合天轮式长冲程抽油机
CN201778768U (zh) * 2010-07-19 2011-03-30 大庆惠博普石油机械设备制造有限公司 智能提捞抽油机
CN201902199U (zh) * 2010-07-30 2011-07-20 吴昱 动力组合式一机多井超长冲程抽油机
CN202914050U (zh) * 2012-11-15 2013-05-01 中国石油化工股份有限公司 低矮型气平衡超长冲程抽油装置

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN2338511Y (zh) * 1998-01-12 1999-09-15 刘喜明 管式软柱塞深井泵
CN102444393B (zh) * 2010-10-08 2015-04-22 大庆北研石油设备制造有限公司 一种智能卷扬式提拉采油系统
WO2013063809A1 (zh) * 2011-11-05 2013-05-10 大庆北研石油设备制造有限公司 卷扬式提拉采油系统及其抽油绳的制造方法
CN202326196U (zh) * 2011-11-17 2012-07-11 中国石油天然气股份有限公司 一种超长冲程抽油泵筒
CN203626760U (zh) * 2013-12-19 2014-06-04 鄂德刚 一种低矮型超长冲程智能控制卷扬式提拉采油系统

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1033404A (zh) * 1988-10-19 1989-06-14 西南石油学院 齿轮式无游梁抽油机
CN2067772U (zh) * 1990-03-30 1990-12-19 大庆石油管理局第三采油厂 复合天轮式长冲程抽油机
CN201778768U (zh) * 2010-07-19 2011-03-30 大庆惠博普石油机械设备制造有限公司 智能提捞抽油机
CN201902199U (zh) * 2010-07-30 2011-07-20 吴昱 动力组合式一机多井超长冲程抽油机
CN202914050U (zh) * 2012-11-15 2013-05-01 中国石油化工股份有限公司 低矮型气平衡超长冲程抽油装置

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106089178A (zh) * 2016-08-18 2016-11-09 中国矿业大学(北京) 一种注气点移动控制装置及其控制方法
CN110863804A (zh) * 2019-12-02 2020-03-06 安徽物迅科技有限公司 一种采油设备
CN111648763A (zh) * 2020-07-15 2020-09-11 重庆科技学院 一种随钻井漏预测及漏点测量短节
CN111648763B (zh) * 2020-07-15 2024-03-19 重庆科技学院 一种随钻井漏预测及漏点测量短节
CN111852335A (zh) * 2020-08-24 2020-10-30 重庆科技学院 一种多分支增产工具管内导向工具
CN111852335B (zh) * 2020-08-24 2024-03-22 重庆科技学院 一种多分支增产工具管内导向工具
CN114673491A (zh) * 2022-03-09 2022-06-28 西安聚盛石油科技有限公司 一种抽汲系统遇阻、遇卡的判定及自动化处理方法
CN115263251A (zh) * 2022-07-28 2022-11-01 中国石油化工股份有限公司 一种抽油机远程自动刹车装置
CN115263251B (zh) * 2022-07-28 2023-10-13 中国石油化工股份有限公司 一种抽油机远程自动刹车装置

Also Published As

Publication number Publication date
CN104033134A (zh) 2014-09-10
CN103643922A (zh) 2014-03-19
CN104033134B (zh) 2016-07-27

Similar Documents

Publication Publication Date Title
WO2015089880A1 (zh) 一种低矮型超长冲程智能控制卷扬式提拉采油系统及工作方法
CN110344787A (zh) 一种具有多段注汽封隔件的抽油机系统
WO2011082557A1 (zh) 塔架式无导轮组合传动抽油机
CN101876240B (zh) 一种全自动采油设备
CN103821464A (zh) 一种油管柱立放车载全自动智能液压修井机
CN110593819A (zh) 一种落地式多绳抽油机系统
CN101725326A (zh) 模块组装式海上平台液压蓄能修井机
CN111911114A (zh) 一种智能超长冲程卷扬抽油机
CN100422556C (zh) 一种小排量高扬程往复式潜油电泵
CN203626760U (zh) 一种低矮型超长冲程智能控制卷扬式提拉采油系统
CN103321612B (zh) 一种捞水式排水采气机
CN202718664U (zh) 一种煤层气井柔性排采系统
CN204436334U (zh) 一种低矮型超长冲程智能控制卷扬式提拉采油系统
US20220341413A1 (en) Rod Pumping Surface Unit
CN106089178B (zh) 一种注气点移动控制装置及其控制方法
CN104675368B (zh) 直线驱动抽油机
CN204283356U (zh) 平衡装置及游梁式抽油机和塔式抽油机
CN206487448U (zh) 一种滑轮节能液压试油排液系统
CN1724845A (zh) 超长冲程抽油机
CN208168853U (zh) 液驱游梁式抽油机及多井联控的液驱游梁式抽油机
CN220081401U (zh) 动筒式抽油装置
CN205225199U (zh) 节能数控抽油机
CN110130858B (zh) 一种桥式注抽耐磨防腐降参一体化举升工艺及机采系统
CN108301812A (zh) 液驱游梁式抽油机及多井联控的液驱游梁式抽油机
CN210049878U (zh) 一种桥式注抽耐磨防腐降参一体化机采系统

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13899450

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13899450

Country of ref document: EP

Kind code of ref document: A1