WO2015085550A1 - 一种用户设备的同步方法及用户设备 - Google Patents

一种用户设备的同步方法及用户设备 Download PDF

Info

Publication number
WO2015085550A1
WO2015085550A1 PCT/CN2013/089268 CN2013089268W WO2015085550A1 WO 2015085550 A1 WO2015085550 A1 WO 2015085550A1 CN 2013089268 W CN2013089268 W CN 2013089268W WO 2015085550 A1 WO2015085550 A1 WO 2015085550A1
Authority
WO
WIPO (PCT)
Prior art keywords
millimeter wave
synchronization
frequency band
band network
cellular
Prior art date
Application number
PCT/CN2013/089268
Other languages
English (en)
French (fr)
Inventor
王艺
黄磊
杨刚华
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to CN201380079701.2A priority Critical patent/CN105580454B/zh
Priority to PCT/CN2013/089268 priority patent/WO2015085550A1/zh
Priority to EP13898926.4A priority patent/EP3070985B1/en
Publication of WO2015085550A1 publication Critical patent/WO2015085550A1/zh
Priority to US15/180,267 priority patent/US9693329B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W56/00Synchronisation arrangements
    • H04W56/001Synchronization between nodes
    • H04W56/0015Synchronization between nodes one node acting as a reference for the others
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W56/00Synchronisation arrangements
    • H04W56/001Synchronization between nodes

Definitions

  • the present invention belongs to the field of mobile communication technologies, and in particular, to a method for synchronizing user equipments and user equipment.
  • Mobile communication is one of the most successful technological innovations in history, and its development momentum is quite rapid. As mobile users, mobile applications, and mobile services continue to grow, so does the need for high-capacity, low-latency, and more reliable mobile communications. In recent years, some of these requirements have been met by adopting more advanced communication technologies, allocating more spectrum, and deploying more dense base stations. However, according to forecasts, the mobile data service will show explosive growth in the next decade, which poses more severe challenges for the design of next-generation mobile communication networks. Currently, most of the low-band spectrum resources suitable for mobile communications have been allocated (for example, bands below 3 GHz). However, in the 3-300 GHz band, a large amount of spectrum resources have not yet been allocated.
  • the 3-30 GHz band is called the ultra high frequency (SHF) band
  • the 30-300 GHz band is called the very high frequency (EHF) band. Since the SHF and EHF bands have similar propagation characteristics (larger propagation loss) and the wavelength range is between 1 mm and 100 mm, the 3-300 GHz band is collectively referred to as the millimeter wave band.
  • the research on the use of the millimeter wave band for cellular mobile communication is still in the initial stage, and the technology is not yet mature.
  • the PSS When the user equipment accesses the millimeter wave band network, it is necessary to slide the PSS for a long time in the millimeter wave band (English: Primary) Synchronization Signal, Chinese: the main synchronization signal) synchronization window to obtain PSS, can not accelerate the millimeter wave band synchronization.
  • the starting position of the frame will generate a certain delay, as shown in FIG. 1 .
  • This delay is caused by various factors, such as the difference in transmission delay between the baseband side and the millimeter wave band, and the millimeter wave band RF.
  • the difference in transmission delay between the baseband side and the millimeter wave band and the millimeter wave band RF.
  • RF Radio Frequency
  • the purpose of the embodiments of the present invention is to provide a synchronization method and user equipment for a user equipment, which is to solve the problem that the millimeter wave frequency band cannot be accelerated when the user equipment accesses the millimeter wave frequency band network.
  • a user equipment includes:
  • a first synchronization unit configured to perform a first synchronization of the cellular frequency band by using a cellular frequency band network covering the millimeter wave frequency band network when the user equipment accesses the millimeter wave frequency band network;
  • a second synchronization unit configured to perform a second synchronization of the millimeter wave band through the millimeter wave band network.
  • the first synchronization unit is further configured to obtain a synchronization window in which a primary synchronization signal PSS of a cellular frequency band network covering the millimeter wave band network is located , the first synchronization of the cellular frequency band.
  • the user equipment further includes:
  • a first receiving unit configured to receive a synchronization signal of a cellular frequency band network transmitted by a cellular band radio frequency RF transceiver in a base station, where the cellular frequency band RF transceiver is configured to receive and transmit a cellular frequency band covering the millimeter wave frequency band network RF transceiver for network data.
  • the first synchronization unit is further configured to perform non-coherent detection on the synchronization signal of the received cellular frequency band network. And acquiring a synchronization window in which the primary synchronization signal PSS of the cellular frequency band network covering the millimeter wave band network is located, and performing the first synchronization of the cellular frequency band.
  • the first synchronization unit is further configured to: according to the pre-stored first PSS sequence, in a fixed period Performing a time domain correlation on a sequence on a sliding PSS synchronization window of a cellular band network covering the millimeter wave band network;
  • the synchronization window for obtaining the most relevant correlation in the time domain correlation wherein the synchronization window with the most correlation is the synchronization window in which the primary synchronization signal PSS of the cellular frequency band network covering the millimeter wave band network is located.
  • the user equipment further includes:
  • a second receiving unit configured to receive a synchronization signal of a millimeter wave band network transmitted by a millimeter wave band network RF transceiver in a base station, wherein the millimeter wave band network RF transceiver is configured to receive and transmit the millimeter wave covering RF transceiver for data.
  • a sixth possible implementation manner of the first aspect And performing non-coherent detection on the synchronization signal of the received millimeter wave band network after obtaining the time t 0 +t 1 of the synchronization window of the acquired PSS of the cellular frequency band network, acquiring the PSS of the millimeter wave band network In the synchronization window, the second synchronization of the millimeter wave band is performed, where t 0 is the subframe start position delay of the acquired cellular frequency band and the millimeter wave frequency band, and the t 1 is a predefined cellular frequency band. The time difference between the PSS and the PSS on its nearest millimeter wave band.
  • the second synchronization unit is further configured to: according to the pre-stored second PSS sequence, in a fixed period, Time domain correlation of sequences on the PSS synchronization window of the millimeter wave band network sliding;
  • the synchronization window for obtaining the most relevant correlation in the time domain correlation wherein the synchronization window with the most correlation is the synchronization window in which the PSS of the millimeter wave band network is located.
  • the user equipment further includes:
  • an acquiring unit configured to obtain, by acquiring radio resource control RRC signaling or system broadcast information of the cellular frequency band, a subframe start position delay of the subframe of the cellular frequency band and the millimeter wave frequency band.
  • a second aspect is a user equipment, where the user equipment includes a processor, a memory, and a communication interface, wherein the processor, the communication interface, and the memory complete communication with each other through a bus;
  • the communication interface is configured to communicate with other communication devices
  • the processor is configured to execute a program
  • the memory is configured to store a program
  • the program is configured to perform a first synchronization of a cellular frequency band by using a cellular frequency band network covering the millimeter wave frequency band network when the user equipment is connected to the millimeter wave frequency band network, and configured to perform a second synchronization of the millimeter wave frequency band by using the millimeter wave frequency band network.
  • a third aspect is a method for synchronizing user equipment, the method comprising:
  • the first frequency of the cellular frequency band is performed by the cellular frequency band network covering the millimeter wave band network;
  • the second synchronization of the millimeter wave band is performed by the millimeter wave band network.
  • the performing, by the cellular frequency band network covering the millimeter wave band network, the first synchronization of the cellular frequency band includes:
  • the first synchronization of the cellular frequency band is performed by acquiring a synchronization window in which the primary synchronization signal PSS of the cellular frequency band network covering the millimeter wave band network is located.
  • the primary synchronization signal PSS is obtained by acquiring the control information network covering the millimeter wave band network Before the sync window, including:
  • a synchronization signal of a cellular band network transmitted by a cellular band RF transceiver in a base station wherein the cellular band RF transceiver is an RF transceiver for receiving and transmitting data of a cellular band network covering the millimeter wave band network.
  • the method further includes:
  • Performing non-coherent detection on the synchronization signal of the received cellular frequency band network acquiring a synchronization window in which the primary synchronization signal PSS of the cellular frequency band network covering the millimeter wave frequency band network is located, and performing the first synchronization of the cellular frequency band.
  • the synchronization window of the primary synchronization signal PSS of the cellular band network of the frequency band network further includes:
  • the synchronization window with the highest correlation in the time domain correlation is obtained, wherein the synchronization window with the largest correlation is the synchronization window in which the primary synchronization signal PSS of the cellular frequency band network covering the millimeter wave band network is located.
  • the method before the performing the second synchronization of the millimeter wave band by using the millimeter wave band network, the method includes:
  • a synchronization signal of a millimeter wave band network transmitted by a millimeter wave band network RF transceiver in a base station wherein the millimeter wave band network RF transceiver is an RF transceiver for receiving and transmitting data covering the millimeter wave.
  • the second synchronization of the millimeter wave band is performed by the millimeter wave band network, including:
  • non-coherent detection is performed on the synchronization signal of the received millimeter wave band network, and the PSS of the millimeter wave band network is obtained.
  • a synchronization window performing a second synchronization of the millimeter wave band, wherein the t 0 is a subframe start position delay of the acquired cellular frequency band and the millimeter wave frequency band, and the t 1 is a PSS on the predefined cellular frequency band The time difference between the PSS on the nearest millimeter wave band.
  • performing non-coherent detection on the synchronization signal of the received millimeter wave band network acquiring the millimeter wave band network
  • the sync window where the PSS is located including:
  • the synchronization window with the highest correlation in the time domain correlation is obtained, wherein the synchronization window with the largest correlation is the synchronization window in which the PSS of the millimeter wave band network is located.
  • the method further includes:
  • the subframe start position delay of the subframe of the cellular frequency band and the millimeter wave frequency band is obtained by acquiring radio resource control RRC signaling or system broadcast information of the cellular frequency band.
  • the present invention after performing the first synchronization of the cellular frequency band, performs the second synchronization of the millimeter wave frequency band through the millimeter wave frequency band network, thereby avoiding the PSS synchronization window in which the user equipment slides for a long time in the millimeter wave frequency band.
  • Obtaining the PSS thereby saving overhead, narrowing the scope of the synchronization window, speeding up the detection of the PSS in the millimeter wave band, enabling the user equipment to quickly and accurately synchronize the millimeter wave band.
  • 1 is a schematic diagram of delay between a cellular band frame and a millimeter wave band frame provided by the prior art
  • FIG. 3 is a schematic structural diagram of a user equipment according to an embodiment of the present disclosure.
  • FIG. 4 is a flowchart of implementing a user equipment synchronization method according to an embodiment of the present invention.
  • FIG. 5 is a schematic diagram showing the position of the PSS on the cellular frequency band and the PSS on the millimeter wave frequency band in the actual embodiment of the present invention
  • FIG. 6 is a schematic diagram of a relative delay between a synchronization window on a cellular frequency band and a synchronization window on a millimeter wave frequency band according to an embodiment of the present invention
  • FIG. 7 is a structural diagram of a base station according to an embodiment of the present invention.
  • FIG. 8 is a schematic diagram of a baseband processor according to an embodiment of the present invention, which is respectively connected to a millimeter wave band RF transceiver and a cellular band RF transceiver;
  • FIG. 9 is a flowchart of a method for implementing data transmission of a base station according to an embodiment of the present invention.
  • FIG. 2 is a user equipment according to an embodiment of the present invention. For convenience of description, only parts related to the embodiment are shown, which are as follows:
  • the first synchronization unit 21 is configured to: when the user equipment accesses the millimeter wave band network, perform the first synchronization of the cellular frequency band by using the cellular frequency band network covering the millimeter wave band network;
  • the second synchronization unit 22 is configured to perform the second synchronization of the millimeter wave band through the millimeter wave band network.
  • the first synchronization unit is further configured to perform a first synchronization of the cellular frequency band by acquiring a synchronization window in which the primary synchronization signal PSS of the cellular frequency band network covering the millimeter wave frequency band network is located.
  • the user equipment further includes:
  • a first receiving unit configured to receive a synchronization signal of a cellular frequency band network transmitted by a cellular band radio frequency RF transceiver in a base station, where the cellular frequency band RF transceiver is configured to receive and transmit a cellular frequency band covering the millimeter wave frequency band network RF transceiver for network data.
  • the first receiving unit may be a cellular band receiving device, for example, a cellular band receiver.
  • the first synchronization unit is further configured to perform non-coherent detection on the synchronization signal of the received cellular frequency band network, and acquire a synchronization window in which the primary synchronization signal PSS of the cellular frequency band network covering the millimeter wave frequency band network is located, The cellular frequency band is first synchronized.
  • the first synchronization unit is further configured to: when the sequence on the sliding PSS synchronization window covering the cellular frequency band network of the millimeter wave band network is performed according to the pre-stored first PSS sequence in a fixed period Domain related
  • the synchronization window for obtaining the most relevant correlation in the time domain correlation wherein the synchronization window with the most correlation is the synchronization window in which the primary synchronization signal PSS of the cellular frequency band network covering the millimeter wave band network is located.
  • the user equipment further includes:
  • a second receiving unit configured to receive a synchronization signal of a millimeter wave band network transmitted by a millimeter wave band network RF transceiver in a base station, wherein the millimeter wave band network RF transceiver is configured to receive and transmit the millimeter wave covering RF transceiver for data.
  • the second receiving unit is a receiving device that can be a millimeter wave band, for example, a cellular band receiver.
  • the second synchronizing unit is specifically configured to acquire PSS where the cellular band network synchronization window t 0 + t 1 after the time of the millimeter wave band network synchronizing signal received noncoherent detection Obtaining a synchronization window in which the PSS of the millimeter wave band network is located, and performing a second synchronization of the millimeter wave band, where t 0 is a subframe start position delay of the acquired cellular frequency band and the millimeter wave frequency band, The t 1 is the time difference between the PSS on the predefined cellular band and the PSS on the nearest millimeter wave band.
  • the second synchronization unit is further configured to perform time domain correlation on the sequence on the PSS synchronization window of the millimeter wave band network sliding according to the pre-stored second PSS sequence in a fixed period;
  • the synchronization window for obtaining the most relevant correlation in the time domain correlation wherein the synchronization window with the most correlation is the synchronization window in which the PSS of the millimeter wave band network is located.
  • the user equipment further includes:
  • an acquiring unit configured to obtain, by acquiring radio resource control RRC signaling or system broadcast information of the cellular frequency band, a subframe start position delay of the subframe of the cellular frequency band and the millimeter wave frequency band.
  • FIG. 3 is a schematic structural diagram of a user equipment according to an embodiment of the present invention.
  • the specific implementation of the user equipment is not limited.
  • the user equipment 100 includes:
  • the processor 301, the communication interface 302, and the memory 303 complete communication with each other via the bus 304.
  • a communication interface 302 configured to communicate with other communication devices
  • the processor 301 is configured to execute a program.
  • the program can include program code, the program code including computer operating instructions.
  • the processor 303 may be a central processing unit (English: central processing) Unit, abbreviation: CPU.
  • the memory 303 is used to store a program.
  • the program is configured to perform a first synchronization of a cellular frequency band by a cellular frequency band network covering the millimeter wave frequency band network when the user equipment is connected to the millimeter wave frequency band network; and perform a second synchronization of the millimeter wave frequency band by using the millimeter wave frequency band network.
  • FIG. 4 is a flowchart of implementing a user equipment synchronization method according to an embodiment of the present invention, which is described in detail as follows:
  • step S401 when the user equipment accesses the millimeter wave band network, the first frequency synchronization of the cellular frequency band is performed by the cellular frequency band network covering the millimeter wave band network.
  • the cellular band network covering the millimeter wave band network indicates that the coverage of the millimeter wave band network is within the range of the cellular band network.
  • the traditional cellular base station and the millimeter wave base station can be configured in a co-site manner, and the cellular frequency band RF transceiver in the traditional cellular base station adopts an omnidirectional or wide beam antenna configuration for forming a cellular frequency band covering the millimeter wave frequency band network.
  • the network coverage of the network enables user equipment within the coverage of the millimeter wave base station to be within the coverage of the conventional cellular base station of the co-site.
  • the user equipment can receive the synchronization signal in the transmission process of the cellular frequency band RF transceiver in the base station, and can perform the first synchronization of the cellular frequency band by using the synchronization signal in the cellular frequency band network covering the millimeter wave frequency band network.
  • step S402 the second synchronization of the millimeter wave band is performed through the millimeter wave band network.
  • the second synchronization of the millimeter wave band is performed by the millimeter wave band network after the first synchronization of the cellular frequency band is performed.
  • the process of the second synchronization is described in the following embodiments, and details are not described herein.
  • the invention After performing the first synchronization of the cellular frequency band, the invention performs the second synchronization of the millimeter wave frequency band through the millimeter wave frequency band network, thereby avoiding the situation that the user equipment acquires the PSS in the PSS synchronization window of the long-term sliding of the millimeter wave frequency band, thereby It saves the overhead, reduces the range of the synchronization window, and speeds up the detection of the PSS in the millimeter wave band, so that the user equipment can quickly and accurately synchronize the millimeter wave band.
  • the first synchronization of the cellular frequency band is performed by using a cellular frequency band network covering the millimeter wave band network, including:
  • the first synchronization of the cellular frequency band is performed by acquiring a synchronization window in which the primary synchronization signal PSS of the cellular frequency band network covering the millimeter wave band network is located.
  • the first synchronization of the cellular frequency band is performed, that is, the synchronization window in which the primary synchronization signal PSS of the cellular frequency band network covering the millimeter wave frequency band network is located is obtained.
  • the method before the performing cellular frequency band first synchronization by using a cellular frequency band network covering the millimeter wave band network, the method includes:
  • a synchronization signal of a cellular band network transmitted by a cellular band RF transceiver in a base station wherein the cellular band RF transceiver is an RF transceiver for receiving and transmitting data of a cellular band network covering the millimeter wave band network.
  • the user equipment receives the synchronization signal sent by the base station in the synchronization channel through the synchronization channel of the cellular frequency band network, so as to perform non-coherent detection on the synchronization signal of the received cellular frequency band network.
  • non-coherent detection is performed on the synchronization signal of the received cellular frequency band network, and a synchronization window in which the primary synchronization signal PSS of the cellular frequency band network covering the millimeter wave frequency band network is located is obtained, and the cellular frequency band is performed.
  • a synchronization is performed on the synchronization signal of the received cellular frequency band network, and a synchronization window in which the primary synchronization signal PSS of the cellular frequency band network covering the millimeter wave frequency band network is located.
  • the synchronization signal of the received synchronization signal of the cellular frequency band network is non-coherently detected, and the synchronization window of the primary synchronization signal PSS of the cellular frequency band network covering the millimeter wave frequency band network is obtained, including:
  • the synchronization window with the highest correlation in the time domain correlation is obtained, wherein the synchronization window with the largest correlation is the synchronization window in which the primary synchronization signal PSS of the cellular frequency band network covering the millimeter wave band network is located.
  • the first PSS sequence is a PSS sequence of a cellular band network.
  • the synchronous operation of the cellular frequency band uses the two-layer synchronization structure defined in the LTE as an example, and the non-coherent detection of the PSS in the cellular frequency band is used to implement time slot synchronization, and the coherent detection is implemented by the secondary synchronization signal.
  • Frame synchronization Since the PSS is performing non-coherent detection, that is, using a known PSS sequence to perform time domain correlation on the sequence on the sliding PSS synchronization window on a fixed period, the synchronization window having the greatest correlation is the coverage.
  • the synchronization window in which the primary synchronization signal PSS of the cellular band network of the millimeter wave band network is located, so that the subsequent user equipment is in the millimeter wave band after the time t 0 + t 1 of the start time of the synchronization window in which the cellular frequency band PSS is located The PSS is tested.
  • a synchronization signal of a millimeter wave band network transmitted by a millimeter wave band network RF transceiver in a base station wherein the millimeter wave band network RF transceiver is an RF transceiver for receiving and transmitting data covering the millimeter wave.
  • the user equipment receives the synchronization signal sent by the base station in the synchronization channel through the synchronization channel of the millimeter wave band network, so as to perform non-coherent detection on the synchronization signal of the received millimeter wave band network.
  • the method before the second synchronization of the millimeter wave band by the millimeter wave band network, the method includes:
  • a synchronization signal of a millimeter wave band network transmitted by a millimeter wave band network RF transceiver in a base station wherein the millimeter wave band network RF transceiver is an RF transceiver for receiving and transmitting data covering the millimeter wave.
  • the second synchronization of the millimeter wave band by the millimeter wave band network includes:
  • non-coherent detection is performed on the synchronization signal of the received millimeter wave band network, and the PSS of the millimeter wave band network is obtained.
  • a synchronization window performing a second synchronization of the millimeter wave band, wherein the t 0 is a subframe start position delay of the acquired cellular frequency band and the millimeter wave frequency band, and the t 1 is a PSS on the predefined cellular frequency band The time difference between the PSS on the nearest millimeter wave band.
  • t 0 is the subframe start position delay of the acquired subframe of the cellular frequency band and the millimeter wave frequency band.
  • t 1 is the time difference between the PSS on the predefined cellular frequency band and the PSS on the nearest millimeter wave band, and t 1 is a fixed value.
  • the synchronization signal of the received millimeter wave band network is non-coherently detected, and the synchronization window of the PSS of the millimeter wave band network is obtained, including:
  • the synchronization window with the highest correlation in the time domain correlation is obtained, wherein the synchronization window with the largest correlation is the synchronization window in which the PSS of the millimeter wave band network is located.
  • the second PSS sequence is a PSS sequence of a millimeter wave band network.
  • FIG. 5 is a schematic diagram showing the position of the PSS on the cellular frequency band and the PSS on the millimeter wave frequency band in the actual embodiment of the present invention.
  • the PSS on the cellular frequency band defined by the LTE-FDD is located at the 0th.
  • the PSS on the millimeter wave band is located on the xth OFDMA symbol of the subframes 3 and 8, and x depends on the specific system design.
  • the time difference between the PSS on the cellular band and the PSS on the nearest millimeter wave band is defined as t 1 .
  • the PSS on the millimeter wave band is located on the 8th OFDMA symbol of the 3rd and 8th subframes
  • the PSS on the cellular band is located in the 6th OFDM symbol of the 0th and 5th subframes
  • the time difference between the 6th OFDM symbol of the 0th subframe on the cellular band and the 8th OFDMA symbol of the 3rd subframe on the millimeter wave band is the PSS on the cellular band and the nearest millimeter wave band.
  • the time difference t 1 between the PSSs, the time difference between the OFDM symbol of the 5th subframe on the cellular band and the 8th OFDMA symbol of the 8th subframe on the millimeter wave band is the PSS on the cellular band
  • the time difference t 1 between the PSS on the nearest millimeter wave band is the PSS on the cellular band.
  • the millimeter wave band second synchronization is performed through the millimeter wave band network, that is, the synchronization window in which the main synchronization signal PSS covering the millimeter wave band network is located is obtained.
  • FIG. 6 is a schematic diagram of a relative delay between a synchronization window on a cellular frequency band and a synchronization window on a millimeter wave frequency band according to an embodiment of the present invention.
  • the synchronization window of the cellular frequency band is represented by the PSS low synchronization window
  • the synchronization window of the millimeter wave frequency band is represented by the PSS hi synchronization window
  • the TSS+t1 time of the PSS low synchronization window of the communication network accessing the cellular frequency band is synchronized with the PSS hi .
  • the window detects the PSS of the millimeter wave band, and the detection method includes but is not limited to the non-coherent detection mode.
  • the PSS of the millimeter wave band is detected in the sliding PSS synchronization window of the millimeter wave band, thereby Each time the user equipment scans the PSS synchronization window in the millimeter wave band to obtain the PSS, the time period of sliding the PSS synchronization window is reduced by t 0 + t 1 , thus avoiding the PSS synchronization window in which the user equipment slides for a long time in the millimeter wave band.
  • the cost is saved, the range of the synchronization window is reduced, and the detection of the PSS in the millimeter wave band is accelerated, so that the user equipment can quickly and accurately synchronize the millimeter wave band.
  • the subframe start position delay t 0 of the subframe of the cellular frequency band and the millimeter wave frequency band may be obtained by acquiring radio resource control RRC signaling or system broadcast information of the cellular frequency band.
  • the user equipment Before the acquired synchronization window t 0 +t 1 where the PSS of the communication network that accesses the cellular frequency band is located, the user equipment obtains high-level signaling (RRC signaling or system broadcast information) of the cellular frequency band through the base station, and passes through the upper layer.
  • the delay information carried by the signaling obtains the time delay t 0 of the frame start position of the cellular band frame and the millimeter wave band in real time.
  • FIG. 7 is a structural diagram of a base station according to an embodiment of the present invention. For convenience of description, only parts related to the embodiment are shown.
  • the base station includes at least a baseband processor 71, a millimeter wave band RF RF transceiver 72, and a cellular band RF transceiver 73.
  • the baseband processor 71 is respectively connected to the millimeter wave band RF transceiver 72 and the cellular band RF transceiver 73, and the baseband processor is configured to process the millimeter wave band RF transceiver 72 to receive and transmit millimeter waves.
  • the millimeter wave band RF RF transceiver includes an antenna for receiving and transmitting data in a millimeter wave band, a filter, a low noise amplifier LNA, a power amplifier PA, a local oscillator LO, and a mixing , analog to digital converter ADC, digital to analog converter DAC.
  • the antenna for receiving data is connected to a filter, the filter is connected to the low noise amplifier, the low noise amplifier is connected to the mixer, and the mixer is connected to an analog to digital converter;
  • the antenna for transmitting data is connected to a filter, and the filter is connected to the power amplifier.
  • the power amplifier is connected to the mixer, and the mixer is connected to a digital to analog converter;
  • the local oscillator LO is connected to a mixer connected to the low noise amplifier and a mixer connected to the power amplifier, respectively.
  • the cellular band RF transceiver includes an antenna, a filter, a low noise amplifier LNA, a power amplifier PA, a local oscillator LO, a mixer, and a mode for receiving and transmitting data in a cellular band.
  • Digital converter ADC digital to analog converter DA.
  • the antenna for receiving data is connected to a filter, the filter is connected to the low noise amplifier, the low noise amplifier is connected to the mixer, and the mixer is connected to an analog to digital converter;
  • the antenna for transmitting data is connected to the power amplifier, and the filter is connected to the power amplifier.
  • the power amplifier is connected to the mixer, and the mixer is connected to a digital to analog converter;
  • the local oscillator LO is connected to a mixer connected to the low noise amplifier and a mixer connected to the power amplifier, respectively.
  • the baseband processor is respectively connected to the millimeter wave band RF and the cellular band RF.
  • a configuration manner in which a conventional cellular base station and a millimeter wave base station are in a co-site manner is formed.
  • the conventional cellular base station and the millimeter wave base station can share one site (e.g., a tower, a pole), and erect respective antennas, or even share a set of antenna systems.
  • the problem of the base station design of the existing traditional cellular base station and the millimeter wave base station in reality and the problem that the millimeter wave band synchronization cannot be accelerated when the user equipment accesses the millimeter wave band network are solved, and the traditional cellular base station is realized.
  • the actual base station design with the millimeter wave base station can accelerate the millimeter wave band synchronization when the user equipment accesses the millimeter wave band network.
  • FIG. 8 is a schematic diagram of a baseband processor according to an embodiment of the present invention, which is respectively connected to a millimeter wave band RF transceiver and a cellular band RF transceiver.
  • the data exchange between the cellular base station and the millimeter wave base station can be considered as the exchange between high speed circuits without considering the delay and capacity problems of the backhaul link between the cellular base station and the millimeter wave base station.
  • the baseband processor can be connected to multiple millimeter wave frequency bands RF and multiple cellular frequency bands RF, and is not limited herein.
  • the millimeter wave band RF transceiver adopts a narrow beam high gain antenna configuration for forming a directional network coverage of a millimeter wave band network
  • the cellular band RF transceiver employs an omnidirectional or wide beam antenna configuration for forming a network coverage of a cellular band network covering the millimeter wave band network.
  • the coverage of the millimeter wave base station is inconsistent with the coverage of the cellular base station, the coverage of the millimeter wave base station is smaller than the coverage of the cellular base station.
  • a millimeter wave base station covers a radius of 200 meters to 500 meters as a hot spot, while a cellular base station covers a wider range of a radius ranging from 1 km to 2 km.
  • the user equipments within the coverage of the millimeter wave base station must be within the coverage of the traditional cellular base station of the co-site.
  • the cellular frequency band RF is used to send a management control message or user data to the user equipment.
  • the base station provided by the embodiment of the present invention can be applied to the method embodiment of the foregoing method for transmitting a base station.
  • the base station provided by the embodiment of the present invention can be applied to the method embodiment of the foregoing method for transmitting a base station.
  • FIG. 9 is a flowchart of a method for implementing data transmission of a base station according to an embodiment of the present invention, which is described in detail as follows:
  • step S901 the control information in the communication process is transmitted by using the cellular band RF transceiver in the base station;
  • step S902 user data information in the communication process is transmitted by using the millimeter wave band RF transceiver in the base station.
  • the control information includes the broadcast channel BCH information in the downlink, the physical downlink control channel PDCCH information, the downlink radio resource management RRC signaling information, the random access channel RACH information in the uplink, the physical uplink control channel PUCCH, and the radio resource management RRC letter. At least one of the information in the message.
  • the synchronization signal in the communication process is transmitted by using the millimeter wave band RF transceiver in the base station.
  • the user data information includes uplink and downlink user data information.
  • a small amount of reference signaling in a communication process is transmitted by using a millimeter wave band RF transceiver in the base station, the reference signaling including a synchronization signal.
  • the cellular frequency band is used to transmit important information, improve reliability, or transmit broadcast multicast information, and improve coverage; and use millimeter wave frequency band to transmit unicast data information to improve system throughput.
  • the millimeter wave band RF transceiver adopts a narrow beam high gain antenna configuration for forming a network coverage of a millimeter wave band network
  • the cellular band RF transceiver employs an omnidirectional or wide beam antenna configuration for forming a network coverage of a cellular band network covering the millimeter wave band network.

Abstract

 本发明提供一种用户设备的同步方法及用户设备,该方法包括:当用户设备接入毫米波频段网络时,通过覆盖所述毫米波频段网络的蜂窝频段网络进行蜂窝频段第一同步;通过所述毫米波频段网络进行毫米波频段第二同步。本发明在进行蜂窝频段第一同步后,通过毫米波频段网络进行毫米波频段第二同步,从而避免了出现用户设备在毫米波频段长时间的滑动的PSS同步窗中,获取PSS的情况,从而节省了开销,缩小了同步窗的范围,加快了对毫米波频段的PSS的检测,使得用户设备快速准确的对毫米波频段进行同步。

Description

一种用户设备的同步方法及用户设备 技术领域
本发明属于移动通信技术领域,尤其涉及一种用户设备的同步方法及用户设备。
背景技术
移动通信作为史上最成功的技术创新之一,其发展势头相当迅猛。随着移动用户、移动应用以及移动业务的日益增长,对大容量、低延迟以及更可靠的移动通信的需求也日益增加。近些年,通过采用更先进的通信技术、分配更多的频谱以及部署更密集的基站,部分的满足了上述需求。但是,根据预测,未来的十年中移动数据业务将呈现爆发式增长趋势,这对下一代移动通信网络的设计又提出了更加严峻的挑战。目前,大部分适用于移动通信的低频段频谱资源已经被分配完(例如,3GHz以下频段)。然而,在3-300GHz的频段上,大量的频谱资源还未被分配使用。根据ITU的定义,3-30GHz频段被称为超高频(SHF)频段,30-300GHz频段被称为极高频(EHF)频段。由于SHF和EHF频段具有相似的传播特性(较大的传播损耗),且波长范围在1毫米至100毫米之间,因此3-300GHz频段又被统称为毫米波频段。
但是,对于采用毫米波频段用于蜂窝移动通信的研究还处于初始阶段,技术尚未成熟,用户设备接入毫米波频段网络时,需要在毫米波频段长时间的滑动PSS(英文:Primary Synchronization Signal,中文:主同步信号)的同步窗获取PSS,无法加速毫米波频段同步。例如,在实际的传输过程中,用户在接收蜂窝频段帧和毫米波频段帧时,其帧的起始位置将会产生一定的延时,如图1所示。该延时是由多种因素造成,例如基站侧蜂窝频段与毫米波频段上的发射延时差异以及毫米波频段RF (英文:Radio Frequency,中文:射频)通道和蜂窝频段RF通道器件造成的延时差异,不同频段信号在空间传播路径不同造成的延时差异等。
技术问题
本发明实施例的目的在于提供用户设备的同步方法及用户设备,旨在解决用户设备接入毫米波频段网络时,无法加速毫米波频段同步的问题。
技术解决方案
结合第一方面,一种用户设备,包括:
第一同步单元,用于当用户设备接入毫米波频段网络时,通过覆盖所述毫米波频段网络的蜂窝频段网络进行蜂窝频段第一同步;
第二同步单元,用于通过所述毫米波频段网络进行毫米波频段第二同步。
结合第一方面,在第一方面的第一种可能的实现方式中,所述第一同步单元还用于通过获取覆盖所述毫米波频段网络的蜂窝频段网络的主同步信号PSS所在的同步窗,进行蜂窝频段第一同步。
结合第一方面的第一种可能的实现方式,在第一方面的第二种可能的实现方式中,所述用户设备还包括:
第一接收单元,用于接收基站中的蜂窝频段射频RF收发器传输的蜂窝频段网络的同步信号,其中所述蜂窝频段RF收发器为用于接收和发送覆盖所述毫米波频段网络的蜂窝频段网络的数据的RF收发器。
结合第一方面的第二种可能的实现方式,在第一方面的第三种可能的实现方式中,所述第一同步单元还用于对接收到的蜂窝频段网络的同步信号进行非相干检测,获取覆盖所述毫米波频段网络的蜂窝频段网络的主同步信号PSS所在的同步窗,进行蜂窝频段第一同步。
结合第一方面的第二种可能的实现方式,在第一方面的第四种可能的实现方式中,所述第一同步单元还用于通过在固定的周期内,根据预存的第一PSS序列,对覆盖所述毫米波频段网络的蜂窝频段网络的滑动的PSS同步窗上的序列进行时域相关;
用于获取时域相关中相关性最大的同步窗,其中,相关性最大的同步窗即为覆盖所述毫米波频段网络的蜂窝频段网络的主同步信号PSS所在的同步窗。
结合第一方面,在第一方面的第五种可能的实现方式中,所述用户设备还包括:
第二接收单元,用于接收基站中的毫米波频段网络RF收发器发送的毫米波频段网络的同步信号,其中所述毫米波频段网络RF收发器为用于接收和发送覆盖所述毫米波的数据的RF收发器。
结合第一方面或第一方面的第一种可能的实现方式或第一方面的第三种可能的实现方式,在第一方面的第六种可能的实现方式中,所述第二同步单元具体用于在获取到的所述蜂窝频段网络的PSS所在同步窗的t0+t1时刻后,对接收到的毫米波频段网络的同步信号进行非相干检测,获取所述毫米波频段网络的PSS所在的同步窗,进行毫米波频段第二同步,所述t0为获取到的蜂窝频段的子帧与毫米波频段的子帧起始位置时延,所述t1为预定义的蜂窝频段上的PSS与其最近的毫米波频段上的PSS之间的时间差。
结合第一方面的第六种可能的实现方式,在第一方面的第七种可能的实现方式中,所述第二同步单元还用于在固定的周期内,根据预存的第二PSS序列,对毫米波频段网络滑动的PSS同步窗上的序列进行时域相关;
用于获取时域相关中相关性最大的同步窗,其中,相关性最大的同步窗即为所述毫米波频段网络的PSS所在的同步窗。
结合第一方面的第六种可能的实现方式,在第一方面的第八种可能的实现方式中,所述用户设备还包括:
获取单元,用于通过获取蜂窝频段的无线资源控制RRC信令或者系统广播信息得到所述蜂窝频段的子帧与毫米波频段的子帧起始位置时延。
第二方面,一种用户设备,所述用户设备包括处理器、存储器、通信接口,其中处理器、通信接口、存储器通过总线完成相互间的通信;
所述通信接口,用于与其他通信设备进行通信;
所述处理器,用于执行程序;
所述存储器,用于存放程序;
其中程序用于当用户设备接入毫米波频段网络时,通过覆盖所述毫米波频段网络的蜂窝频段网络进行蜂窝频段第一同步;用于通过所述毫米波频段网络进行毫米波频段第二同步。
第三方面,一种用户设备的同步方法,所述方法包括:
当用户设备接入毫米波频段网络时,通过覆盖所述毫米波频段网络的蜂窝频段网络进行蜂窝频段第一同步;
通过所述毫米波频段网络进行毫米波频段第二同步。
结合第三方面,在第三方面的第一种可能的实现方式中,所述通过覆盖所述毫米波频段网络的蜂窝频段网络进行蜂窝频段第一同步,包括:
通过获取覆盖所述毫米波频段网络的蜂窝频段网络的主同步信号PSS所在的同步窗,进行蜂窝频段第一同步。
结合第三方面的第一种可能的实现方式,在第三方面的第二种可能的实现方式中,在所述通过获取覆盖所述毫米波频段网络的控制信息网络的主同步信号PSS所在的同步窗之前,包括:
接收基站中的蜂窝频段RF收发器发送的蜂窝频段网络的同步信号,其中所述蜂窝频段RF收发器为用于接收和发送覆盖所述毫米波频段网络的蜂窝频段网络的数据的RF收发器。
结合第三方面的第二种可能的实现方式,在第三方面的第三种可能的实现方式中,还包括:
对接收到的蜂窝频段网络的同步信号进行非相干检测,获取覆盖所述毫米波频段网络的蜂窝频段网络的主同步信号PSS所在的同步窗,进行蜂窝频段第一同步。
结合第三方面的第二种可能的实现方式,在第三方面的第四种可能的实现方式中,所述对接收到的蜂窝频段网络的同步信号进行非相干检测,获取覆盖所述毫米波频段网络的蜂窝频段网络的主同步信号PSS所在的同步窗,还包括:
在固定的周期内,根据预存的第一PSS序列,对覆盖所述毫米波频段网络的蜂窝频段网络的滑动的PSS同步窗上的序列进行时域相关;
获取时域相关中相关性最大的同步窗,其中,相关性最大的同步窗即为覆盖所述毫米波频段网络的蜂窝频段网络的主同步信号PSS所在的同步窗。
结合第三方面,在第三方面的第五种可能的实现方式中,在所述通过所述毫米波频段网络进行毫米波频段第二同步之前,包括:
接收基站中的毫米波频段网络RF收发器发送的毫米波频段网络的同步信号,其中所述毫米波频段网络RF收发器为用于接收和发送覆盖所述毫米波的数据的RF收发器。
结合第三方面或第三方面的第一种可能的实现方式或第三方面的第三种可能的实现方式,在第三方面的第六种可能的实现方式中,在所述进行蜂窝频段第一同步之后,所述通过所述毫米波频段网络进行毫米波频段第二同步,包括:
在获取到的所述蜂窝频段网络的PSS所在同步窗的t0+t1时刻后,对接收到的毫米波频段网络的同步信号进行非相干检测,获取所述毫米波频段网络的PSS所在的同步窗,进行毫米波频段第二同步,所述t0为获取到的蜂窝频段的子帧与毫米波频段的子帧起始位置时延,所述t1为预定义的蜂窝频段上的PSS与其最近的毫米波频段上的PSS之间的时间差。
结合第三方面的第六种可能的实现方式,在第三方面的第七种可能的实现方式中,对接收到的毫米波频段网络的同步信号进行非相干检测,获取所述毫米波频段网络的PSS所在的同步窗,包括:
在固定的周期内,根据预存的第二PSS序列,对毫米波频段网络滑动的PSS同步窗上的序列进行时域相关;
获取时域相关中相关性最大的同步窗,其中,相关性最大的同步窗即为所述毫米波频段网络的PSS所在的同步窗。
结合第三方面的第六种可能的实现方式,在第三方面的第八种可能的实现方式中,所述方法还包括:
通过获取蜂窝频段的无线资源控制RRC信令或者系统广播信息得到所述蜂窝频段的子帧与毫米波频段的子帧起始位置时延。
有益效果
在本实施例中,本发明在进行蜂窝频段第一同步后,通过毫米波频段网络进行毫米波频段第二同步,从而避免了出现用户设备在毫米波频段长时间的滑动的PSS同步窗中,获取PSS的情况,从而节省了开销,缩小了同步窗的范围,加快了对毫米波频段的PSS的检测,使得用户设备快速准确的对毫米波频段进行同步。
附图说明
为了更清楚地说明本发明实施例中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1是现有技术提供的蜂窝频段帧和毫米波频段帧之间延时的示意图;
图2是本发明实施例提供的一种用户设备;
图3是本发明实施例提供的一种用户设备的结构示意图;
图4是本发明实施例提供的一种用户设备同步方法的实现流程图,
图5是本发明实施例提供的在实际中蜂窝频段上的PSS与毫米波频段上的PSS所处位置的较佳的示意图;
图6是本发明实施例提供的蜂窝频段上的同步窗与毫米波频段上的同步窗间相对时延的较佳的示意图;
图7是本发明实施例提供的一种基站的结构图;
图8是本发明实施例提供的基带处理器分别与毫米波频段RF收发器以及蜂窝频段RF收发器相连接的较佳的示意图;
图9是本发明实施例提供的基站数据传输的方法实现流程图;
本发明的实施方式
为了使本发明的目的、技术方案及优点更加清楚明白,以下结合附图及实施例,对本发明进行进一步详细说明。应当理解,此处所描述的具体实施例仅仅用以解释本发明,并不用于限定本发明。
参照图2,图2是本发明实施例提供的一种用户设备,为了便于说明,仅示出了与本实施例相关的部分,详述如下:
第一同步单元21,用于当用户设备接入毫米波频段网络时,通过覆盖所述毫米波频段网络的蜂窝频段网络进行蜂窝频段第一同步;
第二同步单元22,用于通过所述毫米波频段网络进行毫米波频段第二同步。
进一步地,所述第一同步单元还用于通过获取覆盖所述毫米波频段网络的蜂窝频段网络的主同步信号PSS所在的同步窗,进行蜂窝频段第一同步。
进一步地,所述用户设备还包括:
第一接收单元,用于接收基站中的蜂窝频段射频RF收发器传输的蜂窝频段网络的同步信号,其中所述蜂窝频段RF收发器为用于接收和发送覆盖所述毫米波频段网络的蜂窝频段网络的数据的RF收发器。
其中,第一接收单元可以为蜂窝频段接收设备,例如,蜂窝频段接收机。
进一步地,所述第一同步单元还用于对接收到的蜂窝频段网络的同步信号进行非相干检测,获取覆盖所述毫米波频段网络的蜂窝频段网络的主同步信号PSS所在的同步窗,进行蜂窝频段第一同步。
进一步地,所述第一同步单元还用于通过在固定的周期内,根据预存的第一PSS序列,对覆盖所述毫米波频段网络的蜂窝频段网络的滑动的PSS同步窗上的序列进行时域相关;
用于获取时域相关中相关性最大的同步窗,其中,相关性最大的同步窗即为覆盖所述毫米波频段网络的蜂窝频段网络的主同步信号PSS所在的同步窗。
进一步地,所述用户设备还包括:
第二接收单元,用于接收基站中的毫米波频段网络RF收发器发送的毫米波频段网络的同步信号,其中所述毫米波频段网络RF收发器为用于接收和发送覆盖所述毫米波的数据的RF收发器。
其中,第二接收单元为可以为毫米波频段接收设备,例如,蜂窝频段接收机。
进一步地,所述第二同步单元具体用于在获取到的所述蜂窝频段网络的PSS所在同步窗的t0+t1时刻后,对接收到的毫米波频段网络的同步信号进行非相干检测,获取所述毫米波频段网络的PSS所在的同步窗,进行毫米波频段第二同步,所述t0为获取到的蜂窝频段的子帧与毫米波频段的子帧起始位置时延,所述t1为预定义的蜂窝频段上的PSS与其最近的毫米波频段上的PSS之间的时间差。
进一步地,所述第二同步单元还用于在固定的周期内,根据预存的第二PSS序列,对毫米波频段网络滑动的PSS同步窗上的序列进行时域相关;
用于获取时域相关中相关性最大的同步窗,其中,相关性最大的同步窗即为所述毫米波频段网络的PSS所在的同步窗。
进一步地,所述用户设备还包括:
获取单元,用于通过获取蜂窝频段的无线资源控制RRC信令或者系统广播信息得到所述蜂窝频段的子帧与毫米波频段的子帧起始位置时延。
参考图3,图3是本发明实施例提供的一种用户设备的结构示意图,本发明具体实施例并不对所述用户设备的具体实现做限定,所述用户设备100,包括:
处理器(英文:processor)301,通信接口(英文:Communications Interface302,存储器(英文:memory)303,总线304。
处理器301,通信接口302,存储器303通过总线304完成相互间的通信。
通信接口302,用于与其他通信设备进行通信;
处理器301,用于执行程序。
具体地,程序可以包括程序代码,所述程序代码包括计算机操作指令。
处理器303可能是一个中央处理器(英文:central processing unit,缩写:CPU。
存储器303,用于存储程序。其中程序用于当用户设备接入毫米波频段网络时,通过覆盖所述毫米波频段网络的蜂窝频段网络进行蜂窝频段第一同步;通过所述毫米波频段网络进行毫米波频段第二同步。
参照图4,图4是本发明实施例提供的一种用户设备同步方法的实现流程图,详述如下:
在步骤S401中,当用户设备接入毫米波频段网络时,通过覆盖所述毫米波频段网络的蜂窝频段网络进行蜂窝频段第一同步。
其中,覆盖毫米波频段网络的蜂窝频段网络表示毫米波频段网络的覆盖范围在蜂窝频段网络的范围之内。
可通过传统蜂窝基站和毫米波基站采用共站址方式的配置方式,传统蜂窝基站中蜂窝频段RF收发器采用全向或者宽波束的天线配置,用于形成覆盖所述毫米波频段网络的蜂窝频段网络的网络覆盖,可使得处于毫米波基站覆盖范围内的用户设备,同时处于共站址的传统蜂窝基站覆盖范围内。
在本实施例中,用户设备可以接收基站中的蜂窝频段RF收发器传输通信过程中的同步信号,可通过覆盖毫米波频段网络的蜂窝频段网络中的同步信号,进行蜂窝频段第一同步。
在步骤S402中,通过所述毫米波频段网络进行毫米波频段第二同步。
在进行蜂窝频段第一同步后,通过所述毫米波频段网络进行毫米波频段第二同步,第二同步的过程在后续实施例进行描述,在此不做赘述。
本发明在进行蜂窝频段第一同步后,通过毫米波频段网络进行毫米波频段第二同步,从而避免了出现用户设备在毫米波频段长时间的滑动的PSS同步窗中,获取PSS的情况,从而节省了开销,缩小了同步窗的范围,加快了对毫米波频段的PSS的检测,使得用户设备快速准确的对毫米波频段进行同步。
作为本发明的一个优选实施例,所述通过覆盖所述毫米波频段网络的蜂窝频段网络进行蜂窝频段第一同步,包括:
通过获取覆盖所述毫米波频段网络的蜂窝频段网络的主同步信号PSS所在的同步窗,进行蜂窝频段第一同步。
在本实施例中,当用户设备接入毫米波频段网络时,进行蜂窝频段第一同步,也就是获取覆盖所述毫米波频段网络的蜂窝频段网络的主同步信号PSS所在的同步窗。
作为本发明的一个优选实施例,在所述通过覆盖所述毫米波频段网络的蜂窝频段网络进行蜂窝频段第一同步之前,所述方法包括:
接收基站中的蜂窝频段RF收发器发送的蜂窝频段网络的同步信号,其中所述蜂窝频段RF收发器为用于接收和发送覆盖所述毫米波频段网络的蜂窝频段网络的数据的RF收发器。
在本实施例中,用户设备通过蜂窝频段网络的同步信道,接收基站在同步信道中发送的同步信号,以便后续对对接收到的蜂窝频段网络的同步信号进行非相干检测。
需要进行说明的是,关于本实施例中蜂窝频段RF收发器的详细描述,可参阅在后续实施例图7、图8、图9中关于蜂窝频段RF收发器的描述。
作为本发明的一个优选实施例,对接收到的蜂窝频段网络的同步信号进行非相干检测,获取覆盖所述毫米波频段网络的蜂窝频段网络的主同步信号PSS所在的同步窗,进行蜂窝频段第一同步。
作为本发明的一个优选实施例,所述对接收到的蜂窝频段网络的同步信号进行非相干检测,获取覆盖所述毫米波频段网络的蜂窝频段网络的主同步信号PSS所在的同步窗,包括:
在固定的周期内,根据预存的第一PSS序列,对覆盖所述毫米波频段网络的蜂窝频段网络的滑动的PSS同步窗上的序列进行时域相关;
获取时域相关中相关性最大的同步窗,其中,相关性最大的同步窗即为覆盖所述毫米波频段网络的蜂窝频段网络的主同步信号PSS所在的同步窗。
其中,第一PSS序列为蜂窝频段网络的PSS序列。
在本实施例中,为便于说明,以蜂窝频段的同步操作采用LTE中定义的两层同步结构为例,通过蜂窝频段的PSS进行非相干检测实现时隙同步、通过副同步信号进行相干检测实现帧同步。由于PSS是进行的非相干检测,即在一个固定的周期上使用已知的PSS序列对滑动的PSS同步窗上的序列做时域相关,相关性最大的那个同步窗即为即为覆盖所述毫米波频段网络的蜂窝频段网络的主同步信号PSS所在的同步窗,以便于后续用户设备在蜂窝频段PSS所在的同步窗的起始时间的t0+t1时刻后,对所述毫米波频段的PSS进行检测。
接收基站中的毫米波频段网络RF收发器发送的毫米波频段网络的同步信号,其中所述毫米波频段网络RF收发器为用于接收和发送覆盖所述毫米波的数据的RF收发器。
在本实施例中,用户设备通过毫米波频段网络的同步信道,接收基站在同步信道中发送的同步信号,以便后续对对接收到的毫米波频段网络的同步信号进行非相干检测。
需要进行说明的是,关于本实施例中毫米波频段网络RF收发器的详细描述,可参阅在后续实施例图7、图8、图9中关于毫米波频段网络RF收发器的描述。
作为本发明的一个优选实施例,在所述通过所述毫米波频段网络进行毫米波频段第二同步之前,所述方法包括:
接收基站中的毫米波频段网络RF收发器发送的毫米波频段网络的同步信号,其中所述毫米波频段网络RF收发器为用于接收和发送覆盖所述毫米波的数据的RF收发器。
作为本发明的一个优选实施例,所述通过所述毫米波频段网络进行毫米波频段第二同步,包括:
在获取到的所述蜂窝频段网络的PSS所在同步窗的t0+t1时刻后,对接收到的毫米波频段网络的同步信号进行非相干检测,获取所述毫米波频段网络的PSS所在的同步窗,进行毫米波频段第二同步,所述t0为获取到的蜂窝频段的子帧与毫米波频段的子帧起始位置时延,所述t1为预定义的蜂窝频段上的PSS与其最近的毫米波频段上的PSS之间的时间差。
在本实施例中,t0为获取到的蜂窝频段的子帧与毫米波频段的子帧起始位置时延。
在本实施例中,t1为预定义的蜂窝频段上的PSS与其最近的毫米波频段上的PSS之间的时间差,t1为一个固定值。
作为本发明的一个优选实施例,对接收到的毫米波频段网络的同步信号进行非相干检测,获取所述毫米波频段网络的PSS所在的同步窗,包括:
在固定的周期内,根据预存的第二PSS序列,对毫米波频段网络滑动的PSS同步窗上的序列进行时域相关;
获取时域相关中相关性最大的同步窗,其中,相关性最大的同步窗即为所述毫米波频段网络的PSS所在的同步窗。
其中,第二PSS序列为毫米波频段网络的PSS序列。
参照图5,图5是本发明实施例提供的在实际中蜂窝频段上的PSS与毫米波频段上的PSS所处位置的较佳示意图,LTE-FDD定义的蜂窝频段上的PSS位于第0号和第5号子帧的第6号OFDM符号上,毫米波频段上的PSS位于第3号和第8号子帧的第x个OFDMA符号上,x根据具体的系统设计而定。蜂窝频段上的PSS与其最近的毫米波频段上的PSS之间的时间差即定义为t1
例如,当毫米波频段上的PSS位于第3号和第8号子帧的第8个OFDMA符号上,蜂窝频段上的PSS位于第0号和第5号子帧的第6号OFDM符号时,
蜂窝频段上的第0号子帧的第6号OFDM符号与毫米波频段上的第3号子帧的第8个OFDMA符号之间的时间差为蜂窝频段上的PSS与其最近的毫米波频段上的PSS之间的时间差t1,蜂窝频段上的第5号子帧的第6号OFDM符号与毫米波频段上的第8号子帧的第8个OFDMA符号之间的时间差为蜂窝频段上的PSS与其最近的毫米波频段上的PSS之间的时间差t1
在本实施例中,通过毫米波频段网络进行毫米波频段第二同步,也就是获取覆盖所述毫米波频段网络的主同步信号PSS所在的同步窗。
参照图6,图6是本发明实施例提供的蜂窝频段上的同步窗与毫米波频段上的同步窗间相对时延的较佳的示意图。
其中,以PSSlow同步窗表示蜂窝频段的同步窗,以PSShi同步窗表示毫米波频段的同步窗,接入蜂窝频段的通信网络的PSSlow同步窗的t0+t1时刻后,在PSShi同步窗检测毫米波频段的PSS,检测的方式包括但不限于非相干检测方式。
在本实施例中,在蜂窝频段网络的PSS所在的同步窗的t0+t1时刻后,在所述毫米波频段的滑动PSS同步窗中,对所述毫米波频段的PSS进行检测,从而每次用户设备在毫米波频段滑动PSS同步窗获取PSS时,滑动PSS同步窗的时间段都减少了t0+t1,因此避免了出现用户设备在毫米波频段长时间的滑动的PSS同步窗中获取PSS的情况,从而节省了开销,缩小了同步窗的范围,加快了对毫米波频段的PSS的检测,使得用户设备快速准确的对毫米波频段进行同步。
作为本发明的一个优选实施例,可通过获取蜂窝频段的无线资源控制RRC信令或者系统广播信息得到所述蜂窝频段的子帧与毫米波频段的子帧起始位置时延t0
在获取到的所述接入蜂窝频段的通信网络的PSS所在的同步窗t0+t1时刻之前,用户设备通过基站获得蜂窝频段的高层信令(RRC信令或者系统广播信息),通过高层信令携带的时延信息,以实时获取到蜂窝频段帧与毫米波频段帧起始位置时延t0
可选地,也可以在标准化中固定一个值,作为蜂窝频段帧与毫米波频段帧起始位置时延。
参照图7,图7是本发明实施例提供的一种基站的结构图,为了便于说明,仅示出了与本实施例相关的部分。
该基站至少包括一基带处理器71、一毫米波频段射频RF收发器72、一蜂窝频段RF收发器73。所述基带处理器71分别与所述毫米波频段RF收发器72以及所述蜂窝频段RF收发器73相连接,所述基带处理器用于处理所述毫米波频段RF收发器72接收和发送毫米波频段网络的数据,并处理所述蜂窝频段RF收发器73接收和发送覆盖所述毫米波频段网络的蜂窝频段网络的数据。
进一步地,在该基站中,所述毫米波频段射频RF收发器包括用于在毫米波频段接收和发送数据的天线、滤波器、低噪声放大器LNA、功率放大器PA、本地振荡器LO、混频器、模数转换器ADC、数模转换器DAC。
其中,所述接收数据的天线与滤波器相连,所述滤波器与所述低噪声放大器相连,所述低噪声放大器与所述混频器相连,所述混频器与模数转换器相连;
所述发送数据的天线与滤波器相连,所述滤波器与所述功率放大器相连, 所述功率放大器与所述混频器相连,所述混频器与数模转换器相连;
所述本地振荡器LO分别连接与所述低噪声放大器相连的混频器和与所述功率放大器相连的混频器。
进一步地,在该基站中,所述蜂窝频段RF收发器包括用于在蜂窝频段接收和发送数据的天线、滤波器、低噪声放大器LNA、功率放大器PA、本地振荡器LO、混频器、模数转换器ADC、数模转换器DA。
其中,所述接收数据的天线与滤波器相连,所述滤波器与所述低噪声放大器相连,所述低噪声放大器与所述混频器相连,所述混频器与模数转换器相连;
所述发送数据的天线与所述功率放大器相连,所述滤波器与所述功率放大器相连, 所述功率放大器与所述混频器相连,所述混频器与数模转换器相连;
所述本地振荡器LO分别连接与所述低噪声放大器相连的混频器和与所述功率放大器相连的混频器。
在本实施例中,基带处理器分别与毫米波频段RF以及蜂窝频段RF相连接。从而形成了传统蜂窝基站和毫米波基站采用共站址方式的配置方式。在该配置中,传统蜂窝基站和毫米波基站可以共用一个站址(例如:发射塔,抱杆),并架设各自的天线,或者甚至共用一套天线系统。
在本实施例中,解决了现有的传统蜂窝基站与毫米波基站在实际中的基站设计的问题以及用户设备接入毫米波频段网络时,无法加速毫米波频段同步的问题,实现传统蜂窝基站与毫米波基站在实际中的基站设计,以便于用户设备接入毫米波频段网络时,可加速毫米波频段同步。
参照图8,图8是本发明实施例提供的基带处理器分别与毫米波频段RF收发器以及蜂窝频段RF收发器相连接的较佳的示意图。
在该网络构架下,处于毫米波基站覆盖范围内的用户设备,同时处于共站址的传统蜂窝基站覆盖范围内。
与此同时,蜂窝基站与毫米波基站之间的数据交换可以认为是高速的电路之间的交换,无需考虑蜂窝基站与毫米波基站间回程链路的延时和容量问题。
需要说明的是,基带处理器可以与多个毫米波频段RF以及多个蜂窝频段RF相连接,在此不做限制。
作为本发明的一个优选实施例,在该基站中,所述毫米波频段RF收发器采用窄波束高增益的天线配置,用于形成毫米波频段网络的定向网络覆盖;
所述蜂窝频段RF收发器采用全向或者宽波束的天线配置,用于形成覆盖所述毫米波频段网络的蜂窝频段网络的网络覆盖。
在该网络构架中,毫米波基站的覆盖范围与蜂窝基站的覆盖范围不一致时,毫米波基站的覆盖范围要小于蜂窝基站的覆盖范围。
例如,毫米波基站作为热点覆盖200米至500米的半径范围,而蜂窝基站覆盖更广的范围达到1公里到2公里的半径范围。该网络构架下,处于毫米波基站覆盖范围内的用户设备,一定处于共站址的传统蜂窝基站覆盖范围内。
在本实施例中,蜂窝频段RF用于发送管理控制消息或用户数据给用户设备。
本发明实施例提供的基站可以应用在前述基站的传输方法的方法实施例中,详情参见上述实施例的描述,在此不再赘述。
参照图9,图9是本发明实施例提供的一种基站数据传输的方法实现流程图,详述如下:
在步骤S901中,利用基站中的蜂窝频段RF收发器传输通信过程中的控制信息;
在步骤S902中,利用所述基站中的毫米波频段RF收发器传输通信过程中的用户数据信息。
其中,控制信息包括下行中的广播信道BCH信息、物理下行控制信道PDCCH信息、下行无线资源管理RRC信令信息、上行中的随机接入信道RACH信息、物理上行控制信道PUCCH、无线资源管理RRC信令信息中的至少一种信息。
利用所述基站中的毫米波频段RF收发器传输通信过程中的同步信号。
其中,用户数据信息包括上行和下行的用户数据信息。
利用所述基站中的毫米波频段RF收发器传输通信过程中的少量参考信令,所述参考信令包括同步信号。
在本实施例中,采用蜂窝频段传输重要信息,提升可靠性,或者传送广播多播信息,提升覆盖范围;采用毫米波频段传输单播的数据信息,提升系统吞吐量。
在本实施例中,所述毫米波频段RF收发器采用窄波束高增益的天线配置,用于形成毫米波频段网络的网络覆盖;
所述蜂窝频段RF收发器采用全向或者宽波束的天线配置,用于形成覆盖所述毫米波频段网络的蜂窝频段网络的网络覆盖。
以上所述仅为本发明的较佳实施例而已,并不用以限制本发明,凡在本发明的精神和原则之内所作的任何修改、等同替换和改进等,均应包含在本发明的保护范围之内。

Claims (19)

  1. 一种用户设备,其特征在于,包括:
    第一同步单元,用于当用户设备接入毫米波频段网络时,通过覆盖所述毫米波频段网络的蜂窝频段网络进行蜂窝频段第一同步;
    第二同步单元,用于通过所述毫米波频段网络进行毫米波频段第二同步。
  2. 如权利要求1所述的用户设备,其特征在于,所述第一同步单元还用于通过获取覆盖所述毫米波频段网络的蜂窝频段网络的主同步信号PSS所在的同步窗,进行蜂窝频段第一同步。
  3. 如权利要求2所述的用户设备,其特征在于,所述用户设备还包括:
    第一接收单元,用于接收基站中的蜂窝频段射频RF收发器传输的蜂窝频段网络的同步信号,其中所述蜂窝频段RF收发器为用于接收和发送覆盖所述毫米波频段网络的蜂窝频段网络的数据的RF收发器。
  4. 如权利要求3所述的用户设备,其特征在于,所述第一同步单元还用于对接收到的蜂窝频段网络的同步信号进行非相干检测,获取覆盖所述毫米波频段网络的蜂窝频段网络的主同步信号PSS所在的同步窗,进行蜂窝频段第一同步。
  5. 如权利要求3所述的用户设备,其特征在于,所述第一同步单元还用于通过在固定的周期内,根据预存的第一PSS序列,对覆盖所述毫米波频段网络的蜂窝频段网络的滑动的PSS同步窗上的序列进行时域相关;
    用于获取时域相关中相关性最大的同步窗,其中,相关性最大的同步窗即为覆盖所述毫米波频段网络的蜂窝频段网络的主同步信号PSS所在的同步窗。
  6. 如权利要求1所述的用户设备,其特征在于,所述用户设备还包括:
    第二接收单元,用于接收基站中的毫米波频段网络RF收发器发送的毫米波频段网络的同步信号,其中所述毫米波频段网络RF收发器为用于接收和发送覆盖所述毫米波的数据的RF收发器。
  7. 如权利要求1或2或4所述的用户设备,其特征在于,所述第二同步单元具体用于在获取到的所述蜂窝频段网络的PSS所在同步窗的t0+t1时刻后,对接收到的毫米波频段网络的同步信号进行非相干检测,获取所述毫米波频段网络的PSS所在的同步窗,进行毫米波频段第二同步,所述t0为获取到的蜂窝频段的子帧与毫米波频段的子帧起始位置时延,所述t1为预定义的蜂窝频段上的PSS与其最近的毫米波频段上的PSS之间的时间差。
  8. 如权利要求7所述的用户设备,其特征在于,所述第二同步单元还用于在固定的周期内,根据预存的第二PSS序列,对毫米波频段网络滑动的PSS同步窗上的序列进行时域相关;
    用于获取时域相关中相关性最大的同步窗,其中,相关性最大的同步窗即为所述毫米波频段网络的PSS所在的同步窗。
  9. 如权利要求7所述的用户设备,其特征在于,所述用户设备还包括:
    获取单元,用于通过获取蜂窝频段的无线资源控制RRC信令或者系统广播信息得到所述蜂窝频段的子帧与毫米波频段的子帧起始位置时延。
  10. 一种用户设备,其特征在于,所述用户设备包括处理器、存储器、通信接口,其中处理器、通信接口、存储器通过总线完成相互间的通信;
    所述通信接口,用于与其他通信设备进行通信;
    所述处理器,用于执行程序;
    所述存储器,用于存放程序;
    其中程序用于当用户设备接入毫米波频段网络时,通过覆盖所述毫米波频段网络的蜂窝频段网络进行蜂窝频段第一同步;用于通过所述毫米波频段网络进行毫米波频段第二同步。
  11. 一种用户设备的同步方法,其特征在于,所述方法包括:
    当用户设备接入毫米波频段网络时,通过覆盖所述毫米波频段网络的蜂窝频段网络进行蜂窝频段第一同步;
    通过所述毫米波频段网络进行毫米波频段第二同步。
  12. 如权利要求11所述的同步方法,其特征在于,所述通过覆盖所述毫米波频段网络的蜂窝频段网络进行蜂窝频段第一同步,包括:
    通过获取覆盖所述毫米波频段网络的蜂窝频段网络的主同步信号PSS所在的同步窗,进行蜂窝频段第一同步。
  13. 如权利要求12所述的同步方法,其特征在于,在所述通过覆盖所述毫米波频段网络的蜂窝频段网络进行蜂窝频段第一同步之前,所述方法包括:
    接收基站中的蜂窝频段RF收发器发送的蜂窝频段网络的同步信号,其中所述蜂窝频段RF收发器为用于接收和发送覆盖所述毫米波频段网络的蜂窝频段网络的数据的RF收发器。
  14. 如权利要求13所述的同步方法,其特征在于,所述方法还包括:
    对接收到的蜂窝频段网络的同步信号进行非相干检测,获取覆盖所述毫米波频段网络的蜂窝频段网络的主同步信号PSS所在的同步窗,进行蜂窝频段第一同步。
  15. 如权利要求13所述的同步方法,其特征在于,所述对接收到的蜂窝频段网络的同步信号进行非相干检测,获取覆盖所述毫米波频段网络的蜂窝频段网络的主同步信号PSS所在的同步窗,包括:
    在固定的周期内,根据预存的第一PSS序列,对覆盖所述毫米波频段网络的蜂窝频段网络的滑动的PSS同步窗上的序列进行时域相关;
    获取时域相关中相关性最大的同步窗,其中,相关性最大的同步窗即为覆盖所述毫米波频段网络的蜂窝频段网络的主同步信号PSS所在的同步窗。
  16. 如权利要求11所述的同步方法,其特征在于,在所述通过所述毫米波频段网络进行毫米波频段第二同步之前,所述方法包括:
    接收基站中的毫米波频段网络RF收发器发送的毫米波频段网络的同步信号,其中所述毫米波频段网络RF收发器为用于接收和发送覆盖所述毫米波的数据的RF收发器。
  17. 如权利要求11或12或14所述的同步方法,其特征在于,在所述进行蜂窝频段第一同步之后,所述通过所述毫米波频段网络进行毫米波频段第二同步,包括:
    在获取到的所述蜂窝频段网络的PSS所在同步窗的t0+t1时刻后,对接收到的毫米波频段网络的同步信号进行非相干检测,获取所述毫米波频段网络的PSS所在的同步窗,进行毫米波频段第二同步,所述t0为获取到的蜂窝频段的子帧与毫米波频段的子帧起始位置时延,所述t1为预定义的蜂窝频段上的PSS与其最近的毫米波频段上的PSS之间的时间差。
  18. 如权利要求17所述的同步方法,其特征在于,对接收到的毫米波频段网络的同步信号进行非相干检测,获取所述毫米波频段网络的PSS所在的同步窗,包括:
    在固定的周期内,根据预存的第二PSS序列,对毫米波频段网络滑动的PSS同步窗上的序列进行时域相关;
    获取时域相关中相关性最大的同步窗,其中,相关性最大的同步窗即为所述毫米波频段网络的PSS所在的同步窗。
  19. 如权利要求17所述的同步方法,其特征在于,还包括:
    通过获取蜂窝频段的无线资源控制RRC信令或者系统广播信息得到所述蜂窝频段的子帧与毫米波频段的子帧起始位置时延。
PCT/CN2013/089268 2013-12-12 2013-12-12 一种用户设备的同步方法及用户设备 WO2015085550A1 (zh)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN201380079701.2A CN105580454B (zh) 2013-12-12 2013-12-12 一种用户设备的同步方法及用户设备
PCT/CN2013/089268 WO2015085550A1 (zh) 2013-12-12 2013-12-12 一种用户设备的同步方法及用户设备
EP13898926.4A EP3070985B1 (en) 2013-12-12 2013-12-12 Synchronization method for user equipment, and user equipment
US15/180,267 US9693329B2 (en) 2013-12-12 2016-06-13 Synchronization method of user equipment and user equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2013/089268 WO2015085550A1 (zh) 2013-12-12 2013-12-12 一种用户设备的同步方法及用户设备

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US15/180,267 Continuation US9693329B2 (en) 2013-12-12 2016-06-13 Synchronization method of user equipment and user equipment

Publications (1)

Publication Number Publication Date
WO2015085550A1 true WO2015085550A1 (zh) 2015-06-18

Family

ID=53370507

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2013/089268 WO2015085550A1 (zh) 2013-12-12 2013-12-12 一种用户设备的同步方法及用户设备

Country Status (4)

Country Link
US (1) US9693329B2 (zh)
EP (1) EP3070985B1 (zh)
CN (1) CN105580454B (zh)
WO (1) WO2015085550A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017114055A1 (zh) * 2015-12-29 2017-07-06 华为技术有限公司 一种帧同步方法、用户设备及基站

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10681725B2 (en) * 2017-06-15 2020-06-09 Qualcomm Incorporated Techniques and apparatuses for unicast system information delivery for connected mode user equipment
CN109714146B (zh) * 2018-01-16 2020-05-12 电子科技大学 一种基于滑窗的二次相关帧同步方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1270722A (zh) * 1997-08-08 2000-10-18 奇维尔电讯公司 同步无线接入协议方法和装置
CN101137221A (zh) * 2007-09-26 2008-03-05 电子科技大学 一种多频带无线通信方法
CN102783061A (zh) * 2010-03-05 2012-11-14 富士通株式会社 无线通信系统、终端装置以及无线通信系统中的无线通信方法

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9084260B2 (en) * 2005-10-26 2015-07-14 Intel Corporation Systems for communicating using multiple frequency bands in a wireless network
JP5141587B2 (ja) * 2009-02-13 2013-02-13 ソニー株式会社 通信装置、通信制御方法、及び通信システム
JP5434137B2 (ja) * 2009-02-26 2014-03-05 ソニー株式会社 通信装置及び通信方法、コンピューター・プログラム、通信システム、並びに情報処理装置
JP2010206574A (ja) * 2009-03-04 2010-09-16 Sony Corp 通信装置及び通信方法、コンピューター・プログラム、並びに通信システム
CN102035613A (zh) * 2009-09-28 2011-04-27 华为技术有限公司 实现时间同步的方法、装置及网络系统
US8891592B1 (en) * 2009-10-16 2014-11-18 Marvell International Ltd. Control physical layer (PHY) data unit
US10244579B2 (en) 2010-01-28 2019-03-26 Samsung Electronics Co., Ltd. Techniques for millimeter wave mobile communication
CN108809370B (zh) * 2012-03-30 2022-05-31 英特尔公司 用于使用无线网络中的多个频带进行通信的系统

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1270722A (zh) * 1997-08-08 2000-10-18 奇维尔电讯公司 同步无线接入协议方法和装置
CN101137221A (zh) * 2007-09-26 2008-03-05 电子科技大学 一种多频带无线通信方法
CN102783061A (zh) * 2010-03-05 2012-11-14 富士通株式会社 无线通信系统、终端装置以及无线通信系统中的无线通信方法

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017114055A1 (zh) * 2015-12-29 2017-07-06 华为技术有限公司 一种帧同步方法、用户设备及基站
CN106936560A (zh) * 2015-12-29 2017-07-07 华为技术有限公司 一种帧同步方法、用户设备及基站
EP3349391A4 (en) * 2015-12-29 2018-10-24 Huawei Technologies Co., Ltd. Frame synchronization method, user equipment, and base station
CN106936560B (zh) * 2015-12-29 2020-04-14 华为技术有限公司 一种帧同步方法、用户设备及基站
US10681657B2 (en) 2015-12-29 2020-06-09 Huawei Technologies Co., Ltd. Frame synchronization method, user equipment, and base station

Also Published As

Publication number Publication date
US9693329B2 (en) 2017-06-27
CN105580454B (zh) 2019-09-03
EP3070985A1 (en) 2016-09-21
CN105580454A (zh) 2016-05-11
US20160286512A1 (en) 2016-09-29
EP3070985A4 (en) 2016-11-30
EP3070985B1 (en) 2019-06-05

Similar Documents

Publication Publication Date Title
WO2019160331A1 (en) Method and device for communicating synchronization signal
WO2018182244A1 (ko) 무선 통신 시스템에서 위상 잡음 제거를 위한 ptrs 할당 방법 및 그 장치
WO2017209570A1 (en) Uplink data transmission method, random access method, and corresponding ue and base station thereof
WO2016153182A1 (ko) 무선 통신 시스템에서 밀리미터 웨이브 셀에 엑세스하는 방법 및 이를 위한 장치
WO2010095871A2 (ko) 중계기의 신호 송수신 방법 및 그 방법을 이용하는 중계기
WO2018165927A1 (zh) 传输信号的方法、终端设备和网络设备
WO2010120097A2 (en) Apparatus and method for transmitting system information block in a broadband wireless communication system
WO2009088251A2 (en) Method for multiple tdd systems coexistence
WO2013055169A1 (en) Apparatus and method for controlling in-deivce coexistence inteference in wireless communication system
WO2017124771A1 (zh) Srs发送方法、srs发送装置和终端
WO2020139056A1 (en) Random access method, user equipment and base station
WO2018030774A1 (ko) 강건하고 신뢰성 있는 5G New Radio 통신 방법 및 그 장치
WO2012118311A2 (en) Method of transmitting and receiving data in a wireless communication system and apparatus therefor
WO2017200327A2 (en) Method and apparatus for transmission and reception in wireless communication system supporting scalable frame structure
WO2020036455A1 (ko) Nr v2x 시스템을 위한 동기화 신호 송수신 방법 및 그 장치
WO2015030473A1 (ko) 무선 통신 시스템에서 매크로 셀과 스몰 셀 간 스위칭을 위한 자원 할당 장치 및 방법
WO2019070101A1 (ko) 무선 통신 시스템에서 데이터를 송수신하기 위한 방법 및 이를 위한 장치
WO2010074509A2 (ko) 중계국을 포함하는 광대역 무선 접속 시스템에서의 단말의 이동성 관리 방법
WO2019066581A1 (ko) Srs를 전송 및 수신하는 방법과 이를 위한 통신 장치
WO2019245339A1 (ko) 이동 통신 시스템에서 기지국 노드 간 패킷 복제 동작 동기화 방법 및 장치
WO2015085550A1 (zh) 一种用户设备的同步方法及用户设备
WO2016167447A1 (ko) 무선 통신 시스템에서의 동기 신호 송수신 방법
WO2019226012A1 (ko) 클럭 동기화를 수행하는 통신 노드 및 통신 시스템
WO2017052026A1 (ko) 무선 통신 시스템에서 밀리미터 웨이브 셀에 엑세스하는 방법 및 이를 위한 장치
WO2017160050A1 (ko) 무선 통신 시스템에서 심볼의 인덱스를 추정하는 방법 및 이를 위한 장치

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201380079701.2

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13898926

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

REEP Request for entry into the european phase

Ref document number: 2013898926

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2013898926

Country of ref document: EP