WO2015089841A1 - 一种天线及终端 - Google Patents

一种天线及终端 Download PDF

Info

Publication number
WO2015089841A1
WO2015089841A1 PCT/CN2013/090144 CN2013090144W WO2015089841A1 WO 2015089841 A1 WO2015089841 A1 WO 2015089841A1 CN 2013090144 W CN2013090144 W CN 2013090144W WO 2015089841 A1 WO2015089841 A1 WO 2015089841A1
Authority
WO
WIPO (PCT)
Prior art keywords
node
capacitor
circuit
antenna
matching circuit
Prior art date
Application number
PCT/CN2013/090144
Other languages
English (en)
French (fr)
Inventor
李建铭
王汉阳
冯堃
张晓菊
Original Assignee
华为终端有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为终端有限公司 filed Critical 华为终端有限公司
Priority to PCT/CN2013/090144 priority Critical patent/WO2015089841A1/zh
Priority to CN201380008276.8A priority patent/CN104115331B/zh
Priority to KR1020167018958A priority patent/KR101821077B1/ko
Priority to EP18191759.2A priority patent/EP3487002A1/en
Priority to JP2016541285A priority patent/JP6332881B2/ja
Priority to EP13899968.5A priority patent/EP3070785B1/en
Publication of WO2015089841A1 publication Critical patent/WO2015089841A1/zh
Priority to US15/186,123 priority patent/US10283864B2/en
Priority to US16/165,256 priority patent/US20190051986A1/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q5/00Arrangements for simultaneous operation of antennas on two or more different wavebands, e.g. dual-band or multi-band arrangements
    • H01Q5/30Arrangements for providing operation on different wavebands
    • H01Q5/307Individual or coupled radiating elements, each element being fed in an unspecified way
    • H01Q5/314Individual or coupled radiating elements, each element being fed in an unspecified way using frequency dependent circuits or components, e.g. trap circuits or capacitors
    • H01Q5/328Individual or coupled radiating elements, each element being fed in an unspecified way using frequency dependent circuits or components, e.g. trap circuits or capacitors between a radiating element and ground
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/12Supports; Mounting means
    • H01Q1/22Supports; Mounting means by structural association with other equipment or articles
    • H01Q1/24Supports; Mounting means by structural association with other equipment or articles with receiving set
    • H01Q1/241Supports; Mounting means by structural association with other equipment or articles with receiving set used in mobile communications, e.g. GSM
    • H01Q1/242Supports; Mounting means by structural association with other equipment or articles with receiving set used in mobile communications, e.g. GSM specially adapted for hand-held use
    • H01Q1/243Supports; Mounting means by structural association with other equipment or articles with receiving set used in mobile communications, e.g. GSM specially adapted for hand-held use with built-in antennas
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/48Earthing means; Earth screens; Counterpoises
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q5/00Arrangements for simultaneous operation of antennas on two or more different wavebands, e.g. dual-band or multi-band arrangements
    • H01Q5/30Arrangements for providing operation on different wavebands
    • H01Q5/307Individual or coupled radiating elements, each element being fed in an unspecified way
    • H01Q5/314Individual or coupled radiating elements, each element being fed in an unspecified way using frequency dependent circuits or components, e.g. trap circuits or capacitors
    • H01Q5/335Individual or coupled radiating elements, each element being fed in an unspecified way using frequency dependent circuits or components, e.g. trap circuits or capacitors at the feed, e.g. for impedance matching
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q9/00Electrically-short antennas having dimensions not more than twice the operating wavelength and consisting of conductive active radiating elements
    • H01Q9/04Resonant antennas
    • H01Q9/0407Substantially flat resonant element parallel to ground plane, e.g. patch antenna
    • H01Q9/0421Substantially flat resonant element parallel to ground plane, e.g. patch antenna with a shorting wall or a shorting pin at one end of the element
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q9/00Electrically-short antennas having dimensions not more than twice the operating wavelength and consisting of conductive active radiating elements
    • H01Q9/04Resonant antennas
    • H01Q9/30Resonant antennas with feed to end of elongated active element, e.g. unipole
    • H01Q9/42Resonant antennas with feed to end of elongated active element, e.g. unipole with folded element, the folded parts being spaced apart a small fraction of the operating wavelength
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04MTELEPHONIC COMMUNICATION
    • H04M1/00Substation equipment, e.g. for use by subscribers
    • H04M1/02Constructional features of telephone sets
    • H04M1/0202Portable telephone sets, e.g. cordless phones, mobile phones or bar type handsets
    • H04M1/026Details of the structure or mounting of specific components

Definitions

  • the present invention relates to the field of communications technologies, and in particular, to an antenna and a terminal. Background technique
  • the transmitting and receiving signals of the terminals in the mobile communication network need to be performed through the antenna.
  • the antenna bandwidth of the terminal product needs to cover more frequency bands.
  • the space reserved for the antenna is getting smaller and smaller.
  • the traditional passive antennas have been difficult to meet the needs of the application scene, and people are paying more and more attention to the tunable antennas combining passive antennas and adjustable components.
  • FIG. 1 A tunable antenna based on an IFA (Inverted-F Antenna) architecture in the prior art is shown in FIG. 1.
  • the IFA is a classic passive form antenna, which is strung at the ground point of the IFA. Connect a single-pole double-throw switch, and connect the inductor or the non-variable capacitor to the ground through the single-pole double-throw switch.
  • the grounding of the IFA through an inductive or non-variable capacitor will inevitably change the impedance characteristics of the tunable antenna shown in Figure 1, so that the operating frequency band can be changed.
  • the sum of the coverageable bands in all states of the antenna is the antenna bandwidth.
  • the low frequency resonant frequency of the tunable antenna depends on the length of the long branch of the low frequency radiator in the radiator, and the length of the radiator affects the overall volume of the antenna, that is, the antenna bandwidth may be limited if the antenna volume is limited. It is narrow and cannot meet the application requirements. Summary of the invention
  • the embodiment of the invention provides an antenna and a terminal for expanding the bandwidth of the antenna.
  • an antenna including a capacitor component and at least one radiator, wherein: one end of each of the at least one radiator is connected to form a first node, the first node and the capacitor component One end is connected to form a second node, and the second node is grounded;
  • the antenna further includes at least one matching circuit, and one end of each matching circuit in the at least one matching circuit is connected to form a third node, and the third node and The other end of the capacitor component is connected, and the other end of the capacitor component receives a feed signal through each of the at least one matching circuit;
  • the matching circuit is composed of an inductor and/or a capacitor.
  • the antenna further includes at least one adjustable circuit, each of the at least one adjustable circuit One end of the tuning circuit is connected to form a fourth node, and the fourth node is connected to the second node, and the second node is grounded through each adjustable circuit in the at least one adjustable circuit;
  • the tuning circuit exhibits capacitive or inductive.
  • the tunable circuit is specifically a matching circuit or a filter.
  • the adjustable circuit is specifically a single-pole double-throw switch, and the movable end of the single-pole double-throw switch is used as the adjustable One end of the fourth node is formed by the circuit, and one fixed end of the single-pole double-throw switch is used as one end of the ground of the adjustable circuit, and the other fixed end of the single-pole double-throw switch is suspended.
  • the tunable circuit specifically includes a first matching circuit, a second matching circuit, and a single-pole double-throw switch, wherein:
  • the two fixed ends of the single-pole double-throw switch are respectively connected to one end of the first matching circuit and one end of the second matching circuit;
  • the other end of the first matching circuit and the other end of the second matching circuit are connected to form a fifth node, and the fifth node serves as one end of the ground of the adjustable circuit.
  • the tunable circuit specifically includes an input capacitor, a low frequency capacitor, a high frequency capacitor, and a single pole double throw switch. among them:
  • One end of the input capacitor is connected to the moving end of the single-pole double-throw switch, and the other end of the input capacitor is used as one end of the adjustable circuit to form the fourth node;
  • One end of the low frequency capacitor and one end of the high frequency capacitor are respectively connected to two fixed ends of the single pole double throw switch, and the other end of the low frequency capacitor is connected with the other end of the high frequency capacitor to form a sixth node.
  • the sixth node serves as one end of the ground of the tunable circuit.
  • the capacitor component specifically includes an interdigital capacitor and/or a variable capacitor.
  • a terminal including any of the above antennas.
  • a capacitor component is added to the signal feeding end of the antenna, and the distributed inductance of the capacitor component and the ground line can generate low frequency resonance, which can be changed by changing a capacitor component or a distributed inductor
  • the low-frequency resonant frequency is adjusted without changing the length of the radiator. Therefore, in the case of a certain limitation on the antenna volume, the bandwidth provided by the embodiment of the present invention can expand the bandwidth of the antenna.
  • FIG. 1 is a schematic diagram of an antenna in the prior art
  • FIG. 2 is a schematic diagram of an antenna according to an embodiment of the present invention.
  • FIG. 3 is a second schematic diagram of an antenna according to an embodiment of the present disclosure.
  • FIG. 4 is a schematic diagram of a capacitor component in an antenna according to an embodiment of the present invention.
  • FIG. 5 is a schematic diagram of an adjustable circuit in an antenna according to an embodiment of the present disclosure.
  • FIG. 6 is a schematic diagram of an antenna according to Embodiment 1 of the present invention.
  • FIG. 7 is a schematic diagram of an antenna according to Embodiment 2 of the present invention. detailed description
  • an embodiment of the present invention provides an antenna and a terminal.
  • a preferred embodiment of the present invention will be described with reference to the accompanying drawings. It should be understood that the preferred embodiment described herein is only used for The invention is illustrated and described, and is not intended to limit the invention. And in the case of no conflict, the embodiments in the present application and the features in the embodiments can be combined with each other.
  • An embodiment of the present invention provides an antenna, as shown in FIG. 2, including a capacitor component C and at least one radiator BN, wherein:
  • each of the at least one radiator BN is connected to form a first node, and the first node and one end of the capacitor component C are connected to form a second node, and the second node is grounded;
  • the other end of the capacitor component C receives the feed signal.
  • one end of the capacitor component C a node connected to one end of each radiator BN as a second node, the second node serves as a ground terminal G of the antenna, and the other end of the capacitor component C serves as a signal feeding end F of the antenna.
  • the capacitor component C is added to the signal feeding end F of the antenna.
  • the distributed inductance of the capacitor component C and the grounding wire can generate low frequency resonance, and the low frequency resonant frequency can be adjusted by changing the capacitance component C or the distributed inductance.
  • the antenna further includes at least one matching circuit M.
  • One ends of the matching circuits M of the at least one matching circuit are connected to form a third node, and the third node and the other end of the capacitor component C are connected. Connected, the other end of the capacitor component C receives the feed signal through each of the matching circuits M of the at least one matching circuit; wherein the matching circuit M is composed of an inductor and/or a capacitor.
  • the matching circuit M can be used for the inductive and capacitive devices.
  • the specific number and the connection mode are not limited. Any number of inductors and capacitors can be connected in series, in parallel, and mixed. The specific implementation.
  • the antenna bandwidth can be extended by connecting the inductors and capacitors in series with the signal feeding terminal F.
  • the antenna further includes at least one adjustable circuit T, the at least one One end of each adjustable circuit T in the tuning circuit is connected to form a fourth node, and the fourth node is connected to the second node, and the second node is grounded through each adjustable circuit in the at least one adjustable circuit;
  • the tunable circuit is either capacitive or inductive.
  • the tunable circuit ⁇ can adjust the low frequency resonant frequency, and can also change the impedance characteristics of the antenna to increase the antenna tuning state.
  • capacitor component C can be embodied in various ways, and four types are listed in FIG.
  • the capacitive component C is specifically an interdigital capacitor having a wide bandwidth but not being variable.
  • the capacitor component C is specifically an invariable capacitor d having a narrow bandwidth and being non-variable.
  • the capacitor assembly C is specifically a variable capacitor VAC with a narrow bandwidth but variable.
  • the capacitor assembly C specifically includes an interdigital capacitor and a variable capacitor VAC, and the bandwidth is wide and variable.
  • the above tunable circuit T can be embodied in various ways, and five are listed in FIG.
  • the tunable circuit T is specifically a matching circuit M.
  • the matching circuit M includes a variable capacitor.
  • the tuning state is not limited. The more tuning states, the wider the antenna bandwidth.
  • the tunable circuit T is specifically a filter filter. At this time, the tuning state is limited.
  • the tunable circuit T is specifically a single-pole double-throw switch.
  • One of the fixed ends of the closed circuit is the grounded end of the adjustable circuit, and the other fixed end of the single-pole double-throw switch is suspended. At this time, there is a switching loss, and the tuning state is limited.
  • the tunable circuit T specifically includes a first matching circuit Mi, a second matching circuit M 2 and a single-pole double-throw switch, wherein: the two non-moving ends of the throw switch are respectively connected One end of a matching circuit and one end of the second matching circuit; the other end of the first matching circuit and the other end of the second matching circuit are connected to form a fifth node, and the fifth node serves as a grounded end of the tunable circuit.
  • the tuning state depends on the specific implementation of the two matching circuits.
  • T tunable circuit comprises an input capacitance C 0, the low frequency capacitance CL, high frequency capacitor C H and the SPDT switch, wherein:
  • One end of the input capacitor is connected to the moving end of the single-pole double-throw switch, and the other end of the input capacitor is used as one end of the fourth node of the adjustable circuit; one end of the low-frequency capacitor and one end of the high-frequency capacitor are respectively connected to the two-pole double-throw switch At the non-moving end, the other end of the low-frequency capacitor and the other end of the high-frequency capacitor are connected to form a sixth node, which serves as a grounded end of the tunable circuit. At this time, there is a switching loss, and the tuning state is limited.
  • FIG. 6 shows an antenna according to Embodiment 1 of the present invention, which includes a capacitor assembly, two radiators BNi, BN 2 and a matching circuit M, wherein:
  • the capacitor component is specifically a variable capacitor VAC;
  • One end of the radiator, one end of the radiator BN 2 , one end three ends of the variable capacitor VAC are connected, and the connected node serves as the ground end G of the antenna;
  • the other end of the variable capacitor VAC is connected to one end of the matching circuit M, and the other end of the matching circuit M serves as a signal feeding terminal F of the antenna.
  • the distributed inductance of the variable capacitor VAC and the ground line generates a low frequency resonance frequency f .
  • the low frequency resonant frequency f can be adjusted by changing the distributed inductance, i.e., changing the length of the ground line.
  • the length of the grounding wire is generally less than one-eighth of the guided wave wavelength, and the wavelength of the guided wave is the wavelength of the signal at the center frequency of the antenna application bandwidth.
  • the larger the distributed inductance the larger the low-frequency resonance frequency.
  • the low frequency resonant frequency f can also be fine tuned by changing the size of the variable capacitor VAC.
  • a high-frequency resonance frequency f 2 can be generated by the radiator, and a high-frequency resonance frequency f 3 can be generated by the radiator BN 2 .
  • the high frequency resonant frequencies f 2 and f 3 are slightly affected.
  • the bandwidth of the antenna provided by Embodiment 1 of the present invention is a frequency band covered by the resonance frequencies f, f 2 and f 3 .
  • Example 2
  • the antenna provided in Embodiment 2 of the present invention is applicable to GSM/DCS/PCS/WCDMA/LTE.
  • FIG. 7 shows an antenna according to Embodiment 2 of the present invention, which includes a capacitor assembly, three radiators BNi, BN 2 , BN 3 , a matching circuit M and a tunable circuit, wherein:
  • the capacitor component is specifically an invariable capacitor d, and the adjustable circuit is specifically a variable capacitor VAC;
  • One end of the radiator BN ⁇ , one end of the radiator BN 2 , one end of the radiator BN 3 , one end of the variable capacitor VAC, and one end of the non-variable capacitor are connected at five ends;
  • the other end of the non-variable capacitor ( ⁇ is connected to one end of the matching circuit M, and the other end of the matching circuit M is used as the signal feeding end F of the antenna;
  • variable capacitor VAC serves as the ground terminal G of the antenna.
  • the invariable capacitance and the inductance on the ground line generate a low frequency resonance frequency f.
  • the inductance of the ground line can be changed by changing the capacitance of the variable capacitor VAC, and the low frequency resonance frequency can be adjusted.
  • the larger the variable capacitance VAC capacity the larger the low frequency resonance frequency f.
  • a high-frequency resonance frequency f 2 can be generated by the radiator, a high-frequency resonance frequency f 3 can be generated by the radiator BN 2 , and a high-frequency resonance frequency f 4 can be generated by the radiator BN 3 .
  • the high frequency resonant frequencies f 2 , f 3 and f 4 are not affected.
  • the bandwidth of the antenna provided by Embodiment 2 of the present invention is a frequency band covered by the resonance frequencies f, f 2 , f 3 , and f 4 .
  • Embodiment 3 of the present invention further provides a terminal, including the antenna shown in any of FIG. 2, FIG. 3, FIG. 6, or FIG.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Details Of Aerials (AREA)
  • Input Circuits Of Receivers And Coupling Of Receivers And Audio Equipment (AREA)
  • Transceivers (AREA)
  • Waveguide Aerials (AREA)

Abstract

 本发明公开了一种天线及终端,能够扩展天线的带宽。该天线包括一个电容组件和至少一个辐射体,其中:该至少一个辐射体中的各辐射体的一端相连构成第一节点,该第一节点和该电容组件的一端相连构成第二节点,该第二节点接地;该电容组件的另一端接收馈入信号。

Description

一种天线及终端
技术领域
本发明涉及通信技术领域, 特别涉及一种天线及终端。 背景技术
移动通信网络中的终端发送和接收信号, 都需要通过天线进行。 随着技 术的发展和应用, 终端产品的天线带宽需要覆盖更多的频段。 同时终端产品 为了追求外观的美感, 预留给天线的空间也越来越小。 显然, 传统的无源形 式的天线已经很难满足应用场景的需求, 人们开始越来越关注结合了无源形 式的天线和可调器件的可调天线。
现有技术中的一种基于 IFA ( Inverted-F Antenna, 倒置 F型天线 )架构的 可调天线如图 1所示, IFA为一种经典的无源形式的天线,在 IFA的接地点上 串接一个单刀双掷开关, 通过该单刀双掷开关串接电感或不可变电容接地。
IFA通过电感或不可变电容接地, 必然会改变图 1 所示的可调天线的阻抗特 性, 因此可以实现工作频段的变化, 天线所有状态下可覆盖频段的总和即为 天线带宽。
然而, 上述可调天线的低频谐振频率取决于辐射体中低频辐射体长分支 的长度, 而辐射体的长度会影响天线整体的体积, 即在对天线体积有一定限 制的情况下, 天线带宽可能较窄, 不能满足应用需求。 发明内容
本发明实施例提供一种天线及终端, 用以扩展天线的带宽。
第一方面, 提供一种天线, 包括一个电容组件和至少一个辐射体, 其中: 所述至少一个辐射体中的各辐射体的一端相连构成第一节点, 所述第一 节点和所述电容组件的一端相连构成第二节点, 所述第二节点接地;
所述电容组件的另一端接收馈入信号。 结合第一方面, 在第一种可能的实现方式中, 所述天线还包括至少一个 匹配电路, 所述至少一个匹配电路中的各匹配电路的一端相连构成第三节点, 所述第三节点和所述电容组件的另一端相连, 所述电容组件的另一端分别通 过所述至少一个匹配电路中的各匹配电路接收馈入信号;
其中, 所述匹配电路由电感和 /或电容构成。
结合第一方面, 或者第一方面的第一种可能的实现方式, 在第二种可能 的实现方式中, 所述天线还包括至少一个可调电路, 所述至少一个可调电路 中的各可调电路的一端相连构成第四节点, 所述第四节点和所述第二节点相 连, 所述第二节点分别通过所述至少一个可调电路中的各可调电路接地; 其中, 所述可调电路呈现容性或感性。
结合第一方面的第二种可能的实现方式, 在第三种可能的实现方式中, 所述可调电路, 具体为匹配电路或滤波器。
结合第一方面的第二种可能的实现方式, 在第四种可能的实现方式中, 所述可调电路, 具体为单刀双掷开关, 所述单刀双掷开关的动端作为所述可 调电路的构成所述第四节点的一端, 所述单刀双掷开关的一个不动端作为所 述可调电路的接地的一端, 所述单刀双掷开关的另一个不动端悬空。
结合第一方面的第二种可能的实现方式, 在第五种可能的实现方式中, 所述可调电路, 具体包括第一匹配电路、 第二匹配电路和单刀双掷开关, 其 中:
所述单刀双掷开关的动端作为所述可调电路的构成所述第四节点的一 端;
所述单刀双掷开关的两个不动端分别连接所述第一匹配电路的一端和所 述第二匹配电路的一端;
所述第一匹配电路的另一端和所述第二匹配电路的另一端相连构成第五 节点, 所述第五节点作为所述可调电路的接地的一端。
结合第一方面的第二种可能的实现方式, 在第六种可能的实现方式中, 所述可调电路, 具体包括输入电容、 低频电容、 高频电容和单刀双掷开关, 其中:
所述输入电容的一端连接所述单刀双掷开关的动端, 所述输入电容的另 一端作为所述可调电路的构成所述第四节点的一端;
所述低频电容的一端、 所述高频电容的一端分别连接所述单刀双掷开关 的两个不动端, 所述低频电容的另一端和所述高频电容的另一端相连构成第 六节点, 所述第六节点作为所述可调电路的接地的一端。
结合第一方面, 第一方面的第二种可能的实现方式, 第一方面的第三种 可能的实现方式, 第一方面的第四种可能的实现方式, 第一方面的第五种可 能的实现方式, 或者第一方面的第六种可能的实现方式, 在第七种可能的实 现方式中, 所述电容组件, 具体包括叉指式电容和 /或可变电容。
第二方面, 提供一种终端, 包括上述任一天线。
根据第一方面提供的天线或第二方面提供的终端, 在天线的信号馈入端 增加电容组件, 该电容组件和接地线的分布电感能够产生低频谐振, 通过改 变电容组件或分布电感可以对该低频谐振频率进行调节, 无需改变辐射体的 长度, 因此, 在对天线体积有一定限制的情况下, 釆用本发明实施例提供的 方案能够扩展天线的带宽。 附图说明
附图用来提供对本发明的进一步理解, 并且构成说明书的一部分, 与本 发明实施例一起用于解释本发明, 并不构成对本发明的限制。 在附图中: 图 1为现有技术中的天线示意图;
图 2为本发明实施例提供的天线示意图之一;
图 3为本发明实施例提供的天线示意图之二;
图 4为本发明实施例提供的天线中电容组件的示意图;
图 5为本发明实施例提供的天线中可调电路的示意图;
图 6为本发明实施例 1提供的天线示意图;
图 7为本发明实施例 2提供的天线示意图。 具体实施方式
为了给出扩展天线的带宽的实现方案, 本发明实施例提供了一种天线及 终端, 以下结合说明书附图对本发明的优选实施例进行说明, 应当理解, 此 处所描述的优选实施例仅用于说明和解释本发明, 并不用于限定本发明。 并 且在不冲突的情况下, 本申请中的实施例及实施例中的特征可以相互组合。
本发明实施例提供了一种天线, 如图 2所示, 包括一个电容组件 C和至 少一个辐射体 BN, 其中:
该至少一个辐射体中的各辐射体 BN的一端相连构成第一节点,该第一节 点和电容组件 C的一端相连构成第二节点, 该第二节点接地;
电容组件 C的另一端接收馈入信号。
即电容组件 C的一端、 各辐射体 BN的一端各端相连后的节点作为第二 节点, 该第二节点作为天线的接地端 G; 电容组件 C的另一端作为天线的信 号馈入端 F。
在天线的信号馈入端 F增加电容组件 C, 该电容组件 C和接地线的分布 电感能够产生低频谐振, 通过改变电容组件 C或分布电感可以对该低频谐振 频率进行调节。
较佳的, 如图 3所示, 该天线还包括至少一个匹配电路 M, 该至少一个 匹配电路中的各匹配电路 M的一端相连构成第三节点, 该第三节点和电容组 件 C的另一端相连, 电容组件 C的另一端分别通过该至少一个匹配电路中的 各匹配电路 M接收馈入信号; 其中, 匹配电路 M由电感和 /或电容构成。
即匹配电路 M中可出现电感、 电容两种器件, 对其具体数量以及连接方 式不作限定, 任意数量的电感和电容串联、 并联、 混联均可作为本发明实施 例提供的天线中匹配电路 M的具体实现方式。
增加匹配电路 M, 可以通过在信号馈入端 F串联电感电容的方式扩展天 线带宽。
较佳的, 如图 3所示, 该天线还包括至少一个可调电路 T, 该至少一个可 调电路中的各可调电路 T的一端相连构成第四节点, 该第四节点和上述第二 节点相连,该第二节点分别通过该至少一个可调电路中的各可调电路 Τ接地; 其中, 可调电路 Τ呈现容性或感性。
通过可调电路 Τ可以调整低频谐振频率, 并且还可以改变天线的阻抗特 性, 增加天线调谐状态。
进一步的, 上述电容组件 C具体可以有多种实现方式, 图 4中列举了四 种。
在电容组件 C的第一种实现方式中,电容组件 C具体为一个叉指式电容, 带宽较宽但是不可变。
在电容组件 C第二种实现方式中 ,电容组件 C具体为一个不可变电容 d , 带宽较窄并且不可变。
在电容组件 C第三种实现方式中,电容组件 C具体为一个可变电容 VAC, 带宽较窄但是可变。
较佳的, 在电容组件 C第四种实现方式中, 电容组件 C具体包括叉指式 电容和可变电容 VAC, 带宽较宽并且可变。
上述四种具体实现方式仅为示例, 并不用于限定本发明。 其它电容类器 具体实现方式。
进一步的, 上述可调电路 T具体可以有多种实现方式, 图 5中列举了五 种。
在可调电路 T的第一种实现方式中, 可调电路 T具体为匹配电路 M, 较 佳的, 匹配电路 M中包括可变电容。 当匹配电路 M中包括可变电容时, 不会 局限调谐状态。 调谐状态越多, 天线带宽越宽。
在可调电路 T的第二种实现方式中, 可调电路 T具体为滤波器 Filter。 此 时, 调谐状态有限。
在可调电路 T的第三种实现方式中, 可调电路 T具体为单刀双掷开关, 关的一个不动端作为可调电路的接地的一端, 单刀双掷开关的另一个不动端 悬空。 此时, 存在开关损耗, 并且, 调谐状态有限。
在可调电路 T的第四种实现方式中, 可调电路 T具体包括第一匹配电路 Mi , 第二匹配电路 M2和单刀双掷开关, 其中: 掷开关的两个不动端分别连接第一匹配电路的一端和第二匹配电路的一端; 第一匹配电路的另一端和第二匹配电路的另一端相连构成第五节点, 该第五 节点作为可调电路的接地的一端。 此时, 存在开关损耗, 调谐状态取决于两 个匹配电路的具体实现。
在可调电路 T的第五种实现方式中, 可调电路 T具体包括输入电容 C0、 低频电容 CL、 高频电容 CH和单刀双掷开关, 其中:
输入电容的一端连接单刀双掷开关的动端, 输入电容的另一端作为可调 电路的构成上述第四节点的一端; 低频电容的一端、 高频电容的一端分别连 接单刀双掷开关的两个不动端, 低频电容的另一端和高频电容的另一端相连 构成第六节点, 该第六节点作为可调电路的接地的一端。 此时, 存在开关损 耗, 并且, 调谐状态有限。
上述五种具体实现方式仅为示例, 并不用于限定本发明。 其它呈现容性 实现方式。
下面结合附图, ffl JL^ ^ ^A ?十太 ^
实施例 1 : 图 6所示为本发明实施例 1提供的天线, 包括一个电容组件、 两个辐射 体 BNi、 BN2和一个匹配电路 M, 其中:
电容组件具体为可变电容 VAC;
辐射体 的一端、辐射体 BN2的一端、可变电容 VAC的一端三端相连, 相连后的节点作为天线的接地端 G; 可变电容 VAC的另一端连接匹配电路 M的一端, 匹配电路 M的另一端 作为天线的信号馈入端F。
本发明实施例 1提供的天线中, 可变电容 VAC与接地线的分布电感产生 低频谐振频率 f 。
该低频谐振频率 f 可以通过改变分布电感, 即改变接地线的长度进行调 节。 实验证明, 接地线的长度一般小于八分之一导波波长, 导波波长为天线 应用带宽中心频率的信号波长。 在一定电感值范围内, 分布电感越大, 低频 谐振频率 越大。
该低频谐振频率 f 也可以通过改变可变电容 VAC的大小进行微调。 在一 定容值范围内, 可变电容 VAC容值越大, 低频谐振频率 f 越小。
通过辐射体 可以产生高频谐振频率 f2 , 通过辐射体 BN2可以产生高 频谐振频率 f3
在通过改变电容组件即可变电容 VAC容值调整低频谐振频率 f 时, 对高 频谐振频率 f2和 f3略有影响。
即本发明实施例 1提供的天线的带宽为谐振频率 f 、 f2和 f3覆盖的频段。 实施例 2:
本发明实施例 2提供的天线适用于 GSM/DCS/PCS/WCDMA/LTE。
图 7所示为本发明实施例 2提供的天线, 包括一个电容组件、 三个辐射 体 BNi、 BN2、 BN3、 一个匹配电路 M和一个可调电路, 其中:
电容组件具体为不可变电容 d , 可调电路具体为可变电容 VAC;
辐射体 BN 々一端、 辐射体 BN2的一端、 辐射体 BN3的一端、 可变电容 VAC的一端、 不可变电容 的一端五端相连;
不可变电容(^的另一端连接匹配电路 M的一端, 匹配电路 M的另一端 作为天线的信号馈入端 F;
可变电容 VAC的另一端作为天线的接地端 G。
本发明实施例 2提供的天线中, 不可变电容 与接地线上的电感产生低 频谐振频率 f 。 通过改变可变电容 VAC容值可以改变接地线上的电感, 进而可以对该低 频谐振频率 进行调整。 在一定的容易值范围内, 可变电容 VAC容值越大, 低频谐振频率 f 越大。
通过辐射体 可以产生高频谐振频率 f2 , 通过辐射体 BN2可以产生高 频谐振频率 f3, 通过辐射体 BN3可以产生高频谐振频率 f4
在通过改变可调电路即可变电容 VAC容值调整低频谐振频率 f 时, 对高 频谐振频率 f2、 f3和 f4不会产生影响。
即本发明实施例 2提供的天线的带宽为谐振频率 f 、 f2、 f3和 f4覆盖的频 段。
可见, 在对天线体积有一定限制的情况下, 釆用了本发明实施例提供的 方案, 能够扩展带宽, 满足更多应用场景的需求。
实施例 3:
本发明实施例 3还提供了一种终端, 包括图 2、 图 3、 图 6或图 7任一所 示的天线。
本领域内的技术人员应明白, 尽管已描述了本发明的优选实施例, 但本 领域内的技术人员一旦得知了基本创造性概念, 则可对这些实施例作出另外 的变更和修改。 所以, 所附权利要求意欲解释为包括优选实施例以及落入本 发明范围的所有变更和修改。 脱离本发明实施例的精神和范围。 这样, 倘若本发明实施例的这些修改和变 型属于本发明权利要求及其等同技术的范围之内, 则本发明也意图包含这些 改动和变型在内。

Claims

权 利 要 求
1、 一种天线, 其特征在于, 包括一个电容组件和至少一个辐射体, 其中: 所述至少一个辐射体中的各辐射体的一端相连构成第一节点, 所述第一 节点和所述电容组件的一端相连构成第二节点, 所述第二节点接地;
所述电容组件的另一端接收馈入信号。
2、 如权利要求 1所述的天线, 其特征在于, 所述天线还包括至少一个匹 配电路, 所述至少一个匹配电路中的各匹配电路的一端相连构成第三节点, 所述第三节点和所述电容组件的另一端相连, 所述电容组件的另一端分别通 过所述至少一个匹配电路中的各匹配电路接收馈入信号;
其中, 所述匹配电路由电感和 /或电容构成。
3、 如权利要求 1或 2所述的天线, 其特征在于, 所述天线还包括至少一 个可调电路, 所述至少一个可调电路中的各可调电路的一端相连构成第四节 点, 所述第四节点和所述第二节点相连, 所述第二节点分别通过所述至少一 个可调电路中的各可调电路接地;
其中, 所述可调电路呈现容性或感性。
4、 如权利要求 3所述的天线, 其特征在于, 所述可调电路, 具体为匹配 电路或滤波器。
5、 如权利要求 3所述的天线, 其特征在于, 所述可调电路, 具体为单刀 的一端, 所述单刀双掷开关的一个不动端作为所述可调电路的接地的一端, 所述单刀双掷开关的另一个不动端悬空。
6、 如权利要求 3所述的天线, 其特征在于, 所述可调电路, 具体包括第 一匹配电路、 第二匹配电路和单刀双掷开关, 其中:
所述单刀双掷开关的动端作为所述可调电路的构成所述第四节点的一 端;
所述单刀双掷开关的两个不动端分别连接所述第一匹配电路的一端和所 述第二匹配电路的一端;
所述第一匹配电路的另一端和所述第二匹配电路的另一端相连构成第五 节点, 所述第五节点作为所述可调电路的接地的一端。
7、 如权利要求 3所述的天线, 其特征在于, 所述可调电路, 具体包括输 入电容、 低频电容、 高频电容和单刀双掷开关, 其中:
所述输入电容的一端连接所述单刀双掷开关的动端, 所述输入电容的另 一端作为所述可调电路的构成所述第四节点的一端;
所述低频电容的一端、 所述高频电容的一端分别连接所述单刀双掷开关 的两个不动端, 所述低频电容的另一端和所述高频电容的另一端相连构成第 六节点, 所述第六节点作为所述可调电路的接地的一端。
8、 如权利要求 1-7任一所述的天线, 其特征在于, 所述电容组件, 具体 包括叉指式电容和 /或可变电容。
9、 一种终端, 其特征在于, 包括权利要求 1-8任一所述的天线。
PCT/CN2013/090144 2013-12-20 2013-12-20 一种天线及终端 WO2015089841A1 (zh)

Priority Applications (8)

Application Number Priority Date Filing Date Title
PCT/CN2013/090144 WO2015089841A1 (zh) 2013-12-20 2013-12-20 一种天线及终端
CN201380008276.8A CN104115331B (zh) 2013-12-20 2013-12-20 一种天线及终端
KR1020167018958A KR101821077B1 (ko) 2013-12-20 2013-12-20 안테나와 단말기
EP18191759.2A EP3487002A1 (en) 2013-12-20 2013-12-20 Antenna and terminal
JP2016541285A JP6332881B2 (ja) 2013-12-20 2013-12-20 アンテナおよび端末装置
EP13899968.5A EP3070785B1 (en) 2013-12-20 2013-12-20 Antenna and terminal
US15/186,123 US10283864B2 (en) 2013-12-20 2016-06-17 Antenna and terminal
US16/165,256 US20190051986A1 (en) 2013-12-20 2018-10-19 Antenna and terminal

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2013/090144 WO2015089841A1 (zh) 2013-12-20 2013-12-20 一种天线及终端

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US15/186,123 Continuation US10283864B2 (en) 2013-12-20 2016-06-17 Antenna and terminal

Publications (1)

Publication Number Publication Date
WO2015089841A1 true WO2015089841A1 (zh) 2015-06-25

Family

ID=51710607

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2013/090144 WO2015089841A1 (zh) 2013-12-20 2013-12-20 一种天线及终端

Country Status (6)

Country Link
US (2) US10283864B2 (zh)
EP (2) EP3070785B1 (zh)
JP (1) JP6332881B2 (zh)
KR (1) KR101821077B1 (zh)
CN (1) CN104115331B (zh)
WO (1) WO2015089841A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11177568B2 (en) 2017-04-01 2021-11-16 Huawei Technologies Co., Ltd. Antenna resource scheduling method and device

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105811079B (zh) * 2014-12-31 2020-05-26 联想(北京)有限公司 一种天线装置及电子设备
CN106463816B (zh) * 2015-01-04 2019-09-13 华为技术有限公司 手持设备
CN106159450A (zh) * 2015-03-26 2016-11-23 联想(北京)有限公司 环形天线和电子设备
US10109914B2 (en) * 2015-03-27 2018-10-23 Intel IP Corporation Antenna system
CN105470635B (zh) * 2015-12-11 2022-11-18 北京伯临通信科技有限公司 一种低剖面双频高精度多模导航天线
CN107317113A (zh) * 2017-06-27 2017-11-03 北京小米移动软件有限公司 天线模块及电子设备
JP2019047265A (ja) * 2017-08-31 2019-03-22 株式会社ヨコオ アンテナ装置及び逆fアンテナ
CN109273841B (zh) * 2018-09-17 2020-12-04 深圳传音通讯有限公司 天线以及终端设备
CN113471665B (zh) * 2020-03-31 2022-09-16 华为技术有限公司 一种天线及终端

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN201060933Y (zh) * 2007-04-09 2008-05-14 樊明延 平衡式双枝平面倒置f型天线
JP2008258670A (ja) * 2007-03-30 2008-10-23 Matsushita Electric Ind Co Ltd アンテナ装置及び携帯端末
CN201374385Y (zh) * 2008-11-21 2009-12-30 富港电子(东莞)有限公司 天线
CN101809813A (zh) * 2007-08-30 2010-08-18 脉冲芬兰有限公司 可调节多频带天线
US20120306709A1 (en) * 2011-06-03 2012-12-06 Wistron Neweb Corp. Multi-band antenna

Family Cites Families (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1028013A (ja) * 1996-07-11 1998-01-27 Matsushita Electric Ind Co Ltd 平面アンテナ
JPH10107671A (ja) * 1996-09-26 1998-04-24 Kokusai Electric Co Ltd 携帯無線端末機用アンテナ
JP3430140B2 (ja) * 2000-10-05 2003-07-28 埼玉日本電気株式会社 逆fアンテナおよびそれを用いた無線装置
US7174147B2 (en) * 2001-04-11 2007-02-06 Kyocera Wireless Corp. Bandpass filter with tunable resonator
JP2003249811A (ja) * 2001-12-20 2003-09-05 Murata Mfg Co Ltd 複共振アンテナ装置
JP2004266311A (ja) 2003-01-15 2004-09-24 Fdk Corp アンテナ
JP4089680B2 (ja) * 2003-12-25 2008-05-28 三菱マテリアル株式会社 アンテナ装置
EP1703586A4 (en) 2003-12-25 2008-01-23 Mitsubishi Materials Corp ANTENNA DEVICE AND COMMUNICATION DEVICE
CN101212230B (zh) * 2006-12-26 2012-07-11 中兴通讯股份有限公司 一种手机dvb-h天线匹配网络的实现装置及其方法
JP2009278192A (ja) * 2008-05-12 2009-11-26 Sony Ericsson Mobilecommunications Japan Inc アンテナ装置及び通信端末装置
EP2234205A1 (en) 2009-03-24 2010-09-29 Laird Technologies AB An antenna device and a portable radio communication device comprising such antenna device
US8405568B2 (en) * 2009-05-29 2013-03-26 Intel Mobile Communications GmbH Wireless communication device antenna with tuning elements
JP5321290B2 (ja) 2009-06-30 2013-10-23 株式会社村田製作所 アンテナ構造
JP5692086B2 (ja) 2009-11-13 2015-04-01 日立金属株式会社 周波数可変アンテナ回路、それを構成するアンテナ部品、及びそれらを用いた無線通信装置
CN102918709B (zh) 2010-04-06 2015-08-19 拉迪娜股份有限公司 天线馈入结构及天线
TWM408886U (en) * 2011-01-06 2011-08-01 Wistron Corp Antenna switching device and mobile communication device having antenna switching device
JP5626024B2 (ja) * 2011-03-02 2014-11-19 船井電機株式会社 マルチアンテナ装置および通信機器
US9246221B2 (en) * 2011-03-07 2016-01-26 Apple Inc. Tunable loop antennas
JP5301608B2 (ja) 2011-05-24 2013-09-25 レノボ・シンガポール・プライベート・リミテッド 無線端末装置用のアンテナ
JP2013017112A (ja) * 2011-07-06 2013-01-24 Hitachi Metals Ltd アンテナおよびそれを用いた無線通信装置
US8570227B1 (en) * 2011-09-15 2013-10-29 The United States Of America As Represented By The Secretary Of The Navy High-frequency transmit antenna system
KR101318575B1 (ko) * 2011-11-16 2013-10-16 주식회사 팬택 공진 주파수 대역을 변경할 수 있는 안테나 장치를 구비하는 이동통신 단말기 및 이동통신 단말기의 안테나 장치 동작 방법
TWI491107B (zh) 2011-12-20 2015-07-01 Wistron Neweb Corp 電調天線及射頻裝置
JP5637565B2 (ja) * 2011-11-22 2014-12-10 Necプラットフォームズ株式会社 マルチバンドアンテナおよび携帯端末
US9270012B2 (en) * 2012-02-01 2016-02-23 Apple Inc. Electronic device with calibrated tunable antenna

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008258670A (ja) * 2007-03-30 2008-10-23 Matsushita Electric Ind Co Ltd アンテナ装置及び携帯端末
CN201060933Y (zh) * 2007-04-09 2008-05-14 樊明延 平衡式双枝平面倒置f型天线
CN101809813A (zh) * 2007-08-30 2010-08-18 脉冲芬兰有限公司 可调节多频带天线
CN201374385Y (zh) * 2008-11-21 2009-12-30 富港电子(东莞)有限公司 天线
US20120306709A1 (en) * 2011-06-03 2012-12-06 Wistron Neweb Corp. Multi-band antenna

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3070785A4 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11177568B2 (en) 2017-04-01 2021-11-16 Huawei Technologies Co., Ltd. Antenna resource scheduling method and device

Also Published As

Publication number Publication date
US20190051986A1 (en) 2019-02-14
US20160301134A1 (en) 2016-10-13
KR20160099648A (ko) 2016-08-22
EP3070785A4 (en) 2016-12-28
JP6332881B2 (ja) 2018-05-30
EP3070785B1 (en) 2018-11-07
EP3487002A1 (en) 2019-05-22
KR101821077B1 (ko) 2018-01-22
JP2017505034A (ja) 2017-02-09
CN104115331B (zh) 2016-09-28
EP3070785A1 (en) 2016-09-21
US10283864B2 (en) 2019-05-07
CN104115331A (zh) 2014-10-22

Similar Documents

Publication Publication Date Title
WO2015089841A1 (zh) 一种天线及终端
US11854728B2 (en) Tunable inductor arrangement, transceiver, method and computer program
JP5448163B2 (ja) 再構成可能なインピーダンス整合および高調波フィルタ・システム
US11923119B2 (en) Tunable inductor arrangement, transceiver, method, and computer program
US11949172B2 (en) Antenna system and terminal
WO2016154851A1 (zh) 一种终端
JP6389266B2 (ja) チューナブルhfフィルタ回路
KR20180056234A (ko) 노이즈 억제 특성을 개선한 고주파 스위치 장치
US9455686B1 (en) Wireless communication device and tunable filter thereof
JP6568259B2 (ja) アンテナおよび端末装置
KR102600021B1 (ko) 대역 분할 가변형 대역 통과 필터
KR20120070331A (ko) 대역 통과 필터 및 이를 이용한 듀플렉서

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13899968

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2016541285

Country of ref document: JP

Kind code of ref document: A

REEP Request for entry into the european phase

Ref document number: 2013899968

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2013899968

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20167018958

Country of ref document: KR

Kind code of ref document: A