WO2015088011A1 - 光学材料用重合性組成物、光学材料およびその用途 - Google Patents

光学材料用重合性組成物、光学材料およびその用途 Download PDF

Info

Publication number
WO2015088011A1
WO2015088011A1 PCT/JP2014/083012 JP2014083012W WO2015088011A1 WO 2015088011 A1 WO2015088011 A1 WO 2015088011A1 JP 2014083012 W JP2014083012 W JP 2014083012W WO 2015088011 A1 WO2015088011 A1 WO 2015088011A1
Authority
WO
WIPO (PCT)
Prior art keywords
optical material
polymerizable composition
bis
compound
material according
Prior art date
Application number
PCT/JP2014/083012
Other languages
English (en)
French (fr)
Inventor
直志 柿沼
橋本 俊哉
小島 甲也
Original Assignee
三井化学株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from PCT/JP2014/054971 external-priority patent/WO2014133111A1/ja
Application filed by 三井化学株式会社 filed Critical 三井化学株式会社
Publication of WO2015088011A1 publication Critical patent/WO2015088011A1/ja

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B1/00Optical elements characterised by the material of which they are made; Optical coatings for optical elements
    • G02B1/04Optical elements characterised by the material of which they are made; Optical coatings for optical elements made of organic materials, e.g. plastics
    • G02B1/041Lenses

Definitions

  • the present invention relates to a polymerizable composition for an optical material, an optical material and use thereof.
  • Non-patent document 1 describes the influence of short wavelength blue light of about 420 nm on the eyes.
  • the damage to retinal nerve cells (rat cultured retinal nerve R28 cells) due to irradiation with blue LED light having different peak wavelengths of 411 nm and 470 nm is verified.
  • irradiation with blue light having a peak wavelength at 411 nm (4.5 W / m 2 ) causes cell death of retinal neurons within 24 hours, whereas blue light having a peak wavelength at 470 nm has the same amount. It has been shown that no change occurs in the cells even with irradiation of, and it has been shown that suppressing exposure to light having a wavelength of 400 to 420 nm is important for preventing eye disorders.
  • Patent Document 1 discloses a plastic lens including an ultraviolet absorber having an average light transmittance of 0.5% or less in a wavelength region of 300 nm or more and 400 nm or less.
  • Patent Document 2 discloses a plastic lens obtained from a plastic lens composition containing a resin material containing a urethane resin material and at least two types of ultraviolet absorbers having different maximum absorption wavelengths.
  • Patent Document 3 discloses a plastic lens obtained from a plastic lens composition containing a resin material containing a urethane resin material and an ultraviolet absorber having a maximum absorption wavelength in a chloroform solution of 345 nm or more. This document describes that according to this plastic lens, there is no yellowing of the lens due to the influence of the ultraviolet absorber, no change in refractive index, and the like, and the mechanical strength of the lens is not lowered.
  • Patent Document 4 discloses a plastic spectacle lens using a specific benzotriazole compound. This document describes that this plastic spectacle lens has a light transmittance in a predetermined range at a wavelength of 395 nm, a wavelength of 400 nm, and a wavelength of 405 nm.
  • Patent Document 5 discloses a resin obtained by polymerizing a polymerizable composition comprising a compound having an episulfide group and a compound having two or more mercapto groups in the molecule.
  • the resin is a material having a high refractive index and low dispersion, and its use as a material for spectacle lenses is described.
  • a polymerizable composition for an optical material comprising: [2] The polymerizable composition for an optical material according to [1], wherein the ultraviolet absorber (B) is a kind selected from benzotriazole compounds. [3] The polymerizable composition for an optical material according to [2], wherein the benzotriazole-based compound is one type selected from chloro-substituted benzotriazole-based compounds.
  • the compound (A) having a cyclic structure containing a sulfur atom has the following general formula (1): (In the formula, n represents 0 or 1.)
  • the compound (A) having a cyclic structure containing a sulfur atom is represented by the following general formula (2): (In the formula, n represents 0 or 1.)
  • the polythiol (C) is pentaerythritol tetrakis (2-mercaptoacetate), pentaerythritol tetrakis (3-mercaptopropionate), bis (2-mercaptoethyl) sulfide, 4-mercaptomethyl-1,8- Dimercapto-3,6-dithiaoctane, 5,7-dimercaptomethyl-1,11-dimercapto-3,6,9-trithiaundecane, 4,7-dimercaptomethyl-1,11-dimercapto-3,6 9-trithiaundecane, 4,8-dimercaptomethyl-1,11-dimercapto-3,6,9-trithiaundecane, 2,5-dimercaptomethyl-1,4-dithiane, 1,1,3 3-tetrakis (mercaptomethylthio) propane, 4,6-bis (mercaptomethylthio) -1,3-dithiane,
  • an optical material can be provided.
  • Such an optical material of the present invention has optical characteristics such as a high refractive index and a high Abbe number, and is colorless and transparent, has an excellent appearance, reduces the effects of harmful light on the eyes, and suppresses problems such as eye strain and stress.
  • it can be suitably used as a plastic spectacle lens.
  • the polymerizable composition for an optical material of the present embodiment includes a compound (A) having a cyclic structure containing a sulfur atom, and one or more ultraviolet absorbers (B) having a maximum absorption peak in the range of 350 nm to 370 nm. including.
  • A a compound having a cyclic structure containing a sulfur atom
  • B one or more ultraviolet absorbers having a maximum absorption peak in the range of 350 nm to 370 nm. including.
  • each component will be described in detail.
  • the polymerizable composition for an optical material contains a compound (A) having a cyclic structure containing a sulfur atom (hereinafter, also simply referred to as “compound (A)”).
  • Examples of the compound (A) having a cyclic structure containing a sulfur atom include compounds having an episulfide group and a thietanyl group. Specific examples include a compound having an episulfide group (hereinafter referred to as an episulfide compound (A1)), a thietanyl group.
  • a compound containing the compound hereinafter, thietanyl compound (A2)).
  • episulfide compound (A1) examples include bis (1,2-epithioethyl) sulfide, bis (1,2-epithioethyl) disulfide, and a compound represented by the following general formula (1).
  • the episulfide compound (A1) is preferably a compound represented by the above general formula (1). Specific examples include bis (2,3-epithiopropyl) sulfide, bis (2,3- Epithiopropyl)) disulfide.
  • thietanyl compound (A2) examples include compounds represented by the following general formula (2), bisthietanyl trisulfide, bisthietanyl tetrasulfide, bisthietanyl pentasulfide, and the like.
  • the thietanyl compound (A2) is preferably a compound represented by the above general formula (2), and specific examples thereof include bisthietanyl sulfide and bisthietanyl disulfide. These episulfide compounds (A1) and thietanyl compounds (A2) can be used alone or in combination of two or more. In this embodiment, bis (2,3-epithiopropyl) sulfide and bis (2,3-epithiopropyl) disulfide, which are compounds represented by the general formula (1), are used as the compound (A). It is preferable.
  • the ultraviolet absorber (B) used in the present embodiment is not particularly limited as long as the maximum absorption wavelength when dissolved in a chloroform solution is 350 nm or more and 370 nm or less.
  • Examples of the ultraviolet absorber (B) include benzophenone compounds, triazine compounds, and benzotriazole compounds.
  • Examples of the benzophenone compounds include 2,2′-dihydroxy-4,4′-dimethoxybenzophenone and 2,2′-4,4′-tetrahydroxybenzophenone.
  • Examples of the triazine compound include ADEKA STAB LA-F70 manufactured by ADEKA, TINUVIN400 manufactured by BASF, and the like.
  • a benzotriazole compound examples include linear alkyl ester-substituted benzotriazole compounds and chloro-substituted benzotriazole compounds.
  • chloro-substituted benzotriazole compounds are preferred.
  • More preferable examples include 2- (2-hydroxy-3-t-butyl-5-methylphenyl) -chlorobenzotriazole.
  • Commercially available products include TINUVIN 326 manufactured by BASF, SEESEORB 703 manufactured by Cypro Kasei Co., and Biosorb 550 manufactured by Kyodo Pharmaceutical. KEMISORB73 manufactured by Chemipro Kasei Co., Ltd. and the like.
  • the ultraviolet absorber (B) is a kind selected from chloro-substituted benzotriazole compounds, so that an optical material that has a very high blocking effect of about 420 nm of blue light from harmful ultraviolet rays, is colorless and transparent, and has an excellent appearance. Can be obtained effectively.
  • any ultraviolet absorber which comprises an ultraviolet absorber (B) has the maximum absorption peak in the range of 350 nm or more and 370 nm or less.
  • the polymerizable composition for an optical material shown in the present invention may further contain a polythiol compound (C).
  • the polythiol (C) shown in the present invention means a compound having two or more mercapto groups in the molecule.
  • polythiol (C) examples include methanedithiol, 1,2-ethanedithiol, 1,2,3-propanetrithiol, 1,2-cyclohexanedithiol, bis (2-mercaptoethyl) ether, tetrakis (mercaptomethyl) methane, Diethylene glycol bis (2-mercaptoacetate), diethylene glycol bis (3-mercaptopropionate), ethylene glycol bis (2-mercaptoacetate), ethylene glycol bis (3-mercaptopropionate), trimethylolpropane tris (2-mercapto) Acetate), trimethylolpropane tris (3-mercaptopropionate), trimethylolethane tris (2-mercaptoacetate), trimethylolethanetris (3-mercaptopropionate) ), Pentaerythritol tetrakis (2-mercaptoacetate), pentaerythritol tetrakis (3-mercaptopropionate,
  • polythiol (C) pentaerythritol tetrakis (2-mercaptoacetate), pentaerythritol tetrakis (3-mercaptopropionate), bis (2-mercaptoethyl) sulfide, 4-mercaptomethyl-1, 8-dimercapto-3,6-dithiaoctane, 5,7-dimercaptomethyl-1,11-dimercapto-3,6,9-trithiaundecane, 4,7-dimercaptomethyl-1,11-dimercapto-3 6,9-trithiaundecane, 4,8-dimercaptomethyl-1,11-dimercapto-3,6,9-trithiaundecane, 2,5-dimercaptomethyl-1,4-dithiane, 1,1, 3,3-tetrakis (mercaptomethylthio) propane, 4,6-bis (mercaptomethylthio) -1,3-dithian
  • the polymerizable composition for an optical material according to this embodiment includes a compound (A) having a cyclic structure containing a sulfur atom and one or more ultraviolet absorbers (B) having a maximum absorption peak in the range of 350 nm to 370 nm. .
  • the ultraviolet absorber (B) is 0.1 to 0.8% by weight, preferably 0.2 to 0.6% by weight, more preferably 100% by weight of the polymerizable composition for optical materials. May be included in an amount of 0.3 to 0.5% by weight.
  • 100% by weight of the polymerizable composition for optical materials is “the compound (A) having a cyclic structure containing a sulfur atom and an ultraviolet absorber (B Or a total of 100 wt% of the compound (A) having a cyclic structure containing a sulfur atom, the ultraviolet absorber (B), and the polythiol (C) ”.
  • the optical material obtained from the polymerizable composition for an optical material according to the present embodiment is excellent in transparency, is suppressed in coloring, and can further suppress obstacles such as eye strain and stress.
  • the light transmittance at 440 nm is 80% or more, an optical material excellent in colorless and transparent appearance can be obtained.
  • the polymerizable composition for an optical material of the present embodiment may further contain a polymerization catalyst, an internal mold release agent, a resin modifier, a light stabilizer, a bluing agent, and the like as other components.
  • the polymeric composition for optical materials can also contain the ultraviolet absorber which does not have the maximum absorption peak in the range of 350 nm or more and 370 nm or less.
  • catalyst examples include Lewis acid, amine, organic acid, amine organic acid salt and the like, Lewis acid, amine and amine organic acid salt are preferable, and dimethyltin chloride, dibutyltin chloride and dibutyltin laurate are more preferable.
  • An acidic phosphate ester can be used as the internal mold release agent.
  • acidic phosphoric acid esters include phosphoric acid monoesters and phosphoric acid diesters, which can be used alone or in combination of two or more.
  • ZelecUN manufactured by STEPAN MR internal mold release agent manufactured by Mitsui Chemicals, JP series manufactured by Johoku Chemical Industry, Phosphanol series manufactured by Toho Chemical Industry, AP and DP manufactured by Daihachi Chemical Industry Series, etc.
  • ZelecUN manufactured by STEPAN MR internal mold release agent manufactured by Mitsui Chemicals
  • JP series manufactured by Johoku Chemical Industry
  • Phosphanol series manufactured by Toho Chemical Industry AP and DP manufactured by Daihachi Chemical Industry Series, etc.
  • the polymerizable composition of the present embodiment includes resin modification for the purpose of adjusting various physical properties such as optical properties, impact resistance, and specific gravity of the obtained resin, and adjusting the viscosity and pot life of the composition.
  • An agent can be added as long as the effects of the present invention are not impaired.
  • the resin modifier include polyisocyanate compounds, alcohol compounds, amine compounds, epoxy compounds, organic acids and anhydrides thereof, olefin compounds including (meth) acrylate compounds, and the like.
  • polyisocyanate compound examples include aliphatic polyisocyanate, alicyclic polyisocyanate, aromatic polyisocyanate, heterocyclic polyisocyanate, and the like, and one or a mixture of two or more are used so as to satisfy the above conditions.
  • polyisocyanate compounds may include dimers, trimers, and prepolymers.
  • Aliphatic polyisocyanates include hexamethylene diisocyanate, 2,2,4-trimethylhexamethylene diisocyanate, 2,4,4-trimethylhexamethylene diisocyanate, pentamethylene diisocyanate, lysine diisocyanatomethyl ester, lysine triisocyanate, m- Xylylene diisocyanate, ⁇ , ⁇ , ⁇ ', ⁇ '-tetramethylxylylene diisocyanate, bis (isocyanatomethyl) naphthalene, mesitylylene triisocyanate, bis (isocyanatomethyl) sulfide, bis (isocyanatoethyl) sulfide, Bis (isocyanatomethyl) disulfide, bis (isocyanatoethyl) disulfide, bis (isocyanatomethylthio) methane, bis (isocyanatoethylthio) methane, bis
  • alicyclic polyisocyanate examples include isophorone diisocyanate, bis (isocyanatomethyl) cyclohexane, dicyclohexylmethane diisocyanate, cyclohexane diisocyanate, methylcyclohexane diisocyanate, dicyclohexyldimethylmethane isocyanate, 2,5-bis (isocyanatomethyl) bicyclo- [2.
  • aromatic polyisocyanate examples include tolylene diisocyanate, 4,4′-diphenylmethane diisocyanate, phenylene diisocyanate, etc.
  • the tolylene diisocyanate is more preferable than 2,4-tolylene diisocyanate and 2,6-tolylene diisocyanate.
  • tolylene diisocyanate examples include 2,4-tolylene diisocyanate, 2,6-tolylene diisocyanate, or a mixture of 2,4-tolylene diisocyanate and 2,6-tolylene diisocyanate. Can be used.
  • Heterocyclic polyisocyanates include 2,5-diisocyanatothiophene, 2,5-bis (isocyanatomethyl) thiophene, 2,5-diisocyanatotetrahydrothiophene, 2,5-bis (isocyanatomethyl) tetrahydrothiophene 3,4-bis (isocyanatomethyl) tetrahydrothiophene, 2,5-diisocyanato-1,4-dithiane, 2,5-bis (isocyanatomethyl) -1,4-dithiane, 4,5-diisocyanato-1 , 3-dithiolane, 4,5-bis (isocyanatomethyl) -1,3-dithiolane, and the like, and at least one of them can be used.
  • a hindered amine compound can be used as the light stabilizer.
  • As hindered amine compounds commercially available products such as Chemila's Lowilite 76, Lowilite 92, BASF's Tinuvin 144, Tinuvin 292, Tinuvin 765, ADEKA's Adeka Stub LA-52, LA-72, Johoku Chemical Co., Ltd., JF-95, etc. Can be mentioned.
  • the bluing agent examples include those having an absorption band in the wavelength range from orange to yellow in the visible light region, and a function of adjusting the hue of the optical material made of resin. More specifically, the bluing agent contains a substance exhibiting a blue to purple color.
  • the polymerizable composition for an optical material can be obtained by mixing the above components by a predetermined method.
  • the mixing order and mixing method of each component in the composition are not particularly limited as long as each component can be uniformly mixed, and can be performed by a known method.
  • Known methods include, for example, a method of preparing a master batch containing a predetermined amount of additives, and dispersing and dissolving the master batch in a solvent.
  • the molded product of the present embodiment includes a compound (A) having a cyclic structure containing a sulfur atom, the specific ultraviolet absorber (B), and a polythiol (C) and an additive as necessary. It can be obtained by polymerizing a polymerizable composition for an optical material.
  • the optical material comprising the molded body shown in the present embodiment can be obtained by a method of cast polymerization of the polymerizable composition for optical material.
  • the polymerizable composition for an optical material is injected into a cavity of a molding mold held by a gasket or tape.
  • a defoaming treatment under reduced pressure, a filtration treatment such as pressurization or reduced pressure, and the like.
  • the lens casting mold is heated and molded by a predetermined temperature program in a heatable apparatus such as an oven or water.
  • the molded body may be subjected to a treatment such as annealing as necessary.
  • the ultraviolet absorber (B) is 0.1 to 0.8% by weight, preferably 0.2 to 0.6% by weight, more preferably 0.3 to 0%. 0.5% by weight.
  • optical material of this embodiment by including a compound (A) having a cyclic structure containing a sulfur atom and a specific ultraviolet absorber (B), light having a wavelength of 400 nm to 420 nm is cut, transparency is high, and physical property balance is excellent.
  • a compound (A) having a cyclic structure containing a sulfur atom and a specific ultraviolet absorber (B) by including a compound (A) having a cyclic structure containing a sulfur atom and a specific ultraviolet absorber (B), light having a wavelength of 400 nm to 420 nm is cut, transparency is high, and physical property balance is excellent.
  • Optical material by including a compound (A) having a cyclic structure containing a sulfur atom and a specific ultraviolet absorber (B), light having a wavelength of 400 nm to 420 nm is cut, transparency is high, and physical property balance is excellent.
  • Optical materials shown in the present embodiment include plastic eyeglass lenses, goggles, eyesight correction eyeglass lenses, imaging equipment lenses, liquid crystal projector Fresnel lenses, lenticular lenses, contact lenses and other plastic lenses, and light emitting diodes (LEDs).
  • seat and film affixed on the windshield of a car or a motorcycle helmet, a transparent substrate, etc. can be mentioned.
  • the optical material shown in this embodiment has a thickness of 2 mm, a light transmittance at a wavelength of 440 nm is 80% or more, preferably 85% or more, and a light transmittance at 420 nm is 70% or less, preferably 50% or less.
  • the light transmittance at 410 nm is 10% or less, preferably 5% or less.
  • the blocking effect of blue light of about 420 nm from harmful ultraviolet rays is high, and it is colorless and transparent and excellent in appearance.
  • the optical material excellent in the colorless and transparent external appearance can be obtained by making the light transmittance of 440 nm 80% or more.
  • a plastic spectacle lens can be obtained using the plastic lens of the present embodiment. If necessary, a coating layer may be provided on one side or both sides.
  • the coating layer include a primer layer, a hard coat layer, an antireflection layer, an antifogging coat layer, a stain proof layer, and a water repellent layer.
  • a primer layer a hard coat layer
  • an antireflection layer an antifogging coat layer
  • a stain proof layer a water repellent layer.
  • Each of these coating layers can be used alone, or a plurality of coating layers can be used in multiple layers. When a coating layer is applied to both sides, a similar coating layer or a different coating layer may be applied to each surface.
  • Each of these coating layers is a known UV absorber other than the UV absorber (B), an infrared absorber for the purpose of protecting the eyes from infrared rays, a light stabilizer, an antioxidant, and a lens for the purpose of improving the weather resistance of the lens.
  • a known UV absorber other than the UV absorber (B) an infrared absorber for the purpose of protecting the eyes from infrared rays
  • a light stabilizer for the purpose of protecting the eyes from infrared rays
  • an antioxidant for the purpose of improving the weather resistance of the lens
  • a lens for the purpose of improving the weather resistance of the lens.
  • dyes and pigments, photochromic dyes, photochromic pigments, antistatic agents, and other known additives for improving the performance of the lens may be used in combination.
  • various leveling agents for the purpose of improving coating properties may be used.
  • ⁇ Evaluation method> As a light transmittance measuring instrument, Shimadzu spectrophotometer UV-1600 manufactured by Shimadzu Corporation was used, and ultraviolet-visible light spectrum was measured using a 2 mm-thick planar lens, and specific wavelengths (410 nm, 420 nm, 440 nm) The transmittance was measured. Place a paper coated with a fluorescent dye under the 2 mm thick planar lens, and apply a UV laser pointer (A: 360-400 nm, B: 380-420 nm) to the planar lens. If the lens absorbs the wavelength, the paper coated with the fluorescent dye below does not emit light. When the laser pointer was applied, the case where no luminescence was observed on the fluorescent paper was marked with ⁇ , and the case where luminescence was observed was marked with x.
  • Shimadzu spectrophotometer UV-1600 manufactured by Shimadzu Corporation was used, and ultraviolet-visible light spectrum was measured using a 2 mm-thick planar lens, and specific wavelengths (410
  • Example 1 0.013 parts by weight of N, N-dimethylcyclohexylamine and 0.064 parts by weight of N, N-dicyclohexylmethylamine were combined with 5,7-dimercaptomethyl-1,11-dimercapto-3,6,9-trithiaundecane.
  • Main component 4,7-dimercaptomethyl-1,11-dimercapto-3,6,9-trithiaundecane and 4,8-dimercaptomethyl-1,11-dimercapto-3,6,9-trithiaundecane
  • 6.4 parts by weight of the polythiol compound to obtain a mixed solution (1).
  • This mold was placed in a polymerization oven and polymerized by heating from 30 ° C. to 80 ° C. over 19 hours. After superposition
  • Table 1 shows the measurement results of light transmittance.
  • a UV laser pointer (A: 360-400 nm, B: 380-420 nm) was applied to the molded product after the annealing treatment, and when the fluorescent light emission degree was observed, both the A and B pointer lights were irradiated with the fluorescent paper. Luminescence was not observed. The evaluation results are shown in Table 2.
  • HICAT TB manufactured by KOC SOLUTION
  • HILUB 70 manufactured by KOC SOLUTION
  • Table 1 shows the measurement results of light transmittance.
  • a UV laser pointer (A: 360-400 nm, B: 380-420 nm) was applied to the molded product after the annealing treatment, and when the fluorescent light emission degree was observed, both the A and B pointer lights were irradiated with the fluorescent paper. Luminescence was not observed.
  • the evaluation results are shown in Table 2.
  • Example 3 As in Example 1, without adding 2- (2-hydroxy-3-tert-butyl-5-methylphenyl) -chlorobenzotriazole, 63.6 parts by weight of bis (2,3-epithiopropyl) disulfide The prepared mixed solution (1) was added, and a molded body was obtained in the same manner as in Example 1. Table 1 shows the measurement results of light transmittance. A UV laser pointer (A: 360-400 nm, B: 380-420 nm) was applied to the molded product after the annealing treatment, and the light emission degree of the fluorescent paper was observed. Was observed. The evaluation results are shown in Table 2.
  • Example 4 A molded product was obtained in the same manner as in Example 2 without adding 2- (2-hydroxy-3-tert-butyl-5-methylphenyl) -chlorobenzotriazole.
  • Table 1 shows the measurement results of light transmittance.
  • a UV laser pointer (A: 360-400 nm, B: 380-420 nm) was applied to the molded product after the annealing treatment, and the light emission degree of the fluorescent paper was observed. Was observed. The evaluation results are shown in Table 2.
  • m-1 5,7-dimercaptomethyl-1,11-dimercapto-3,6,9-trithiaundecane and 4,7-dimercaptomethyl-1,11-dimercapto-3,6,9-trithia

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Eyeglasses (AREA)

Abstract

 本発明の光学材料用重合性組成物は、(A)硫黄原子を含む環状構造を有する化合物と、(B)極大吸収ピークが350nm以上370nm以下の範囲である1種以上の紫外線吸収剤と、を含む。

Description

光学材料用重合性組成物、光学材料およびその用途
 本発明は、光学材料用重合性組成物、光学材料およびその用途に関する。
 従来から、眼が紫外線に曝露することによる悪影響が、問題視されている。さらに、近年、自然光、オフィス機器の液晶ディスプレイや、スマートフォンまたは携帯電話等の携帯機器のディスプレイ等からの発光に含まれる青色光により、眼の疲れや痛みを感じるなど、眼への影響が問題となってきており、眼が、紫外線から420nm程度の比較的短波長の青色光に曝露する量を低減させることが望まれてきている。
 420nm程度の短波長青色光の眼への影響については、非特許文献1に記載されている。411nmと470nmのピーク波長の異なる青色LED光の照射による網膜神経細胞(ラットの培養網膜神経R28細胞)へのダメージを検証している。その結果、411nmにピーク波長を有する青色光の照射(4.5W/m)は24時間以内に網膜神経細胞の細胞死を引き起こすのに対し、470nmにピーク波長を有する青色光では、同じ量の照射でも細胞に変化は起こらないことが示されており、400~420nm波長の光の曝露を抑えることが目の障害予防に重要であることが示されている。
 また、長い間、眼に青色光の照射を浴びることは、眼精疲労やストレスを受けることが懸念されており、加齢黄斑変性を引き起こす要因と考えられている。
 青色光の透過を抑制することを目的とした技術としては、以下のものが挙げられる。
 特許文献1には、波長300nm以上、400nm以下域の平均光線透過率が0.5%以下である、紫外線吸収剤を含むプラスチックレンズが開示されている。
 特許文献2には、ウレタン樹脂材料を含む樹脂材料と、極大吸収波長が相異なる紫外線吸収剤を少なくとも2種類とを含有するプラスチックレンズ用組成物から得られたプラスチックレンズが開示されている。
 特許文献3には、ウレタン樹脂材料を含む樹脂材料と、クロロホルム溶液中における極大吸収波長が345nm以上である紫外線吸収剤とを含有するプラスチックレンズ用組成物から得られるプラスチックレンズが開示されている。当該文献には、このプラスチックレンズによれば、紫外線吸収剤の影響によるレンズの黄色化、屈折率の変化等がなく、さらにレンズの機械的強度を低下させないと記載されている。
 特許文献4には、特定のベンゾトリアゾール化合物を用いたプラスチック眼鏡レンズが開示されている。当該文献には、このプラスチック眼鏡レンズは、波長395nm、波長400nm、波長405nmにおける光線透過率が所定の範囲にあることが記載されている。
 特許文献5には、エピスルフィド基を有する化合物と分子内に2個以上のメルカプト基を有する化合物を含有する組成物からなる重合性組成物を重合して得られる樹脂が開示されている。当該樹脂は、高屈折率、低分散な材料であり、眼鏡レンズ用材料としての用途が記載されている。
特開平10-186291号公報 特開平11-218602号公報 特開平11-295502号公報 特開2005-292240号公報 特開2004-256655号公報
The European journal of neuroscience, vol.34, Iss.4, 548-58, (2011)
 しかしながら、上記のような従来技術においては、有害な紫外線から420nm程度の青色光の遮断効果に依然として改善の余地があった。
 本発明は以下に示すことができる。
[1](A)硫黄原子を含む環状構造を有する化合物と、
(B)極大吸収ピークが350nm以上370nm以下の範囲である1種以上の紫外線吸収剤と、
を含む、光学材料用重合性組成物。
[2] 前記紫外線吸収剤(B)が、ベンゾトリアゾール系化合物から選択された一種である[1]に記載の光学材料用重合性組成物。
[3] 前記ベンゾトリアゾール系化合物が、クロロ置換ベンゾトリアゾール系化合物から選択された一種である[2]に記載の光学材料用重合性組成物。
[4] 前記クロロ置換ベンゾトリアゾール系化合物が、2-(2-ヒドロキシ-3-t-ブチル-5-メチルフェニル)-クロロベンゾトリアゾールである[3]に記載の光学材料用重合性組成物。
[5] 硫黄原子を含む環状構造を有する前記化合物(A)は、下記一般式(1)
Figure JPOXMLDOC01-appb-C000003
(式中、nは0または1を示す。)
で表されるエピスルフィド基を含む化合物である、[1]~[4]のいずれかに記載の光学材料用重合性組成物。
[6] 硫黄原子を含む環状構造を有する前記化合物(A)は、下記一般式(2)
Figure JPOXMLDOC01-appb-C000004
(式中、nは0または1を示す。)
で表されるチエタニル基を含む化合物である、[1]~[4]のいずれかに記載の光学材料用重合性組成物。
[7] さらに、ポリチオール(C)を含む、[1]~[6]のいずれかに記載の光学材料用重合性組成物。
[8] 前記ポリチオール(C)が、ペンタエリスリトールテトラキス(2-メルカプトアセテート)、ペンタエリスリトールテトラキス(3-メルカプトプロピオネート)、ビス(2-メルカプトエチル)スルフィド、4-メルカプトメチル-1,8-ジメルカプト-3,6-ジチアオクタン、5,7-ジメルカプトメチル-1,11-ジメルカプト-3,6,9-トリチアウンデカン、4,7-ジメルカプトメチル-1,11-ジメルカプト-3,6,9-トリチアウンデカン、4,8-ジメルカプトメチル-1,11-ジメルカプト-3,6,9-トリチアウンデカン、2,5-ジメルカプトメチル-1,4-ジチアン、1,1,3,3-テトラキス(メルカプトメチルチオ)プロパン、4,6-ビス(メルカプトメチルチオ)-1,3-ジチアン、2-(2,2-ビス(メルカプトメチルチオ)エチル)-1,3-ジチエタン、エチレングリコールビス(3-メルカプトプロピオネート)から選択される少なくとも一種である、[7]に記載の光学材料用重合性組成物。
[9] 前記紫外線吸収剤(B)は、光学材料用重合性組成物100重量%中に0.1~0.8重量%含まれる、[1]~[8]のいずれかに記載の光学材料用重合性組成物。
[10] [1]~[9]のいずれかに記載の光学材料用重合性組成物を加熱硬化させて得られる成形体。
[11] 紫外線吸収剤(B)を0.1~0.8重量%含む、[10]に記載の成形体。
[12] [10]または[11]に記載の成形体からなる光学材料。
[13] [12]に記載の光学材料からなるプラスチックレンズ。
[14] [1]~[9]のいずれかに記載の光学材料用重合性組成物を注型重合する工程を含む、光学材料の製造方法。
 本発明によれば、硫黄原子を含む特定の構造を備える化合物と特定の紫外線吸収剤を組み合わせて用いることで、有害な紫外線から420nm程度の青色光の遮断効果が高く、無色透明で外観に優れる光学材料を提供することができる。このような本発明の光学材料は、高屈折率、高アッベ数などの光学特性及び、無色透明で外観に優れるとともに有害光の眼への影響が軽減され眼精疲労やストレスなどの障害を抑えることもできるため、特にプラスチック眼鏡レンズとして好適に用いることができる。
 以下、本発明の実施形態について具体的に説明する。
 本実施形態の光学材料用重合性組成物は、硫黄原子を含む環状構造を有する化合物(A)と、極大吸収ピークが350nm以上370nm以下の範囲である1種以上の紫外線吸収剤(B)とを含む。以下、各成分について詳細に説明する。
[硫黄原子を含む環状構造を有する化合物(A)]
 本実施形態において、光学材料用重合性組成物には硫黄原子を含む環状構造を有する化合物(A)(以下、単に「化合物(A)」ともいう)を含む。
 硫黄原子を含む環状構造を有する化合物(A)は、エピスルフィド基、チエタニル基を有する化合物等が挙げられ、具体例としては、エピスルフィド基を含む化合物(以下、エピスルフィド化合物(A1))、チエタニル基を含む化合物(以下、チエタニル化合物(A2))が挙げられる。
 エピスルフィド化合物(A1)として、具体的には、ビス(1,2-エピチオエチル)スルフィド、ビス(1,2-エピチオエチル)ジスルフィド、下記一般式(1)で表される化合物等が挙げられる。
Figure JPOXMLDOC01-appb-C000005
(式中、nは0または1を示す。)
 本実施形態においては、エピスルフィド化合物(A1)として、上記一般式(1)で表される化合物が好ましく、具体体には、ビス(2,3-エピチオプロピル)スルフィド、ビス(2,3-エピチオプロピル))ジスルフィドを挙げることができる。
 チエタニル化合物(A2)として、具体的には、下記一般式(2)で表される化合物、ビスチエタニルトリスルフィド、ビスチエタニルテトラスルフィド、ビスチエタニルペンタスルフィド等が挙げられる。
Figure JPOXMLDOC01-appb-C000006
(式中、nは0または1を示す。)
 本実施形態においては、チエタニル化合物(A2)として、上記一般式(2)で表される化合物が好ましく、具体体には、ビスチエタニルスルフィド、ビスチエタニルジスルフィドを挙げることができる。
 これらエピスルフィド化合物(A1)、チエタニル化合物(A2)は、単独または2種以上併用することができる。本実施形態においては、化合物(A)として、一般式(1)で表される化合物である、ビス(2,3-エピチオプロピル)スルフィド、ビス(2,3-エピチオプロピル)ジスルフィドを用いることが好ましい。
[紫外線吸収剤(B)]
 本実施形態で使用される紫外線吸収剤(B)は、クロロホルム溶液に溶解させた際の極大吸収波長が350nm以上370nm以下であれば特に限定されない。
 紫外線吸収剤(B)としては、ベンゾフェノン系化合物、トリアジン化合物、ベンゾトリアゾール系化合物、を挙げることができる。
 ベンゾフェノン系化合物としては、2,2'-ジヒドロキシ-4,4'-ジメトキシベンゾフェノン、2,2'-4,4'-テトラヒドロキシベンゾフェノン等が挙げられる。
 トリアジン化合物としては、ADEKA社製アデカスタブLA-F70、BASF社製TINUVIN400等が挙げられる。
 本実施形態においては、ベンゾトリアゾール系化合物を用いることが好ましく、ベンゾトリアゾール系化合物としては、直鎖アルキルエステル置換ベンゾトリアゾール系化合物、クロロ置換ベンゾトリアゾール系化合物等が挙げられる。
 これらのうちでも、クロロ置換ベンゾトリアゾール系化合物が好ましい。より好ましくは、2-(2-ヒドロキシ-3-t-ブチル-5-メチルフェニル)-クロロベンゾトリアゾールが挙げられ、市販品として、BASF社製TINUVIN326、シプロ化成社製SEESEORB703、共同薬品社製Viosorb550、ケミプロ化成社製KEMISORB73等が挙げられる。紫外線吸収剤(B)が、クロロ置換ベンゾトリアゾール系化合物から選択された一種であることにより、有害な紫外線から420nm程度の青色光の遮断効果が非常に高く、無色透明で外観に優れる光学材料を効果的に得ることができる。
 本実施形態において、紫外線吸収剤(B)としては、これら紫外線吸収剤の1種以上を用いることが好ましく、異なる2種以上の紫外線吸収剤(B)を含有してもよい。なお、紫外線吸収剤(B)を構成する何れの紫外線吸収剤も、極大吸収ピークが350nm以上370nm以下の範囲にある。
[ポリチオール(C)]
 本発明で示す光学材料用重合性組成物には、さらにポリチオール化合物(C)を含んでいてもよい。本発明で示すポリチオール(C)とは、分子内に2以上のメルカプト基を有する化合物を意味する。
 ポリチオール(C)としては、メタンジチオール、1,2-エタンジチオール、1,2,3-プロパントリチオール、1,2-シクロヘキサンジチオール、ビス(2-メルカプトエチル)エーテル、テトラキス(メルカプトメチル)メタン、ジエチレングリコールビス(2-メルカプトアセテート)、ジエチレングリコールビス(3-メルカプトプロピオネート)、エチレングリコールビス(2-メルカプトアセテート)、エチレングリコールビス(3-メルカプトプロピオネート)、トリメチロールプロパントリス(2-メルカプトアセテート)、トリメチロールプロパントリス(3-メルカプトプロピオネート)、トリメチロールエタントリス(2-メルカプトアセテート)、トリメチロールエタントリス(3-メルカプトプロピオネート)、ペンタエリスリトールテトラキス(2-メルカプトアセテート)、ペンタエリスリトールテトラキス(3-メルカプトプロピオネート)、ビス(メルカプトメチル)スルフィド、ビス(メルカプトメチル)ジスルフィド、ビス(2-メルカプトエチル)スルフィド、ビス(2-メルカプトエチル)ジスルフィド、ビス(メルカプトプロピル)スルフィド、ビス(メルカプトメチルチオ)メタン、ビス(2-メルカプトエチルチオ)メタン、ビス(3-メルカプトプロピルチオ)メタン、1,2-ビス(メルカプトメチルチオ)エタン、1,2-ビス(2-メルカプトエチルチオ)エタン、1,2-ビス(3-メルカプトプロピルチオ)エタン、1,2,3-トリス(メルカプトメチルチオ)プロパン、1,2,3-トリス(2-メルカプトエチルチオ)プロパン、1,2,3-トリス(3-メルカプトプロピルチオ)プロパン、4-メルカプトメチル-1,8-ジメルカプト-3,6-ジチアオクタン、5,7-ジメルカプトメチル-1,11-ジメルカプト-3,6,9-トリチアウンデカン、4,7-ジメルカプトメチル-1,11-ジメルカプト-3,6,9-トリチアウンデカン、4,8-ジメルカプトメチル-1,11-ジメルカプト-3,6,9-トリチアウンデカン、テトラキス(メルカプトメチルチオメチル)メタン、テトラキス(2-メルカプトエチルチオメチル)メタン、テトラキス(3-メルカプトプロピルチオメチル)メタン、ビス(2,3-ジメルカプトプロピル)スルフィド、2,5-ジメルカプトメチル-1,4-ジチアン、2,5-ジメルカプト-1,4-ジチアン、2,5-ジメルカプトメチル-2,5-ジメチル-1,4-ジチアン、及びこれらのチオグリコール酸およびメルカプトプロピオン酸のエステル、ヒドロキシメチルスルフィドビス(2-メルカプトアセテート)、ヒドロキシメチルスルフィドビス(3-メルカプトプロピオネート)、ヒドロキシエチルスルフィドビス(2-メルカプトアセテート)、ヒドロキシエチルスルフィドビス(3-メルカプトプロピオネート)、ヒドロキシメチルジスルフィドビス(2-メルカプトアセテート)、ヒドロキシメチルジスルフィドビス(3-メルカプトプロピオネート)、ヒドロキシエチルジスルフィドビス(2-メルカプトアセテート)、ヒドロキシエチルジスルフィドビス(3-メルカプトプロピオネート)、2-メルカプトエチルエーテルビス(2-メルカプトアセテート)、2-メルカプトエチルエーテルビス(3-メルカプトプロピオネート)、チオジグリコール酸ビス(2-メルカプトエチルエステル)、チオジプロピオン酸ビス(2-メルカプトエチルエステル)、ジチオジグリコール酸ビス(2-メルカプトエチルエステル)、ジチオジプロピオン酸ビス(2-メルカプトエチルエステル)、1,1,3,3-テトラキス(メルカプトメチルチオ)プロパン、1,1,2,2-テトラキス(メルカプトメチルチオ)エタン、4,6-ビス(メルカプトメチルチオ)-1,3-ジチアン、トリス(メルカプトメチルチオ)メタン、トリス(メルカプトエチルチオ)メタン等の脂肪族ポリチオール化合物;
1,2-ジメルカプトベンゼン、1,3-ジメルカプトベンゼン、1,4-ジメルカプトベンゼン、1,2-ビス(メルカプトメチル)ベンゼン、1,3-ビス(メルカプトメチル)ベンゼン、1,4-ビス(メルカプトメチル)ベンゼン、1,2-ビス(メルカプトエチル)ベンゼン、1,3-ビス(メルカプトエチル)ベンゼン、1,4-ビス(メルカプトエチル)ベンゼン、1,3,5-トリメルカプトベンゼン、1,3,5-トリス(メルカプトメチル)ベンゼン、1,3,5-トリス(メルカプトメチレンオキシ)ベンゼン、1,3,5-トリス(メルカプトエチレンオキシ)ベンゼン、2,5-トルエンジチオール、3,4-トルエンジチオール、1,5-ナフタレンジチオール、2,6-ナフタレンジチオール等の芳香族ポリチオール化合物;
2-メチルアミノ-4,6-ジチオール-sym-トリアジン、3,4-チオフェンジチオール、ビスムチオール、4,6-ビス(メルカプトメチルチオ)-1,3-ジチアン、2-(2,2-ビス(メルカプトメチルチオ)エチル)-1,3-ジチエタン等の複素環ポリチオール化合物等を挙げることができる。
 本実施形態においては、ポリチオール(C)として、ペンタエリスリトールテトラキス(2-メルカプトアセテート)、ペンタエリスリトールテトラキス(3-メルカプトプロピオネート)、ビス(2-メルカプトエチル)スルフィド、4-メルカプトメチル-1,8-ジメルカプト-3,6-ジチアオクタン、5,7-ジメルカプトメチル-1,11-ジメルカプト-3,6,9-トリチアウンデカン、4,7-ジメルカプトメチル-1,11-ジメルカプト-3,6,9-トリチアウンデカン、4,8-ジメルカプトメチル-1,11-ジメルカプト-3,6,9-トリチアウンデカン、2,5-ジメルカプトメチル-1,4-ジチアン、1,1,3,3-テトラキス(メルカプトメチルチオ)プロパン、4,6-ビス(メルカプトメチルチオ)-1,3-ジチアン、2-(2,2-ビス(メルカプトメチルチオ)エチル)-1,3-ジチエタン、エチレングリコールビス(3-メルカプトプロピオネート)から選択される少なくとも一種を用いることが好ましく、
 5,7-ジメルカプトメチル-1,11-ジメルカプト-3,6,9-トリチアウンデカンと4,7-ジメルカプトメチル-1,11-ジメルカプト-3,6,9-トリチアウンデカンと4,8-ジメルカプトメチル-1,11-ジメルカプト-3,6,9-トリチアウンデカンから選択される少なくとも一種を用いることがより好ましい。
<光学材料用重合性組成物>
 次に、本実施形態の光学材料用重合性組成物に関し詳細に説明する。
 本実施形態の光学材料用重合性組成物は、硫黄原子を含む環状構造を有する化合物(A)と極大吸収ピークが350nm以上370nm以下の範囲である1種以上の紫外線吸収剤(B)を含む。
 紫外線吸収剤(B)は、上記効果の観点から、光学材料用重合性組成物100重量%中に0.1~0.8重量%、好ましくは0.2~0.6重量%、より好ましくは0.3~0.5重量%含むことができる。
 なお、本実施形態において他の添加成分の量は少量であるため、光学材料用重合性組成物100重量%は、「硫黄原子を含む環状構造を有する前記化合物(A)と紫外線吸収剤(B)との合計100重量%」、または「硫黄原子を含む環状構造を有する前記化合物(A)と紫外線吸収剤(B)と前記ポリチオール(C)との合計100重量%」とすることもできる。
 本実施形態の光学材料用重合性組成物から得られた光学材料は、透明性に優れるとともに着色が抑制され、さらに眼精疲労やストレスなどの障害を抑えることができる。特に、440nmにおける光透過率が80%以上であることにより、無色透明の外観に優れた光学材料を得ることができる。
 本実施形態の光学材料用重合性組成物は、さらに、その他の成分として、重合触媒、内部離型剤、樹脂改質剤、光安定剤、ブルーイング剤等を含んでいてもよい。また、光学材料用重合性組成物中には、上記の紫外線吸収剤(B)に加えて、極大吸収ピークが350nm以上370nm以下の範囲にない紫外線吸収剤を含むこともできる。
(触媒)
 触媒としては、ルイス酸、アミン、有機酸、アミン有機酸塩等が挙げられ、ルイス酸、アミン、アミン有機酸塩が好ましく、ジメチル錫クロライド、ジブチル錫クロライド、ジブチル錫ラウレートがより好ましい。
(内部離型剤)
 内部離型剤としては、酸性リン酸エステルを用いることができる。酸性リン酸エステルとしては、リン酸モノエステル、リン酸ジエステルを挙げることができ、それぞれ単独または2種類以上混合して使用することできる。
 例えば、STEPAN社製のZelecUN、三井化学社製のMR用内部離型剤、城北化学工業社製のJPシリーズ、東邦化学工業社製のフォスファノールシリーズ、大八化学工業社製のAP、DPシリーズ等、を用いることができる。
(樹脂改質剤)
 また、本実施形態の重合性組成物には、得られる樹脂の光学物性、耐衝撃性、比重等の諸物性の調節及び、当該組成物の粘度やポットライフの調整を目的に、樹脂改質剤を本発明の効果を損なわない範囲で加えることができる。
 樹脂改質剤としては、例えば、ポリイソシアネート化合物、アルコール化合物、アミン化合物、エポキシ化合物、有機酸及びその無水物、(メタ)アクリレート化合物等を含むオレフィン化合物等が挙げられる。
 ポリイソシアネート化合物としては、脂肪族ポリイソシアネート、脂環族ポリイソシアネート、芳香族ポリイソシアネート、複素環ポリイソシアネート等が挙げられ、上記条件を満たすように1種または2種以上混合して用いられる。これらのポリイソシアネート化合物は、二量体、三量体、プレポリマーを含んでもよい。
 脂肪族ポリイソシアネートとしては、ヘキサメチレンジイソシアネート、2,2,4-トリメチルヘキサメチレンジイソシアネート、2,4,4-トリメチルヘキサメチレンジイソシアネート、ペンタメチレンジイソシアネート、リジンジイソシアナトメチルエステル、リジントリイソシアネート、m-キシリレンジイソシアネート、α,α,α′,α′-テトラメチルキシリレンジイソシアネート、ビス(イソシアナトメチル)ナフタリン、メシチリレントリイソシアネート、ビス(イソシアナトメチル)スルフィド、ビス(イソシアナトエチル)スルフィド、ビス(イソシアナトメチル)ジスルフィド、ビス(イソシアナトエチル)ジスルフィド、ビス(イソシアナトメチルチオ)メタン、ビス(イソシアナトエチルチオ)メタン、ビス(イソシアナトエチルチオ)エタン、ビス(イソシアナトメチルチオ)エタン等が挙げられ、少なくとも1種を用いることができる。
 脂環族ポリイソシアネートとしては、イソホロンジイソシアネート、ビス(イソシアナトメチル)シクロヘキサン、ジシクロヘキシルメタンジイソシアネート、シクロヘキサンジイソシアネート、メチルシクロヘキサンジイソシアネート、ジシクロヘキシルジメチルメタンイソシアネート、2,5-ビス(イソシアナトメチル)ビシクロ-[2.2.1]-ヘプタン、2,6-ビス(イソシアナトメチル)ビシクロ-[2.2.1]-ヘプタン、3,8-ビス(イソシアナトメチル)トリシクロデカン、3,9-ビス(イソシアナトメチル)トリシクロデカン、4,8-ビス(イソシアナトメチル)トリシクロデカン、4,9-ビス(イソシアナトメチル)トリシクロデカン等が挙げられ、少なくとも1種を用いることができる。
 芳香族ポリイソシアネートとしては、トリレンジイソシアネート、4,4'-ジフェニルメタンジイソシアネート、フェニレンジイソシアネート、等を挙げることができ、トリレンジイソシアネートは、2,4-トリレンジイソシアネート、2,6-トリレンジイソシアネートより選ばれる1種以上のイソシアネートである。トリレンジイソシアネートとしては、2,4-トリレンジイソシアネート、2,6-トリレンジイソシアネート、または2,4-トリレンジイソシアネートと2,6-トリレンジイソシアネートとの混合物等が挙げられ、少なくとも1種を用いることができる。
 複素環ポリイソシアネートとしては、2,5-ジイソシアナトチオフェン、2,5-ビス(イソシアナトメチル)チオフェン、2,5-ジイソシアナトテトラヒドロチオフェン、2,5-ビス(イソシアナトメチル)テトラヒドロチオフェン、3,4-ビス(イソシアナトメチル)テトラヒドロチオフェン、2,5-ジイソシアナト-1,4-ジチアン、2,5-ビス(イソシアナトメチル)-1,4-ジチアン、4,5-ジイソシアナト-1,3-ジチオラン、4,5-ビス(イソシアナトメチル)-1,3-ジチオラン等が挙げられ、少なくとも1種を用いることができる。
(光安定剤)
 光安定剤としては、ヒンダードアミン系化合物を用いることができる。ヒンダードアミン系化合物は、市販品としてChemtura社製のLowilite76、Lowilite92、BASF社製のTinuvin144、Tinuvin292、Tinuvin765、ADEKA社製のアデカスタブLA-52、LA-72、城北化学工業社製のJF-95等を挙げることができる。
(ブルーイング剤)
 ブルーイング剤としては、可視光領域のうち橙色から黄色の波長域に吸収帯を有し、樹脂からなる光学材料の色相を調整する機能を有するものが挙げられる。ブルーイング剤は、さらに具体的には、青色から紫色を示す物質を含む。
 光学材料用重合性組成物は、上記の成分を所定の方法で混合することにより得ることができる。
 組成物中の各成分の混合順序や混合方法は、各成分を均一に混合することができれば特に限定されず、公知の方法で行うことができる。公知の方法としては、例えば、添加物を所定量含むマスターバッチを作製して、このマスターバッチを溶媒に分散・溶解させる方法などがある。
 本実施形態の成形体は、具体的には、硫黄原子を含む環状構造を有する化合物(A)及び上記特定の紫外線吸収剤(B)並びに必要に応じてポリチオール(C)及び添加剤等を含む光学材料用重合性組成物を重合させる方法により得ることができる。
 本実施形態で示す成形体からなる光学材料は、光学材料用重合性組成物を注型重合する方法により得ることができる。
 具体的には、ガスケットまたはテープ等で保持された成型モールドのキャビティ内に光学材料用重合性組成物を注入する。この時、得られるプラスチックレンズに要求される物性によっては、必要に応じて、減圧下での脱泡処理や加圧、減圧等の濾過処理等を行うことが好ましい場合が多い。
 そして、組成物が注入された後、レンズ注型用鋳型をオーブン中または水中等の加熱可能装置内で所定の温度プログラムにて加熱して硬化成型する。成形体は、必要に応じて、アニール等の処理を行ってもよい。
 本実施形態の成形体(100重量%)は、紫外線吸収剤(B)を0.1~0.8重量%、好ましくは0.2~0.6重量%、より好ましくは0.3~0.5重量%含むことができる。これにより、有害な紫外線から420nm程度の青色光の遮断効果が高く、無色透明で外観に優れる光学材料を好適に提供することができる。
 本実施形態の成形体は、所望の形状とし、必要に応じて形成されるコート層や他の部材等を備えることにより、様々な光学材料として用いることができる。
<用途>
 次に、本実施形態の光学材料の用途について説明する。
 本実施形態は、硫黄原子を含む環状構造を有する化合物(A)及び特定の紫外線吸収剤(B)を含むことにより、波長400nm~420nmの光をカットし、透明性が高く、物性バランスに優れた光学材料である。
 本実施形態で示す光学材料としては、プラスチック眼鏡レンズ、ゴーグル、視力矯正用眼鏡レンズ、撮像機器用レンズ、液晶プロジェクター用フレネルレンズ、レンチキュラーレンズ、コンタクトレンズなどの各種プラスチックレンズ、発光ダイオード(LED)用封止材、光導波路、光学レンズや光導波路の接合に用いる光学用接着剤、光学レンズなどに用いる反射防止膜、液晶表示装置部材(基板、導光板、フィルム、シートなど)に用いる透明性コーティングまたは、車のフロントガラスやバイクのヘルメットに貼り付けるシートやフィルム、透明性基板等を挙げることができる。
 本実施形態で示す光学材料は、厚さ2mmにおいて、波長440nmの光透過率が80%以上、好ましくは85%以上であり、420nmの光透過率が70%以下、好ましくは50%以下であり、且つ410nmの光透過率が10%以下であり、好ましくは5%以下である。上記光透過率の範囲であれば、有害な紫外線から420nm程度の青色光の遮断効果が高く、無色透明で外観に優れる。また、440nmの光透過率を80%以上とすることにより、無色透明の外観に優れた光学材料を得ることができる。なお、これらの数値範囲は任意に組み合わせることができる。
[プラスチック眼鏡レンズ]
 本実施形態のプラスチックレンズを用いて、プラスチック眼鏡レンズを得ることができる。なお、必要に応じて、片面又は両面にコーティング層を施して用いてもよい。
 コーティング層として、具体的には、プライマー層、ハードコート層、反射防止層、防曇コート層、防汚染層、撥水層等が挙げられる。これらのコーティング層はそれぞれ単独で用いることも複数のコーティング層を多層化して使用することもできる。両面にコーティング層を施す場合、それぞれの面に同様なコーティング層を施しても、異なるコーティング層を施してもよい。
 これらのコーティング層はそれぞれ、紫外線吸収剤(B)以外の公知の紫外線吸収剤、赤外線から目を守る目的で赤外線吸収剤、レンズの耐候性を向上する目的で光安定剤や酸化防止剤、レンズのファッション性を高める目的で染料や顔料、さらにフォトクロミック染料やフォトクロミック顔料、帯電防止剤、その他、レンズの性能を高めるための公知の添加剤を併用してもよい。塗布によるコーティングを行う層に関しては塗布性の改善を目的とした各種レベリング剤を使用してもよい。
 以上、本発明を実施形態により説明したが、本発明は前述の実施形態に限定されるものではなく、本願発明の効果を損なわない範囲で様々な態様を取り得ることができる。
 以下に、実施例により本発明を更に詳細に説明するが、本発明はこれらに限定されるものではない。なお、本発明の実施例において用いた材料・評価方法は以下の通りである。
<評価方法>
・光線透過率
 測定機器として、島津製作所社製 島津分光光度計 UV-1600を使用し、2mm厚のプラノーレンズを用いて紫外-可視光スペクトルを測定し、特定波長(410nm、420nm、440nm)での透過率を測定した。
・作成した2mm厚のプラノーレンズの下に蛍光染料を塗布した紙を敷き、UVレーザーポインタ(A:360-400nm、B:380-420nm)をプラノーレンズに当てる。レンズが波長を吸収すれば下の蛍光染料を塗布した紙は発光しない。レーザーポインタを当てた際、蛍光紙に発光が観察されなかったものについては○、発光が観察されたものについては×とした。
[実施例1]
 N,N-ジメチルシクロヘキシルアミン 0.013重量部、N,N-ジシクロヘキシルメチルアミン 0.064重量部を5,7-ジメルカプトメチル-1,11-ジメルカプト-3,6,9-トリチアウンデカンと4,7-ジメルカプトメチル-1,11-ジメルカプト-3,6,9-トリチアウンデカンと4,8-ジメルカプトメチル-1,11-ジメルカプト-3,6,9-トリチアウンデカンを主成分とするポリチオール化合物6.4重量部に混合溶解させ、混合溶液(1)を得た。
 次に、2-(2-ヒドロキシ-3-t-ブチル-5-メチルフェニル)-クロロベンゾトリアゾール(BASF社製 TINUVIN326:最大吸収波長352nm) 0.28重量部、ビス(2,3-エピチオプロピル)ジスルフィド 63.6重量部を20℃で1時間攪拌し均一溶液を得た。この均一溶液に、混合溶液(1)を加えて20℃で攪拌し混合液(2)を得た。
 この混合液(2)を600Paにて1時間脱泡を行い、1μmPTFEフィルターにて濾過を行った後、成型モールドに注入した。この成型モールドを重合オーブンに入れ、30℃~80℃まで19時間かけて昇温して重合した。重合後、オーブンから取り出して成型モールドを冷却し、成型モールドから離型させ、2mm厚の成形体を得た。得られた成形体に120℃で3時間アニール処理を行った。光線透過率の測定結果を表-1に示す。
 アニール処理後の成形体にUVレーザーポインタ(A:360-400nm、B:380-420nm)をあて、蛍光紙の発光度合を観察したところ、AおよびBポインター光を当てても双方とも蛍光紙の発光は観察されなかった。評価結果を表-2に示す。
[実施例2]
 HICAT TB(KOC SOLUTION社製) 0.035重量部、HILUB 70(KOC SOLUTION社製)0.05重量部、2-(2-ヒドロキシ-3-t-ブチル-5-メチルフェニル)-クロロベンゾトリアゾール(BASF社製 TINUVIN326:最大吸収波長352nm) 0.2重量部、イソホロンジイソシアネート 3.25重量部、ビス(2-メルカプトエチル)スルフィド 2.5重量部を20℃で撹拌混合し、均一溶液を得た。
 この均一溶液に、ビス(2,3-エピチオプロピル)スルフィド 44.25重量部を加えて10℃で攪拌し混合液を得た。この混合液を600Paにて1時間脱泡を行い、1μmPTFEフィルターにて濾過を行った後、成型モールドに注入した。この成型モールドを重合オーブンに入れ、20℃~80℃まで22時間かけて昇温して重合した。重合後、オーブンから取り出して成型モールドを冷却し、成型モールドから離型させ、2mm厚の成形体を得た。得られた成形体に100℃で2時間アニール処理を行った。光線透過率の測定結果を表-1に示す。
 アニール処理後の成形体にUVレーザーポインタ(A:360-400nm、B:380-420nm)をあて、蛍光紙の発光度合を観察したところ、AおよびBポインター光を当てても双方とも蛍光紙の発光は観察されなかった。評価結果を表-2に示す。
[比較例1]
 2-(2-ヒドロキシ-3-t-ブチル-5-メチルフェニル)-クロロベンゾトリアゾール 0.28重量部を2-(2-ヒドロキシ-5-t-ブチルフェニル)-2H-ベンゾトリアゾール(BASF社製 TINUVIN PS:最大吸収波長342nm) 0.7重量部に変更した以外は実施例1と同様な方法で成形体を得た。光線透過率の測定結果を表-1に示す。
 アニール処理後の成形体にUVレーザーポインタ(A:360-400nm、B:380-420nm)をあて、蛍光紙の発光度合を観察したところ、Aポインター光を当てても蛍光紙の発光は観察されなかった。しかし、Bポインター光を当てると蛍光紙の発光が観察された。評価結果を表-2に示す。
[比較例2]
 2-(2-ヒドロキシ-3-t-ブチル-5-メチルフェニル)-クロロベンゾトリアゾール 0.2重量部を2-(2-ヒドロキシ-5-t-ブチルフェニル)-2H-ベンゾトリアゾール(BASF社製 TINUVIN PS:最大吸収波長342nm) 0.5重量部に変更した以外は実施例2と同様な方法で成形体を得た。光線透過率の測定結果を表-1に示す。
 アニール処理後の成形体にUVレーザーポインタ(A:360-400nm、B:380-420nm)をあて、蛍光紙の発光度合を観察したところ、Aポインター光を当てても蛍光紙の発光は観察されなかった。しかし、Bポインター光を当てると蛍光紙の発光が観察された。評価結果を表-2に示す。
[比較例3]
 2-(2-ヒドロキシ-3-t-ブチル-5-メチルフェニル)-クロロベンゾトリアゾールを加えず、ビス(2,3-エピチオプロピル)ジスルフィド 63.6重量部に、実施例1と同様に調製された混合溶液(1)を加え、実施例1と同様な方法で成形体を得た。光線透過率の測定結果を表-1に示す。
 アニール処理後の成形体にUVレーザーポインタ(A:360-400nm、B:380-420nm)をあて、蛍光紙の発光度合を観察したところ、AおよびBポインター光を当てると双方とも蛍光紙の発光が観察された。評価結果を表-2に示す。
[比較例4]
 2-(2-ヒドロキシ-3-t-ブチル-5-メチルフェニル)-クロロベンゾトリアゾールを加えず、実施例2と同様な方法で成形体を得た。光線透過率の測定結果を表-1に示す。
 アニール処理後の成形体にUVレーザーポインタ(A:360-400nm、B:380-420nm)をあて、蛍光紙の発光度合を観察したところ、AおよびBポインター光を当てると双方とも蛍光紙の発光が観察された。評価結果を表-2に示す。
Figure JPOXMLDOC01-appb-T000007
m-1: 5,7-ジメルカプトメチル-1,11-ジメルカプト-3,6,9-トリチアウンデカンと4,7-ジメルカプトメチル-1,11-ジメルカプト-3,6,9-トリチアウンデカンと4,8-ジメルカプトメチル-1,11-ジメルカプト-3,6,9-トリチアウンデカンを主成分とするポリチオール化合物
m-2: ビス(2,3-エピチオプロピル)ジスルフィド
m-3: ビス(2,3-エピチオプロピル)スルフィド
m-4: ビス(2-メルカプトエチル)スルフィド
m-5: イソホロンジイソシアネート
Figure JPOXMLDOC01-appb-T000008
 この出願は、2013年12月13日に出願された日本出願特願2013-258501号、2014年2月27日に出願された国際出願PCT/JP2014/054971、及び2014年8月26日に出願された日本出願特願2014-171785号を基礎とする優先権を主張し、その開示の全てをここに取り込む。

Claims (14)

  1. (A)硫黄原子を含む環状構造を有する化合物と、
    (B)極大吸収ピークが350nm以上370nm以下の範囲である1種以上の紫外線吸収剤と、
    を含む、光学材料用重合性組成物。
  2.  前記紫外線吸収剤(B)が、ベンゾトリアゾール系化合物から選択された一種である請求項1に記載の光学材料用重合性組成物。
  3.  前記ベンゾトリアゾール系化合物が、クロロ置換ベンゾトリアゾール系化合物から選択された一種である請求項2に記載の光学材料用重合性組成物。
  4.  前記クロロ置換ベンゾトリアゾール系化合物が、2-(2-ヒドロキシ-3-t-ブチル-5-メチルフェニル)-クロロベンゾトリアゾールである請求項3に記載の光学材料用重合性組成物。
  5.  硫黄原子を含む環状構造を有する前記化合物(A)は、下記一般式(1)
    Figure JPOXMLDOC01-appb-C000001
    (式中、nは0または1を示す。)
    で表されるエピスルフィド基を含む化合物である、請求項1~4のいずれかに記載の光学材料用重合性組成物。
  6.  硫黄原子を含む環状構造を有する前記化合物(A)は、下記一般式(2)
    Figure JPOXMLDOC01-appb-C000002
    (式中、nは0または1を示す。)
    で表されるチエタニル基を含む化合物である、請求項1~4のいずれかに記載の光学材料用重合性組成物。
  7.  さらに、ポリチオール(C)を含む、請求項1~6のいずれかに記載の光学材料用重合性組成物。
  8.  前記ポリチオール(C)が、ペンタエリスリトールテトラキス(2-メルカプトアセテート)、ペンタエリスリトールテトラキス(3-メルカプトプロピオネート)、ビス(2-メルカプトエチル)スルフィド、4-メルカプトメチル-1,8-ジメルカプト-3,6-ジチアオクタン、5,7-ジメルカプトメチル-1,11-ジメルカプト-3,6,9-トリチアウンデカン、4,7-ジメルカプトメチル-1,11-ジメルカプト-3,6,9-トリチアウンデカン、4,8-ジメルカプトメチル-1,11-ジメルカプト-3,6,9-トリチアウンデカン、2,5-ジメルカプトメチル-1,4-ジチアン、1,1,3,3-テトラキス(メルカプトメチルチオ)プロパン、4,6-ビス(メルカプトメチルチオ)-1,3-ジチアン、2-(2,2-ビス(メルカプトメチルチオ)エチル)-1,3-ジチエタン、エチレングリコールビス(3-メルカプトプロピオネート)から選択される少なくとも一種である、請求項7に記載の光学材料用重合性組成物。
  9.  前記紫外線吸収剤(B)は、光学材料用重合性組成物100重量%中に0.1~0.8重量%含まれる、請求項1~8のいずれかに記載の光学材料用重合性組成物。
  10.  請求項1~9のいずれかに記載の光学材料用重合性組成物を加熱硬化させて得られる成形体。
  11.  紫外線吸収剤(B)を0.1~0.8重量%含む、請求項10に記載の成形体。
  12.  請求項10または11に記載の成形体からなる光学材料。
  13.  請求項12に記載の光学材料からなるプラスチックレンズ。
  14.  請求項1~9のいずれかに記載の光学材料用重合性組成物を注型重合する工程を含む、光学材料の製造方法。
PCT/JP2014/083012 2013-12-13 2014-12-12 光学材料用重合性組成物、光学材料およびその用途 WO2015088011A1 (ja)

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
JP2013258501 2013-12-13
JP2013-258501 2013-12-13
PCT/JP2014/054971 WO2014133111A1 (ja) 2013-02-27 2014-02-27 光学材料、光学材料用組成物およびその用途
JPPCT/JP2014/054971 2014-02-27
JP2014171785 2014-08-26
JP2014-171785 2014-08-26

Publications (1)

Publication Number Publication Date
WO2015088011A1 true WO2015088011A1 (ja) 2015-06-18

Family

ID=53371308

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/083012 WO2015088011A1 (ja) 2013-12-13 2014-12-12 光学材料用重合性組成物、光学材料およびその用途

Country Status (1)

Country Link
WO (1) WO2015088011A1 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3351583A4 (en) * 2015-09-16 2019-05-15 Mitsui Chemicals, Inc. POLYMERIZABLE COMPOSITION FOR OPTICAL MATERIAL, OPTICAL MATERIAL, METHOD FOR PRODUCING A POLYMERIZABLE COMPOSITION FOR OPTICAL MATERIAL AND METHOD FOR PRODUCING AN OPTICAL MATERIAL
CN113614581A (zh) * 2019-03-29 2021-11-05 三井化学株式会社 光学材料的制造方法、光学材料用聚合性组合物
CN115244106A (zh) * 2020-03-10 2022-10-25 三井化学株式会社 光学材料用聚合性组合物、光学材料用聚合性预聚物组合物、固化物及光学材料的制造方法
CN116425660A (zh) * 2023-03-31 2023-07-14 益丰新材料股份有限公司 一种光学材料用组合物及光学材料制造方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004345123A (ja) * 2003-05-20 2004-12-09 Seiko Epson Corp プラスチックレンズの製造方法
JP2005330352A (ja) * 2004-05-19 2005-12-02 Mitsui Chemicals Inc 光学樹脂用重合性組成物
JP2007016069A (ja) * 2005-07-05 2007-01-25 Teijin Chem Ltd ポリカーボネート樹脂組成物および眼鏡レンズ
US20090225425A1 (en) * 2006-09-06 2009-09-10 Shin Dae Specialties Co., Ltd. Optical resin composition having excellent impact resistance and method for fabricating optical lens using the same
JP2012173704A (ja) * 2011-02-24 2012-09-10 Ito Kogaku Kogyo Kk 防眩光学要素

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004345123A (ja) * 2003-05-20 2004-12-09 Seiko Epson Corp プラスチックレンズの製造方法
JP2005330352A (ja) * 2004-05-19 2005-12-02 Mitsui Chemicals Inc 光学樹脂用重合性組成物
JP2007016069A (ja) * 2005-07-05 2007-01-25 Teijin Chem Ltd ポリカーボネート樹脂組成物および眼鏡レンズ
US20090225425A1 (en) * 2006-09-06 2009-09-10 Shin Dae Specialties Co., Ltd. Optical resin composition having excellent impact resistance and method for fabricating optical lens using the same
JP2012173704A (ja) * 2011-02-24 2012-09-10 Ito Kogaku Kogyo Kk 防眩光学要素

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3351583A4 (en) * 2015-09-16 2019-05-15 Mitsui Chemicals, Inc. POLYMERIZABLE COMPOSITION FOR OPTICAL MATERIAL, OPTICAL MATERIAL, METHOD FOR PRODUCING A POLYMERIZABLE COMPOSITION FOR OPTICAL MATERIAL AND METHOD FOR PRODUCING AN OPTICAL MATERIAL
US10954341B2 (en) 2015-09-16 2021-03-23 Mitsui Chemicals, Inc. Polymerizable composition for optical material, optical material, process for preparing polymerizable composition for optical material, and method of manufacturing optical material
CN113614581A (zh) * 2019-03-29 2021-11-05 三井化学株式会社 光学材料的制造方法、光学材料用聚合性组合物
CN115244106A (zh) * 2020-03-10 2022-10-25 三井化学株式会社 光学材料用聚合性组合物、光学材料用聚合性预聚物组合物、固化物及光学材料的制造方法
CN116425660A (zh) * 2023-03-31 2023-07-14 益丰新材料股份有限公司 一种光学材料用组合物及光学材料制造方法

Similar Documents

Publication Publication Date Title
JP6438976B2 (ja) 光学材料用重合性組成物、光学材料およびその用途
CN105793737B (zh) 光学材料用聚合性组合物
JP6586170B2 (ja) 光学材料用重合性組成物、光学材料、光学材料用重合性組成物の製造方法および光学材料の製造方法
JP6833034B2 (ja) 光学材料用重合性組成物および成形体
WO2015088013A1 (ja) 光学材料用重合性組成物、光学材料及びその製造方法
JP6475848B2 (ja) 光学材料用重合性組成物の製造方法および光学材料の製造方法
JP5859709B2 (ja) 光学材料用重合性組成物、光学材料および光学材料の製造方法
WO2020162592A1 (ja) 光学材料用重合性組成物、光学材料およびその用途
WO2015088011A1 (ja) 光学材料用重合性組成物、光学材料およびその用途
JP2020181127A (ja) 光学材料用チオール含有組成物、光学材料用重合性組成物

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14868799

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14868799

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP