WO2015085838A1 - 一种集成电感器 - Google Patents

一种集成电感器 Download PDF

Info

Publication number
WO2015085838A1
WO2015085838A1 PCT/CN2014/089971 CN2014089971W WO2015085838A1 WO 2015085838 A1 WO2015085838 A1 WO 2015085838A1 CN 2014089971 W CN2014089971 W CN 2014089971W WO 2015085838 A1 WO2015085838 A1 WO 2015085838A1
Authority
WO
WIPO (PCT)
Prior art keywords
magnetic
sub
cores
core
winding
Prior art date
Application number
PCT/CN2014/089971
Other languages
English (en)
French (fr)
Inventor
郑大为
王文
廖西征
刘丹
Original Assignee
伊顿公司
郑大为
王文
廖西征
刘丹
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 伊顿公司, 郑大为, 王文, 廖西征, 刘丹 filed Critical 伊顿公司
Priority to US15/103,421 priority Critical patent/US10121582B2/en
Priority to EP14869620.6A priority patent/EP3082138A4/en
Publication of WO2015085838A1 publication Critical patent/WO2015085838A1/zh

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F27/00Details of transformers or inductances, in general
    • H01F27/24Magnetic cores
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F3/00Cores, Yokes, or armatures
    • H01F3/10Composite arrangements of magnetic circuits
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F27/00Details of transformers or inductances, in general
    • H01F27/28Coils; Windings; Conductive connections
    • H01F27/2823Wires
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F3/00Cores, Yokes, or armatures
    • H01F3/10Composite arrangements of magnetic circuits
    • H01F3/14Constrictions; Gaps, e.g. air-gaps
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F37/00Fixed inductances not covered by group H01F17/00
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F3/00Cores, Yokes, or armatures
    • H01F3/10Composite arrangements of magnetic circuits
    • H01F2003/106Magnetic circuits using combinations of different magnetic materials

Definitions

  • An inductor of the present invention and more particularly to an integrated inductor having a magnetic core composed of a plurality of blocks. Background technique
  • the integrated inductor includes a first winding C1 and a second winding C2 that are connected to each other.
  • the first winding C1 and the second winding C2 are wound on different internal magnetic cores (not shown in FIG. 1), and two internal magnetic cores corresponding to the first winding C1 and the second winding C2 pass through two outside of the winding
  • the outer cores M are connected to ensure magnetic circuit communication, wherein the magnetic lines are substantially distributed as indicated by the dashed arrows in FIG. Since the external core M requires a large volume, if the outer core M is formed of a single piece of bulk material, the manufacturing cost can be very high. Therefore, in order to reduce the cost, each of the outer cores M is formed by splicing six small-sized cuboid cores a , c, cL e, and f.
  • the invention provides an integrated inductor, comprising: First winding and second winding;
  • the magnetic permeability of at least one of the plurality of sub-magnetic cores is greater than the magnetic permeability of the remaining sub-magnetic cores, and the at least one sub-magnetic core covers at least the first inner magnetic core and the second A part of the end face of the inner core.
  • the at least one sub-core having a magnetic permeability greater than that of the remaining sub-cores covers at least a midpoint of an end surface of the first and second inner cores.
  • the at least one sub-core having a magnetic permeability greater than that of the remaining sub-cores covers at least the entire area of the end faces of the first and second inner cores.
  • the at least one sub-magnetic core having a magnetic permeability greater than that of the remaining sub-cores is prismatic.
  • each of the two sides of the at least one sub-core having a magnetic permeability greater than that of the remaining sub-cores has at least one sub-core.
  • both ends of the at least one sub-core having a magnetic permeability greater than that of the remaining sub-cores respectively have at least one sub-core.
  • An integrated inductor according to the present invention wherein an end of the outer core is curved.
  • a part of the plurality of sub-cores has a curved edge, and after being spliced into an external core, the sub-core having a curved edge is located outside.
  • the integrated inductor provided by the invention avoids the positional relationship between the gap between the sub-cores and the magnetic lines by optimizing the magnetic permeability of the intermediate sub-cores higher than the magnetic permeability of the sub-magnetics around them.
  • the line of magnetic force intersects the gap, or allows less magnetic lines of force to intersect the gap, thereby avoiding the occurrence of magnetic flux leakage and at the same time reducing the cost of the outer core.
  • FIG. 2 is a schematic structural view of an integrated inductor according to an embodiment of the present invention
  • FIG. 3 is a view showing a positional relationship between an integrated inductor and test aluminum sheets A1 and A2 according to an embodiment of the present invention
  • Fig. 4 shows the positional relationship between the integrated inductor of the prior art and the test aluminum sheets A3 and A4. detailed description
  • the present embodiment provides an integrated inductor, and its structure is as shown in FIG. 2, including:
  • the first winding Ci and the second winding C2 are connected to each other, wherein the first winding C1 and the second winding C2 are wound on different internal cores (not shown in Fig. 2);
  • Two external magnetic cores M located outside the first winding C1 and the second winding C2 are located on both sides of the first winding C1 and the second winding C2 for making internal magnetic inside the first winding C1 and the second winding C2
  • the cores are connected to ensure that the two inner cores and the two outer cores 10 together form a connected magnetic circuit (where the magnetic field lines are substantially distributed as indicated by the dashed arrows in FIG. 2).
  • Each of the outer cores M is closely joined by a plurality of sub-cores ml, m2, m3, ra4, m5, m6, ml.
  • the sub-magnetic cores ml, ra2, and m3 are cuboids
  • the sub-magnetic core ml is located in the middle of the sub-magnetic core m2, and m3, and a gap G4 is left between the sub-magnetic cores ml and m2, between the sub-magnetic cores ml and m3 Leave a gap G5.
  • the sub-magnetic cores m4, m5, m6, and m7 are in a fan shape, wherein the sub-magnetic cores m4 and m5 are spliced into a semicircular shape and are located on one side of the unit composed of the sub-magnetic cores ml, m2 > ni3, and the sub-magnetic cores m6 and ml are spliced into one.
  • a gap G7 is left between the sub-cores m4 and ni5, and a gap G6 is left between the unit formed by the sub-cores ni4 and ni5 and the unit formed by the sub-cores mi, m2, and m3.
  • a gap G9 is left between the sub-cores m6 and m7, and a gap G8 is left between the unit formed by the sub-cores m6 and m7 and the unit composed of the sub-cores ml, m2, and m3.
  • a plurality of sub-cores ml, m2, m3, m4, m5, m6, m7' are connected to form a flat outer core M, and the outer core M is connected at its both ends to be located at the first The ends of the inner cores inside the winding C1 and the second winding C2.
  • the length and width of the unit formed by the sub-cores ml, m2, m3 are set to cover at least the inside of the first winding CI and the second winding C2
  • a part of the end face of the inner core preferably has a midpoint covering at least the end face of the inner core, and more preferably covers the entire area of the end face of the inner core.
  • the approximate distribution of the magnetic lines of force in the integrated inductor provided in this embodiment is as indicated by the dashed arrow in FIG. 2, and the closer to the dotted arrow, the denser the magnetic lines of force pass through the internal magnetic field of the first winding C1 and the second winding C2.
  • the core and the two outer cores M form a complete magnetic circuit.
  • the end faces of the inner inner core are a part, therefore, part of the magnetic lines of force do not pass through the gaps G6 and G8 perpendicular to the direction of the magnetic lines of force, especially in the case where the unit composed of the sub-cores ml, m2, m3 covers at least the midpoint of the end face of the inner core, most of the magnetic lines of force are not Passing through the slits G6 and G8 perpendicular to the direction of the magnetic field lines, more preferably, in the case where the unit composed of the sub-cores ml, m2, m3 covers the entire area of the end faces of the inner core, all the magnetic lines of force are in the outer core M There are no gaps G6 and G8 that pass perpendicular to the direction of the magnetic lines of force. This is
  • the magnetic permeability of the sub-magnetic core ml is greater than the magnetic permeability of the remaining sub-magnetic cores m2, m3, m4, m5, m6, m7.
  • the length and width of the sub-cores ml are set such that the sub-core ral covers at least a portion of the end faces of the inner cores inside the first winding C1 and the second winding C2, preferably at least the midpoint of the end faces of the inner cores, More preferably, it covers the entire area of the end face of the inner core.
  • the magnetic permeability is greater than that of the magnetic cores m2 and m3, so that the magnetic lines of force can be concentrated more in the sub-core mi, so that the gaps G4 and G5 parallel to the direction of the magnetic lines of force
  • the magnetic lines of force are sparse, which further reduces the gap parallel to the direction of the magnetic field lines.
  • the effects of G4 and G5 further reduce the occurrence of magnetic flux leakage.
  • the JL sub-layer covers at least a part of the end surface of the inner magnetic core (preferably covering the inner portion)
  • the midpoint of the end face of the magnetic core more preferably covering the entire area of the end face of the inner core, so that the magnetic lines of force extracted from the inner core are more concentrated in the sub-core m I , and only a small portion of the magnetic lines of force pass through the sub-magnetic
  • the cores m4, m5, m6, m7 can further reduce the magnetic lines of force passing through the slits G6 and G8, thereby further reducing the occurrence of magnetic flux leakage.
  • the integrated inductor provided by this embodiment can also reduce the cost of the external magnetic core M.
  • the higher the magnetic permeability the more expensive the material is, but in order to meet the needs of the inductor, the magnetic permeability must be made above a certain threshold, so the price is difficult to reduce.
  • the magnetic permeability of the sub-magnetic core ml is large, and the magnetic permeability of the remaining sub-magnetic cores ni2, ni3, ni4, ⁇ 5, ⁇ 6, and ⁇ 7 is small.
  • the expensive, high magnetic permeability sub-core mi has a small volume of only a small portion of the outer core M, while the remaining sub-cores can be made of a lower-priced, low-permeability material.
  • the overall cost of the entire outer core can be reduced.
  • the specific magnetic permeability value and the volume ratio of the sub-magnetic core ml those skilled in the art can easily obtain a preferred solution based on the magnetic permeability values of various materials having different magnetic permeability and the market price. No need to pay creative labor.
  • the sub-cores m4, m5, m6, m7 are arranged in a sector shape, the volume and weight of the outer core can be reduced as compared with the rectangular outer core shown in Fig. 1. Further, the fan-shaped sub-cores m4, m5, m6, m7 have the outer core M having a curved edge, and the edge of the core M is made under the same external conditions as compared with the rectangular outer core shown in FIG. The distance between the corner and the surrounding metal parts becomes far, which weakens the influence of the eddy current on the metal parts.
  • the integrated inductor was simulated to calculate the eddy current losses generated in the metal sheets A1 and A2 around the integrated inductor.
  • the sub-magnetic core ml covers the midpoint of the end face of the inner core.
  • the positional relationship of the aluminum sheets A1 and A2 around the integrated inductor is shown in Fig. 3.
  • the aluminum piece A1 is located near one end of the two outer cores M adjacent to the sub-cores m6 and m7 and perpendicular to the plane formed by the first winding C1 and the second winding C2.
  • the aluminum sheet A2 is parallel to one of the outer cores M.
  • the prior art integrated inductor shown in Fig. 1 was also simulated to calculate the eddy current loss generated in the aluminum sheets A3 and A4 around the integrated inductor.
  • the positions of the aluminum sheets A3 and A4 are as shown in Fig. 4, which correspond to the positional relationship of Al, A2 with respect to the integrated inductor according to the present invention, respectively.
  • the simulation results show that the eddy current loss in the metal piece A1 around the integrated inductor provided in this embodiment can be reduced by 22.2% compared with the eddy current loss in the metal piece A3 around the integrated inductor shown in Fig. 1 . .
  • the eddy current loss in the metal piece A2 around the integrated inductor provided in this embodiment can be reduced by 29% compared to the eddy current loss in the metal piece A4 around the integrated inductor of the prior art shown in Fig. 1.
  • the embodiment provides an integrated inductor by optimizing the positional relationship between the gap between the sub-cores and the magnetic lines of force, and by making the magnetic permeability of the intermediate sub-core ml higher than that of the surrounding
  • the magnetic permeability of the sub-cores m2, m3, m4, m5, m6, m7 avoids the intersection of the magnetic lines of force and the gap as much as possible, or makes the magnetic lines of force intersect with the gap, thereby reducing the occurrence of magnetic leakage and at the same time Can reduce the cost of the outer core
  • each of the sub-magnetic cores described in the above embodiments is not limited, and various modifications may be made by those skilled in the art in accordance with the technical solutions provided by the present invention.
  • the sub-magnetic cores ml, m2, m3 may also be prismatic in cross section, and may be other shapes that can be matched to each other and joined together.
  • the sub-magnetic cores m4, m5, m6, ml may also have shapes other than the fan shape having curved edges, which can also achieve the object of the present invention.
  • the outer core may also be formed by splicing more sub-cores.
  • the windings C1 and C2 may or may not be electrically connected according to other embodiments of the invention, wherein the ends of the outer core are preferably curved, more preferably semi-circular, more preferably A semicircle that coincides with the circular cross section of the inner core. This can not only meet the needs of magnetic conduction, but also reduce costs as much as possible.
  • gap refers to a gap which is inevitably generated due to splicing, and is not intentionally provided, as is well known to those skilled in the art, between the respective sub-cores. The smaller the gap, the better, and magnetic leakage can be avoided as much as possible.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Composite Materials (AREA)
  • Coils Or Transformers For Communication (AREA)

Abstract

一种集成电感器,包括:第一绕组(C1)和第二绕组(C2);所述第一绕组(C1)内部的第一内部磁芯和第二绕组(C2)内部的第二内部磁芯;以及所述第一绕组(C1)和第二绕组(C2)外部的至少一个外部磁芯(M),用于连接到所述第一和第二内部磁芯的端部以形成磁路,所述外部磁芯(M)由多个子磁芯拼接而成;其中所述多个子磁芯中的至少一个子磁芯的磁导率大于其余子磁芯的磁导率,且所述至少一个子磁芯至少覆盖所述第一内部磁芯和所述第二内部磁芯的端面的一部分。该集成电感器可以削弱漏磁现象,同时能够降低磁芯的成本。

Description

一种集成电感器 技术领域
本发明一种电感器, 尤其涉及一种具有由多个块体构成的磁芯的集成 电感器。 背景技术
目前, 随着高效率、 大功率的 IJPS或逆变器设备的不断推出, 为了满 足市场要求和提高竟争优势, 对电感的设计和成本要求也越来越高。 随着 电感器的尺寸的增大, 磁芯的尺寸也相应地增大。 但是整块的、 大体积的 磁芯的制造成本非常高, 因此, 现有技术中通常采用拼接的方式, 利用多 个相对较小的块体拼接成体积较大的磁芯, 这种磁芯通常被称作集成电感 器。
图 1中示出了一种这样的集成电感器。 如图 1所示, 该集成电感器包 括相互连接的第一绕组 C 1和第二绕组 C2。 其中第一绕组 C1和第二绕组 C2缠绕在不同的内部磁芯(图 1中未示出 )上, 且与第一绕组 C1和第二 绕组 C2对应的两个内部磁芯通过绕组外部的两个外部磁芯 M相连接, 以 保证磁路连通, 其中磁力线分布大致上如图 1 中的虚线箭头所示。 由于外 部磁芯 M所需的体积较大,若采用整块的、 大体积的材料构成该外部磁芯 M, 则制造成本会非常高。 因此, 为了降低成本, 每个外部磁芯 M由六块 体积较小的长方体的子磁芯 a、 , c、 cL e、 f拼接而成。
然而, 即使子磁芯之间以非常紧密的方式拼接, 也会不可避免地会在 子磁芯之间形成缝隙, 例如大致垂直并相交于磁力线方向的缝隙 Gl, 大 致平行于磁力线方向的缝隙 G2、 G3。 这种缝隙不可避免地会导致漏磁现 象的发生。 漏磁现象可能会对电感器周围金属造成一定程度的涡流损耗, 最终导致包含该电感器的设备的功率损耗的增大。 发明内容
因此, 本发明的目的在于提供一种集成电感器, 可以削弱漏磁现象, 同时还能够降低磁芯的成本。
本发明提供了一种集成电感器, 包括: 第―绕组和第二绕组;
所述第一绕组内部的第一内部磁芯和所述第二绕组内部的第二内部 兹芯; 以及
所述第一绕组和第二绕组外部的至少一个外部磁芯, 用于连接到所述 第一和第二内部磁芯的端部以形成磁路, 所述外部磁芯由多个子磁芯拼接 而成,
其中所述多个子磁芯中的至少一个子磁芯的磁导率大于其余子磁芯 的磁导率, 且所述至少一个子磁芯至少覆盖所述第一内部磁芯和所述第二 内部磁芯的端面的一部分。
根据本发明提供的集成电感器, 其中磁导率大于其余子磁芯的磁导率 的所述至少一个子磁芯至少覆盖所述第一、 第二内部磁芯的端面的中点。
根据本发明提供的集成电感器, 其中磁导率大于其余子磁芯的磁导率 的所述至少一个子磁芯至少覆盖所述第一、 第二内部磁芯的端面的全部面 积。
根据本发明提供的集成电感器, 其中所述外部磁芯为扁平状。
根据本发明提供的集成电感器, 其中磁导率大于其余子磁芯的磁导率 的所述至少一个子磁芯为棱柱状。
根据本发明提供的集成电感器, 其中磁导率大于其余子磁芯的磁导率 的所述至少一个子磁芯的两侧分别具有至少一个子磁芯。
根据本发明提供的集成电感器, 其中磁导率大于其余子磁芯的磁导率 的所述至少一个子磁芯的两端分别具有至少一个子^?兹芯。
根据本发明提供的集成电感器, 其中所述外部磁芯的端部为弧形。 根据本发明提供的集成电感器, 其中所述多个子磁芯中的部分子磁芯 具有弧形边缘, 在拼接成外部磁芯后, 所述具有弧形边缘的子磁芯位于外 部.磁芯的端部
本发明提供的集成电感器, 通过优化子磁芯之间的缝隙与磁力线的位 置关系, 并通过使中间的子磁芯的磁导率高于其周围的子磁的磁导率, 尽 量避免了磁力线与缝隙相交, 或者说使更少的磁力线与缝隙相交, 从而避 免了漏磁现象的发生, 与此同时还能够降低外磁芯的成本。 附圑说明
以下参照附图对本发明实施例作进一步说明, 其中: 图 1为现有技术中的集成电感器的结构示意图;
图 2为根据本发明的一个实施例的集成电感器的结构示意图; 图 3示出了根据本发明的实施例的集成电感器与测试用铝片 A1和 A2 之间的位置关系;
图 4示出了现有技术中的集成电感器与测试用铝片 A3和 A4之间的 位置关系。 具体实施方式
为了使本发明的目的、 技术方案及优点更加清楚明白, 以下结合具体 实施例, 对本发明进一步详细说明。 应当理解, 此处所描述的具体实施例 仅仅用以解释本发明, 并不用于限定本发明。
本实施倒提供一种集成电感器, 其结构如图 2所示, 包括:
相互连接的第一绕组 Ci和第二绕组 C2, 其中第一绕组 C1和第二绕 组 C2缠绕在不同的内部磁芯 (图 2中未示出) 上;
位于第一绕组 C1和第二绕组 C2外部的两个外部磁芯 M, 位于第一 绕组 C1和第二绕组 C2的两侧, 用于使位于第一绕组 C1和第二绕组 C2 内部的内部磁芯相连接,以保证两个内部磁芯和两个外部磁芯 M共同构成 连通的磁路(其中磁力线分布大致上如图 2 中的虚线箭头所示)。 每一个 外部磁芯 M由多个子磁芯 ml、 m2、 m3、 ra4、 m5、 m6、 ml紧密拼接而成。 其中子磁芯 ml、 ra2,、 m3为长方体, 子磁芯 ml位于子磁芯 m2,和 m3的 中间, 子磁芯 ml与 m2之间留下了缝隙 G4, 子磁芯 ml与 m3之间留下 了缝隙 G5。 子磁芯 m4、 m5、 m6、 m7为扇形, 其中子磁芯 m4、 m5拼接 成半圓形并位于子磁芯 ml、 m2 > ni3构成的单元的一侧, 子磁芯 m6、 ml 拼接成半圓形并位于子磁芯 ml、 m2、 m3 构成的单元的另一侧。 子磁芯 m4、 ni5之间留下了缝隙 G7 , 子磁芯 ni4、 ni5构成的单元与子磁芯 mi、 m2、 m3构成的单元之间留下了缝隙 G6。 子磁芯 m6、 m7之间留下了缝隙 G9, 子磁芯 m6、 m7构成的单元与子磁芯 ml、 m2、 m3构成的单元之间 留下了缝隙 G8。
如图 2所示, 多个子磁芯 ml、 m2、 m3、 m4、 m5、 m6、 m7 '讲接成 了一个扁平的外部磁芯 M, 该外部磁芯 M在其两端连接到位于第一绕组 C1和第二绕组 C2内部的内部磁芯的端部。 其中子磁芯 ml、 m2、 m3构成 的单元的长度和宽度被设置为至少覆盖第一绕组 CI和第二绕组 C2内部的 内部磁芯的端面的一部分, 优选为至少覆盖内部磁芯的端面的中点, 更优 选为覆盖内部磁芯的端面的全部面积。
本实施例提供的集成电感器中磁力线的大致分布如图 2中的虛线箭头 所示, 离虚线箭头越近的位置磁力线越密集 磁力线穿过第一绕组 C1和 第二绕组 C2内部的内部磁芯以及两个外部磁芯 M,形成完整的磁性回路。
申请人通过研究发现, 相比于与磁力线平行的缝隙, 与磁力线相交的 缝隙, 尤其是与磁力线垂直的缝 ¾, 更容易导致漏磁现象的发生, 因此应 尽量避免形成与磁力线相交的缝隙, 尤其是与磁力线垂直的缝隙。
而本实施例提供的集成电感器中, 如图 2,所示, 由于子磁芯 ml、 m2、 ra3构成的单元至少覆盖第一绕组 CI和第二绕组 C2,内部的内部磁芯的端 面的一部分,因此部分磁力线没有穿过与磁力线方向垂直的缝隙 G6和 G8, 尤其是在子磁芯 ml , m2、 m3构成的单元至少覆盖内部磁芯的端面的中点 的情况下, 大部分磁力线没有穿过与磁力线方向垂直的缝隙 G6和 G8, 更 优选地, 在子磁芯 ml、 m2、 m3构成的单元覆盖内部磁芯的端面的全部面 积的情况下,全部磁力线在外部磁芯 M中都没有穿过与磁力线方向垂直的 缝隙 G6和 G8。 这相比于图 1中所示的情形(磁力线完全穿过与磁力线垂 直方向的缝隙 G1 ), 这可大大降低漏磁现象的发生。
根据本发明的又一个实施例, 其中子磁芯 ml的磁导率大于其余子磁 芯 m2、 m3、 m4、 m5、 m6、 m7的磁导率。 子磁芯 ml的长度和宽度被设 置为使子磁芯 ral至少覆盖第一绕组 C1和第二绕组 C2内部的内部磁芯的 端面的一部分, 优选为至少覆盖内部磁芯的端面的中点, 更优选为覆盖内 部磁芯的端面的全部面积。
由于子.磁芯 ml的,磁导率大于子.磁芯 m2、 m3的,磁导率, 因此可以使 磁力线更多地集中到子磁芯 mi中, 使平行于磁力线方向的缝隙 G4和 G5 附近的磁力线较为稀疏, 从而更进一步地减小平行于磁力线方向的缝隙
G4和 G5的影响, 进而进一步地减小漏磁现象的发生。 此外, 由于子磁芯 ml ό々磁导率大于子磁芯 m4、 m5、 m6、 m'7的'兹导率, JL子,兹芯 ml至少 覆盖内部磁芯的端面的一部分(优选覆盖内部磁芯的端面的中点, 更优选 覆盖内部磁芯的端面的全部面积), 因此从内部磁芯引出的磁力线更多地 集中到子磁芯 m I中, 仅有少部分磁力线穿过子磁芯 m4、 m5、 m6、 m7, 从而可进一步地减小穿过缝隙 G6和 G8的磁力线, 进而进一步地降低漏 磁现象的发生。 此外, 本实施例提供的集成电感器还可以降低外部磁芯 M的成本。通 常来说磁导率越大的材料价格越昂贵, 但是为了满足电感器的需要, 必须 使磁导率达到一定的阔值以上, 因此价格难以降低。 而本实施例提供的集 成电感器中, 子磁芯 ml的磁导率较大, 其余子磁芯 ni2、 ni3、 ni4、 ηι5、 ηι6、 ηι7的磁导率较小。 价格昂贵的、 高磁导率的子磁芯 mi 的体积仅占 外部磁芯 M的一小部分, 而其余子磁芯可以采用价格较低的、低磁导率材 料。 通过将多个子磁芯设置成不同的磁导率, 可以降低整个外部磁芯的整 体成本。 至于具体的磁导率数值以及子磁芯 ml所占的体积比例, 本领域 技术人员可以根据磁导率不同的各种材料的磁导率数值以及市场价格而 容易地得到优选的方案, 这并不需要付出创造性的劳动。
另夕卜, 由于子磁芯 m4、 m5、 m6、 m7被设置为扇形, 相比于图 1 中 所示的矩形外部磁芯, 可以降低外部磁芯的体积和重量。 另外扇形的子磁 芯 m4、 m5、 m6、 m7使外部磁芯 M具有弧形的边缘, 相比于图 1中所示 的矩形外部磁芯,在同等外部条件下,使磁芯 M的边角处与周围金属件的 距离变远, 削弱了对金属件的涡流影响
为了说明本实施例提供的集成电感器的优越性能, 对该集成电感器进 行了仿真, 计算出集成电感器周围的金属片 A1和 A2中产生的涡流损耗。 在该实施例中, 子磁芯 ml覆盖至内部磁芯的端面的中点。 集成电感器周 围的铝片 A1和 A2的位置关系如图 3所示。其中铝片 A1位于两个外部磁 芯 M的一个端部的附近, 临近子磁芯 m6和 m7, 并与第一绕组 C1和第二 绕组 C2构成的平面垂直。 铝片 A2平行于其中一个外部磁芯 M。
作为对比, 还同时对图 1中所示的现有技术中的集成电感器进行了仿 真, 计算出集成电感器周围的铝片 A3和 A4中产生的涡流损耗。 其中铝 片 A3和 A4的位置如图 4所示,分别对应于 Al、 A2相对于根据本发明的 集成电感器的位置关系
仿真结果表明, 本实施例提供的集成电感器周围的金属片 A1 中的涡 流损耗相比于图 1所示的现有技术中的集成电感器周围的金属片 A3中的 涡流损耗可降低 22.2%。 本实施例提供的集成电感器周围的金属片 A2 中 的涡流损耗相比于图 1 所示的现有技术中的集成电感器周围的金属片 A4 中的涡流损耗可降低 29%。
综上, 本实施例提供了一种集成电感器, 通过优化子磁芯之间的缝隙 与磁力线的位置关系, 并通过使中间的子磁芯 ml 的磁导率高于其周围的 子磁芯 m2、 m3、 m4、 m5、 m6、 m7的磁导率, 尽量避免了磁力线与缝隙 相交, 或者说使更少的磁力线与缝隙相交, 从而减少漏磁现象的发生, 与 此同时还能够降低外磁芯的成本
上述实施例中所描述的各个子磁芯的形状并非限定性的, 本领域技术 人员可以根据本发明提供的技术方案而做出各种变形。 例如, 根据本发明 的其它实施例, 子磁芯 ml、 m2、 m3也可以为截面为菱形的棱柱状, 还可 以为其它的能够相互匹配而拼接成一个整体的形状。子磁芯 m4、 m5、 m6、 ml 也可以为除扇形以外的其它具有弧形边缘的形状, 这同样可以实现本 发明的目的。
根据本发明的其它实施例, 其中外部磁芯还可以由更多的子磁芯拼接 而成。 例如在子磁芯 m2、 m3的外侧还可以具有更多的子磁芯。
根据本发明的其它实施例,其中绕组 C1和 C2可以电连接也可以非电 根据本发明的其它实施例, 其中外部磁芯的端部优选为弧形, 再优选 为半圆形, 更优选为与内部磁芯的圆形截面相重合的半圓形。 这样.既可以 满足导磁的需要, 同时还可以尽可能的降低成本。
另外需要说明的是, 本发明中所述的 "缝隙', 是指由于拼接而不可避 免地产生的间隙, 而并非故意设置的, 正如本领域技术人员所公知的, 各 个子磁芯之间的缝隙越小越好, 可以尽可能地避免漏磁。
最后所应说明的是, 以上实施例仅用以说明本发明的技术方案而非限 制。 尽管参照实施例对本发明进行了详细说明, 本领域的普通技术人员应当 理解, 对本发明的技术方案进行修改或者等同替换, 都不脱离本发明技术方 案的精神和范围, 其均应涵盖在本发明的权利要求范围当中。

Claims

1. 一种集成电感器, 包括:
第一绕组和第二绕组;
所述第一绕组内部的第一内部磁芯和所述第二绕组内部的第二内部 磁芯; 以及
所述第一绕组和第二绕组外部的至少一个外部磁芯, 用于连接到所述 第一和第二内部磁芯的端部以形成磁路, 所述外部磁芯由多个子磁芯拼接 而成,
其中所述多个子磁芯中的至少一个子磁芯的磁导率大于其余子磁芯 的磁导率, 且所述至少一个子磁芯至少覆盖所述第一内部磁芯和所述第二 内部磁芯的端面的一部分。
2. 根据权利要求 i 所述的集成电感器, 其中磁导率大于其余子磁芯 的磁导率的所述至少一个子磁芯至少覆盖所述第一, 第二内部磁芯的端面 的中点 c,
3. 根据权利要求 1所述的集成电感器,其中磁导率大于其余子磁芯的 磁导率的所述至少一个子磁芯至少覆盖所述第一、 第二内部磁芯的端面的 全-部面积。
4, 根据权利要求 1所述的集成电感器, 其中所述外部磁芯为扁平状。
5, 根据权利要求 1所述的集成电感器,其中磁导率大于其余子磁芯的 磁导率的所述至少一个子磁芯为棱柱状。
6。 根据权利要求 1所述的集成电感器,其中磁导率大于其余子磁芯的 磁导率的所述至少一个子磁芯的两侧分别具有至少一个子磁芯。
7。根据权剩要求 1所述的集成电感器,其中磁导率大于其余子磁芯的 磁导率的所述至少一个子磁芯的两端分别具有至少一个子磁芯。
8. 根据权利要求 1所述的集成电感器,其中所述外部磁芯的端部为弧 形。
9. 根据权利要求 1所述的集成电感器,其中所述多个子磁芯中的部分 子磁芯具有弧形边缘, 在拼接成外部磁芯后, 所述具有弧形边缘的子磁芯 位于外部磁芯的端部。
PCT/CN2014/089971 2013-12-12 2014-10-31 一种集成电感器 WO2015085838A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US15/103,421 US10121582B2 (en) 2013-12-12 2014-10-31 Integrated inductor
EP14869620.6A EP3082138A4 (en) 2013-12-12 2014-10-31 Integrated inductor

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201310683460.4A CN104715886B (zh) 2013-12-12 2013-12-12 一种集成电感器
CN201310683460.4 2013-12-12

Publications (1)

Publication Number Publication Date
WO2015085838A1 true WO2015085838A1 (zh) 2015-06-18

Family

ID=53370601

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2014/089971 WO2015085838A1 (zh) 2013-12-12 2014-10-31 一种集成电感器

Country Status (4)

Country Link
US (1) US10121582B2 (zh)
EP (1) EP3082138A4 (zh)
CN (1) CN104715886B (zh)
WO (1) WO2015085838A1 (zh)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102017114900A1 (de) * 2017-07-04 2019-01-10 Bayerische Motoren Werke Aktiengesellschaft Speicherdrossel
CN207250270U (zh) * 2017-10-17 2018-04-17 台达电子企业管理(上海)有限公司 一种多线圈电感
JP7215036B2 (ja) * 2018-09-21 2023-01-31 株式会社オートネットワーク技術研究所 リアクトル
JP7061291B2 (ja) * 2018-10-29 2022-04-28 株式会社オートネットワーク技術研究所 リアクトル

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB162731A (en) * 1920-01-03 1921-05-03 British Thomson Houston Co Ltd Improvements in and relating to electro-magnetic devices for controlling alternating current dynamo electric machines
CN201355570Y (zh) * 2009-01-19 2009-12-02 东莞普思电子有限公司珠海分公司 Emi集成电感器
CN202110916U (zh) * 2011-06-15 2012-01-11 安登利电子(深圳)有限公司 大功率升压电感
CN102360725A (zh) * 2011-07-20 2012-02-22 唐山尚新融大电子产品有限公司 差模、共模一体磁集成电感器
CN102842407A (zh) * 2011-06-24 2012-12-26 通用电气公司 用于电气装置的冷却装置和冷却电气装置的方法
JP2013026492A (ja) * 2011-07-22 2013-02-04 Ishikawa Electric Co Ltd リアクトル及びこのリアクトルを搭載したパワーコンディショナ
JP2013038133A (ja) * 2011-08-04 2013-02-21 Sumitomo Electric Ind Ltd 磁気回路部品

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
IL126748A0 (en) * 1998-10-26 1999-08-17 Amt Ltd Three-phase transformer and method for manufacturing same
JP4289665B2 (ja) * 2003-07-30 2009-07-01 株式会社豊田中央研究所 リアクトル、リアクトル用コアおよびその製造方法
CN201072691Y (zh) * 2007-09-06 2008-06-11 张乃铫 机床供电变压器
TWI379324B (en) * 2009-07-31 2012-12-11 Delta Electronics Inc Magnetic component assembly
JP2012028394A (ja) * 2010-07-20 2012-02-09 Hitachi Industrial Equipment Systems Co Ltd リアクトル装置
JP2013179259A (ja) * 2012-02-08 2013-09-09 Sumitomo Electric Ind Ltd リアクトル、コンバータ及び電力変換装置、並びにリアクトル用コア材料
CN104124040B (zh) * 2013-04-25 2017-05-17 台达电子工业股份有限公司 磁芯与应用其的磁性元件

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB162731A (en) * 1920-01-03 1921-05-03 British Thomson Houston Co Ltd Improvements in and relating to electro-magnetic devices for controlling alternating current dynamo electric machines
CN201355570Y (zh) * 2009-01-19 2009-12-02 东莞普思电子有限公司珠海分公司 Emi集成电感器
CN202110916U (zh) * 2011-06-15 2012-01-11 安登利电子(深圳)有限公司 大功率升压电感
CN102842407A (zh) * 2011-06-24 2012-12-26 通用电气公司 用于电气装置的冷却装置和冷却电气装置的方法
CN102360725A (zh) * 2011-07-20 2012-02-22 唐山尚新融大电子产品有限公司 差模、共模一体磁集成电感器
JP2013026492A (ja) * 2011-07-22 2013-02-04 Ishikawa Electric Co Ltd リアクトル及びこのリアクトルを搭載したパワーコンディショナ
JP2013038133A (ja) * 2011-08-04 2013-02-21 Sumitomo Electric Ind Ltd 磁気回路部品

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3082138A4 *

Also Published As

Publication number Publication date
EP3082138A1 (en) 2016-10-19
US20160314888A1 (en) 2016-10-27
EP3082138A4 (en) 2017-08-16
CN104715886B (zh) 2018-11-13
CN104715886A (zh) 2015-06-17
US10121582B2 (en) 2018-11-06

Similar Documents

Publication Publication Date Title
WO2015085838A1 (zh) 一种集成电感器
WO2018188202A1 (zh) 一种新型无线电能传输磁路耦合机构
TW201007785A (en) Conductive winding structure and magnetic device using same
TWI523378B (zh) Manufacture of coils and coils
CN104966604A (zh) 一种磁性组件及其绕组线圈绕制方法
TWI291183B (en) Transformer structure
US7236076B2 (en) Electric component having a variable air gap effect
JP6631722B2 (ja) インダクタ
CN208922882U (zh) 一种共模电感、emi滤波器和开关电源
JP5713232B2 (ja) ノイズフィルタ
CN106158286B (zh) 一种带中心抽头的变压器
JP5950706B2 (ja) 高周波トランス
CN204010998U (zh) 一种磁性组件
JP2007281315A (ja) コイル部品
TWM446964U (zh) 邊繞式的繞線變壓器
CN207021102U (zh) 一种三框三柱立体叠片式变压器铁芯
JP2002208518A (ja) 静止誘導電磁機器
CN102568752B (zh) 电感构件及具有该电感构件的电子设备
CN103093934A (zh) 非晶合金变压器及其铁芯、与制造方法
CN107430928A (zh) 电抗器
CN203871154U (zh) 高频变压器
JP2006100513A (ja) リアクトル
TW202025182A (zh) 可調式漏感變壓器
CN203787245U (zh) 一种改良的ups电源电感
US20170011841A1 (en) Transformer Structure

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14869620

Country of ref document: EP

Kind code of ref document: A1

REEP Request for entry into the european phase

Ref document number: 2014869620

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2014869620

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 15103421

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE